diff options
author | dim <dim@FreeBSD.org> | 2014-11-24 09:08:18 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2014-11-24 09:08:18 +0000 |
commit | e27feadae0885aa074df58ebfda2e7a7f7a7d590 (patch) | |
tree | f5944309621cee4fe0976be6f9ac619b7ebfc4c2 /lib/Analysis/BasicAliasAnalysis.cpp | |
parent | 87ba4fbed530c9d0dff7505d121035f5ed09c9f3 (diff) | |
download | FreeBSD-src-e27feadae0885aa074df58ebfda2e7a7f7a7d590.zip FreeBSD-src-e27feadae0885aa074df58ebfda2e7a7f7a7d590.tar.gz |
Vendor import of llvm RELEASE_350/final tag r216957 (effectively, 3.5.0 release):
https://llvm.org/svn/llvm-project/llvm/tags/RELEASE_350/final@216957
Diffstat (limited to 'lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r-- | lib/Analysis/BasicAliasAnalysis.cpp | 411 |
1 files changed, 200 insertions, 211 deletions
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp index d0e186c..38ec52d 100644 --- a/lib/Analysis/BasicAliasAnalysis.cpp +++ b/lib/Analysis/BasicAliasAnalysis.cpp @@ -17,9 +17,8 @@ #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" @@ -27,7 +26,9 @@ #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" @@ -36,7 +37,6 @@ #include "llvm/IR/Operator.h" #include "llvm/Pass.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetLibraryInfo.h" #include <algorithm> using namespace llvm; @@ -47,6 +47,11 @@ using namespace llvm; /// cannot be involved in a cycle. const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; +// The max limit of the search depth in DecomposeGEPExpression() and +// GetUnderlyingObject(), both functions need to use the same search +// depth otherwise the algorithm in aliasGEP will assert. +static const unsigned MaxLookupSearchDepth = 6; + //===----------------------------------------------------------------------===// // Useful predicates //===----------------------------------------------------------------------===// @@ -93,11 +98,11 @@ static bool isEscapeSource(const Value *V) { /// getObjectSize - Return the size of the object specified by V, or /// UnknownSize if unknown. -static uint64_t getObjectSize(const Value *V, const DataLayout &TD, +static uint64_t getObjectSize(const Value *V, const DataLayout &DL, const TargetLibraryInfo &TLI, bool RoundToAlign = false) { uint64_t Size; - if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign)) + if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) return Size; return AliasAnalysis::UnknownSize; } @@ -105,7 +110,7 @@ static uint64_t getObjectSize(const Value *V, const DataLayout &TD, /// isObjectSmallerThan - Return true if we can prove that the object specified /// by V is smaller than Size. static bool isObjectSmallerThan(const Value *V, uint64_t Size, - const DataLayout &TD, + const DataLayout &DL, const TargetLibraryInfo &TLI) { // Note that the meanings of the "object" are slightly different in the // following contexts: @@ -138,7 +143,7 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size, // This function needs to use the aligned object size because we allow // reads a bit past the end given sufficient alignment. - uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true); + uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; } @@ -146,22 +151,11 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size, /// isObjectSize - Return true if we can prove that the object specified /// by V has size Size. static bool isObjectSize(const Value *V, uint64_t Size, - const DataLayout &TD, const TargetLibraryInfo &TLI) { - uint64_t ObjectSize = getObjectSize(V, TD, TLI); + const DataLayout &DL, const TargetLibraryInfo &TLI) { + uint64_t ObjectSize = getObjectSize(V, DL, TLI); return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; } -/// isIdentifiedFunctionLocal - Return true if V is umabigously identified -/// at the function-level. Different IdentifiedFunctionLocals can't alias. -/// Further, an IdentifiedFunctionLocal can not alias with any function -/// arguments other than itself, which is not neccessarily true for -/// IdentifiedObjects. -static bool isIdentifiedFunctionLocal(const Value *V) -{ - return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); -} - - //===----------------------------------------------------------------------===// // GetElementPtr Instruction Decomposition and Analysis //===----------------------------------------------------------------------===// @@ -200,7 +194,7 @@ namespace { /// represented in the result. static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, ExtensionKind &Extension, - const DataLayout &TD, unsigned Depth) { + const DataLayout &DL, unsigned Depth) { assert(V->getType()->isIntegerTy() && "Not an integer value"); // Limit our recursion depth. @@ -217,23 +211,23 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, case Instruction::Or: // X|C == X+C if all the bits in C are unset in X. Otherwise we can't // analyze it. - if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) + if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) break; // FALL THROUGH. case Instruction::Add: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - TD, Depth+1); + DL, Depth+1); Offset += RHSC->getValue(); return V; case Instruction::Mul: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - TD, Depth+1); + DL, Depth+1); Offset *= RHSC->getValue(); Scale *= RHSC->getValue(); return V; case Instruction::Shl: V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - TD, Depth+1); + DL, Depth+1); Offset <<= RHSC->getValue().getLimitedValue(); Scale <<= RHSC->getValue().getLimitedValue(); return V; @@ -254,7 +248,7 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, - TD, Depth+1); + DL, Depth+1); Scale = Scale.zext(OldWidth); Offset = Offset.zext(OldWidth); @@ -276,21 +270,24 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, /// the gep cannot necessarily be reconstructed from its decomposed form. /// /// When DataLayout is around, this function is capable of analyzing everything -/// that GetUnderlyingObject can look through. When not, it just looks -/// through pointer casts. +/// that GetUnderlyingObject can look through. To be able to do that +/// GetUnderlyingObject and DecomposeGEPExpression must use the same search +/// depth (MaxLookupSearchDepth). +/// When DataLayout not is around, it just looks through pointer casts. /// static const Value * DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, SmallVectorImpl<VariableGEPIndex> &VarIndices, - const DataLayout *TD) { + bool &MaxLookupReached, const DataLayout *DL) { // Limit recursion depth to limit compile time in crazy cases. - unsigned MaxLookup = 6; + unsigned MaxLookup = MaxLookupSearchDepth; + MaxLookupReached = false; BaseOffs = 0; do { // See if this is a bitcast or GEP. const Operator *Op = dyn_cast<Operator>(V); - if (Op == 0) { + if (!Op) { // The only non-operator case we can handle are GlobalAliases. if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { if (!GA->mayBeOverridden()) { @@ -301,19 +298,20 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, return V; } - if (Op->getOpcode() == Instruction::BitCast) { + if (Op->getOpcode() == Instruction::BitCast || + Op->getOpcode() == Instruction::AddrSpaceCast) { V = Op->getOperand(0); continue; } const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); - if (GEPOp == 0) { + if (!GEPOp) { // If it's not a GEP, hand it off to SimplifyInstruction to see if it // can come up with something. This matches what GetUnderlyingObject does. if (const Instruction *I = dyn_cast<Instruction>(V)) // TODO: Get a DominatorTree and use it here. if (const Value *Simplified = - SimplifyInstruction(const_cast<Instruction *>(I), TD)) { + SimplifyInstruction(const_cast<Instruction *>(I), DL)) { V = Simplified; continue; } @@ -328,7 +326,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, // If we are lacking DataLayout information, we can't compute the offets of // elements computed by GEPs. However, we can handle bitcast equivalent // GEPs. - if (TD == 0) { + if (!DL) { if (!GEPOp->hasAllZeroIndices()) return V; V = GEPOp->getOperand(0); @@ -347,30 +345,30 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); if (FieldNo == 0) continue; - BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); + BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); continue; } // For an array/pointer, add the element offset, explicitly scaled. if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { if (CIdx->isZero()) continue; - BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); + BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); continue; } - uint64_t Scale = TD->getTypeAllocSize(*GTI); + uint64_t Scale = DL->getTypeAllocSize(*GTI); ExtensionKind Extension = EK_NotExtended; // If the integer type is smaller than the pointer size, it is implicitly // sign extended to pointer size. unsigned Width = Index->getType()->getIntegerBitWidth(); - if (TD->getPointerSizeInBits(AS) > Width) + if (DL->getPointerSizeInBits(AS) > Width) Extension = EK_SignExt; // Use GetLinearExpression to decompose the index into a C1*V+C2 form. APInt IndexScale(Width, 0), IndexOffset(Width, 0); Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, - *TD, 0); + *DL, 0); // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. @@ -392,7 +390,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, // Make sure that we have a scale that makes sense for this target's // pointer size. - if (unsigned ShiftBits = 64 - TD->getPointerSizeInBits(AS)) { + if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { Scale <<= ShiftBits; Scale = (int64_t)Scale >> ShiftBits; } @@ -409,6 +407,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, } while (--MaxLookup); // If the chain of expressions is too deep, just return early. + MaxLookupReached = true; return V; } @@ -424,7 +423,7 @@ static const Function *getParent(const Value *V) { if (const Argument *arg = dyn_cast<Argument>(V)) return arg->getParent(); - return NULL; + return nullptr; } static bool notDifferentParent(const Value *O1, const Value *O2) { @@ -444,17 +443,16 @@ namespace { initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); } - virtual void initializePass() { + void initializePass() override { InitializeAliasAnalysis(this); } - virtual void getAnalysisUsage(AnalysisUsage &AU) const { + void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<AliasAnalysis>(); AU.addRequired<TargetLibraryInfo>(); } - virtual AliasResult alias(const Location &LocA, - const Location &LocB) { + AliasResult alias(const Location &LocA, const Location &LocB) override { assert(AliasCache.empty() && "AliasCache must be cleared after use!"); assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && "BasicAliasAnalysis doesn't support interprocedural queries."); @@ -469,32 +467,36 @@ namespace { return Alias; } - virtual ModRefResult getModRefInfo(ImmutableCallSite CS, - const Location &Loc); + ModRefResult getModRefInfo(ImmutableCallSite CS, + const Location &Loc) override; - virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, - ImmutableCallSite CS2) { + ModRefResult getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) override { // The AliasAnalysis base class has some smarts, lets use them. return AliasAnalysis::getModRefInfo(CS1, CS2); } /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. - virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); + bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; + + /// Get the location associated with a pointer argument of a callsite. + Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, + ModRefResult &Mask) override; /// getModRefBehavior - Return the behavior when calling the given /// call site. - virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); + ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; /// getModRefBehavior - Return the behavior when calling the given function. /// For use when the call site is not known. - virtual ModRefBehavior getModRefBehavior(const Function *F); + ModRefBehavior getModRefBehavior(const Function *F) override; /// getAdjustedAnalysisPointer - This method is used when a pass implements /// an analysis interface through multiple inheritance. If needed, it /// should override this to adjust the this pointer as needed for the /// specified pass info. - virtual void *getAdjustedAnalysisPointer(const void *ID) { + void *getAdjustedAnalysisPointer(const void *ID) override { if (ID == &AliasAnalysis::ID) return (AliasAnalysis*)this; return this; @@ -593,7 +595,7 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { SmallVector<const Value *, 16> Worklist; Worklist.push_back(Loc.Ptr); do { - const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); + const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); if (!Visited.insert(V)) { Visited.clear(); return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); @@ -645,6 +647,21 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { return Worklist.empty(); } +static bool isMemsetPattern16(const Function *MS, + const TargetLibraryInfo &TLI) { + if (TLI.has(LibFunc::memset_pattern16) && + MS->getName() == "memset_pattern16") { + FunctionType *MemsetType = MS->getFunctionType(); + if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && + isa<PointerType>(MemsetType->getParamType(0)) && + isa<PointerType>(MemsetType->getParamType(1)) && + isa<IntegerType>(MemsetType->getParamType(2))) + return true; + } + + return false; +} + /// getModRefBehavior - Return the behavior when calling the given call site. AliasAnalysis::ModRefBehavior BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { @@ -684,10 +701,93 @@ BasicAliasAnalysis::getModRefBehavior(const Function *F) { if (F->onlyReadsMemory()) Min = OnlyReadsMemory; + const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); + if (isMemsetPattern16(F, TLI)) + Min = OnlyAccessesArgumentPointees; + // Otherwise be conservative. return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); } +AliasAnalysis::Location +BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, + ModRefResult &Mask) { + Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); + const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); + if (II != nullptr) + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::memset: + case Intrinsic::memcpy: + case Intrinsic::memmove: { + assert((ArgIdx == 0 || ArgIdx == 1) && + "Invalid argument index for memory intrinsic"); + if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) + Loc.Size = LenCI->getZExtValue(); + assert(Loc.Ptr == II->getArgOperand(ArgIdx) && + "Memory intrinsic location pointer not argument?"); + Mask = ArgIdx ? Ref : Mod; + break; + } + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: { + assert(ArgIdx == 1 && "Invalid argument index"); + assert(Loc.Ptr == II->getArgOperand(ArgIdx) && + "Intrinsic location pointer not argument?"); + Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); + break; + } + case Intrinsic::invariant_end: { + assert(ArgIdx == 2 && "Invalid argument index"); + assert(Loc.Ptr == II->getArgOperand(ArgIdx) && + "Intrinsic location pointer not argument?"); + Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); + break; + } + case Intrinsic::arm_neon_vld1: { + assert(ArgIdx == 0 && "Invalid argument index"); + assert(Loc.Ptr == II->getArgOperand(ArgIdx) && + "Intrinsic location pointer not argument?"); + // LLVM's vld1 and vst1 intrinsics currently only support a single + // vector register. + if (DL) + Loc.Size = DL->getTypeStoreSize(II->getType()); + break; + } + case Intrinsic::arm_neon_vst1: { + assert(ArgIdx == 0 && "Invalid argument index"); + assert(Loc.Ptr == II->getArgOperand(ArgIdx) && + "Intrinsic location pointer not argument?"); + if (DL) + Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); + break; + } + } + + // We can bound the aliasing properties of memset_pattern16 just as we can + // for memcpy/memset. This is particularly important because the + // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 + // whenever possible. + else if (CS.getCalledFunction() && + isMemsetPattern16(CS.getCalledFunction(), TLI)) { + assert((ArgIdx == 0 || ArgIdx == 1) && + "Invalid argument index for memset_pattern16"); + if (ArgIdx == 1) + Loc.Size = 16; + else if (const ConstantInt *LenCI = + dyn_cast<ConstantInt>(CS.getArgument(2))) + Loc.Size = LenCI->getZExtValue(); + assert(Loc.Ptr == CS.getArgument(ArgIdx) && + "memset_pattern16 location pointer not argument?"); + Mask = ArgIdx ? Ref : Mod; + } + // FIXME: Handle memset_pattern4 and memset_pattern8 also. + + return Loc; +} + /// getModRefInfo - Check to see if the specified callsite can clobber the /// specified memory object. Since we only look at local properties of this /// function, we really can't say much about this query. We do, however, use @@ -698,7 +798,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && "AliasAnalysis query involving multiple functions!"); - const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); + const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); // If this is a tail call and Loc.Ptr points to a stack location, we know that // the tail call cannot access or modify the local stack. @@ -740,144 +840,13 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, return NoModRef; } - const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); - ModRefResult Min = ModRef; - - // Finally, handle specific knowledge of intrinsics. - const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); - if (II != 0) - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::memcpy: - case Intrinsic::memmove: { - uint64_t Len = UnknownSize; - if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) - Len = LenCI->getZExtValue(); - Value *Dest = II->getArgOperand(0); - Value *Src = II->getArgOperand(1); - // If it can't overlap the source dest, then it doesn't modref the loc. - if (isNoAlias(Location(Dest, Len), Loc)) { - if (isNoAlias(Location(Src, Len), Loc)) - return NoModRef; - // If it can't overlap the dest, then worst case it reads the loc. - Min = Ref; - } else if (isNoAlias(Location(Src, Len), Loc)) { - // If it can't overlap the source, then worst case it mutates the loc. - Min = Mod; - } - break; - } - case Intrinsic::memset: - // Since memset is 'accesses arguments' only, the AliasAnalysis base class - // will handle it for the variable length case. - if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { - uint64_t Len = LenCI->getZExtValue(); - Value *Dest = II->getArgOperand(0); - if (isNoAlias(Location(Dest, Len), Loc)) - return NoModRef; - } - // We know that memset doesn't load anything. - Min = Mod; - break; - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: { - uint64_t PtrSize = - cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); - if (isNoAlias(Location(II->getArgOperand(1), - PtrSize, - II->getMetadata(LLVMContext::MD_tbaa)), - Loc)) - return NoModRef; - break; - } - case Intrinsic::invariant_end: { - uint64_t PtrSize = - cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); - if (isNoAlias(Location(II->getArgOperand(2), - PtrSize, - II->getMetadata(LLVMContext::MD_tbaa)), - Loc)) - return NoModRef; - break; - } - case Intrinsic::arm_neon_vld1: { - // LLVM's vld1 and vst1 intrinsics currently only support a single - // vector register. - uint64_t Size = - TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; - if (isNoAlias(Location(II->getArgOperand(0), Size, - II->getMetadata(LLVMContext::MD_tbaa)), - Loc)) - return NoModRef; - break; - } - case Intrinsic::arm_neon_vst1: { - uint64_t Size = - TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; - if (isNoAlias(Location(II->getArgOperand(0), Size, - II->getMetadata(LLVMContext::MD_tbaa)), - Loc)) - return NoModRef; - break; - } - } - - // We can bound the aliasing properties of memset_pattern16 just as we can - // for memcpy/memset. This is particularly important because the - // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 - // whenever possible. - else if (TLI.has(LibFunc::memset_pattern16) && - CS.getCalledFunction() && - CS.getCalledFunction()->getName() == "memset_pattern16") { - const Function *MS = CS.getCalledFunction(); - FunctionType *MemsetType = MS->getFunctionType(); - if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && - isa<PointerType>(MemsetType->getParamType(0)) && - isa<PointerType>(MemsetType->getParamType(1)) && - isa<IntegerType>(MemsetType->getParamType(2))) { - uint64_t Len = UnknownSize; - if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) - Len = LenCI->getZExtValue(); - const Value *Dest = CS.getArgument(0); - const Value *Src = CS.getArgument(1); - // If it can't overlap the source dest, then it doesn't modref the loc. - if (isNoAlias(Location(Dest, Len), Loc)) { - // Always reads 16 bytes of the source. - if (isNoAlias(Location(Src, 16), Loc)) - return NoModRef; - // If it can't overlap the dest, then worst case it reads the loc. - Min = Ref; - // Always reads 16 bytes of the source. - } else if (isNoAlias(Location(Src, 16), Loc)) { - // If it can't overlap the source, then worst case it mutates the loc. - Min = Mod; - } - } - } - // The AliasAnalysis base class has some smarts, lets use them. - return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); -} - -static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1, - SmallVectorImpl<VariableGEPIndex> &Indices2) { - unsigned Size1 = Indices1.size(); - unsigned Size2 = Indices2.size(); - - if (Size1 != Size2) - return false; - - for (unsigned I = 0; I != Size1; ++I) - if (Indices1[I] != Indices2[I]) - return false; - - return true; + return AliasAnalysis::getModRefInfo(CS, Loc); } /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction /// against another pointer. We know that V1 is a GEP, but we don't know -/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), +/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), /// UnderlyingV2 is the same for V2. /// AliasAnalysis::AliasResult @@ -888,6 +857,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, const Value *UnderlyingV1, const Value *UnderlyingV2) { int64_t GEP1BaseOffset; + bool GEP1MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; // If we have two gep instructions with must-alias or not-alias'ing base @@ -895,8 +865,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, // derived pointer. if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { // Do the base pointers alias? - AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, - UnderlyingV2, UnknownSize, 0); + AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr, + UnderlyingV2, UnknownSize, nullptr); // Check for geps of non-aliasing underlying pointers where the offsets are // identical. @@ -909,21 +879,28 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, // See if the computed offset from the common pointer tells us about the // relation of the resulting pointer. int64_t GEP2BaseOffset; + bool GEP2MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; const Value *GEP2BasePtr = - DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); + DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, + GEP2MaxLookupReached, DL); const Value *GEP1BasePtr = - DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); + DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, + GEP1MaxLookupReached, DL); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { - assert(TD == 0 && - "DecomposeGEPExpression and GetUnderlyingObject disagree!"); + assert(!DL && + "DecomposeGEPExpression and GetUnderlyingObject disagree!"); return MayAlias; } + // If the max search depth is reached the result is undefined + if (GEP2MaxLookupReached || GEP1MaxLookupReached) + return MayAlias; + // Same offsets. if (GEP1BaseOffset == GEP2BaseOffset && - areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices)) + GEP1VariableIndices == GEP2VariableIndices) return NoAlias; GEP1VariableIndices.clear(); } @@ -937,20 +914,26 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, // exactly, see if the computed offset from the common pointer tells us // about the relation of the resulting pointer. const Value *GEP1BasePtr = - DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); + DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, + GEP1MaxLookupReached, DL); int64_t GEP2BaseOffset; + bool GEP2MaxLookupReached; SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; const Value *GEP2BasePtr = - DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); + DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, + GEP2MaxLookupReached, DL); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { - assert(TD == 0 && + assert(!DL && "DecomposeGEPExpression and GetUnderlyingObject disagree!"); return MayAlias; } + // If the max search depth is reached the result is undefined + if (GEP2MaxLookupReached || GEP1MaxLookupReached) + return MayAlias; // Subtract the GEP2 pointer from the GEP1 pointer to find out their // symbolic difference. @@ -966,7 +949,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, if (V1Size == UnknownSize && V2Size == UnknownSize) return MayAlias; - AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, + AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr, V2, V2Size, V2TBAAInfo); if (R != MustAlias) // If V2 may alias GEP base pointer, conservatively returns MayAlias. @@ -977,15 +960,19 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, return R; const Value *GEP1BasePtr = - DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); + DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, + GEP1MaxLookupReached, DL); // DecomposeGEPExpression and GetUnderlyingObject should return the // same result except when DecomposeGEPExpression has no DataLayout. if (GEP1BasePtr != UnderlyingV1) { - assert(TD == 0 && + assert(!DL && "DecomposeGEPExpression and GetUnderlyingObject disagree!"); return MayAlias; } + // If the max search depth is reached the result is undefined + if (GEP1MaxLookupReached) + return MayAlias; } // In the two GEP Case, if there is no difference in the offsets of the @@ -1215,8 +1202,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, return NoAlias; // Scalars cannot alias each other // Figure out what objects these things are pointing to if we can. - const Value *O1 = GetUnderlyingObject(V1, TD); - const Value *O2 = GetUnderlyingObject(V2, TD); + const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); + const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); // Null values in the default address space don't point to any object, so they // don't alias any other pointer. @@ -1265,9 +1252,9 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. - if (TD) - if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) || - (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI))) + if (DL) + if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || + (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) return NoAlias; // Check the cache before climbing up use-def chains. This also terminates @@ -1319,9 +1306,9 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, // If both pointers are pointing into the same object and one of them // accesses is accessing the entire object, then the accesses must // overlap in some way. - if (TD && O1 == O2) - if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) || - (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI))) + if (DL && O1 == O2) + if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || + (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) return AliasCache[Locs] = PartialAlias; AliasResult Result = @@ -1343,7 +1330,9 @@ bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, return false; // Use dominance or loop info if available. - DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>(); + DominatorTreeWrapperPass *DTWP = + getAnalysisIfAvailable<DominatorTreeWrapperPass>(); + DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); // Make sure that the visited phis cannot reach the Value. This ensures that |