diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp | 830 |
1 files changed, 830 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp b/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp new file mode 100644 index 0000000..6c20f8c --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp @@ -0,0 +1,830 @@ +//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implementation of the abstract lowering for the Swift calling convention. +// +//===----------------------------------------------------------------------===// + +#include "clang/CodeGen/SwiftCallingConv.h" +#include "clang/Basic/TargetInfo.h" +#include "CodeGenModule.h" +#include "TargetInfo.h" + +using namespace clang; +using namespace CodeGen; +using namespace swiftcall; + +static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { + return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); +} + +static bool isPowerOf2(unsigned n) { + return n == (n & -n); +} + +/// Given two types with the same size, try to find a common type. +static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { + assert(first != second); + + // Allow pointers to merge with integers, but prefer the integer type. + if (first->isIntegerTy()) { + if (second->isPointerTy()) return first; + } else if (first->isPointerTy()) { + if (second->isIntegerTy()) return second; + if (second->isPointerTy()) return first; + + // Allow two vectors to be merged (given that they have the same size). + // This assumes that we never have two different vector register sets. + } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { + if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { + if (auto commonTy = getCommonType(firstVecTy->getElementType(), + secondVecTy->getElementType())) { + return (commonTy == firstVecTy->getElementType() ? first : second); + } + } + } + + return nullptr; +} + +static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { + return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); +} + +void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { + // Deal with various aggregate types as special cases: + + // Record types. + if (auto recType = type->getAs<RecordType>()) { + addTypedData(recType->getDecl(), begin); + + // Array types. + } else if (type->isArrayType()) { + // Incomplete array types (flexible array members?) don't provide + // data to lay out, and the other cases shouldn't be possible. + auto arrayType = CGM.getContext().getAsConstantArrayType(type); + if (!arrayType) return; + + QualType eltType = arrayType->getElementType(); + auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); + for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { + addTypedData(eltType, begin + i * eltSize); + } + + // Complex types. + } else if (auto complexType = type->getAs<ComplexType>()) { + auto eltType = complexType->getElementType(); + auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); + auto eltLLVMType = CGM.getTypes().ConvertType(eltType); + addTypedData(eltLLVMType, begin, begin + eltSize); + addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); + + // Member pointer types. + } else if (type->getAs<MemberPointerType>()) { + // Just add it all as opaque. + addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); + + // Everything else is scalar and should not convert as an LLVM aggregate. + } else { + // We intentionally convert as !ForMem because we want to preserve + // that a type was an i1. + auto llvmType = CGM.getTypes().ConvertType(type); + addTypedData(llvmType, begin); + } +} + +void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { + addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); +} + +void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, + const ASTRecordLayout &layout) { + // Unions are a special case. + if (record->isUnion()) { + for (auto field : record->fields()) { + if (field->isBitField()) { + addBitFieldData(field, begin, 0); + } else { + addTypedData(field->getType(), begin); + } + } + return; + } + + // Note that correctness does not rely on us adding things in + // their actual order of layout; it's just somewhat more efficient + // for the builder. + + // With that in mind, add "early" C++ data. + auto cxxRecord = dyn_cast<CXXRecordDecl>(record); + if (cxxRecord) { + // - a v-table pointer, if the class adds its own + if (layout.hasOwnVFPtr()) { + addTypedData(CGM.Int8PtrTy, begin); + } + + // - non-virtual bases + for (auto &baseSpecifier : cxxRecord->bases()) { + if (baseSpecifier.isVirtual()) continue; + + auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); + addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); + } + + // - a vbptr if the class adds its own + if (layout.hasOwnVBPtr()) { + addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); + } + } + + // Add fields. + for (auto field : record->fields()) { + auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); + if (field->isBitField()) { + addBitFieldData(field, begin, fieldOffsetInBits); + } else { + addTypedData(field->getType(), + begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); + } + } + + // Add "late" C++ data: + if (cxxRecord) { + // - virtual bases + for (auto &vbaseSpecifier : cxxRecord->vbases()) { + auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); + addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); + } + } +} + +void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, + CharUnits recordBegin, + uint64_t bitfieldBitBegin) { + assert(bitfield->isBitField()); + auto &ctx = CGM.getContext(); + auto width = bitfield->getBitWidthValue(ctx); + + // We can ignore zero-width bit-fields. + if (width == 0) return; + + // toCharUnitsFromBits rounds down. + CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); + + // Find the offset of the last byte that is partially occupied by the + // bit-field; since we otherwise expect exclusive ends, the end is the + // next byte. + uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; + CharUnits bitfieldByteEnd = + ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); + addOpaqueData(recordBegin + bitfieldByteBegin, + recordBegin + bitfieldByteEnd); +} + +void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { + assert(type && "didn't provide type for typed data"); + addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); +} + +void SwiftAggLowering::addTypedData(llvm::Type *type, + CharUnits begin, CharUnits end) { + assert(type && "didn't provide type for typed data"); + assert(getTypeStoreSize(CGM, type) == end - begin); + + // Legalize vector types. + if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { + SmallVector<llvm::Type*, 4> componentTys; + legalizeVectorType(CGM, end - begin, vecTy, componentTys); + assert(componentTys.size() >= 1); + + // Walk the initial components. + for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { + llvm::Type *componentTy = componentTys[i]; + auto componentSize = getTypeStoreSize(CGM, componentTy); + assert(componentSize < end - begin); + addLegalTypedData(componentTy, begin, begin + componentSize); + begin += componentSize; + } + + return addLegalTypedData(componentTys.back(), begin, end); + } + + // Legalize integer types. + if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { + if (!isLegalIntegerType(CGM, intTy)) + return addOpaqueData(begin, end); + } + + // All other types should be legal. + return addLegalTypedData(type, begin, end); +} + +void SwiftAggLowering::addLegalTypedData(llvm::Type *type, + CharUnits begin, CharUnits end) { + // Require the type to be naturally aligned. + if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { + + // Try splitting vector types. + if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { + auto split = splitLegalVectorType(CGM, end - begin, vecTy); + auto eltTy = split.first; + auto numElts = split.second; + + auto eltSize = (end - begin) / numElts; + assert(eltSize == getTypeStoreSize(CGM, eltTy)); + for (size_t i = 0, e = numElts; i != e; ++i) { + addLegalTypedData(eltTy, begin, begin + eltSize); + begin += eltSize; + } + assert(begin == end); + return; + } + + return addOpaqueData(begin, end); + } + + addEntry(type, begin, end); +} + +void SwiftAggLowering::addEntry(llvm::Type *type, + CharUnits begin, CharUnits end) { + assert((!type || + (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && + "cannot add aggregate-typed data"); + assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); + + // Fast path: we can just add entries to the end. + if (Entries.empty() || Entries.back().End <= begin) { + Entries.push_back({begin, end, type}); + return; + } + + // Find the first existing entry that ends after the start of the new data. + // TODO: do a binary search if Entries is big enough for it to matter. + size_t index = Entries.size() - 1; + while (index != 0) { + if (Entries[index - 1].End <= begin) break; + --index; + } + + // The entry ends after the start of the new data. + // If the entry starts after the end of the new data, there's no conflict. + if (Entries[index].Begin >= end) { + // This insertion is potentially O(n), but the way we generally build + // these layouts makes that unlikely to matter: we'd need a union of + // several very large types. + Entries.insert(Entries.begin() + index, {begin, end, type}); + return; + } + + // Otherwise, the ranges overlap. The new range might also overlap + // with later ranges. +restartAfterSplit: + + // Simplest case: an exact overlap. + if (Entries[index].Begin == begin && Entries[index].End == end) { + // If the types match exactly, great. + if (Entries[index].Type == type) return; + + // If either type is opaque, make the entry opaque and return. + if (Entries[index].Type == nullptr) { + return; + } else if (type == nullptr) { + Entries[index].Type = nullptr; + return; + } + + // If they disagree in an ABI-agnostic way, just resolve the conflict + // arbitrarily. + if (auto entryType = getCommonType(Entries[index].Type, type)) { + Entries[index].Type = entryType; + return; + } + + // Otherwise, make the entry opaque. + Entries[index].Type = nullptr; + return; + } + + // Okay, we have an overlapping conflict of some sort. + + // If we have a vector type, split it. + if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { + auto eltTy = vecTy->getElementType(); + CharUnits eltSize = (end - begin) / vecTy->getNumElements(); + assert(eltSize == getTypeStoreSize(CGM, eltTy)); + for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { + addEntry(eltTy, begin, begin + eltSize); + begin += eltSize; + } + assert(begin == end); + return; + } + + // If the entry is a vector type, split it and try again. + if (Entries[index].Type && Entries[index].Type->isVectorTy()) { + splitVectorEntry(index); + goto restartAfterSplit; + } + + // Okay, we have no choice but to make the existing entry opaque. + + Entries[index].Type = nullptr; + + // Stretch the start of the entry to the beginning of the range. + if (begin < Entries[index].Begin) { + Entries[index].Begin = begin; + assert(index == 0 || begin >= Entries[index - 1].End); + } + + // Stretch the end of the entry to the end of the range; but if we run + // into the start of the next entry, just leave the range there and repeat. + while (end > Entries[index].End) { + assert(Entries[index].Type == nullptr); + + // If the range doesn't overlap the next entry, we're done. + if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { + Entries[index].End = end; + break; + } + + // Otherwise, stretch to the start of the next entry. + Entries[index].End = Entries[index + 1].Begin; + + // Continue with the next entry. + index++; + + // This entry needs to be made opaque if it is not already. + if (Entries[index].Type == nullptr) + continue; + + // Split vector entries unless we completely subsume them. + if (Entries[index].Type->isVectorTy() && + end < Entries[index].End) { + splitVectorEntry(index); + } + + // Make the entry opaque. + Entries[index].Type = nullptr; + } +} + +/// Replace the entry of vector type at offset 'index' with a sequence +/// of its component vectors. +void SwiftAggLowering::splitVectorEntry(unsigned index) { + auto vecTy = cast<llvm::VectorType>(Entries[index].Type); + auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); + + auto eltTy = split.first; + CharUnits eltSize = getTypeStoreSize(CGM, eltTy); + auto numElts = split.second; + Entries.insert(&Entries[index + 1], numElts - 1, StorageEntry()); + + CharUnits begin = Entries[index].Begin; + for (unsigned i = 0; i != numElts; ++i) { + Entries[index].Type = eltTy; + Entries[index].Begin = begin; + Entries[index].End = begin + eltSize; + begin += eltSize; + } +} + +/// Given a power-of-two unit size, return the offset of the aligned unit +/// of that size which contains the given offset. +/// +/// In other words, round down to the nearest multiple of the unit size. +static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { + assert(isPowerOf2(unitSize.getQuantity())); + auto unitMask = ~(unitSize.getQuantity() - 1); + return CharUnits::fromQuantity(offset.getQuantity() & unitMask); +} + +static bool areBytesInSameUnit(CharUnits first, CharUnits second, + CharUnits chunkSize) { + return getOffsetAtStartOfUnit(first, chunkSize) + == getOffsetAtStartOfUnit(second, chunkSize); +} + +void SwiftAggLowering::finish() { + if (Entries.empty()) { + Finished = true; + return; + } + + // We logically split the layout down into a series of chunks of this size, + // which is generally the size of a pointer. + const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); + + // First pass: if two entries share a chunk, make them both opaque + // and stretch one to meet the next. + bool hasOpaqueEntries = (Entries[0].Type == nullptr); + for (size_t i = 1, e = Entries.size(); i != e; ++i) { + if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(), + Entries[i].Begin, chunkSize)) { + Entries[i - 1].Type = nullptr; + Entries[i].Type = nullptr; + Entries[i - 1].End = Entries[i].Begin; + hasOpaqueEntries = true; + + } else if (Entries[i].Type == nullptr) { + hasOpaqueEntries = true; + } + } + + // The rest of the algorithm leaves non-opaque entries alone, so if we + // have no opaque entries, we're done. + if (!hasOpaqueEntries) { + Finished = true; + return; + } + + // Okay, move the entries to a temporary and rebuild Entries. + auto orig = std::move(Entries); + assert(Entries.empty()); + + for (size_t i = 0, e = orig.size(); i != e; ++i) { + // Just copy over non-opaque entries. + if (orig[i].Type != nullptr) { + Entries.push_back(orig[i]); + continue; + } + + // Scan forward to determine the full extent of the next opaque range. + // We know from the first pass that only contiguous ranges will overlap + // the same aligned chunk. + auto begin = orig[i].Begin; + auto end = orig[i].End; + while (i + 1 != e && + orig[i + 1].Type == nullptr && + end == orig[i + 1].Begin) { + end = orig[i + 1].End; + i++; + } + + // Add an entry per intersected chunk. + do { + // Find the smallest aligned storage unit in the maximal aligned + // storage unit containing 'begin' that contains all the bytes in + // the intersection between the range and this chunk. + CharUnits localBegin = begin; + CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); + CharUnits chunkEnd = chunkBegin + chunkSize; + CharUnits localEnd = std::min(end, chunkEnd); + + // Just do a simple loop over ever-increasing unit sizes. + CharUnits unitSize = CharUnits::One(); + CharUnits unitBegin, unitEnd; + for (; ; unitSize *= 2) { + assert(unitSize <= chunkSize); + unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); + unitEnd = unitBegin + unitSize; + if (unitEnd >= localEnd) break; + } + + // Add an entry for this unit. + auto entryTy = + llvm::IntegerType::get(CGM.getLLVMContext(), + CGM.getContext().toBits(unitSize)); + Entries.push_back({unitBegin, unitEnd, entryTy}); + + // The next chunk starts where this chunk left off. + begin = localEnd; + } while (begin != end); + } + + // Okay, finally finished. + Finished = true; +} + +void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { + assert(Finished && "haven't yet finished lowering"); + + for (auto &entry : Entries) { + callback(entry.Begin, entry.Type); + } +} + +std::pair<llvm::StructType*, llvm::Type*> +SwiftAggLowering::getCoerceAndExpandTypes() const { + assert(Finished && "haven't yet finished lowering"); + + auto &ctx = CGM.getLLVMContext(); + + if (Entries.empty()) { + auto type = llvm::StructType::get(ctx); + return { type, type }; + } + + SmallVector<llvm::Type*, 8> elts; + CharUnits lastEnd = CharUnits::Zero(); + bool hasPadding = false; + bool packed = false; + for (auto &entry : Entries) { + if (entry.Begin != lastEnd) { + auto paddingSize = entry.Begin - lastEnd; + assert(!paddingSize.isNegative()); + + auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), + paddingSize.getQuantity()); + elts.push_back(padding); + hasPadding = true; + } + + if (!packed && !entry.Begin.isMultipleOf( + CharUnits::fromQuantity( + CGM.getDataLayout().getABITypeAlignment(entry.Type)))) + packed = true; + + elts.push_back(entry.Type); + lastEnd = entry.End; + } + + // We don't need to adjust 'packed' to deal with possible tail padding + // because we never do that kind of access through the coercion type. + auto coercionType = llvm::StructType::get(ctx, elts, packed); + + llvm::Type *unpaddedType = coercionType; + if (hasPadding) { + elts.clear(); + for (auto &entry : Entries) { + elts.push_back(entry.Type); + } + if (elts.size() == 1) { + unpaddedType = elts[0]; + } else { + unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); + } + } else if (Entries.size() == 1) { + unpaddedType = Entries[0].Type; + } + + return { coercionType, unpaddedType }; +} + +bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { + assert(Finished && "haven't yet finished lowering"); + + // Empty types don't need to be passed indirectly. + if (Entries.empty()) return false; + + CharUnits totalSize = Entries.back().End; + + // Avoid copying the array of types when there's just a single element. + if (Entries.size() == 1) { + return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize, + Entries.back().Type, + asReturnValue); + } + + SmallVector<llvm::Type*, 8> componentTys; + componentTys.reserve(Entries.size()); + for (auto &entry : Entries) { + componentTys.push_back(entry.Type); + } + return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize, + componentTys, + asReturnValue); +} + +CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { + // Currently always the size of an ordinary pointer. + return CGM.getContext().toCharUnitsFromBits( + CGM.getContext().getTargetInfo().getPointerWidth(0)); +} + +CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { + // For Swift's purposes, this is always just the store size of the type + // rounded up to a power of 2. + auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); + if (!isPowerOf2(size)) { + size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); + } + assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); + return CharUnits::fromQuantity(size); +} + +bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, + llvm::IntegerType *intTy) { + auto size = intTy->getBitWidth(); + switch (size) { + case 1: + case 8: + case 16: + case 32: + case 64: + // Just assume that the above are always legal. + return true; + + case 128: + return CGM.getContext().getTargetInfo().hasInt128Type(); + + default: + return false; + } +} + +bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, + llvm::VectorType *vectorTy) { + return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), + vectorTy->getNumElements()); +} + +bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, + llvm::Type *eltTy, unsigned numElts) { + assert(numElts > 1 && "illegal vector length"); + return getSwiftABIInfo(CGM) + .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); +} + +std::pair<llvm::Type*, unsigned> +swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, + llvm::VectorType *vectorTy) { + auto numElts = vectorTy->getNumElements(); + auto eltTy = vectorTy->getElementType(); + + // Try to split the vector type in half. + if (numElts >= 4 && isPowerOf2(numElts)) { + if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) + return {llvm::VectorType::get(eltTy, numElts / 2), 2}; + } + + return {eltTy, numElts}; +} + +void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, + llvm::VectorType *origVectorTy, + llvm::SmallVectorImpl<llvm::Type*> &components) { + // If it's already a legal vector type, use it. + if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { + components.push_back(origVectorTy); + return; + } + + // Try to split the vector into legal subvectors. + auto numElts = origVectorTy->getNumElements(); + auto eltTy = origVectorTy->getElementType(); + assert(numElts != 1); + + // The largest size that we're still considering making subvectors of. + // Always a power of 2. + unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); + unsigned candidateNumElts = 1U << logCandidateNumElts; + assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); + + // Minor optimization: don't check the legality of this exact size twice. + if (candidateNumElts == numElts) { + logCandidateNumElts--; + candidateNumElts >>= 1; + } + + CharUnits eltSize = (origVectorSize / numElts); + CharUnits candidateSize = eltSize * candidateNumElts; + + // The sensibility of this algorithm relies on the fact that we never + // have a legal non-power-of-2 vector size without having the power of 2 + // also be legal. + while (logCandidateNumElts > 0) { + assert(candidateNumElts == 1U << logCandidateNumElts); + assert(candidateNumElts <= numElts); + assert(candidateSize == eltSize * candidateNumElts); + + // Skip illegal vector sizes. + if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { + logCandidateNumElts--; + candidateNumElts /= 2; + candidateSize /= 2; + continue; + } + + // Add the right number of vectors of this size. + auto numVecs = numElts >> logCandidateNumElts; + components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); + numElts -= (numVecs << logCandidateNumElts); + + if (numElts == 0) return; + + // It's possible that the number of elements remaining will be legal. + // This can happen with e.g. <7 x float> when <3 x float> is legal. + // This only needs to be separately checked if it's not a power of 2. + if (numElts > 2 && !isPowerOf2(numElts) && + isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { + components.push_back(llvm::VectorType::get(eltTy, numElts)); + return; + } + + // Bring vecSize down to something no larger than numElts. + do { + logCandidateNumElts--; + candidateNumElts /= 2; + candidateSize /= 2; + } while (candidateNumElts > numElts); + } + + // Otherwise, just append a bunch of individual elements. + components.append(numElts, eltTy); +} + +bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM, + const CXXRecordDecl *record) { + // Following a recommendation from Richard Smith, pass a C++ type + // indirectly only if the destructor is non-trivial or *all* of the + // copy/move constructors are deleted or non-trivial. + + if (record->hasNonTrivialDestructor()) + return true; + + // It would be nice if this were summarized on the CXXRecordDecl. + for (auto ctor : record->ctors()) { + if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() && + ctor->isTrivial()) { + return false; + } + } + + return true; +} + +static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, + bool forReturn, + CharUnits alignmentForIndirect) { + if (lowering.empty()) { + return ABIArgInfo::getIgnore(); + } else if (lowering.shouldPassIndirectly(forReturn)) { + return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); + } else { + auto types = lowering.getCoerceAndExpandTypes(); + return ABIArgInfo::getCoerceAndExpand(types.first, types.second); + } +} + +static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, + bool forReturn) { + if (auto recordType = dyn_cast<RecordType>(type)) { + auto record = recordType->getDecl(); + auto &layout = CGM.getContext().getASTRecordLayout(record); + + if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) { + if (shouldPassCXXRecordIndirectly(CGM, cxxRecord)) + return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); + } + + SwiftAggLowering lowering(CGM); + lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); + lowering.finish(); + + return classifyExpandedType(lowering, forReturn, layout.getAlignment()); + } + + // Just assume that all of our target ABIs can support returning at least + // two integer or floating-point values. + if (isa<ComplexType>(type)) { + return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); + } + + // Vector types may need to be legalized. + if (isa<VectorType>(type)) { + SwiftAggLowering lowering(CGM); + lowering.addTypedData(type, CharUnits::Zero()); + lowering.finish(); + + CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); + return classifyExpandedType(lowering, forReturn, alignment); + } + + // Member pointer types need to be expanded, but it's a simple form of + // expansion that 'Direct' can handle. Note that CanBeFlattened should be + // true for this to work. + + // 'void' needs to be ignored. + if (type->isVoidType()) { + return ABIArgInfo::getIgnore(); + } + + // Everything else can be passed directly. + return ABIArgInfo::getDirect(); +} + +ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { + return classifyType(CGM, type, /*forReturn*/ true); +} + +ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, + CanQualType type) { + return classifyType(CGM, type, /*forReturn*/ false); +} + +void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { + auto &retInfo = FI.getReturnInfo(); + retInfo = classifyReturnType(CGM, FI.getReturnType()); + + for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { + auto &argInfo = FI.arg_begin()[i]; + argInfo.info = classifyArgumentType(CGM, argInfo.type); + } +} |