summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
committerdim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
commit60b571e49a90d38697b3aca23020d9da42fc7d7f (patch)
tree99351324c24d6cb146b6285b6caffa4d26fce188 /contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp
parentbea1b22c7a9bce1dfdd73e6e5b65bc4752215180 (diff)
downloadFreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.zip
FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.tar.gz
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release:
MFC r309142 (by emaste): Add WITH_LLD_AS_LD build knob If set it installs LLD as /usr/bin/ld. LLD (as of version 3.9) is not capable of linking the world and kernel, but can self-host and link many substantial applications. GNU ld continues to be used for the world and kernel build, regardless of how this knob is set. It is on by default for arm64, and off for all other CPU architectures. Sponsored by: The FreeBSD Foundation MFC r310840: Reapply 310775, now it also builds correctly if lldb is disabled: Move llvm-objdump from CLANG_EXTRAS to installed by default We currently install three tools from binutils 2.17.50: as, ld, and objdump. Work is underway to migrate to a permissively-licensed tool-chain, with one goal being the retirement of binutils 2.17.50. LLVM's llvm-objdump is intended to be compatible with GNU objdump although it is currently missing some options and may have formatting differences. Enable it by default for testing and further investigation. It may later be changed to install as /usr/bin/objdump, it becomes a fully viable replacement. Reviewed by: emaste Differential Revision: https://reviews.freebsd.org/D8879 MFC r312855 (by emaste): Rename LLD_AS_LD to LLD_IS_LD, for consistency with CLANG_IS_CC Reported by: Dan McGregor <dan.mcgregor usask.ca> MFC r313559 | glebius | 2017-02-10 18:34:48 +0100 (Fri, 10 Feb 2017) | 5 lines Don't check struct rtentry on FreeBSD, it is an internal kernel structure. On other systems it may be API structure for SIOCADDRT/SIOCDELRT. Reviewed by: emaste, dim MFC r314152 (by jkim): Remove an assembler flag, which is redundant since r309124. The upstream took care of it by introducing a macro NO_EXEC_STACK_DIRECTIVE. http://llvm.org/viewvc/llvm-project?rev=273500&view=rev Reviewed by: dim MFC r314564: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 (branches/release_40 296509). The release will follow soon. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Also note that as of 4.0.0, lld should be able to link the base system on amd64 and aarch64. See the WITH_LLD_IS_LLD setting in src.conf(5). Though please be aware that this is work in progress. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/4.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Jan Beich, Antoine Brodin and Eric Fiselier for their help. Relnotes: yes Exp-run: antoine PR: 215969, 216008 MFC r314708: For now, revert r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 This commit is the cause of excessive compile times on skein_block.c (and possibly other files) during kernel builds on amd64. We never saw the problematic behavior described in this upstream commit, so for now it is better to revert it. An upstream bug has been filed here: https://bugs.llvm.org/show_bug.cgi?id=32142 Reported by: mjg MFC r314795: Reapply r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 Pull in r296992 from upstream llvm trunk (by Sanjoy Das): [SCEV] Decrease the recursion threshold for CompareValueComplexity Fixes PR32142. r287232 accidentally increased the recursion threshold for CompareValueComplexity from 2 to 32. This change reverses that change by introducing a separate flag for CompareValueComplexity's threshold. The latter revision fixes the excessive compile times for skein_block.c. MFC r314907 | mmel | 2017-03-08 12:40:27 +0100 (Wed, 08 Mar 2017) | 7 lines Unbreak ARMv6 world. The new compiler_rt library imported with clang 4.0.0 have several fatal issues (non-functional __udivsi3 for example) with ARM specific instrict functions. As temporary workaround, until upstream solve these problems, disable all thumb[1][2] related feature. MFC r315016: Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release. We were already very close to the last release candidate, so this is a pretty minor update. Relnotes: yes MFC r316005: Revert r314907, and pull in r298713 from upstream compiler-rt trunk (by Weiming Zhao): builtins: Select correct code fragments when compiling for Thumb1/Thum2/ARM ISA. Summary: Value of __ARM_ARCH_ISA_THUMB isn't based on the actual compilation mode (-mthumb, -marm), it reflect's capability of given CPU. Due to this: - use __tbumb__ and __thumb2__ insteand of __ARM_ARCH_ISA_THUMB - use '.thumb' directive consistently in all affected files - decorate all thumb functions using DEFINE_COMPILERRT_THUMB_FUNCTION() --------- Note: This patch doesn't fix broken Thumb1 variant of __udivsi3 ! Reviewers: weimingz, rengolin, compnerd Subscribers: aemerson, dim Differential Revision: https://reviews.llvm.org/D30938 Discussed with: mmel
Diffstat (limited to 'contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp')
-rw-r--r--contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp266
1 files changed, 123 insertions, 143 deletions
diff --git a/contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp b/contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp
index da0326b..39641a0 100644
--- a/contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp
+++ b/contrib/llvm/tools/lldb/source/Target/ThreadPlanStepOverBreakpoint.cpp
@@ -22,172 +22,152 @@ using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
-// ThreadPlanStepOverBreakpoint: Single steps over a breakpoint bp_site_sp at the pc.
+// ThreadPlanStepOverBreakpoint: Single steps over a breakpoint bp_site_sp at
+// the pc.
//----------------------------------------------------------------------
-ThreadPlanStepOverBreakpoint::ThreadPlanStepOverBreakpoint (Thread &thread) :
- ThreadPlan (ThreadPlan::eKindStepOverBreakpoint, "Step over breakpoint trap",
- thread,
- eVoteNo,
- eVoteNoOpinion), // We need to report the run since this happens
- // first in the thread plan stack when stepping
- // over a breakpoint
- m_breakpoint_addr (LLDB_INVALID_ADDRESS),
- m_auto_continue(false),
- m_reenabled_breakpoint_site (false)
-
-{
- m_breakpoint_addr = m_thread.GetRegisterContext()->GetPC();
- m_breakpoint_site_id = m_thread.GetProcess()->GetBreakpointSiteList().FindIDByAddress (m_breakpoint_addr);
-}
-
-ThreadPlanStepOverBreakpoint::~ThreadPlanStepOverBreakpoint ()
-{
-}
-
-void
-ThreadPlanStepOverBreakpoint::GetDescription (Stream *s, lldb::DescriptionLevel level)
-{
- s->Printf("Single stepping past breakpoint site %" PRIu64 " at 0x%" PRIx64, m_breakpoint_site_id, (uint64_t)m_breakpoint_addr);
-}
-
-bool
-ThreadPlanStepOverBreakpoint::ValidatePlan (Stream *error)
-{
- return true;
-}
-
-bool
-ThreadPlanStepOverBreakpoint::DoPlanExplainsStop (Event *event_ptr)
-{
- StopInfoSP stop_info_sp = GetPrivateStopInfo ();
- if (stop_info_sp)
- {
- // It's a little surprising that we stop here for a breakpoint hit. However, when you single step ONTO a breakpoint
- // we still want to call that a breakpoint hit, and trigger the actions, etc. Otherwise you would see the
- // PC at the breakpoint without having triggered the actions, then you'd continue, the PC wouldn't change,
- // and you'd see the breakpoint hit, which would be odd.
- // So the lower levels fake "step onto breakpoint address" and return that as a breakpoint. So our trace
- // step COULD appear as a breakpoint hit if the next instruction also contained a breakpoint.
- StopReason reason = stop_info_sp->GetStopReason();
-
- switch (reason)
- {
- case eStopReasonTrace:
- case eStopReasonNone:
- return true;
- case eStopReasonBreakpoint:
- // It's a little surprising that we stop here for a breakpoint hit. However, when you single step ONTO a
- // breakpoint we still want to call that a breakpoint hit, and trigger the actions, etc. Otherwise you
- // would see the PC at the breakpoint without having triggered the actions, then you'd continue, the PC
- // wouldn't change, and you'd see the breakpoint hit, which would be odd.
- // So the lower levels fake "step onto breakpoint address" and return that as a breakpoint hit. So our trace
- // step COULD appear as a breakpoint hit if the next instruction also contained a breakpoint. We don't want
- // to handle that, since we really don't know what to do with breakpoint hits. But make sure we don't set
- // ourselves to auto-continue or we'll wrench control away from the plans that can deal with this.
- SetAutoContinue(false);
- return false;
- default:
- return false;
- }
+ThreadPlanStepOverBreakpoint::ThreadPlanStepOverBreakpoint(Thread &thread)
+ : ThreadPlan(
+ ThreadPlan::eKindStepOverBreakpoint, "Step over breakpoint trap",
+ thread, eVoteNo,
+ eVoteNoOpinion), // We need to report the run since this happens
+ // first in the thread plan stack when stepping
+ // over a breakpoint
+ m_breakpoint_addr(LLDB_INVALID_ADDRESS),
+ m_auto_continue(false), m_reenabled_breakpoint_site(false)
+
+{
+ m_breakpoint_addr = m_thread.GetRegisterContext()->GetPC();
+ m_breakpoint_site_id =
+ m_thread.GetProcess()->GetBreakpointSiteList().FindIDByAddress(
+ m_breakpoint_addr);
+}
+
+ThreadPlanStepOverBreakpoint::~ThreadPlanStepOverBreakpoint() {}
+
+void ThreadPlanStepOverBreakpoint::GetDescription(
+ Stream *s, lldb::DescriptionLevel level) {
+ s->Printf("Single stepping past breakpoint site %" PRIu64 " at 0x%" PRIx64,
+ m_breakpoint_site_id, (uint64_t)m_breakpoint_addr);
+}
+
+bool ThreadPlanStepOverBreakpoint::ValidatePlan(Stream *error) { return true; }
+
+bool ThreadPlanStepOverBreakpoint::DoPlanExplainsStop(Event *event_ptr) {
+ StopInfoSP stop_info_sp = GetPrivateStopInfo();
+ if (stop_info_sp) {
+ // It's a little surprising that we stop here for a breakpoint hit.
+ // However, when you single step ONTO a breakpoint
+ // we still want to call that a breakpoint hit, and trigger the actions,
+ // etc. Otherwise you would see the
+ // PC at the breakpoint without having triggered the actions, then you'd
+ // continue, the PC wouldn't change,
+ // and you'd see the breakpoint hit, which would be odd.
+ // So the lower levels fake "step onto breakpoint address" and return that
+ // as a breakpoint. So our trace
+ // step COULD appear as a breakpoint hit if the next instruction also
+ // contained a breakpoint.
+ StopReason reason = stop_info_sp->GetStopReason();
+
+ switch (reason) {
+ case eStopReasonTrace:
+ case eStopReasonNone:
+ return true;
+ case eStopReasonBreakpoint:
+ // It's a little surprising that we stop here for a breakpoint hit.
+ // However, when you single step ONTO a
+ // breakpoint we still want to call that a breakpoint hit, and trigger the
+ // actions, etc. Otherwise you
+ // would see the PC at the breakpoint without having triggered the
+ // actions, then you'd continue, the PC
+ // wouldn't change, and you'd see the breakpoint hit, which would be odd.
+ // So the lower levels fake "step onto breakpoint address" and return that
+ // as a breakpoint hit. So our trace
+ // step COULD appear as a breakpoint hit if the next instruction also
+ // contained a breakpoint. We don't want
+ // to handle that, since we really don't know what to do with breakpoint
+ // hits. But make sure we don't set
+ // ourselves to auto-continue or we'll wrench control away from the plans
+ // that can deal with this.
+ SetAutoContinue(false);
+ return false;
+ default:
+ return false;
}
- return false;
+ }
+ return false;
}
-bool
-ThreadPlanStepOverBreakpoint::ShouldStop (Event *event_ptr)
-{
- return !ShouldAutoContinue(event_ptr);
+bool ThreadPlanStepOverBreakpoint::ShouldStop(Event *event_ptr) {
+ return !ShouldAutoContinue(event_ptr);
}
-bool
-ThreadPlanStepOverBreakpoint::StopOthers ()
-{
- return true;
-}
+bool ThreadPlanStepOverBreakpoint::StopOthers() { return true; }
-StateType
-ThreadPlanStepOverBreakpoint::GetPlanRunState ()
-{
- return eStateStepping;
+StateType ThreadPlanStepOverBreakpoint::GetPlanRunState() {
+ return eStateStepping;
}
-bool
-ThreadPlanStepOverBreakpoint::DoWillResume (StateType resume_state, bool current_plan)
-{
- if (current_plan)
- {
- BreakpointSiteSP bp_site_sp (m_thread.GetProcess()->GetBreakpointSiteList().FindByAddress (m_breakpoint_addr));
- if (bp_site_sp && bp_site_sp->IsEnabled())
- m_thread.GetProcess()->DisableBreakpointSite (bp_site_sp.get());
- }
- return true;
+bool ThreadPlanStepOverBreakpoint::DoWillResume(StateType resume_state,
+ bool current_plan) {
+ if (current_plan) {
+ BreakpointSiteSP bp_site_sp(
+ m_thread.GetProcess()->GetBreakpointSiteList().FindByAddress(
+ m_breakpoint_addr));
+ if (bp_site_sp && bp_site_sp->IsEnabled())
+ m_thread.GetProcess()->DisableBreakpointSite(bp_site_sp.get());
+ }
+ return true;
}
-bool
-ThreadPlanStepOverBreakpoint::WillStop ()
-{
- ReenableBreakpointSite ();
- return true;
+bool ThreadPlanStepOverBreakpoint::WillStop() {
+ ReenableBreakpointSite();
+ return true;
}
-bool
-ThreadPlanStepOverBreakpoint::MischiefManaged ()
-{
- lldb::addr_t pc_addr = m_thread.GetRegisterContext()->GetPC();
+bool ThreadPlanStepOverBreakpoint::MischiefManaged() {
+ lldb::addr_t pc_addr = m_thread.GetRegisterContext()->GetPC();
- if (pc_addr == m_breakpoint_addr)
- {
- // If we are still at the PC of our breakpoint, then for some reason we didn't
- // get a chance to run.
- return false;
- }
- else
- {
- Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_STEP));
- if (log)
- log->Printf("Completed step over breakpoint plan.");
- // Otherwise, re-enable the breakpoint we were stepping over, and we're done.
- ReenableBreakpointSite ();
- ThreadPlan::MischiefManaged ();
- return true;
- }
+ if (pc_addr == m_breakpoint_addr) {
+ // If we are still at the PC of our breakpoint, then for some reason we
+ // didn't
+ // get a chance to run.
+ return false;
+ } else {
+ Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
+ if (log)
+ log->Printf("Completed step over breakpoint plan.");
+ // Otherwise, re-enable the breakpoint we were stepping over, and we're
+ // done.
+ ReenableBreakpointSite();
+ ThreadPlan::MischiefManaged();
+ return true;
+ }
}
-void
-ThreadPlanStepOverBreakpoint::ReenableBreakpointSite ()
-{
- if (!m_reenabled_breakpoint_site)
- {
- m_reenabled_breakpoint_site = true;
- BreakpointSiteSP bp_site_sp (m_thread.GetProcess()->GetBreakpointSiteList().FindByAddress (m_breakpoint_addr));
- if (bp_site_sp)
- {
- m_thread.GetProcess()->EnableBreakpointSite (bp_site_sp.get());
- }
+void ThreadPlanStepOverBreakpoint::ReenableBreakpointSite() {
+ if (!m_reenabled_breakpoint_site) {
+ m_reenabled_breakpoint_site = true;
+ BreakpointSiteSP bp_site_sp(
+ m_thread.GetProcess()->GetBreakpointSiteList().FindByAddress(
+ m_breakpoint_addr));
+ if (bp_site_sp) {
+ m_thread.GetProcess()->EnableBreakpointSite(bp_site_sp.get());
}
+ }
}
-void
-ThreadPlanStepOverBreakpoint::ThreadDestroyed ()
-{
- ReenableBreakpointSite ();
+void ThreadPlanStepOverBreakpoint::ThreadDestroyed() {
+ ReenableBreakpointSite();
}
-void
-ThreadPlanStepOverBreakpoint::SetAutoContinue (bool do_it)
-{
- m_auto_continue = do_it;
+void ThreadPlanStepOverBreakpoint::SetAutoContinue(bool do_it) {
+ m_auto_continue = do_it;
}
-bool
-ThreadPlanStepOverBreakpoint::ShouldAutoContinue (Event *event_ptr)
-{
- return m_auto_continue;
+bool ThreadPlanStepOverBreakpoint::ShouldAutoContinue(Event *event_ptr) {
+ return m_auto_continue;
}
-bool
-ThreadPlanStepOverBreakpoint::IsPlanStale()
-{
- return m_thread.GetRegisterContext()->GetPC() != m_breakpoint_addr;
+bool ThreadPlanStepOverBreakpoint::IsPlanStale() {
+ return m_thread.GetRegisterContext()->GetPC() != m_breakpoint_addr;
}
-
OpenPOWER on IntegriCloud