diff options
author | dim <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
commit | 169d2bd06003c39970bc94c99669a34b61bb7e45 (patch) | |
tree | 06099edc18d30894081a822b756f117cbe0b8207 /lib/IR/Type.cpp | |
parent | 0ac5f94c68a3d8fbd1380dbba26d891ea7816b5e (diff) | |
download | FreeBSD-src-169d2bd06003c39970bc94c99669a34b61bb7e45.zip FreeBSD-src-169d2bd06003c39970bc94c99669a34b61bb7e45.tar.gz |
Vendor import of llvm trunk r178860:
http://llvm.org/svn/llvm-project/llvm/trunk@178860
Diffstat (limited to 'lib/IR/Type.cpp')
-rw-r--r-- | lib/IR/Type.cpp | 767 |
1 files changed, 767 insertions, 0 deletions
diff --git a/lib/IR/Type.cpp b/lib/IR/Type.cpp new file mode 100644 index 0000000..1e6a51a --- /dev/null +++ b/lib/IR/Type.cpp @@ -0,0 +1,767 @@ +//===-- Type.cpp - Implement the Type class -------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Type class for the IR library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Type.h" +#include "LLVMContextImpl.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/IR/Module.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Type Class Implementation +//===----------------------------------------------------------------------===// + +Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { + switch (IDNumber) { + case VoidTyID : return getVoidTy(C); + case HalfTyID : return getHalfTy(C); + case FloatTyID : return getFloatTy(C); + case DoubleTyID : return getDoubleTy(C); + case X86_FP80TyID : return getX86_FP80Ty(C); + case FP128TyID : return getFP128Ty(C); + case PPC_FP128TyID : return getPPC_FP128Ty(C); + case LabelTyID : return getLabelTy(C); + case MetadataTyID : return getMetadataTy(C); + case X86_MMXTyID : return getX86_MMXTy(C); + default: + return 0; + } +} + +/// getScalarType - If this is a vector type, return the element type, +/// otherwise return this. +Type *Type::getScalarType() { + if (VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType(); + return this; +} + +const Type *Type::getScalarType() const { + if (const VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType(); + return this; +} + +/// isIntegerTy - Return true if this is an IntegerType of the specified width. +bool Type::isIntegerTy(unsigned Bitwidth) const { + return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; +} + +// canLosslesslyBitCastTo - Return true if this type can be converted to +// 'Ty' without any reinterpretation of bits. For example, i8* to i32*. +// +bool Type::canLosslesslyBitCastTo(Type *Ty) const { + // Identity cast means no change so return true + if (this == Ty) + return true; + + // They are not convertible unless they are at least first class types + if (!this->isFirstClassType() || !Ty->isFirstClassType()) + return false; + + // Vector -> Vector conversions are always lossless if the two vector types + // have the same size, otherwise not. Also, 64-bit vector types can be + // converted to x86mmx. + if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) { + if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) + return thisPTy->getBitWidth() == thatPTy->getBitWidth(); + if (Ty->getTypeID() == Type::X86_MMXTyID && + thisPTy->getBitWidth() == 64) + return true; + } + + if (this->getTypeID() == Type::X86_MMXTyID) + if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) + if (thatPTy->getBitWidth() == 64) + return true; + + // At this point we have only various mismatches of the first class types + // remaining and ptr->ptr. Just select the lossless conversions. Everything + // else is not lossless. + if (this->isPointerTy()) + return Ty->isPointerTy(); + return false; // Other types have no identity values +} + +bool Type::isEmptyTy() const { + const ArrayType *ATy = dyn_cast<ArrayType>(this); + if (ATy) { + unsigned NumElements = ATy->getNumElements(); + return NumElements == 0 || ATy->getElementType()->isEmptyTy(); + } + + const StructType *STy = dyn_cast<StructType>(this); + if (STy) { + unsigned NumElements = STy->getNumElements(); + for (unsigned i = 0; i < NumElements; ++i) + if (!STy->getElementType(i)->isEmptyTy()) + return false; + return true; + } + + return false; +} + +unsigned Type::getPrimitiveSizeInBits() const { + switch (getTypeID()) { + case Type::HalfTyID: return 16; + case Type::FloatTyID: return 32; + case Type::DoubleTyID: return 64; + case Type::X86_FP80TyID: return 80; + case Type::FP128TyID: return 128; + case Type::PPC_FP128TyID: return 128; + case Type::X86_MMXTyID: return 64; + case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); + case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); + default: return 0; + } +} + +/// getScalarSizeInBits - If this is a vector type, return the +/// getPrimitiveSizeInBits value for the element type. Otherwise return the +/// getPrimitiveSizeInBits value for this type. +unsigned Type::getScalarSizeInBits() { + return getScalarType()->getPrimitiveSizeInBits(); +} + +/// getFPMantissaWidth - Return the width of the mantissa of this type. This +/// is only valid on floating point types. If the FP type does not +/// have a stable mantissa (e.g. ppc long double), this method returns -1. +int Type::getFPMantissaWidth() const { + if (const VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType()->getFPMantissaWidth(); + assert(isFloatingPointTy() && "Not a floating point type!"); + if (getTypeID() == HalfTyID) return 11; + if (getTypeID() == FloatTyID) return 24; + if (getTypeID() == DoubleTyID) return 53; + if (getTypeID() == X86_FP80TyID) return 64; + if (getTypeID() == FP128TyID) return 113; + assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); + return -1; +} + +/// isSizedDerivedType - Derived types like structures and arrays are sized +/// iff all of the members of the type are sized as well. Since asking for +/// their size is relatively uncommon, move this operation out of line. +bool Type::isSizedDerivedType() const { + if (this->isIntegerTy()) + return true; + + if (const ArrayType *ATy = dyn_cast<ArrayType>(this)) + return ATy->getElementType()->isSized(); + + if (const VectorType *VTy = dyn_cast<VectorType>(this)) + return VTy->getElementType()->isSized(); + + if (!this->isStructTy()) + return false; + + return cast<StructType>(this)->isSized(); +} + +//===----------------------------------------------------------------------===// +// Subclass Helper Methods +//===----------------------------------------------------------------------===// + +unsigned Type::getIntegerBitWidth() const { + return cast<IntegerType>(this)->getBitWidth(); +} + +bool Type::isFunctionVarArg() const { + return cast<FunctionType>(this)->isVarArg(); +} + +Type *Type::getFunctionParamType(unsigned i) const { + return cast<FunctionType>(this)->getParamType(i); +} + +unsigned Type::getFunctionNumParams() const { + return cast<FunctionType>(this)->getNumParams(); +} + +StringRef Type::getStructName() const { + return cast<StructType>(this)->getName(); +} + +unsigned Type::getStructNumElements() const { + return cast<StructType>(this)->getNumElements(); +} + +Type *Type::getStructElementType(unsigned N) const { + return cast<StructType>(this)->getElementType(N); +} + +Type *Type::getSequentialElementType() const { + return cast<SequentialType>(this)->getElementType(); +} + +uint64_t Type::getArrayNumElements() const { + return cast<ArrayType>(this)->getNumElements(); +} + +unsigned Type::getVectorNumElements() const { + return cast<VectorType>(this)->getNumElements(); +} + +unsigned Type::getPointerAddressSpace() const { + return cast<PointerType>(getScalarType())->getAddressSpace(); +} + + +//===----------------------------------------------------------------------===// +// Primitive 'Type' data +//===----------------------------------------------------------------------===// + +Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } +Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } +Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } +Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } +Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } +Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } +Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } +Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } +Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } +Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } + +IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } +IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } +IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } +IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } +IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } + +IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { + return IntegerType::get(C, N); +} + +PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { + return getHalfTy(C)->getPointerTo(AS); +} + +PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { + return getFloatTy(C)->getPointerTo(AS); +} + +PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { + return getDoubleTy(C)->getPointerTo(AS); +} + +PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { + return getX86_FP80Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { + return getFP128Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { + return getPPC_FP128Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { + return getX86_MMXTy(C)->getPointerTo(AS); +} + +PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { + return getIntNTy(C, N)->getPointerTo(AS); +} + +PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { + return getInt1Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { + return getInt8Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { + return getInt16Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { + return getInt32Ty(C)->getPointerTo(AS); +} + +PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { + return getInt64Ty(C)->getPointerTo(AS); +} + + +//===----------------------------------------------------------------------===// +// IntegerType Implementation +//===----------------------------------------------------------------------===// + +IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { + assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); + assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); + + // Check for the built-in integer types + switch (NumBits) { + case 1: return cast<IntegerType>(Type::getInt1Ty(C)); + case 8: return cast<IntegerType>(Type::getInt8Ty(C)); + case 16: return cast<IntegerType>(Type::getInt16Ty(C)); + case 32: return cast<IntegerType>(Type::getInt32Ty(C)); + case 64: return cast<IntegerType>(Type::getInt64Ty(C)); + default: + break; + } + + IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; + + if (Entry == 0) + Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); + + return Entry; +} + +bool IntegerType::isPowerOf2ByteWidth() const { + unsigned BitWidth = getBitWidth(); + return (BitWidth > 7) && isPowerOf2_32(BitWidth); +} + +APInt IntegerType::getMask() const { + return APInt::getAllOnesValue(getBitWidth()); +} + +//===----------------------------------------------------------------------===// +// FunctionType Implementation +//===----------------------------------------------------------------------===// + +FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, + bool IsVarArgs) + : Type(Result->getContext(), FunctionTyID) { + Type **SubTys = reinterpret_cast<Type**>(this+1); + assert(isValidReturnType(Result) && "invalid return type for function"); + setSubclassData(IsVarArgs); + + SubTys[0] = const_cast<Type*>(Result); + + for (unsigned i = 0, e = Params.size(); i != e; ++i) { + assert(isValidArgumentType(Params[i]) && + "Not a valid type for function argument!"); + SubTys[i+1] = Params[i]; + } + + ContainedTys = SubTys; + NumContainedTys = Params.size() + 1; // + 1 for result type +} + +// FunctionType::get - The factory function for the FunctionType class. +FunctionType *FunctionType::get(Type *ReturnType, + ArrayRef<Type*> Params, bool isVarArg) { + LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; + FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); + LLVMContextImpl::FunctionTypeMap::iterator I = + pImpl->FunctionTypes.find_as(Key); + FunctionType *FT; + + if (I == pImpl->FunctionTypes.end()) { + FT = (FunctionType*) pImpl->TypeAllocator. + Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1), + AlignOf<FunctionType>::Alignment); + new (FT) FunctionType(ReturnType, Params, isVarArg); + pImpl->FunctionTypes[FT] = true; + } else { + FT = I->first; + } + + return FT; +} + +FunctionType *FunctionType::get(Type *Result, bool isVarArg) { + return get(Result, ArrayRef<Type *>(), isVarArg); +} + +/// isValidReturnType - Return true if the specified type is valid as a return +/// type. +bool FunctionType::isValidReturnType(Type *RetTy) { + return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && + !RetTy->isMetadataTy(); +} + +/// isValidArgumentType - Return true if the specified type is valid as an +/// argument type. +bool FunctionType::isValidArgumentType(Type *ArgTy) { + return ArgTy->isFirstClassType(); +} + +//===----------------------------------------------------------------------===// +// StructType Implementation +//===----------------------------------------------------------------------===// + +// Primitive Constructors. + +StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, + bool isPacked) { + LLVMContextImpl *pImpl = Context.pImpl; + AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); + LLVMContextImpl::StructTypeMap::iterator I = + pImpl->AnonStructTypes.find_as(Key); + StructType *ST; + + if (I == pImpl->AnonStructTypes.end()) { + // Value not found. Create a new type! + ST = new (Context.pImpl->TypeAllocator) StructType(Context); + ST->setSubclassData(SCDB_IsLiteral); // Literal struct. + ST->setBody(ETypes, isPacked); + Context.pImpl->AnonStructTypes[ST] = true; + } else { + ST = I->first; + } + + return ST; +} + +void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { + assert(isOpaque() && "Struct body already set!"); + + setSubclassData(getSubclassData() | SCDB_HasBody); + if (isPacked) + setSubclassData(getSubclassData() | SCDB_Packed); + + unsigned NumElements = Elements.size(); + Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements); + memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements); + + ContainedTys = Elts; + NumContainedTys = NumElements; +} + +void StructType::setName(StringRef Name) { + if (Name == getName()) return; + + StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; + typedef StringMap<StructType *>::MapEntryTy EntryTy; + + // If this struct already had a name, remove its symbol table entry. Don't + // delete the data yet because it may be part of the new name. + if (SymbolTableEntry) + SymbolTable.remove((EntryTy *)SymbolTableEntry); + + // If this is just removing the name, we're done. + if (Name.empty()) { + if (SymbolTableEntry) { + // Delete the old string data. + ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); + SymbolTableEntry = 0; + } + return; + } + + // Look up the entry for the name. + EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name); + + // While we have a name collision, try a random rename. + if (Entry->getValue()) { + SmallString<64> TempStr(Name); + TempStr.push_back('.'); + raw_svector_ostream TmpStream(TempStr); + unsigned NameSize = Name.size(); + + do { + TempStr.resize(NameSize + 1); + TmpStream.resync(); + TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; + + Entry = &getContext().pImpl-> + NamedStructTypes.GetOrCreateValue(TmpStream.str()); + } while (Entry->getValue()); + } + + // Okay, we found an entry that isn't used. It's us! + Entry->setValue(this); + + // Delete the old string data. + if (SymbolTableEntry) + ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); + SymbolTableEntry = Entry; +} + +//===----------------------------------------------------------------------===// +// StructType Helper functions. + +StructType *StructType::create(LLVMContext &Context, StringRef Name) { + StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); + if (!Name.empty()) + ST->setName(Name); + return ST; +} + +StructType *StructType::get(LLVMContext &Context, bool isPacked) { + return get(Context, llvm::ArrayRef<Type*>(), isPacked); +} + +StructType *StructType::get(Type *type, ...) { + assert(type != 0 && "Cannot create a struct type with no elements with this"); + LLVMContext &Ctx = type->getContext(); + va_list ap; + SmallVector<llvm::Type*, 8> StructFields; + va_start(ap, type); + while (type) { + StructFields.push_back(type); + type = va_arg(ap, llvm::Type*); + } + return llvm::StructType::get(Ctx, StructFields); +} + +StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, + StringRef Name, bool isPacked) { + StructType *ST = create(Context, Name); + ST->setBody(Elements, isPacked); + return ST; +} + +StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { + return create(Context, Elements, StringRef()); +} + +StructType *StructType::create(LLVMContext &Context) { + return create(Context, StringRef()); +} + +StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, + bool isPacked) { + assert(!Elements.empty() && + "This method may not be invoked with an empty list"); + return create(Elements[0]->getContext(), Elements, Name, isPacked); +} + +StructType *StructType::create(ArrayRef<Type*> Elements) { + assert(!Elements.empty() && + "This method may not be invoked with an empty list"); + return create(Elements[0]->getContext(), Elements, StringRef()); +} + +StructType *StructType::create(StringRef Name, Type *type, ...) { + assert(type != 0 && "Cannot create a struct type with no elements with this"); + LLVMContext &Ctx = type->getContext(); + va_list ap; + SmallVector<llvm::Type*, 8> StructFields; + va_start(ap, type); + while (type) { + StructFields.push_back(type); + type = va_arg(ap, llvm::Type*); + } + return llvm::StructType::create(Ctx, StructFields, Name); +} + +bool StructType::isSized() const { + if ((getSubclassData() & SCDB_IsSized) != 0) + return true; + if (isOpaque()) + return false; + + // Okay, our struct is sized if all of the elements are, but if one of the + // elements is opaque, the struct isn't sized *yet*, but may become sized in + // the future, so just bail out without caching. + for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) + if (!(*I)->isSized()) + return false; + + // Here we cheat a bit and cast away const-ness. The goal is to memoize when + // we find a sized type, as types can only move from opaque to sized, not the + // other way. + const_cast<StructType*>(this)->setSubclassData( + getSubclassData() | SCDB_IsSized); + return true; +} + +StringRef StructType::getName() const { + assert(!isLiteral() && "Literal structs never have names"); + if (SymbolTableEntry == 0) return StringRef(); + + return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); +} + +void StructType::setBody(Type *type, ...) { + assert(type != 0 && "Cannot create a struct type with no elements with this"); + va_list ap; + SmallVector<llvm::Type*, 8> StructFields; + va_start(ap, type); + while (type) { + StructFields.push_back(type); + type = va_arg(ap, llvm::Type*); + } + setBody(StructFields); +} + +bool StructType::isValidElementType(Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); +} + +/// isLayoutIdentical - Return true if this is layout identical to the +/// specified struct. +bool StructType::isLayoutIdentical(StructType *Other) const { + if (this == Other) return true; + + if (isPacked() != Other->isPacked() || + getNumElements() != Other->getNumElements()) + return false; + + return std::equal(element_begin(), element_end(), Other->element_begin()); +} + +/// getTypeByName - Return the type with the specified name, or null if there +/// is none by that name. +StructType *Module::getTypeByName(StringRef Name) const { + StringMap<StructType*>::iterator I = + getContext().pImpl->NamedStructTypes.find(Name); + if (I != getContext().pImpl->NamedStructTypes.end()) + return I->second; + return 0; +} + + +//===----------------------------------------------------------------------===// +// CompositeType Implementation +//===----------------------------------------------------------------------===// + +Type *CompositeType::getTypeAtIndex(const Value *V) { + if (StructType *STy = dyn_cast<StructType>(this)) { + unsigned Idx = + (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); + assert(indexValid(Idx) && "Invalid structure index!"); + return STy->getElementType(Idx); + } + + return cast<SequentialType>(this)->getElementType(); +} +Type *CompositeType::getTypeAtIndex(unsigned Idx) { + if (StructType *STy = dyn_cast<StructType>(this)) { + assert(indexValid(Idx) && "Invalid structure index!"); + return STy->getElementType(Idx); + } + + return cast<SequentialType>(this)->getElementType(); +} +bool CompositeType::indexValid(const Value *V) const { + if (const StructType *STy = dyn_cast<StructType>(this)) { + // Structure indexes require (vectors of) 32-bit integer constants. In the + // vector case all of the indices must be equal. + if (!V->getType()->getScalarType()->isIntegerTy(32)) + return false; + const Constant *C = dyn_cast<Constant>(V); + if (C && V->getType()->isVectorTy()) + C = C->getSplatValue(); + const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); + return CU && CU->getZExtValue() < STy->getNumElements(); + } + + // Sequential types can be indexed by any integer. + return V->getType()->isIntOrIntVectorTy(); +} + +bool CompositeType::indexValid(unsigned Idx) const { + if (const StructType *STy = dyn_cast<StructType>(this)) + return Idx < STy->getNumElements(); + // Sequential types can be indexed by any integer. + return true; +} + + +//===----------------------------------------------------------------------===// +// ArrayType Implementation +//===----------------------------------------------------------------------===// + +ArrayType::ArrayType(Type *ElType, uint64_t NumEl) + : SequentialType(ArrayTyID, ElType) { + NumElements = NumEl; +} + +ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) { + Type *ElementType = const_cast<Type*>(elementType); + assert(isValidElementType(ElementType) && "Invalid type for array element!"); + + LLVMContextImpl *pImpl = ElementType->getContext().pImpl; + ArrayType *&Entry = + pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; + + if (Entry == 0) + Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); + return Entry; +} + +bool ArrayType::isValidElementType(Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); +} + +//===----------------------------------------------------------------------===// +// VectorType Implementation +//===----------------------------------------------------------------------===// + +VectorType::VectorType(Type *ElType, unsigned NumEl) + : SequentialType(VectorTyID, ElType) { + NumElements = NumEl; +} + +VectorType *VectorType::get(Type *elementType, unsigned NumElements) { + Type *ElementType = const_cast<Type*>(elementType); + assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); + assert(isValidElementType(ElementType) && + "Elements of a VectorType must be a primitive type"); + + LLVMContextImpl *pImpl = ElementType->getContext().pImpl; + VectorType *&Entry = ElementType->getContext().pImpl + ->VectorTypes[std::make_pair(ElementType, NumElements)]; + + if (Entry == 0) + Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); + return Entry; +} + +bool VectorType::isValidElementType(Type *ElemTy) { + return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || + ElemTy->isPointerTy(); +} + +//===----------------------------------------------------------------------===// +// PointerType Implementation +//===----------------------------------------------------------------------===// + +PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { + assert(EltTy && "Can't get a pointer to <null> type!"); + assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); + + LLVMContextImpl *CImpl = EltTy->getContext().pImpl; + + // Since AddressSpace #0 is the common case, we special case it. + PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] + : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; + + if (Entry == 0) + Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); + return Entry; +} + + +PointerType::PointerType(Type *E, unsigned AddrSpace) + : SequentialType(PointerTyID, E) { +#ifndef NDEBUG + const unsigned oldNCT = NumContainedTys; +#endif + setSubclassData(AddrSpace); + // Check for miscompile. PR11652. + assert(oldNCT == NumContainedTys && "bitfield written out of bounds?"); +} + +PointerType *Type::getPointerTo(unsigned addrs) { + return PointerType::get(this, addrs); +} + +bool PointerType::isValidElementType(Type *ElemTy) { + return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && + !ElemTy->isMetadataTy(); +} |