summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-09-26 19:56:36 +0000
committerLuiz Souza <luiz@netgate.com>2018-02-21 15:12:19 -0300
commit1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch)
tree4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp
parentf45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff)
downloadFreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip
FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste): Correct lld llvm-tblgen dependency file name MFC r309169: Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump and llvm-lto. The mergeinfo confuses Subversion enormously, and these directories will just use the mergeinfo for llvm itself. MFC r312765: Pull in r276136 from upstream llvm trunk (by Wei Mi): Use ValueOffsetPair to enhance value reuse during SCEV expansion. In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion. However, const folding and sext/zext distribution can make the reuse still difficult. A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and S1 = S2 + C_a S3 = S2 + C_b where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused by the fact that S3 is generated from S1 after const folding. In order to do that, we represent ExprValueMap as a mapping from SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b. Differential Revision: https://reviews.llvm.org/D21313 This should fix assertion failures when building OpenCV >= 3.1. PR: 215649 MFC r312831: Revert r312765 for now, since it causes assertions when building lang/spidermonkey24. Reported by: antoine PR: 215649 MFC r316511 (by jhb): Add an implementation of __ffssi2() derived from __ffsdi2(). Newer versions of GCC include an __ffssi2() symbol in libgcc and the compiler can emit calls to it in generated code. This is true for at least GCC 6.2 when compiling world for mips and mips64. Reviewed by: jmallett, dim Sponsored by: DARPA / AFRL Differential Revision: https://reviews.freebsd.org/D10086 MFC r318601 (by adrian): [libcompiler-rt] add bswapdi2/bswapsi2 This is required for mips gcc 6.3 userland to build/run. Reviewed by: emaste, dim Approved by: emaste Differential Revision: https://reviews.freebsd.org/D10838 MFC r318884 (by emaste): lldb: map TRAP_CAP to a trace trap In the absense of a more specific handler for TRAP_CAP (generated by ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace trap. Example usage (testing the bug in PR219173): % proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls ... (lldb) run Process 12980 launching Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64) Process 12980 stopped * thread #1, stop reason = trace frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10 ... In the future we should have LLDB control the trapcap procctl itself (as it does with ASLR), as well as report a specific stop reason. This change eliminates an assertion failure from LLDB for now. MFC r319796: Remove a few unneeded files from libllvm, libclang and liblldb. MFC r319885 (by emaste): lld: ELF: Fix ICF crash on absolute symbol relocations. If two sections contained relocations to absolute symbols with the same value we would crash when trying to access their sections. Add a check that both symbols point to sections before accessing their sections, and treat absolute symbols as equal if their values are equal. Obtained from: LLD commit r292578 MFC r319918: Revert r319796 for now, it can cause undefined references when linking in some circumstances. Reported by: Shawn Webb <shawn.webb@hardenedbsd.org> MFC r319957 (by emaste): lld: Add armelf emulation mode Obtained from: LLD r305375 MFC r321369: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release, which should be in about a month. Please report bugs and regressions, so we can get them into the release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. MFC r321420: Add a few more object files to liblldb, which should solve errors when linking the lldb executable in some cases. In particular, when the -ffunction-sections -fdata-sections options are turned off, or ineffective. Reported by: Shawn Webb, Mark Millard MFC r321433: Cleanup stale Options.inc files from the previous libllvm build for clang 4.0.0. Otherwise, these can get included before the two newly generated ones (which are different) for clang 5.0.0. Reported by: Mark Millard MFC r321439 (by bdrewery): Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm. The files are only ever generated to .OBJDIR, not to WORLDTMP (as a sysroot) and are only ever included from a compilation. So using a beforebuild target here removes the file before the compilation tries to include it. MFC r321664: Pull in r308891 from upstream llvm trunk (by Benjamin Kramer): [CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses. This avoids excessive compile time. The case I'm looking at is Function.cpp from an old version of LLVM that still had the giant memcmp string matcher in it. Before r308322 this compiled in about 2 minutes, after it, clang takes infinite* time to compile it. With this patch we're at 5 min, which is still bad but this is a pathological case. The cut off at 20 uses was chosen by looking at other cut-offs in LLVM for user scanning. It's probably too high, but does the job and is very unlikely to regress anything. Fixes PR33900. * I'm impatient and aborted after 15 minutes, on the bug report it was killed after 2h. Pull in r308986 from upstream llvm trunk (by Simon Pilgrim): [X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914) D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914). Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os). This patch should be considered for the 5.0.0 release branch as well Differential Revision: https://reviews.llvm.org/D35830 These fix a hang (or extremely long compile time) when building older LLVM ports. Reported by: antoine PR: 219139 MFC r321719: Pull in r309503 from upstream clang trunk (by Richard Smith): PR33902: Invalidate line number cache when adding more text to existing buffer. This led to crashes as the line number cache would report a bogus line number for a line of code, and we'd try to find a nonexistent column within the line when printing diagnostics. This fixes an assertion when building the graphics/champlain port. Reported by: antoine, kwm PR: 219139 MFC r321723: Upgrade our copies of clang, llvm, lld and lldb to r309439 from the upstream release_50 branch. This is just after upstream's 5.0.0-rc1. MFC r322320: Upgrade our copies of clang, llvm and libc++ to r310316 from the upstream release_50 branch. MFC r322326 (by emaste): lldb: Make i386-*-freebsd expression work on JIT path * Enable i386 ABI creation for freebsd * Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap syscall * Unlike linux, the last argument of mmap is actually 64-bit(off_t). This requires us to push an additional word for the higher order bits. * Prior to this change, ktrace dump will show mmap failures due to invalid argument coming from the 6th mmap argument. Submitted by: Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D34776 MFC r322360 (by emaste): lldb: Report inferior signals as signals, not exceptions, on FreeBSD This is the FreeBSD equivalent of LLVM r238549. This serves 2 purposes: * LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/ SIGFPE the way it is suppose to be handled. Prior to this fix these signals will neither create a coredump, nor exit from the debugger or work for signal handling scenario. * eInvalidCrashReason need not report "unknown crash reason" if we have a valid si_signo llvm.org/pr23699 Patch by Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D35223 Submitted by: Karnajit Wangkhem Obtained from: LLVM r310591 MFC r322474 (by emaste): lld: Add `-z muldefs` option. Obtained from: LLVM r310757 MFC r322740: Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the upstream release_50 branch. MFC r322855: Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from the upstream release_50 branch. As of this version, lib/msun's trig test should also work correctly again (see bug 220989 for more information). PR: 220989 MFC r323112: Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from the upstream release_50 branch. This corresponds to 5.0.0 rc4. As of this version, the cad/stepcode port should now compile in a more reasonable time on i386 (see bug 221836 for more information). PR: 221836 MFC r323245: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 release (upstream r312559). Release notes for llvm, clang and lld will be available here soon: <http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html> Relnotes: yes (cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp1362
1 files changed, 1362 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp b/contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp
new file mode 100644
index 0000000..ea7faab
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/ASTStructuralEquivalence.cpp
@@ -0,0 +1,1362 @@
+//===--- ASTStructuralEquivalence.cpp - -------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implement StructuralEquivalenceContext class and helper functions
+// for layout matching.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTStructuralEquivalence.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ASTImporter.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/SourceManager.h"
+
+namespace {
+
+using namespace clang;
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2);
+
+/// Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Expr *E1, Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ // FIXME: Actually perform a structural comparison!
+ return true;
+}
+
+/// Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ if (NNS1->getKind() != NNS2->getKind())
+ return false;
+
+ NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
+ *Prefix2 = NNS2->getPrefix();
+ if ((bool)Prefix1 != (bool)Prefix2)
+ return false;
+
+ if (Prefix1)
+ if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
+ return false;
+
+ switch (NNS1->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
+ NNS2->getAsIdentifier());
+ case NestedNameSpecifier::Namespace:
+ return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
+ NNS2->getAsNamespace());
+ case NestedNameSpecifier::NamespaceAlias:
+ return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
+ NNS2->getAsNamespaceAlias());
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
+ QualType(NNS2->getAsType(), 0));
+ case NestedNameSpecifier::Global:
+ return true;
+ case NestedNameSpecifier::Super:
+ return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
+ NNS2->getAsRecordDecl());
+ }
+ return false;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateName &N1,
+ const TemplateName &N2) {
+ if (N1.getKind() != N2.getKind())
+ return false;
+ switch (N1.getKind()) {
+ case TemplateName::Template:
+ return IsStructurallyEquivalent(Context, N1.getAsTemplateDecl(),
+ N2.getAsTemplateDecl());
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
+ *OS2 = N2.getAsOverloadedTemplate();
+ OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
+ E1 = OS1->end(), E2 = OS2->end();
+ for (; I1 != E1 && I2 != E2; ++I1, ++I2)
+ if (!IsStructurallyEquivalent(Context, *I1, *I2))
+ return false;
+ return I1 == E1 && I2 == E2;
+ }
+
+ case TemplateName::QualifiedTemplate: {
+ QualifiedTemplateName *QN1 = N1.getAsQualifiedTemplateName(),
+ *QN2 = N2.getAsQualifiedTemplateName();
+ return IsStructurallyEquivalent(Context, QN1->getDecl(), QN2->getDecl()) &&
+ IsStructurallyEquivalent(Context, QN1->getQualifier(),
+ QN2->getQualifier());
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
+ *DN2 = N2.getAsDependentTemplateName();
+ if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
+ DN2->getQualifier()))
+ return false;
+ if (DN1->isIdentifier() && DN2->isIdentifier())
+ return IsStructurallyEquivalent(DN1->getIdentifier(),
+ DN2->getIdentifier());
+ else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
+ return DN1->getOperator() == DN2->getOperator();
+ return false;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *TS1 = N1.getAsSubstTemplateTemplateParm(),
+ *TS2 = N2.getAsSubstTemplateTemplateParm();
+ return IsStructurallyEquivalent(Context, TS1->getParameter(),
+ TS2->getParameter()) &&
+ IsStructurallyEquivalent(Context, TS1->getReplacement(),
+ TS2->getReplacement());
+ }
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage
+ *P1 = N1.getAsSubstTemplateTemplateParmPack(),
+ *P2 = N2.getAsSubstTemplateTemplateParmPack();
+ return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
+ P2->getArgumentPack()) &&
+ IsStructurallyEquivalent(Context, P1->getParameterPack(),
+ P2->getParameterPack());
+ }
+ }
+ return false;
+}
+
+/// Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ if (Arg1.getKind() != Arg2.getKind())
+ return false;
+
+ switch (Arg1.getKind()) {
+ case TemplateArgument::Null:
+ return true;
+
+ case TemplateArgument::Type:
+ return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
+
+ case TemplateArgument::Integral:
+ if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
+ Arg2.getIntegralType()))
+ return false;
+
+ return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
+ Arg2.getAsIntegral());
+
+ case TemplateArgument::Declaration:
+ return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return true; // FIXME: Is this correct?
+
+ case TemplateArgument::Template:
+ return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
+ Arg2.getAsTemplate());
+
+ case TemplateArgument::TemplateExpansion:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplateOrTemplatePattern(),
+ Arg2.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
+ Arg2.getAsExpr());
+
+ case TemplateArgument::Pack:
+ if (Arg1.pack_size() != Arg2.pack_size())
+ return false;
+
+ for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
+ Arg2.pack_begin()[I]))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+/// Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.FromCtx.getCanonicalType(T1);
+ T2 = Context.ToCtx.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ Type::TypeClass TC = T1->getTypeClass();
+
+ if (T1->getTypeClass() != T2->getTypeClass()) {
+ // Compare function types with prototypes vs. without prototypes as if
+ // both did not have prototypes.
+ if (T1->getTypeClass() == Type::FunctionProto &&
+ T2->getTypeClass() == Type::FunctionNoProto)
+ TC = Type::FunctionNoProto;
+ else if (T1->getTypeClass() == Type::FunctionNoProto &&
+ T2->getTypeClass() == Type::FunctionProto)
+ TC = Type::FunctionNoProto;
+ else
+ return false;
+ }
+
+ switch (TC) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Adjusted:
+ case Type::Decayed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AdjustedType>(T1)->getOriginalType(),
+ cast<AdjustedType>(T2)->getOriginalType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *Ref1 = cast<ReferenceType>(T1);
+ const ReferenceType *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
+ const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
+ const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
+ if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
+ const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
+ Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
+ const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
+ Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *Vec1 =
+ cast<DependentSizedExtVectorType>(T1);
+ const DependentSizedExtVectorType *Vec2 =
+ cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
+ Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const VectorType *Vec1 = cast<VectorType>(T1);
+ const VectorType *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->getVectorKind() != Vec2->getVectorKind())
+ return false;
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
+ const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
+ if (Proto1->getNumParams() != Proto2->getNumParams())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
+ Proto2->getParamType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+ if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
+ return false;
+ if (Proto1->getExceptionSpecType() == EST_Dynamic) {
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
+ Proto2->getNoexceptExpr()))
+ return false;
+ }
+ if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ LLVM_FALLTHROUGH;
+ }
+
+ case Type::FunctionNoProto: {
+ const FunctionType *Function1 = cast<FunctionType>(T1);
+ const FunctionType *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
+ Function2->getReturnType()))
+ return false;
+ if (Function1->getExtInfo() != Function2->getExtInfo())
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+
+ break;
+
+ case Type::Attributed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getModifiedType(),
+ cast<AttributedType>(T2)->getModifiedType()))
+ return false;
+ if (!IsStructurallyEquivalent(
+ Context, cast<AttributedType>(T1)->getEquivalentType(),
+ cast<AttributedType>(T2)->getEquivalentType()))
+ return false;
+ break;
+
+ case Type::Paren:
+ if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
+ cast<ParenType>(T2)->getInnerType()))
+ return false;
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(
+ Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::UnaryTransform:
+ if (!IsStructurallyEquivalent(
+ Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
+ cast<UnaryTransformType>(T1)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Auto:
+ if (!IsStructurallyEquivalent(Context, cast<AutoType>(T1)->getDeducedType(),
+ cast<AutoType>(T2)->getDeducedType()))
+ return false;
+ break;
+
+ case Type::DeducedTemplateSpecialization: {
+ auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
+ auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
+ DT2->getTemplateName()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
+ DT2->getDeducedType()))
+ return false;
+ break;
+ }
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
+ const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const SubstTemplateTypeParmType *Subst1 =
+ cast<SubstTemplateTypeParmType>(T1);
+ const SubstTemplateTypeParmType *Subst2 =
+ cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst1 =
+ cast<SubstTemplateTypeParmPackType>(T1);
+ const SubstTemplateTypeParmPackType *Subst2 =
+ cast<SubstTemplateTypeParmPackType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
+ Subst2->getArgumentPack()))
+ return false;
+ break;
+ }
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec1 =
+ cast<TemplateSpecializationType>(T1);
+ const TemplateSpecializationType *Spec2 =
+ cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
+ Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::Elaborated: {
+ const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
+ const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
+ // CHECKME: what if a keyword is ETK_None or ETK_typename ?
+ if (Elab1->getKeyword() != Elab2->getKeyword())
+ return false;
+ if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
+ Elab2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
+ Elab2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::InjectedClassName: {
+ const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
+ const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Inj1->getInjectedSpecializationType(),
+ Inj2->getInjectedSpecializationType()))
+ return false;
+ break;
+ }
+
+ case Type::DependentName: {
+ const DependentNameType *Typename1 = cast<DependentNameType>(T1);
+ const DependentNameType *Typename2 = cast<DependentNameType>(T2);
+ if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *Spec1 =
+ cast<DependentTemplateSpecializationType>(T1);
+ const DependentTemplateSpecializationType *Spec2 =
+ cast<DependentTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
+ Spec2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
+ Spec2->getIdentifier()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
+ Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::PackExpansion:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PackExpansionType>(T1)->getPattern(),
+ cast<PackExpansionType>(T2)->getPattern()))
+ return false;
+ break;
+
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
+ const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
+ Iface2->getDecl()))
+ return false;
+ break;
+ }
+
+ case Type::ObjCTypeParam: {
+ const ObjCTypeParamType *Obj1 = cast<ObjCTypeParamType>(T1);
+ const ObjCTypeParamType *Obj2 = cast<ObjCTypeParamType>(T2);
+ if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
+ return false;
+
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+ case Type::ObjCObject: {
+ const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
+ const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
+ if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
+ Obj2->getBaseType()))
+ return false;
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ break;
+ }
+
+ case Type::Atomic: {
+ if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
+ cast<AtomicType>(T2)->getValueType()))
+ return false;
+ break;
+ }
+
+ case Type::Pipe: {
+ if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
+ cast<PipeType>(T2)->getElementType()))
+ return false;
+ break;
+ }
+
+ } // end switch
+
+ return true;
+}
+
+/// Determine structural equivalence of two fields.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FieldDecl *Field1, FieldDecl *Field2) {
+ RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
+
+ // For anonymous structs/unions, match up the anonymous struct/union type
+ // declarations directly, so that we don't go off searching for anonymous
+ // types
+ if (Field1->isAnonymousStructOrUnion() &&
+ Field2->isAnonymousStructOrUnion()) {
+ RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
+ return IsStructurallyEquivalent(Context, D1, D2);
+ }
+
+ // Check for equivalent field names.
+ IdentifierInfo *Name1 = Field1->getIdentifier();
+ IdentifierInfo *Name2 = Field2->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2)) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
+ << Field2->getDeclName();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
+ << Field1->getDeclName();
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, Field1->getType(),
+ Field2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ if (Field1->isBitField()) {
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Field1->getBitWidthValue(Context.FromCtx);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Field2->getBitWidthValue(Context.ToCtx);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx);
+ unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx);
+
+ if (Bits1 != Bits2) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType() << Bits2;
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType() << Bits1;
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ }
+ return false;
+ }
+
+ if (D1->isAnonymousStructOrUnion() && D2->isAnonymousStructOrUnion()) {
+ // If both anonymous structs/unions are in a record context, make sure
+ // they occur in the same location in the context records.
+ if (Optional<unsigned> Index1 =
+ StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
+ if (Optional<unsigned> Index2 =
+ StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
+ D2)) {
+ if (*Index1 != *Index2)
+ return false;
+ }
+ }
+ }
+
+ // If both declarations are class template specializations, we know
+ // the ODR applies, so check the template and template arguments.
+ ClassTemplateSpecializationDecl *Spec1 =
+ dyn_cast<ClassTemplateSpecializationDecl>(D1);
+ ClassTemplateSpecializationDecl *Spec2 =
+ dyn_cast<ClassTemplateSpecializationDecl>(D2);
+ if (Spec1 && Spec2) {
+ // Check that the specialized templates are the same.
+ if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
+ Spec2->getSpecializedTemplate()))
+ return false;
+
+ // Check that the template arguments are the same.
+ if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
+ return false;
+
+ for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
+ Spec2->getTemplateArgs().get(I)))
+ return false;
+ }
+ // If one is a class template specialization and the other is not, these
+ // structures are different.
+ else if (Spec1 || Spec2)
+ return false;
+
+ // Compare the definitions of these two records. If either or both are
+ // incomplete, we assume that they are equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->hasExternalLexicalStorage() &&
+ !D1CXX->isCompleteDefinition()) {
+ D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
+ }
+
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ }
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1; ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context, Base1->getType(),
+ Base2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(), diag::note_odr_base)
+ << Base2->getType() << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType() << Base1->getSourceRange();
+ }
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(), diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->isVirtual() << Base1->getSourceRange();
+ }
+ return false;
+ }
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType() << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ }
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ RecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (RecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End; ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
+ return false;
+ }
+
+ if (Field2 != Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName() << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!llvm::APSInt::isSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName() << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName() << EC1->getInitVal().toString(10);
+ }
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.ErrorOnTagTypeMismatch
+ ? diag::err_odr_tag_type_inconsistent
+ : diag::warn_odr_tag_type_inconsistent)
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName() << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateParameterList *Params1,
+ TemplateParameterList *Params2) {
+ if (Params1->size() != Params2->size()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getTemplateLoc(),
+ diag::err_odr_different_num_template_parameters)
+ << Params1->size() << Params2->size();
+ Context.Diag1(Params1->getTemplateLoc(),
+ diag::note_odr_template_parameter_list);
+ }
+ return false;
+ }
+
+ for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
+ if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getParam(I)->getLocation(),
+ diag::err_odr_different_template_parameter_kind);
+ Context.Diag1(Params1->getParam(I)->getLocation(),
+ diag::note_odr_template_parameter_here);
+ }
+ return false;
+ }
+
+ if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
+ Params2->getParam(I))) {
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTypeParmDecl *D1,
+ TemplateTypeParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NonTypeTemplateParmDecl *D1,
+ NonTypeTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check types.
+ if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ diag::err_odr_non_type_parameter_type_inconsistent)
+ << D2->getType() << D1->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
+ << D1->getType();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTemplateParmDecl *D1,
+ TemplateTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check template parameter lists.
+ return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
+ D2->getTemplateParameters());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ ClassTemplateDecl *D1,
+ ClassTemplateDecl *D2) {
+ // Check template parameters.
+ if (!IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
+ D2->getTemplateParameters()))
+ return false;
+
+ // Check the templated declaration.
+ return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
+ D2->getTemplatedDecl());
+}
+
+/// Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ // Check whether we already know that these two declarations are not
+ // structurally equivalent.
+ if (Context.NonEquivalentDecls.count(
+ std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())))
+ return false;
+
+ // Determine whether we've already produced a tentative equivalence for D1.
+ Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
+ if (EquivToD1)
+ return EquivToD1 == D2->getCanonicalDecl();
+
+ // Produce a tentative equivalence D1 <-> D2, which will be checked later.
+ EquivToD1 = D2->getCanonicalDecl();
+ Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
+ return true;
+}
+} // namespace
+
+namespace clang {
+
+DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
+ unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (LastDiagFromC2)
+ FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
+ LastDiagFromC2 = false;
+ return FromCtx.getDiagnostics().Report(Loc, DiagID);
+}
+
+DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
+ unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (!LastDiagFromC2)
+ ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
+ LastDiagFromC2 = true;
+ return ToCtx.getDiagnostics().Report(Loc, DiagID);
+}
+
+Optional<unsigned>
+StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
+ ASTContext &Context = Anon->getASTContext();
+ QualType AnonTy = Context.getRecordType(Anon);
+
+ RecordDecl *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
+ if (!Owner)
+ return None;
+
+ unsigned Index = 0;
+ for (const auto *D : Owner->noload_decls()) {
+ const auto *F = dyn_cast<FieldDecl>(D);
+ if (!F)
+ continue;
+
+ if (F->isAnonymousStructOrUnion()) {
+ if (Context.hasSameType(F->getType(), AnonTy))
+ break;
+ ++Index;
+ continue;
+ }
+
+ // If the field looks like this:
+ // struct { ... } A;
+ QualType FieldType = F->getType();
+ if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
+ const RecordDecl *RecDecl = RecType->getDecl();
+ if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
+ if (Context.hasSameType(FieldType, AnonTy))
+ break;
+ ++Index;
+ continue;
+ }
+ }
+ }
+
+ return Index;
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
+ Decl *D2) {
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
+ QualType T2) {
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ Decl *D1 = DeclsToCheck.front();
+ DeclsToCheck.pop_front();
+
+ Decl *D2 = TentativeEquivalences[D1];
+ assert(D2 && "Unrecorded tentative equivalence?");
+
+ bool Equivalent = true;
+
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefNameForAnonDecl())
+ Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefNameForAnonDecl())
+ Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Record1, Record2))
+ Equivalent = false;
+ } else {
+ // Record/non-record mismatch.
+ Equivalent = false;
+ }
+ } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefNameForAnonDecl())
+ Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefNameForAnonDecl())
+ Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ Equivalent = false;
+ } else {
+ // Enum/non-enum mismatch
+ Equivalent = false;
+ }
+ } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
+ if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+ Typedef2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(),
+ Typedef2->getUnderlyingType()))
+ Equivalent = false;
+ } else {
+ // Typedef/non-typedef mismatch.
+ Equivalent = false;
+ }
+ } else if (ClassTemplateDecl *ClassTemplate1 =
+ dyn_cast<ClassTemplateDecl>(D1)) {
+ if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
+ ClassTemplate2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
+ Equivalent = false;
+ } else {
+ // Class template/non-class-template mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTypeParmDecl *TTP1 =
+ dyn_cast<TemplateTypeParmDecl>(D1)) {
+ if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP1 =
+ dyn_cast<NonTypeTemplateParmDecl>(D1)) {
+ if (NonTypeTemplateParmDecl *NTTP2 =
+ dyn_cast<NonTypeTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTemplateParmDecl *TTP1 =
+ dyn_cast<TemplateTemplateParmDecl>(D1)) {
+ if (TemplateTemplateParmDecl *TTP2 =
+ dyn_cast<TemplateTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ }
+
+ if (!Equivalent) {
+ // Note that these two declarations are not equivalent (and we already
+ // know about it).
+ NonEquivalentDecls.insert(
+ std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()));
+ return true;
+ }
+ // FIXME: Check other declaration kinds!
+ }
+
+ return false;
+}
+} // namespace clang
OpenPOWER on IntegriCloud