summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/patches
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2015-03-23 21:15:07 +0000
committerdim <dim@FreeBSD.org>2015-03-23 21:15:07 +0000
commit8533535e11cee59a4218e509443953ca9e14d0ac (patch)
tree73b249f64a909dd469a8b4bb64a02452b5720018 /contrib/llvm/patches
parent17d956b9623fc81fa1dd281d843352f6f7ffa62e (diff)
downloadFreeBSD-src-8533535e11cee59a4218e509443953ca9e14d0ac.zip
FreeBSD-src-8533535e11cee59a4218e509443953ca9e14d0ac.tar.gz
Add llvm patch corresponding to r280400.
Diffstat (limited to 'contrib/llvm/patches')
-rw-r--r--contrib/llvm/patches/patch-10-llvm-r230348-arm-fix-bad-ha.diff419
1 files changed, 419 insertions, 0 deletions
diff --git a/contrib/llvm/patches/patch-10-llvm-r230348-arm-fix-bad-ha.diff b/contrib/llvm/patches/patch-10-llvm-r230348-arm-fix-bad-ha.diff
new file mode 100644
index 0000000..64c558e
--- /dev/null
+++ b/contrib/llvm/patches/patch-10-llvm-r230348-arm-fix-bad-ha.diff
@@ -0,0 +1,419 @@
+Pull in r230348 from upstream llvm trunk (by Tim Northover):
+
+ ARM: treat [N x i32] and [N x i64] as AAPCS composite types
+
+ The logic is almost there already, with our special homogeneous
+ aggregate handling. Tweaking it like this allows front-ends to emit
+ AAPCS compliant code without ever having to count registers or add
+ discarded padding arguments.
+
+ Only arrays of i32 and i64 are needed to model AAPCS rules, but I
+ decided to apply the logic to all integer arrays for more consistency.
+
+This fixes a possible "Unexpected member type for HA" error when
+compiling lib/msun/bsdsrc/b_tgamma.c for armv6.
+
+Reported by: Jakub Palider <jpa@semihalf.com>
+
+Introduced here: https://svnweb.freebsd.org/changeset/base/280400
+
+Index: include/llvm/CodeGen/CallingConvLower.h
+===================================================================
+--- include/llvm/CodeGen/CallingConvLower.h
++++ include/llvm/CodeGen/CallingConvLower.h
+@@ -122,8 +122,8 @@ class CCValAssign {
+ // There is no need to differentiate between a pending CCValAssign and other
+ // kinds, as they are stored in a different list.
+ static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
+- LocInfo HTP) {
+- return getReg(ValNo, ValVT, 0, LocVT, HTP);
++ LocInfo HTP, unsigned ExtraInfo = 0) {
++ return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
+ }
+
+ void convertToReg(unsigned RegNo) {
+@@ -146,6 +146,7 @@ class CCValAssign {
+
+ unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
+ unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
++ unsigned getExtraInfo() const { return Loc; }
+ MVT getLocVT() const { return LocVT; }
+
+ LocInfo getLocInfo() const { return HTP; }
+Index: lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+===================================================================
+--- lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
++++ lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+@@ -7429,11 +7429,8 @@ TargetLowering::LowerCallTo(TargetLowering::CallLo
+ }
+ if (Args[i].isNest)
+ Flags.setNest();
+- if (NeedsRegBlock) {
++ if (NeedsRegBlock)
+ Flags.setInConsecutiveRegs();
+- if (Value == NumValues - 1)
+- Flags.setInConsecutiveRegsLast();
+- }
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
+@@ -7482,6 +7479,9 @@ TargetLowering::LowerCallTo(TargetLowering::CallLo
+ CLI.Outs.push_back(MyFlags);
+ CLI.OutVals.push_back(Parts[j]);
+ }
++
++ if (NeedsRegBlock && Value == NumValues - 1)
++ CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
+ }
+ }
+
+@@ -7696,11 +7696,8 @@ void SelectionDAGISel::LowerArguments(const Functi
+ }
+ if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
+ Flags.setNest();
+- if (NeedsRegBlock) {
++ if (NeedsRegBlock)
+ Flags.setInConsecutiveRegs();
+- if (Value == NumValues - 1)
+- Flags.setInConsecutiveRegsLast();
+- }
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
+@@ -7715,6 +7712,8 @@ void SelectionDAGISel::LowerArguments(const Functi
+ MyFlags.Flags.setOrigAlign(1);
+ Ins.push_back(MyFlags);
+ }
++ if (NeedsRegBlock && Value == NumValues - 1)
++ Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
+ PartBase += VT.getStoreSize();
+ }
+ }
+Index: lib/Target/ARM/ARMCallingConv.h
+===================================================================
+--- lib/Target/ARM/ARMCallingConv.h
++++ lib/Target/ARM/ARMCallingConv.h
+@@ -160,6 +160,8 @@ static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &V
+ State);
+ }
+
++static const uint16_t RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
++
+ static const uint16_t SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3,
+ ARM::S4, ARM::S5, ARM::S6, ARM::S7,
+ ARM::S8, ARM::S9, ARM::S10, ARM::S11,
+@@ -168,81 +170,114 @@ static const uint16_t DRegList[] = { ARM::D0, ARM:
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
+ static const uint16_t QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
+
++
+ // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
+ // has InConsecutiveRegs set, and that the last member also has
+ // InConsecutiveRegsLast set. We must process all members of the HA before
+ // we can allocate it, as we need to know the total number of registers that
+ // will be needed in order to (attempt to) allocate a contiguous block.
+-static bool CC_ARM_AAPCS_Custom_HA(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+- CCValAssign::LocInfo &LocInfo,
+- ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+- SmallVectorImpl<CCValAssign> &PendingHAMembers = State.getPendingLocs();
++static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT,
++ MVT &LocVT,
++ CCValAssign::LocInfo &LocInfo,
++ ISD::ArgFlagsTy &ArgFlags,
++ CCState &State) {
++ SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
+
+ // AAPCS HFAs must have 1-4 elements, all of the same type
+- assert(PendingHAMembers.size() < 4);
+- if (PendingHAMembers.size() > 0)
+- assert(PendingHAMembers[0].getLocVT() == LocVT);
++ if (PendingMembers.size() > 0)
++ assert(PendingMembers[0].getLocVT() == LocVT);
+
+ // Add the argument to the list to be allocated once we know the size of the
+- // HA
+- PendingHAMembers.push_back(
+- CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
++ // aggregate. Store the type's required alignmnent as extra info for later: in
++ // the [N x i64] case all trace has been removed by the time we actually get
++ // to do allocation.
++ PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
++ ArgFlags.getOrigAlign()));
+
+- if (ArgFlags.isInConsecutiveRegsLast()) {
+- assert(PendingHAMembers.size() > 0 && PendingHAMembers.size() <= 4 &&
+- "Homogeneous aggregates must have between 1 and 4 members");
++ if (!ArgFlags.isInConsecutiveRegsLast())
++ return true;
+
+- // Try to allocate a contiguous block of registers, each of the correct
+- // size to hold one member.
+- ArrayRef<uint16_t> RegList;
+- switch (LocVT.SimpleTy) {
+- case MVT::f32:
+- RegList = SRegList;
+- break;
+- case MVT::f64:
+- RegList = DRegList;
+- break;
+- case MVT::v2f64:
+- RegList = QRegList;
+- break;
+- default:
+- llvm_unreachable("Unexpected member type for HA");
+- break;
+- }
++ // Try to allocate a contiguous block of registers, each of the correct
++ // size to hold one member.
++ unsigned Align = std::min(PendingMembers[0].getExtraInfo(), 8U);
+
+- unsigned RegResult =
+- State.AllocateRegBlock(RegList, PendingHAMembers.size());
++ ArrayRef<uint16_t> RegList;
++ switch (LocVT.SimpleTy) {
++ case MVT::i32: {
++ RegList = RRegList;
++ unsigned RegIdx = State.getFirstUnallocated(RegList.data(), RegList.size());
+
+- if (RegResult) {
+- for (SmallVectorImpl<CCValAssign>::iterator It = PendingHAMembers.begin();
+- It != PendingHAMembers.end(); ++It) {
+- It->convertToReg(RegResult);
+- State.addLoc(*It);
+- ++RegResult;
+- }
+- PendingHAMembers.clear();
+- return true;
+- }
++ // First consume all registers that would give an unaligned object. Whether
++ // we go on stack or in regs, no-one will be using them in future.
++ unsigned RegAlign = RoundUpToAlignment(Align, 4) / 4;
++ while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
++ State.AllocateReg(RegList[RegIdx++]);
+
+- // Register allocation failed, fall back to the stack
++ break;
++ }
++ case MVT::f32:
++ RegList = SRegList;
++ break;
++ case MVT::f64:
++ RegList = DRegList;
++ break;
++ case MVT::v2f64:
++ RegList = QRegList;
++ break;
++ default:
++ llvm_unreachable("Unexpected member type for block aggregate");
++ break;
++ }
+
+- // Mark all VFP regs as unavailable (AAPCS rule C.2.vfp)
+- for (unsigned regNo = 0; regNo < 16; ++regNo)
+- State.AllocateReg(SRegList[regNo]);
++ unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
++ if (RegResult) {
++ for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
++ It != PendingMembers.end(); ++It) {
++ It->convertToReg(RegResult);
++ State.addLoc(*It);
++ ++RegResult;
++ }
++ PendingMembers.clear();
++ return true;
++ }
+
+- unsigned Size = LocVT.getSizeInBits() / 8;
+- unsigned Align = std::min(Size, 8U);
++ // Register allocation failed, we'll be needing the stack
++ unsigned Size = LocVT.getSizeInBits() / 8;
++ if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
++ // If nothing else has used the stack until this point, a non-HFA aggregate
++ // can be split between regs and stack.
++ unsigned RegIdx = State.getFirstUnallocated(RegList.data(), RegList.size());
++ for (auto &It : PendingMembers) {
++ if (RegIdx >= RegList.size())
++ It.convertToMem(State.AllocateStack(Size, Size));
++ else
++ It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
+
+- for (auto It : PendingHAMembers) {
+- It.convertToMem(State.AllocateStack(Size, Align));
+ State.addLoc(It);
+ }
++ PendingMembers.clear();
++ return true;
++ } else if (LocVT != MVT::i32)
++ RegList = SRegList;
+
+- // All pending members have now been allocated
+- PendingHAMembers.clear();
++ // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
++ for (auto Reg : RegList)
++ State.AllocateReg(Reg);
++
++ for (auto &It : PendingMembers) {
++ It.convertToMem(State.AllocateStack(Size, Align));
++ State.addLoc(It);
++
++ // After the first item has been allocated, the rest are packed as tightly
++ // as possible. (E.g. an incoming i64 would have starting Align of 8, but
++ // we'll be allocating a bunch of i32 slots).
++ Align = Size;
+ }
+
+- // This will be allocated by the last member of the HA
++ // All pending members have now been allocated
++ PendingMembers.clear();
++
++ // This will be allocated by the last member of the aggregate
+ return true;
+ }
+
+Index: lib/Target/ARM/ARMCallingConv.td
+===================================================================
+--- lib/Target/ARM/ARMCallingConv.td
++++ lib/Target/ARM/ARMCallingConv.td
+@@ -175,7 +175,7 @@ def CC_ARM_AAPCS_VFP : CallingConv<[
+ CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+
+ // HFAs are passed in a contiguous block of registers, or on the stack
+- CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_HA">>,
++ CCIfConsecutiveRegs<CCCustom<"CC_ARM_AAPCS_Custom_Aggregate">>,
+
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+Index: lib/Target/ARM/ARMISelLowering.cpp
+===================================================================
+--- lib/Target/ARM/ARMISelLowering.cpp
++++ lib/Target/ARM/ARMISelLowering.cpp
+@@ -11280,7 +11280,9 @@ static bool isHomogeneousAggregate(Type *Ty, HABas
+ return (Members > 0 && Members <= 4);
+ }
+
+-/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
++/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
++/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
++/// passing according to AAPCS rules.
+ bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
+ if (getEffectiveCallingConv(CallConv, isVarArg) !=
+@@ -11289,7 +11291,9 @@ bool ARMTargetLowering::functionArgumentNeedsConse
+
+ HABaseType Base = HA_UNKNOWN;
+ uint64_t Members = 0;
+- bool result = isHomogeneousAggregate(Ty, Base, Members);
+- DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump());
+- return result;
++ bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
++ DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
++
++ bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
++ return IsHA || IsIntArray;
+ }
+Index: test/CodeGen/ARM/aggregate-padding.ll
+===================================================================
+--- test/CodeGen/ARM/aggregate-padding.ll
++++ test/CodeGen/ARM/aggregate-padding.ll
+@@ -0,0 +1,101 @@
++; RUN: llc -mtriple=armv7-linux-gnueabihf %s -o - | FileCheck %s
++
++; [2 x i64] should be contiguous when split (e.g. we shouldn't try to align all
++; i32 components to 64 bits). Also makes sure i64 based types are properly
++; aligned on the stack.
++define i64 @test_i64_contiguous_on_stack([8 x double], float, i32 %in, [2 x i64] %arg) nounwind {
++; CHECK-LABEL: test_i64_contiguous_on_stack:
++; CHECK-DAG: ldr [[LO0:r[0-9]+]], [sp, #8]
++; CHECK-DAG: ldr [[HI0:r[0-9]+]], [sp, #12]
++; CHECK-DAG: ldr [[LO1:r[0-9]+]], [sp, #16]
++; CHECK-DAG: ldr [[HI1:r[0-9]+]], [sp, #20]
++; CHECK: adds r0, [[LO0]], [[LO1]]
++; CHECK: adc r1, [[HI0]], [[HI1]]
++
++ %val1 = extractvalue [2 x i64] %arg, 0
++ %val2 = extractvalue [2 x i64] %arg, 1
++ %sum = add i64 %val1, %val2
++ ret i64 %sum
++}
++
++; [2 x i64] should try to use looks for 4 regs, not 8 (which might happen if the
++; i64 -> i32, i32 split wasn't handled correctly).
++define i64 @test_2xi64_uses_4_regs([8 x double], float, [2 x i64] %arg) nounwind {
++; CHECK-LABEL: test_2xi64_uses_4_regs:
++; CHECK-DAG: mov r0, r2
++; CHECK-DAG: mov r1, r3
++
++ %val = extractvalue [2 x i64] %arg, 1
++ ret i64 %val
++}
++
++; An aggregate should be able to split between registers and stack if there is
++; nothing else on the stack.
++define i32 @test_aggregates_split([8 x double], i32, [4 x i32] %arg) nounwind {
++; CHECK-LABEL: test_aggregates_split:
++; CHECK: ldr [[VAL3:r[0-9]+]], [sp]
++; CHECK: add r0, r1, [[VAL3]]
++
++ %val0 = extractvalue [4 x i32] %arg, 0
++ %val3 = extractvalue [4 x i32] %arg, 3
++ %sum = add i32 %val0, %val3
++ ret i32 %sum
++}
++
++; If an aggregate has to be moved entirely onto the stack, nothing should be
++; able to use r0-r3 any more. Also checks that [2 x i64] properly aligned when
++; it uses regs.
++define i32 @test_no_int_backfilling([8 x double], float, i32, [2 x i64], i32 %arg) nounwind {
++; CHECK-LABEL: test_no_int_backfilling:
++; CHECK: ldr r0, [sp, #24]
++ ret i32 %arg
++}
++
++; Even if the argument was successfully allocated as reg block, there should be
++; no backfillig to r1.
++define i32 @test_no_int_backfilling_regsonly(i32, [1 x i64], i32 %arg) {
++; CHECK-LABEL: test_no_int_backfilling_regsonly:
++; CHECK: ldr r0, [sp]
++ ret i32 %arg
++}
++
++; If an aggregate has to be moved entirely onto the stack, nothing should be
++; able to use r0-r3 any more.
++define float @test_no_float_backfilling([7 x double], [4 x i32], i32, [4 x double], float %arg) nounwind {
++; CHECK-LABEL: test_no_float_backfilling:
++; CHECK: vldr s0, [sp, #40]
++ ret float %arg
++}
++
++; They're a bit pointless, but types like [N x i8] should work as well.
++define i8 @test_i8_in_regs(i32, [3 x i8] %arg) {
++; CHECK-LABEL: test_i8_in_regs:
++; CHECK: add r0, r1, r3
++ %val0 = extractvalue [3 x i8] %arg, 0
++ %val2 = extractvalue [3 x i8] %arg, 2
++ %sum = add i8 %val0, %val2
++ ret i8 %sum
++}
++
++define i16 @test_i16_split(i32, i32, [3 x i16] %arg) {
++; CHECK-LABEL: test_i16_split:
++; CHECK: ldrh [[VAL2:r[0-9]+]], [sp]
++; CHECK: add r0, r2, [[VAL2]]
++ %val0 = extractvalue [3 x i16] %arg, 0
++ %val2 = extractvalue [3 x i16] %arg, 2
++ %sum = add i16 %val0, %val2
++ ret i16 %sum
++}
++
++; Beware: on the stack each i16 still gets a 32-bit slot, the array is not
++; packed.
++define i16 @test_i16_forced_stack([8 x double], double, i32, i32, [3 x i16] %arg) {
++; CHECK-LABEL: test_i16_forced_stack:
++; CHECK-DAG: ldrh [[VAL0:r[0-9]+]], [sp, #8]
++; CHECK-DAG: ldrh [[VAL2:r[0-9]+]], [sp, #16]
++; CHECK: add r0, [[VAL0]], [[VAL2]]
++ %val0 = extractvalue [3 x i16] %arg, 0
++ %val2 = extractvalue [3 x i16] %arg, 2
++ %sum = add i16 %val0, %val2
++ ret i16 %sum
++}
OpenPOWER on IntegriCloud