summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
committerdim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
commit9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch)
treec978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp
parent03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff)
downloadFreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip
FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports all of the features in the current working draft of the upcoming C++ standard, provisionally named C++1y. The code generator's performance is greatly increased, and the loop auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The PowerPC backend has made several major improvements to code generation quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ backends have all seen major feature work. Release notes for llvm and clang can be found here: <http://llvm.org/releases/3.4/docs/ReleaseNotes.html> <http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html> MFC 262121 (by emaste): Update lldb for clang/llvm 3.4 import This commit largely restores the lldb source to the upstream r196259 snapshot with the addition of threaded inferior support and a few bug fixes. Specific upstream lldb revisions restored include: SVN git 181387 779e6ac 181703 7bef4e2 182099 b31044e 182650 f2dcf35 182683 0d91b80 183862 15c1774 183929 99447a6 184177 0b2934b 184948 4dc3761 184954 007e7bc 186990 eebd175 Sponsored by: DARPA, AFRL MFC 262186 (by emaste): Fix mismerge in r262121 A break statement was lost in the merge. The error had no functional impact, but restore it to reduce the diff against upstream. MFC 262303: Pull in r197521 from upstream clang trunk (by rdivacky): Use the integrated assembler by default on FreeBSD/ppc and ppc64. Requested by: jhibbits MFC 262611: Pull in r196874 from upstream llvm trunk: Fix a crash that occurs when PWD is invalid. MCJIT needs to be able to run in hostile environments, even when PWD is invalid. There's no need to crash MCJIT in this case. The obvious fix is to simply leave MCContext's CompilationDir empty when PWD can't be determined. This way, MCJIT clients, and other clients that link with LLVM don't need a valid working directory. If we do want to guarantee valid CompilationDir, that should be done only for clients of getCompilationDir(). This is as simple as checking for an empty string. The only current use of getCompilationDir is EmitGenDwarfInfo, which won't conceivably run with an invalid working dir. However, in the purely hypothetically and untestable case that this happens, the AT_comp_dir will be omitted from the compilation_unit DIE. This should help fix assertions occurring with ports-mgmt/tinderbox, when it is using jails, and sometimes invalidates clang's current working directory. Reported by: decke MFC 262809: Pull in r203007 from upstream clang trunk: Don't produce an alias between destructors with different calling conventions. Fixes pr19007. (Please note that is an LLVM PR identifier, not a FreeBSD one.) This should fix Firefox and/or libxul crashes (due to problems with regparm/stdcall calling conventions) on i386. Reported by: multiple users on freebsd-current PR: bin/187103 MFC 263048: Repair recognition of "CC" as an alias for the C++ compiler, since it was silently broken by upstream for a Windows-specific use-case. Apparently some versions of CMake still rely on this archaic feature... Reported by: rakuco MFC 263049: Garbage collect the old way of adding the libstdc++ include directories in clang's InitHeaderSearch.cpp. This has been superseded by David Chisnall's commit in r255321. Moreover, if libc++ is used, the libstdc++ include directories should not be in the search path at all. These directories are now only used if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp730
1 files changed, 0 insertions, 730 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp b/contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp
deleted file mode 100644
index 9b94366..0000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VecUtils.cpp
+++ /dev/null
@@ -1,730 +0,0 @@
-//===- VecUtils.cpp --- Vectorization Utilities ---------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "SLP"
-
-#include "VecUtils.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include <algorithm>
-#include <map>
-
-using namespace llvm;
-
-static const unsigned MinVecRegSize = 128;
-
-static const unsigned RecursionMaxDepth = 6;
-
-namespace llvm {
-
-BoUpSLP::BoUpSLP(BasicBlock *Bb, ScalarEvolution *S, DataLayout *Dl,
- TargetTransformInfo *Tti, AliasAnalysis *Aa, Loop *Lp) :
- BB(Bb), SE(S), DL(Dl), TTI(Tti), AA(Aa), L(Lp) {
- numberInstructions();
-}
-
-void BoUpSLP::numberInstructions() {
- int Loc = 0;
- InstrIdx.clear();
- InstrVec.clear();
- // Number the instructions in the block.
- for (BasicBlock::iterator it=BB->begin(), e=BB->end(); it != e; ++it) {
- InstrIdx[it] = Loc++;
- InstrVec.push_back(it);
- assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
- }
-}
-
-Value *BoUpSLP::getPointerOperand(Value *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) return LI->getPointerOperand();
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) return SI->getPointerOperand();
- return 0;
-}
-
-unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
- if (LoadInst *L=dyn_cast<LoadInst>(I)) return L->getPointerAddressSpace();
- if (StoreInst *S=dyn_cast<StoreInst>(I)) return S->getPointerAddressSpace();
- return -1;
-}
-
-bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
- Value *PtrA = getPointerOperand(A);
- Value *PtrB = getPointerOperand(B);
- unsigned ASA = getAddressSpaceOperand(A);
- unsigned ASB = getAddressSpaceOperand(B);
-
- // Check that the address spaces match and that the pointers are valid.
- if (!PtrA || !PtrB || (ASA != ASB)) return false;
-
- // Check that A and B are of the same type.
- if (PtrA->getType() != PtrB->getType()) return false;
-
- // Calculate the distance.
- const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
- const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
- const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);
-
- // Non constant distance.
- if (!ConstOffSCEV) return false;
-
- int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
- Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- // The Instructions are connsecutive if the size of the first load/store is
- // the same as the offset.
- int64_t Sz = DL->getTypeStoreSize(Ty);
- return ((-Offset) == Sz);
-}
-
-bool BoUpSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
- Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
- unsigned Sz = DL->getTypeSizeInBits(StoreTy);
- unsigned VF = MinVecRegSize / Sz;
-
- if (!isPowerOf2_32(Sz) || VF < 2) return false;
-
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = Chain.size(); i < e; ++i) {
- if (i + VF > e) return Changed;
- DEBUG(dbgs()<<"SLP: Analyzing " << VF << " stores at offset "<< i << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
-
- int Cost = getTreeCost(Operands);
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < CostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- vectorizeTree(Operands, VF);
- i += VF - 1;
- Changed = true;
- }
- }
-
- return Changed;
-}
-
-bool BoUpSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
- ValueSet Heads, Tails;
- SmallDenseMap<Value*, Value*> ConsecutiveChain;
-
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- ValueSet VectorizedStores;
- bool Changed = false;
-
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of loads that follow each other.
- for (unsigned i = 0, e = Stores.size(); i < e; ++i)
- for (unsigned j = 0; j < e; ++j) {
- if (i == j) continue;
- if (isConsecutiveAccess(Stores[i], Stores[j])) {
- Tails.insert(Stores[j]);
- Heads.insert(Stores[i]);
- ConsecutiveChain[Stores[i]] = Stores[j];
- }
- }
-
- // For stores that start but don't end a link in the chain:
- for (ValueSet::iterator it = Heads.begin(), e = Heads.end();it != e; ++it) {
- if (Tails.count(*it)) continue;
-
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- ValueList Operands;
- Value *I = *it;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (VectorizedStores.count(I)) break;
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
-
- bool Vectorized = vectorizeStoreChain(Operands, costThreshold);
-
- // Mark the vectorized stores so that we don't vectorize them again.
- if (Vectorized)
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed |= Vectorized;
- }
-
- return Changed;
-}
-
-int BoUpSLP::getScalarizationCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getScalarizationCost(VecTy);
-}
-
-int BoUpSLP::getScalarizationCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
-}
-
-AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) return AA->getLocation(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) return AA->getLocation(LI);
- return AliasAnalysis::Location();
-}
-
-Value *BoUpSLP::isUnsafeToSink(Instruction *Src, Instruction *Dst) {
- assert(Src->getParent() == Dst->getParent() && "Not the same BB");
- BasicBlock::iterator I = Src, E = Dst;
- /// Scan all of the instruction from SRC to DST and check if
- /// the source may alias.
- for (++I; I != E; ++I) {
- // Ignore store instructions that are marked as 'ignore'.
- if (MemBarrierIgnoreList.count(I)) continue;
- if (Src->mayWriteToMemory()) /* Write */ {
- if (!I->mayReadOrWriteMemory()) continue;
- } else /* Read */ {
- if (!I->mayWriteToMemory()) continue;
- }
- AliasAnalysis::Location A = getLocation(&*I);
- AliasAnalysis::Location B = getLocation(Src);
-
- if (!A.Ptr || !B.Ptr || AA->alias(A, B))
- return I;
- }
- return 0;
-}
-
-void BoUpSLP::vectorizeArith(ArrayRef<Value *> Operands) {
- Value *Vec = vectorizeTree(Operands, Operands.size());
- BasicBlock::iterator Loc = cast<Instruction>(Vec);
- IRBuilder<> Builder(++Loc);
- // After vectorizing the operands we need to generate extractelement
- // instructions and replace all of the uses of the scalar values with
- // the values that we extracted from the vectorized tree.
- for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
- Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
- Operands[i]->replaceAllUsesWith(S);
- }
-}
-
-int BoUpSLP::getTreeCost(ArrayRef<Value *> VL) {
- // Get rid of the list of stores that were removed, and from the
- // lists of instructions with multiple users.
- MemBarrierIgnoreList.clear();
- LaneMap.clear();
- MultiUserVals.clear();
- MustScalarize.clear();
-
- // Scan the tree and find which value is used by which lane, and which values
- // must be scalarized.
- getTreeUses_rec(VL, 0);
-
- // Check that instructions with multiple users can be vectorized. Mark unsafe
- // instructions.
- for (ValueSet::iterator it = MultiUserVals.begin(),
- e = MultiUserVals.end(); it != e; ++it) {
- // Check that all of the users of this instr are within the tree
- // and that they are all from the same lane.
- int Lane = -1;
- for (Value::use_iterator I = (*it)->use_begin(), E = (*it)->use_end();
- I != E; ++I) {
- if (LaneMap.find(*I) == LaneMap.end()) {
- MustScalarize.insert(*it);
- DEBUG(dbgs()<<"SLP: Adding " << **it <<
- " to MustScalarize because of an out of tree usage.\n");
- break;
- }
- if (Lane == -1) Lane = LaneMap[*I];
- if (Lane != LaneMap[*I]) {
- MustScalarize.insert(*it);
- DEBUG(dbgs()<<"Adding " << **it <<
- " to MustScalarize because multiple lane use it: "
- << Lane << " and " << LaneMap[*I] << ".\n");
- break;
- }
- }
- }
-
- // Now calculate the cost of vectorizing the tree.
- return getTreeCost_rec(VL, 0);
-}
-
-void BoUpSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
- if (Depth == RecursionMaxDepth) return;
-
- // Don't handle vectors.
- if (VL[0]->getType()->isVectorTy()) return;
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- if (SI->getValueOperand()->getType()->isVectorTy()) return;
-
- // Check if all of the operands are constants.
- bool AllConst = true;
- bool AllSameScalar = true;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- AllConst &= isa<Constant>(VL[i]);
- AllSameScalar &= (VL[0] == VL[i]);
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // If one of the instructions is out of this BB, we need to scalarize all.
- if (I && I->getParent() != BB) return;
- }
-
- // If all of the operands are identical or constant we have a simple solution.
- if (AllConst || AllSameScalar) return;
-
- // Scalarize unknown structures.
- Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
- if (!VL0) return;
-
- unsigned Opcode = VL0->getOpcode();
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // If not all of the instructions are identical then we have to scalarize.
- if (!I || Opcode != I->getOpcode()) return;
- }
-
- // Mark instructions with multiple users.
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // Remember to check if all of the users of this instr are vectorized
- // within our tree.
- if (I && I->getNumUses() > 1) MultiUserVals.insert(I);
- }
-
- for (int i = 0, e = VL.size(); i < e; ++i) {
- // Check that the instruction is only used within
- // one lane.
- if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) return;
- // Make this instruction as 'seen' and remember the lane.
- LaneMap[VL[i]] = i;
- }
-
- switch (Opcode) {
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
-
- getTreeUses_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::Store: {
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- getTreeUses_rec(Operands, Depth+1);
- return;
- }
- default:
- return;
- }
-}
-
-int BoUpSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
- Type *ScalarTy = VL[0]->getType();
-
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
-
- /// Don't mess with vectors.
- if (ScalarTy->isVectorTy()) return max_cost;
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
-
- if (Depth == RecursionMaxDepth) return getScalarizationCost(VecTy);
-
- // Check if all of the operands are constants.
- bool AllConst = true;
- bool AllSameScalar = true;
- bool MustScalarizeFlag = false;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- AllConst &= isa<Constant>(VL[i]);
- AllSameScalar &= (VL[0] == VL[i]);
- // Must have a single use.
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- MustScalarizeFlag |= MustScalarize.count(VL[i]);
- // This instruction is outside the basic block.
- if (I && I->getParent() != BB)
- return getScalarizationCost(VecTy);
- }
-
- // Is this a simple vector constant.
- if (AllConst) return 0;
-
- // If all of the operands are identical we can broadcast them.
- Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
- if (AllSameScalar) {
- // If we are in a loop, and this is not an instruction (e.g. constant or
- // argument) or the instruction is defined outside the loop then assume
- // that the cost is zero.
- if (L && (!VL0 || !L->contains(VL0)))
- return 0;
-
- // We need to broadcast the scalar.
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
-
- // If this is not a constant, or a scalar from outside the loop then we
- // need to scalarize it.
- if (MustScalarizeFlag)
- return getScalarizationCost(VecTy);
-
- if (!VL0) return getScalarizationCost(VecTy);
- assert(VL0->getParent() == BB && "Wrong BB");
-
- unsigned Opcode = VL0->getOpcode();
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // If not all of the instructions are identical then we have to scalarize.
- if (!I || Opcode != I->getOpcode()) return getScalarizationCost(VecTy);
- }
-
- // Check if it is safe to sink the loads or the stores.
- if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
- int MaxIdx = InstrIdx[VL0];
- for (unsigned i = 1, e = VL.size(); i < e; ++i )
- MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);
-
- Instruction *Last = InstrVec[MaxIdx];
- for (unsigned i = 0, e = VL.size(); i < e; ++i ) {
- if (VL[i] == Last) continue;
- Value *Barrier = isUnsafeToSink(cast<Instruction>(VL[i]), Last);
- if (Barrier) {
- DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " <<
- *Last << "\n because of " << *Barrier << "\n");
- return max_cost;
- }
- }
- }
-
- switch (Opcode) {
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- int Cost = 0;
- ValueList Operands;
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j) {
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- // Check that the casted type is the same for all users.
- if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
- return getScalarizationCost(VecTy);
- }
-
- Cost += getTreeCost_rec(Operands, Depth+1);
- if (Cost >= max_cost) return max_cost;
-
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy);
-
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
- Cost += (VecCost - ScalarCost);
- return Cost;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- int Cost = 0;
- // Calculate the cost of all of the operands.
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
-
- Cost += getTreeCost_rec(Operands, Depth+1);
- if (Cost >= max_cost) return max_cost;
- }
-
- // Calculate the cost of this instruction.
- int ScalarCost = VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy);
-
- int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
- Cost += (VecCost - ScalarCost);
- return Cost;
- }
- case Instruction::Load: {
- // If we are scalarize the loads, add the cost of forming the vector.
- for (unsigned i = 0, e = VL.size()-1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i+1]))
- return getScalarizationCost(VecTy);
-
- // Cost of wide load - cost of scalar loads.
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- return VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1,0);
- int StoreCost = VecStCost - ScalarStCost;
-
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j) {
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- MemBarrierIgnoreList.insert(VL[j]);
- }
-
- int TotalCost = StoreCost + getTreeCost_rec(Operands, Depth + 1);
- return TotalCost;
- }
- default:
- // Unable to vectorize unknown instructions.
- return getScalarizationCost(VecTy);
- }
-}
-
-Instruction *BoUpSLP::GetLastInstr(ArrayRef<Value *> VL, unsigned VF) {
- int MaxIdx = InstrIdx[BB->getFirstNonPHI()];
- for (unsigned i = 0; i < VF; ++i )
- MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);
- return InstrVec[MaxIdx + 1];
-}
-
-Value *BoUpSLP::Scalarize(ArrayRef<Value *> VL, VectorType *Ty) {
- IRBuilder<> Builder(GetLastInstr(VL, Ty->getNumElements()));
- Value *Vec = UndefValue::get(Ty);
- for (unsigned i=0; i < Ty->getNumElements(); ++i) {
- // Generate the 'InsertElement' instruction.
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- // Remember that this instruction is used as part of a 'gather' sequence.
- // The caller of the bottom-up slp vectorizer can try to hoist the sequence
- // if the users are outside of the basic block.
- GatherInstructions.push_back(Vec);
- }
-
- return Vec;
-}
-
-Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int VF) {
- Value *V = vectorizeTree_rec(VL, VF);
- // We moved some instructions around. We have to number them again
- // before we can do any analysis.
- numberInstructions();
- MustScalarize.clear();
- return V;
-}
-
-Value *BoUpSLP::vectorizeTree_rec(ArrayRef<Value *> VL, int VF) {
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VF);
-
- // Check if all of the operands are constants or identical.
- bool AllConst = true;
- bool AllSameScalar = true;
- for (unsigned i = 0, e = VF; i < e; ++i) {
- AllConst &= isa<Constant>(VL[i]);
- AllSameScalar &= (VL[0] == VL[i]);
- // The instruction must be in the same BB, and it must be vectorizable.
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (MustScalarize.count(VL[i]) || (I && I->getParent() != BB))
- return Scalarize(VL, VecTy);
- }
-
- // Check that this is a simple vector constant.
- if (AllConst || AllSameScalar) return Scalarize(VL, VecTy);
-
- // Scalarize unknown structures.
- Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
- if (!VL0) return Scalarize(VL, VecTy);
-
- if (VectorizedValues.count(VL0)) return VectorizedValues[VL0];
-
- unsigned Opcode = VL0->getOpcode();
- for (unsigned i = 0, e = VF; i < e; ++i) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // If not all of the instructions are identical then we have to scalarize.
- if (!I || Opcode != I->getOpcode()) return Scalarize(VL, VecTy);
- }
-
- switch (Opcode) {
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (int i = 0; i < VF; ++i)
- INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
- Value *InVec = vectorizeTree_rec(INVL, VF);
- IRBuilder<> Builder(GetLastInstr(VL, VF));
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- for (int i = 0; i < VF; ++i) {
- RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
- LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
- }
-
- Value *RHS = vectorizeTree_rec(RHSVL, VF);
- Value *LHS = vectorizeTree_rec(LHSVL, VF);
- IRBuilder<> Builder(GetLastInstr(VL, VF));
- BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), RHS,LHS);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(VL0);
- unsigned Alignment = LI->getAlignment();
-
- // Check if all of the loads are consecutive.
- for (unsigned i = 1, e = VF; i < e; ++i)
- if (!isConsecutiveAccess(VL[i-1], VL[i]))
- return Scalarize(VL, VecTy);
-
- IRBuilder<> Builder(GetLastInstr(VL, VF));
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo());
- LI = Builder.CreateLoad(VecPtr);
- LI->setAlignment(Alignment);
- VectorizedValues[VL0] = LI;
- return LI;
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
-
- ValueList ValueOp;
- for (int i = 0; i < VF; ++i)
- ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());
-
- Value *VecValue = vectorizeTree_rec(ValueOp, VF);
-
- IRBuilder<> Builder(GetLastInstr(VL, VF));
- Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
- VecTy->getPointerTo());
- Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);
-
- for (int i = 0; i < VF; ++i)
- cast<Instruction>(VL[i])->eraseFromParent();
- return 0;
- }
- default:
- Value *S = Scalarize(VL, VecTy);
- VectorizedValues[VL0] = S;
- return S;
- }
-}
-
-} // end of namespace
OpenPOWER on IntegriCloud