summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2015-05-27 20:26:41 +0000
committerdim <dim@FreeBSD.org>2015-05-27 20:26:41 +0000
commit5ef8fd3549d38e883a31881636be3dc2a275de20 (patch)
treebd13a22d9db57ccf3eddbc07b32c18109521d050 /contrib/llvm/lib/Transforms/Utils
parent77794ebe2d5718eb502c93ec32f8ccae4d8a0b7b (diff)
parent782067d0278612ee75d024b9b135c221c327e9e8 (diff)
downloadFreeBSD-src-5ef8fd3549d38e883a31881636be3dc2a275de20.zip
FreeBSD-src-5ef8fd3549d38e883a31881636be3dc2a275de20.tar.gz
Merge llvm trunk r238337 from ^/vendor/llvm/dist, resolve conflicts, and
preserve our customizations, where necessary.
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp8
-rw-r--r--contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp45
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp215
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp63
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp161
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp224
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneModule.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp30
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp3
-rw-r--r--contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp34
-rw-r--r--contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp2
-rw-r--r--contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp234
-rw-r--r--contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp4
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LCSSA.cpp32
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp149
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp80
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp51
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp46
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp499
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp188
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp240
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp32
-rw-r--r--contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp164
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp51
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp661
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp136
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp12
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp348
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp15
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp225
30 files changed, 2204 insertions, 1752 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp b/contrib/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp
index cce016a..03c3a80 100644
--- a/contrib/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp
@@ -13,6 +13,7 @@
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/MathExtras.h"
#include <algorithm>
namespace llvm {
@@ -33,11 +34,6 @@ static inline bool CompareVars(const ASanStackVariableDescription &a,
// with e.g. alignment 1 and alignment 16 do not get reordered by CompareVars.
static const size_t kMinAlignment = 16;
-static size_t RoundUpTo(size_t X, size_t RoundTo) {
- assert((RoundTo & (RoundTo - 1)) == 0);
- return (X + RoundTo - 1) & ~(RoundTo - 1);
-}
-
// The larger the variable Size the larger is the redzone.
// The resulting frame size is a multiple of Alignment.
static size_t VarAndRedzoneSize(size_t Size, size_t Alignment) {
@@ -48,7 +44,7 @@ static size_t VarAndRedzoneSize(size_t Size, size_t Alignment) {
else if (Size <= 512) Res = Size + 64;
else if (Size <= 4096) Res = Size + 128;
else Res = Size + 256;
- return RoundUpTo(Res, Alignment);
+ return RoundUpToAlignment(Res, Alignment);
}
void
diff --git a/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp b/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
index 820544b..e9f6239 100644
--- a/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/AddDiscriminators.cpp
@@ -174,42 +174,51 @@ bool AddDiscriminators::runOnFunction(Function &F) {
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
BasicBlock *B = I;
TerminatorInst *Last = B->getTerminator();
- DebugLoc LastLoc = Last->getDebugLoc();
- if (LastLoc.isUnknown()) continue;
- DILocation LastDIL(LastLoc.getAsMDNode(Ctx));
+ const DILocation *LastDIL = Last->getDebugLoc();
+ if (!LastDIL)
+ continue;
for (unsigned I = 0; I < Last->getNumSuccessors(); ++I) {
BasicBlock *Succ = Last->getSuccessor(I);
Instruction *First = Succ->getFirstNonPHIOrDbgOrLifetime();
- DebugLoc FirstLoc = First->getDebugLoc();
- if (FirstLoc.isUnknown()) continue;
- DILocation FirstDIL(FirstLoc.getAsMDNode(Ctx));
+ const DILocation *FirstDIL = First->getDebugLoc();
+ if (!FirstDIL)
+ continue;
// If the first instruction (First) of Succ is at the same file
// location as B's last instruction (Last), add a new
// discriminator for First's location and all the instructions
// in Succ that share the same location with First.
- if (FirstDIL.atSameLineAs(LastDIL)) {
+ if (!FirstDIL->canDiscriminate(*LastDIL)) {
// Create a new lexical scope and compute a new discriminator
// number for it.
- StringRef Filename = FirstDIL.getFilename();
- DIScope Scope = FirstDIL.getScope();
- DIFile File = Builder.createFile(Filename, Scope.getDirectory());
- unsigned Discriminator = FirstDIL.computeNewDiscriminator(Ctx);
- DILexicalBlockFile NewScope =
+ StringRef Filename = FirstDIL->getFilename();
+ auto *Scope = FirstDIL->getScope();
+ auto *File = Builder.createFile(Filename, Scope->getDirectory());
+
+ // FIXME: Calculate the discriminator here, based on local information,
+ // and delete DILocation::computeNewDiscriminator(). The current
+ // solution gives different results depending on other modules in the
+ // same context. All we really need is to discriminate between
+ // FirstDIL and LastDIL -- a local map would suffice.
+ unsigned Discriminator = FirstDIL->computeNewDiscriminator();
+ auto *NewScope =
Builder.createLexicalBlockFile(Scope, File, Discriminator);
- DILocation NewDIL = FirstDIL.copyWithNewScope(Ctx, NewScope);
- DebugLoc newDebugLoc = DebugLoc::getFromDILocation(NewDIL);
+ auto *NewDIL =
+ DILocation::get(Ctx, FirstDIL->getLine(), FirstDIL->getColumn(),
+ NewScope, FirstDIL->getInlinedAt());
+ DebugLoc newDebugLoc = NewDIL;
// Attach this new debug location to First and every
// instruction following First that shares the same location.
for (BasicBlock::iterator I1(*First), E1 = Succ->end(); I1 != E1;
++I1) {
- if (I1->getDebugLoc() != FirstLoc) break;
+ if (I1->getDebugLoc().get() != FirstDIL)
+ break;
I1->setDebugLoc(newDebugLoc);
- DEBUG(dbgs() << NewDIL.getFilename() << ":" << NewDIL.getLineNumber()
- << ":" << NewDIL.getColumnNumber() << ":"
- << NewDIL.getDiscriminator() << *I1 << "\n");
+ DEBUG(dbgs() << NewDIL->getFilename() << ":" << NewDIL->getLine()
+ << ":" << NewDIL->getColumn() << ":"
+ << NewDIL->getDiscriminator() << *I1 << "\n");
}
DEBUG(dbgs() << "\n");
Changed = true;
diff --git a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
index 983f025..f3c8013 100644
--- a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -65,16 +65,10 @@ void llvm::DeleteDeadBlock(BasicBlock *BB) {
/// any single-entry PHI nodes in it, fold them away. This handles the case
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
/// when the block has exactly one predecessor.
-void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
+void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA,
+ MemoryDependenceAnalysis *MemDep) {
if (!isa<PHINode>(BB->begin())) return;
- AliasAnalysis *AA = nullptr;
- MemoryDependenceAnalysis *MemDep = nullptr;
- if (P) {
- AA = P->getAnalysisIfAvailable<AliasAnalysis>();
- MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
- }
-
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
@@ -113,7 +107,9 @@ bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
/// if possible. The return value indicates success or failure.
-bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
+bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
+ LoopInfo *LI, AliasAnalysis *AA,
+ MemoryDependenceAnalysis *MemDep) {
// Don't merge away blocks who have their address taken.
if (BB->hasAddressTaken()) return false;
@@ -140,8 +136,8 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Can't merge if there is PHI loop.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == PN)
+ for (Value *IncValue : PN->incoming_values())
+ if (IncValue == PN)
return false;
} else
break;
@@ -149,7 +145,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Begin by getting rid of unneeded PHIs.
if (isa<PHINode>(BB->front()))
- FoldSingleEntryPHINodes(BB, P);
+ FoldSingleEntryPHINodes(BB, AA, MemDep);
// Delete the unconditional branch from the predecessor...
PredBB->getInstList().pop_back();
@@ -166,28 +162,23 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
PredBB->takeName(BB);
// Finally, erase the old block and update dominator info.
- if (P) {
- if (DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
- DominatorTree &DT = DTWP->getDomTree();
- if (DomTreeNode *DTN = DT.getNode(BB)) {
- DomTreeNode *PredDTN = DT.getNode(PredBB);
- SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
- for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
- DE = Children.end(); DI != DE; ++DI)
- DT.changeImmediateDominator(*DI, PredDTN);
-
- DT.eraseNode(BB);
- }
+ if (DT)
+ if (DomTreeNode *DTN = DT->getNode(BB)) {
+ DomTreeNode *PredDTN = DT->getNode(PredBB);
+ SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
+ for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
+ DE = Children.end();
+ DI != DE; ++DI)
+ DT->changeImmediateDominator(*DI, PredDTN);
+
+ DT->eraseNode(BB);
+ }
- if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
- LI->removeBlock(BB);
+ if (LI)
+ LI->removeBlock(BB);
- if (MemoryDependenceAnalysis *MD =
- P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
- MD->invalidateCachedPredecessors();
- }
- }
+ if (MemDep)
+ MemDep->invalidateCachedPredecessors();
BB->eraseFromParent();
return true;
@@ -240,12 +231,14 @@ void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
/// SplitEdge - Split the edge connecting specified block. Pass P must
/// not be NULL.
-BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
+BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
+ LoopInfo *LI) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
// If this is a critical edge, let SplitCriticalEdge do it.
TerminatorInst *LatchTerm = BB->getTerminator();
- if (SplitCriticalEdge(LatchTerm, SuccNum, P))
+ if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
+ .setPreserveLCSSA()))
return LatchTerm->getSuccessor(SuccNum);
// If the edge isn't critical, then BB has a single successor or Succ has a
@@ -255,23 +248,25 @@ BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
// block.
assert(SP == BB && "CFG broken");
SP = nullptr;
- return SplitBlock(Succ, Succ->begin(), P);
+ return SplitBlock(Succ, Succ->begin(), DT, LI);
}
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
"Should have a single succ!");
- return SplitBlock(BB, BB->getTerminator(), P);
+ return SplitBlock(BB, BB->getTerminator(), DT, LI);
}
-unsigned llvm::SplitAllCriticalEdges(Function &F, Pass *P) {
+unsigned
+llvm::SplitAllCriticalEdges(Function &F,
+ const CriticalEdgeSplittingOptions &Options) {
unsigned NumBroken = 0;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (SplitCriticalEdge(TI, i, P))
+ if (SplitCriticalEdge(TI, i, Options))
++NumBroken;
}
return NumBroken;
@@ -282,7 +277,8 @@ unsigned llvm::SplitAllCriticalEdges(Function &F, Pass *P) {
/// to a new block. The two blocks are joined by an unconditional branch and
/// the loop info is updated.
///
-BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
+BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
+ DominatorTree *DT, LoopInfo *LI) {
BasicBlock::iterator SplitIt = SplitPt;
while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
++SplitIt;
@@ -290,26 +286,23 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
- if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
+ if (LI)
if (Loop *L = LI->getLoopFor(Old))
- L->addBasicBlockToLoop(New, LI->getBase());
+ L->addBasicBlockToLoop(New, *LI);
- if (DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
- DominatorTree &DT = DTWP->getDomTree();
+ if (DT)
// Old dominates New. New node dominates all other nodes dominated by Old.
- if (DomTreeNode *OldNode = DT.getNode(Old)) {
+ if (DomTreeNode *OldNode = DT->getNode(Old)) {
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
I != E; ++I)
Children.push_back(*I);
- DomTreeNode *NewNode = DT.addNewBlock(New, Old);
+ DomTreeNode *NewNode = DT->addNewBlock(New, Old);
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
E = Children.end(); I != E; ++I)
- DT.changeImmediateDominator(*I, NewNode);
+ DT->changeImmediateDominator(*I, NewNode);
}
- }
return New;
}
@@ -318,45 +311,46 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
/// analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
ArrayRef<BasicBlock *> Preds,
- Pass *P, bool &HasLoopExit) {
- if (!P) return;
+ DominatorTree *DT, LoopInfo *LI,
+ bool PreserveLCSSA, bool &HasLoopExit) {
+ // Update dominator tree if available.
+ if (DT)
+ DT->splitBlock(NewBB);
+
+ // The rest of the logic is only relevant for updating the loop structures.
+ if (!LI)
+ return;
- LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
- Loop *L = LI ? LI->getLoopFor(OldBB) : nullptr;
+ Loop *L = LI->getLoopFor(OldBB);
// If we need to preserve loop analyses, collect some information about how
// this split will affect loops.
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
- if (LI) {
- bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
- for (ArrayRef<BasicBlock*>::iterator
- i = Preds.begin(), e = Preds.end(); i != e; ++i) {
- BasicBlock *Pred = *i;
-
- // If we need to preserve LCSSA, determine if any of the preds is a loop
- // exit.
- if (PreserveLCSSA)
- if (Loop *PL = LI->getLoopFor(Pred))
- if (!PL->contains(OldBB))
- HasLoopExit = true;
-
- // If we need to preserve LoopInfo, note whether any of the preds crosses
- // an interesting loop boundary.
- if (!L) continue;
- if (L->contains(Pred))
- IsLoopEntry = false;
- else
- SplitMakesNewLoopHeader = true;
- }
+ for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
+ i != e; ++i) {
+ BasicBlock *Pred = *i;
+
+ // If we need to preserve LCSSA, determine if any of the preds is a loop
+ // exit.
+ if (PreserveLCSSA)
+ if (Loop *PL = LI->getLoopFor(Pred))
+ if (!PL->contains(OldBB))
+ HasLoopExit = true;
+
+ // If we need to preserve LoopInfo, note whether any of the preds crosses
+ // an interesting loop boundary.
+ if (!L)
+ continue;
+ if (L->contains(Pred))
+ IsLoopEntry = false;
+ else
+ SplitMakesNewLoopHeader = true;
}
- // Update dominator tree if available.
- if (DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
- DTWP->getDomTree().splitBlock(NewBB);
-
- if (!L) return;
+ // Unless we have a loop for OldBB, nothing else to do here.
+ if (!L)
+ return;
if (IsLoopEntry) {
// Add the new block to the nearest enclosing loop (and not an adjacent
@@ -382,9 +376,9 @@ static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
}
if (InnermostPredLoop)
- InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
} else {
- L->addBasicBlockToLoop(NewBB, LI->getBase());
+ L->addBasicBlockToLoop(NewBB, *LI);
if (SplitMakesNewLoopHeader)
L->moveToHeader(NewBB);
}
@@ -393,10 +387,9 @@ static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
/// from NewBB. This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
- ArrayRef<BasicBlock*> Preds, BranchInst *BI,
- Pass *P, bool HasLoopExit) {
+ ArrayRef<BasicBlock *> Preds, BranchInst *BI,
+ AliasAnalysis *AA, bool HasLoopExit) {
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
- AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : nullptr;
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
@@ -461,11 +454,15 @@ static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
}
}
-/// SplitBlockPredecessors - This method transforms BB by introducing a new
-/// basic block into the function, and moving some of the predecessors of BB to
-/// be predecessors of the new block. The new predecessors are indicated by the
-/// Preds array, which has NumPreds elements in it. The new block is given a
-/// suffix of 'Suffix'.
+/// SplitBlockPredecessors - This method introduces at least one new basic block
+/// into the function and moves some of the predecessors of BB to be
+/// predecessors of the new block. The new predecessors are indicated by the
+/// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
+/// block to which predecessors from Preds are now pointing.
+///
+/// If BB is a landingpad block then additional basicblock might be introduced.
+/// It will have suffix of 'Suffix'+".split_lp".
+/// See SplitLandingPadPredecessors for more details on this case.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
@@ -473,8 +470,21 @@ static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
/// of the edges being split is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
- ArrayRef<BasicBlock*> Preds,
- const char *Suffix, Pass *P) {
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix, AliasAnalysis *AA,
+ DominatorTree *DT, LoopInfo *LI,
+ bool PreserveLCSSA) {
+ // For the landingpads we need to act a bit differently.
+ // Delegate this work to the SplitLandingPadPredecessors.
+ if (BB->isLandingPad()) {
+ SmallVector<BasicBlock*, 2> NewBBs;
+ std::string NewName = std::string(Suffix) + ".split-lp";
+
+ SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(),
+ NewBBs, AA, DT, LI, PreserveLCSSA);
+ return NewBBs[0];
+ }
+
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
BB->getParent(), BB);
@@ -505,10 +515,11 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
- UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
+ UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
+ HasLoopExit);
// Update the PHI nodes in BB with the values coming from NewBB.
- UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
+ UpdatePHINodes(BB, NewBB, Preds, BI, AA, HasLoopExit);
return NewBB;
}
@@ -526,10 +537,11 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
/// exits).
///
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
- ArrayRef<BasicBlock*> Preds,
+ ArrayRef<BasicBlock *> Preds,
const char *Suffix1, const char *Suffix2,
- Pass *P,
- SmallVectorImpl<BasicBlock*> &NewBBs) {
+ SmallVectorImpl<BasicBlock *> &NewBBs,
+ AliasAnalysis *AA, DominatorTree *DT,
+ LoopInfo *LI, bool PreserveLCSSA) {
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
@@ -552,12 +564,12 @@ void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
}
- // Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
- UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
+ UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
+ HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
- UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
+ UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, AA, HasLoopExit);
// Move the remaining edges from OrigBB to point to NewBB2.
SmallVector<BasicBlock*, 8> NewBB2Preds;
@@ -589,10 +601,11 @@ void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
HasLoopExit = false;
- UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
+ UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
+ PreserveLCSSA, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
- UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
+ UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, AA, HasLoopExit);
}
LandingPadInst *LPad = OrigBB->getLandingPadInst();
diff --git a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
index eda22cf..7e83c9e 100644
--- a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -18,6 +18,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
@@ -41,14 +42,19 @@ namespace {
}
bool runOnFunction(Function &F) override {
- unsigned N = SplitAllCriticalEdges(F, this);
+ auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
+ unsigned N =
+ SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
NumBroken += N;
return N > 0;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfo>();
+ AU.addPreserved<LoopInfoWrapperPass>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
@@ -125,10 +131,9 @@ static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
/// to.
///
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
- Pass *P, bool MergeIdenticalEdges,
- bool DontDeleteUselessPhis,
- bool SplitLandingPads) {
- if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr;
+ const CriticalEdgeSplittingOptions &Options) {
+ if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
+ return nullptr;
assert(!isa<IndirectBrInst>(TI) &&
"Cannot split critical edge from IndirectBrInst");
@@ -179,29 +184,22 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
// If there are any other edges from TIBB to DestBB, update those to go
// through the split block, making those edges non-critical as well (and
// reducing the number of phi entries in the DestBB if relevant).
- if (MergeIdenticalEdges) {
+ if (Options.MergeIdenticalEdges) {
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
if (TI->getSuccessor(i) != DestBB) continue;
// Remove an entry for TIBB from DestBB phi nodes.
- DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
+ DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
// We found another edge to DestBB, go to NewBB instead.
TI->setSuccessor(i, NewBB);
}
}
-
-
- // If we don't have a pass object, we can't update anything...
- if (!P) return NewBB;
-
- DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
-
// If we have nothing to update, just return.
+ auto *AA = Options.AA;
+ auto *DT = Options.DT;
+ auto *LI = Options.LI;
if (!DT && !LI)
return NewBB;
@@ -268,13 +266,13 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
- DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
- TIL->addBasicBlockToLoop(NewBB, LI->getBase());
+ TIL->addBasicBlockToLoop(NewBB, *LI);
} else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
- DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
@@ -283,19 +281,20 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
assert(DestLoop->getHeader() == DestBB &&
"Should not create irreducible loops!");
if (Loop *P = DestLoop->getParentLoop())
- P->addBasicBlockToLoop(NewBB, LI->getBase());
+ P->addBasicBlockToLoop(NewBB, *LI);
}
}
+
// If TIBB is in a loop and DestBB is outside of that loop, we may need
// to update LoopSimplify form and LCSSA form.
- if (!TIL->contains(DestBB) &&
- P->mustPreserveAnalysisID(LoopSimplifyID)) {
+ if (!TIL->contains(DestBB)) {
assert(!TIL->contains(NewBB) &&
"Split point for loop exit is contained in loop!");
// Update LCSSA form in the newly created exit block.
- if (P->mustPreserveAnalysisID(LCSSAID))
+ if (Options.PreserveLCSSA) {
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
+ }
// The only that we can break LoopSimplify form by splitting a critical
// edge is if after the split there exists some edge from TIL to DestBB
@@ -322,20 +321,12 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
if (!LoopPreds.empty()) {
assert(!DestBB->isLandingPad() &&
"We don't split edges to landing pads!");
- BasicBlock *NewExitBB =
- SplitBlockPredecessors(DestBB, LoopPreds, "split", P);
- if (P->mustPreserveAnalysisID(LCSSAID))
+ BasicBlock *NewExitBB = SplitBlockPredecessors(
+ DestBB, LoopPreds, "split", AA, DT, LI, Options.PreserveLCSSA);
+ if (Options.PreserveLCSSA)
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
}
}
- // LCSSA form was updated above for the case where LoopSimplify is
- // available, which means that all predecessors of loop exit blocks
- // are within the loop. Without LoopSimplify form, it would be
- // necessary to insert a new phi.
- assert((!P->mustPreserveAnalysisID(LCSSAID) ||
- P->mustPreserveAnalysisID(LoopSimplifyID)) &&
- "SplitCriticalEdge doesn't know how to update LCCSA form "
- "without LoopSimplify!");
}
}
diff --git a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
index 322485d..8aa7b2a 100644
--- a/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -21,7 +21,7 @@
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
using namespace llvm;
@@ -33,7 +33,7 @@ Value *llvm::CastToCStr(Value *V, IRBuilder<> &B) {
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. This always returns an integer value of size intptr_t.
-Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strlen))
return nullptr;
@@ -45,12 +45,9 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrLen = M->getOrInsertFunction("strlen",
- AttributeSet::get(M->getContext(),
- AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- nullptr);
+ Constant *StrLen = M->getOrInsertFunction(
+ "strlen", AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(), nullptr);
CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -62,7 +59,7 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
/// specified pointer. Ptr is required to be some pointer type, MaxLen must
/// be of size_t type, and the return value has 'intptr_t' type.
Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strnlen))
return nullptr;
@@ -73,14 +70,11 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrNLen = M->getOrInsertFunction("strnlen",
- AttributeSet::get(M->getContext(),
- AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- nullptr);
- CallInst *CI = B.CreateCall2(StrNLen, CastToCStr(Ptr, B), MaxLen, "strnlen");
+ Constant *StrNLen =
+ M->getOrInsertFunction("strnlen", AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(),
+ DL.getIntPtrType(Context), nullptr);
+ CallInst *CI = B.CreateCall(StrNLen, {CastToCStr(Ptr, B), MaxLen}, "strnlen");
if (const Function *F = dyn_cast<Function>(StrNLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -91,7 +85,7 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
/// specified pointer and character. Ptr is required to be some pointer type,
/// and the return value has 'i8*' type.
Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strchr))
return nullptr;
@@ -106,17 +100,16 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
AttributeSet::get(M->getContext(),
AS),
I8Ptr, I8Ptr, I32Ty, nullptr);
- CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
- ConstantInt::get(I32Ty, C), "strchr");
+ CallInst *CI = B.CreateCall(
+ StrChr, {CastToCStr(Ptr, B), ConstantInt::get(I32Ty, C)}, "strchr");
if (const Function *F = dyn_cast<Function>(StrChr->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
}
/// EmitStrNCmp - Emit a call to the strncmp function to the builder.
-Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
- IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strncmp))
return nullptr;
@@ -128,15 +121,11 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *StrNCmp = M->getOrInsertFunction("strncmp",
- AttributeSet::get(M->getContext(),
- AS),
- B.getInt32Ty(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context), nullptr);
- CallInst *CI = B.CreateCall3(StrNCmp, CastToCStr(Ptr1, B),
- CastToCStr(Ptr2, B), Len, "strncmp");
+ Value *StrNCmp = M->getOrInsertFunction(
+ "strncmp", AttributeSet::get(M->getContext(), AS), B.getInt32Ty(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context), nullptr);
+ CallInst *CI = B.CreateCall(
+ StrNCmp, {CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), Len}, "strncmp");
if (const Function *F = dyn_cast<Function>(StrNCmp->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -147,8 +136,7 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
/// specified pointer arguments.
Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
- StringRef Name) {
+ const TargetLibraryInfo *TLI, StringRef Name) {
if (!TLI->has(LibFunc::strcpy))
return nullptr;
@@ -161,8 +149,8 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
Value *StrCpy = M->getOrInsertFunction(Name,
AttributeSet::get(M->getContext(), AS),
I8Ptr, I8Ptr, I8Ptr, nullptr);
- CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
- Name);
+ CallInst *CI =
+ B.CreateCall(StrCpy, {CastToCStr(Dst, B), CastToCStr(Src, B)}, Name);
if (const Function *F = dyn_cast<Function>(StrCpy->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
@@ -170,8 +158,7 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
/// EmitStrNCpy - Emit a call to the strncpy function to the builder, for the
/// specified pointer arguments.
-Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
- IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B,
const TargetLibraryInfo *TLI, StringRef Name) {
if (!TLI->has(LibFunc::strncpy))
return nullptr;
@@ -187,8 +174,8 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
AS),
I8Ptr, I8Ptr, I8Ptr,
Len->getType(), nullptr);
- CallInst *CI = B.CreateCall3(StrNCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
- Len, "strncpy");
+ CallInst *CI = B.CreateCall(
+ StrNCpy, {CastToCStr(Dst, B), CastToCStr(Src, B), Len}, "strncpy");
if (const Function *F = dyn_cast<Function>(StrNCpy->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
@@ -198,7 +185,7 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
/// This expects that the Len and ObjSize have type 'intptr_t' and Dst/Src
/// are pointers.
Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
- IRBuilder<> &B, const DataLayout *TD,
+ IRBuilder<> &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcpy_chk))
return nullptr;
@@ -208,16 +195,13 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
- AttributeSet::get(M->getContext(), AS),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context), nullptr);
+ Value *MemCpy = M->getOrInsertFunction(
+ "__memcpy_chk", AttributeSet::get(M->getContext(), AS), B.getInt8PtrTy(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), nullptr);
Dst = CastToCStr(Dst, B);
Src = CastToCStr(Src, B);
- CallInst *CI = B.CreateCall4(MemCpy, Dst, Src, Len, ObjSize);
+ CallInst *CI = B.CreateCall(MemCpy, {Dst, Src, Len, ObjSize});
if (const Function *F = dyn_cast<Function>(MemCpy->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
@@ -225,9 +209,8 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
-Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
- Value *Len, IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memchr))
return nullptr;
@@ -236,14 +219,10 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemChr = M->getOrInsertFunction("memchr",
- AttributeSet::get(M->getContext(), AS),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- B.getInt32Ty(),
- TD->getIntPtrType(Context),
- nullptr);
- CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
+ Value *MemChr = M->getOrInsertFunction(
+ "memchr", AttributeSet::get(M->getContext(), AS), B.getInt8PtrTy(),
+ B.getInt8PtrTy(), B.getInt32Ty(), DL.getIntPtrType(Context), nullptr);
+ CallInst *CI = B.CreateCall(MemChr, {CastToCStr(Ptr, B), Val, Len}, "memchr");
if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -252,9 +231,8 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
}
/// EmitMemCmp - Emit a call to the memcmp function.
-Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
- Value *Len, IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcmp))
return nullptr;
@@ -266,14 +244,11 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemCmp = M->getOrInsertFunction("memcmp",
- AttributeSet::get(M->getContext(), AS),
- B.getInt32Ty(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context), nullptr);
- CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
- Len, "memcmp");
+ Value *MemCmp = M->getOrInsertFunction(
+ "memcmp", AttributeSet::get(M->getContext(), AS), B.getInt32Ty(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context), nullptr);
+ CallInst *CI = B.CreateCall(
+ MemCmp, {CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), Len}, "memcmp");
if (const Function *F = dyn_cast<Function>(MemCmp->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -329,7 +304,7 @@ Value *llvm::EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op1->getType(),
Op1->getType(), Op2->getType(), nullptr);
- CallInst *CI = B.CreateCall2(Callee, Op1, Op2, Name);
+ CallInst *CI = B.CreateCall(Callee, {Op1, Op2}, Name);
CI->setAttributes(Attrs);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -339,7 +314,7 @@ Value *llvm::EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
-Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::putchar))
return nullptr;
@@ -361,7 +336,7 @@ Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
-Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::puts))
return nullptr;
@@ -386,7 +361,7 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an integer and File is a pointer to FILE.
Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputc))
return nullptr;
@@ -409,7 +384,7 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
File->getType(), nullptr);
Char = B.CreateIntCast(Char, B.getInt32Ty(), /*isSigned*/true,
"chari");
- CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
+ CallInst *CI = B.CreateCall(F, {Char, File}, "fputc");
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
@@ -419,7 +394,7 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputs))
return nullptr;
@@ -441,7 +416,7 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
F = M->getOrInsertFunction(FPutsName, B.getInt32Ty(),
B.getInt8PtrTy(),
File->getType(), nullptr);
- CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
+ CallInst *CI = B.CreateCall(F, {CastToCStr(Str, B), File}, "fputs");
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
@@ -450,9 +425,8 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
-Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
- IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fwrite))
return nullptr;
@@ -466,21 +440,18 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction(FWriteName,
- AttributeSet::get(M->getContext(), AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
- File->getType(), nullptr);
+ F = M->getOrInsertFunction(
+ FWriteName, AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), File->getType(), nullptr);
else
- F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
- File->getType(), nullptr);
- CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
- ConstantInt::get(TD->getIntPtrType(Context), 1), File);
+ F = M->getOrInsertFunction(FWriteName, DL.getIntPtrType(Context),
+ B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), File->getType(),
+ nullptr);
+ CallInst *CI =
+ B.CreateCall(F, {CastToCStr(Ptr, B), Size,
+ ConstantInt::get(DL.getIntPtrType(Context), 1), File});
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
index 96a763f..4f8d1df 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -34,7 +34,7 @@
#include <map>
using namespace llvm;
-// CloneBasicBlock - See comments in Cloning.h
+/// See comments in Cloning.h.
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
ValueToValueMapTy &VMap,
const Twine &NameSuffix, Function *F,
@@ -154,23 +154,26 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
TypeMapper, Materializer);
}
-// Find the MDNode which corresponds to the DISubprogram data that described F.
-static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
- for (DISubprogram Subprogram : Finder.subprograms()) {
- if (Subprogram.describes(F)) return Subprogram;
+// Find the MDNode which corresponds to the subprogram data that described F.
+static DISubprogram *FindSubprogram(const Function *F,
+ DebugInfoFinder &Finder) {
+ for (DISubprogram *Subprogram : Finder.subprograms()) {
+ if (Subprogram->describes(F))
+ return Subprogram;
}
return nullptr;
}
// Add an operand to an existing MDNode. The new operand will be added at the
// back of the operand list.
-static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) {
+static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
+ Metadata *NewSP) {
SmallVector<Metadata *, 16> NewSPs;
- NewSPs.reserve(SPs->getNumOperands() + 1);
- for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I)
- NewSPs.push_back(SPs->getOperand(I));
+ NewSPs.reserve(SPs.size() + 1);
+ for (auto *SP : SPs)
+ NewSPs.push_back(SP);
NewSPs.push_back(NewSP);
- CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs)));
+ CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
}
// Clone the module-level debug info associated with OldFunc. The cloned data
@@ -180,21 +183,21 @@ static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
DebugInfoFinder Finder;
Finder.processModule(*OldFunc->getParent());
- const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
+ const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
if (!OldSubprogramMDNode) return;
// Ensure that OldFunc appears in the map.
// (if it's already there it must point to NewFunc anyway)
VMap[OldFunc] = NewFunc;
- DISubprogram NewSubprogram(MapMetadata(OldSubprogramMDNode, VMap));
-
- for (DICompileUnit CU : Finder.compile_units()) {
- DIArray Subprograms(CU.getSubprograms());
+ auto *NewSubprogram =
+ cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
+ for (auto *CU : Finder.compile_units()) {
+ auto Subprograms = CU->getSubprograms();
// If the compile unit's function list contains the old function, it should
// also contain the new one.
- for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
- if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
+ for (auto *SP : Subprograms) {
+ if (SP == OldSubprogramMDNode) {
AddOperand(CU, Subprograms, NewSubprogram);
break;
}
@@ -202,7 +205,7 @@ static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
}
}
-/// CloneFunction - Return a copy of the specified function, but without
+/// Return a copy of the specified function, but without
/// embedding the function into another module. Also, any references specified
/// in the VMap are changed to refer to their mapped value instead of the
/// original one. If any of the arguments to the function are in the VMap,
@@ -250,8 +253,7 @@ Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
namespace {
- /// PruningFunctionCloner - This class is a private class used to implement
- /// the CloneAndPruneFunctionInto method.
+ /// This is a private class used to implement CloneAndPruneFunctionInto.
struct PruningFunctionCloner {
Function *NewFunc;
const Function *OldFunc;
@@ -259,29 +261,40 @@ namespace {
bool ModuleLevelChanges;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
- const DataLayout *DL;
+ CloningDirector *Director;
+ ValueMapTypeRemapper *TypeMapper;
+ ValueMaterializer *Materializer;
+
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
- ValueToValueMapTy &valueMap,
- bool moduleLevelChanges,
- const char *nameSuffix,
- ClonedCodeInfo *codeInfo,
- const DataLayout *DL)
- : NewFunc(newFunc), OldFunc(oldFunc),
- VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
- NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL) {
+ ValueToValueMapTy &valueMap, bool moduleLevelChanges,
+ const char *nameSuffix, ClonedCodeInfo *codeInfo,
+ CloningDirector *Director)
+ : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
+ ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
+ CodeInfo(codeInfo), Director(Director) {
+ // These are optional components. The Director may return null.
+ if (Director) {
+ TypeMapper = Director->getTypeRemapper();
+ Materializer = Director->getValueMaterializer();
+ } else {
+ TypeMapper = nullptr;
+ Materializer = nullptr;
+ }
}
- /// CloneBlock - The specified block is found to be reachable, clone it and
+ /// The specified block is found to be reachable, clone it and
/// anything that it can reach.
- void CloneBlock(const BasicBlock *BB,
+ void CloneBlock(const BasicBlock *BB,
+ BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock*> &ToClone);
};
}
-/// CloneBlock - The specified block is found to be reachable, clone it and
+/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
+ BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock*> &ToClone){
WeakVH &BBEntry = VMap[BB];
@@ -307,26 +320,45 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
const_cast<BasicBlock*>(BB));
VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
}
-
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
-
+
// Loop over all instructions, and copy them over, DCE'ing as we go. This
// loop doesn't include the terminator.
- for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
+ for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
II != IE; ++II) {
+ // If the "Director" remaps the instruction, don't clone it.
+ if (Director) {
+ CloningDirector::CloningAction Action
+ = Director->handleInstruction(VMap, II, NewBB);
+ // If the cloning director says stop, we want to stop everything, not
+ // just break out of the loop (which would cause the terminator to be
+ // cloned). The cloning director is responsible for inserting a proper
+ // terminator into the new basic block in this case.
+ if (Action == CloningDirector::StopCloningBB)
+ return;
+ // If the cloning director says skip, continue to the next instruction.
+ // In this case, the cloning director is responsible for mapping the
+ // skipped instruction to some value that is defined in the new
+ // basic block.
+ if (Action == CloningDirector::SkipInstruction)
+ continue;
+ }
+
Instruction *NewInst = II->clone();
// Eagerly remap operands to the newly cloned instruction, except for PHI
// nodes for which we defer processing until we update the CFG.
if (!isa<PHINode>(NewInst)) {
RemapInstruction(NewInst, VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
// If we can simplify this instruction to some other value, simply add
// a mapping to that value rather than inserting a new instruction into
// the basic block.
- if (Value *V = SimplifyInstruction(NewInst, DL)) {
+ if (Value *V =
+ SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
// On the off-chance that this simplifies to an instruction in the old
// function, map it back into the new function.
if (Value *MappedV = VMap.lookup(V))
@@ -354,6 +386,26 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// Finally, clone over the terminator.
const TerminatorInst *OldTI = BB->getTerminator();
bool TerminatorDone = false;
+ if (Director) {
+ CloningDirector::CloningAction Action
+ = Director->handleInstruction(VMap, OldTI, NewBB);
+ // If the cloning director says stop, we want to stop everything, not
+ // just break out of the loop (which would cause the terminator to be
+ // cloned). The cloning director is responsible for inserting a proper
+ // terminator into the new basic block in this case.
+ if (Action == CloningDirector::StopCloningBB)
+ return;
+ if (Action == CloningDirector::CloneSuccessors) {
+ // If the director says to skip with a terminate instruction, we still
+ // need to clone this block's successors.
+ const TerminatorInst *TI = NewBB->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ ToClone.push_back(TI->getSuccessor(i));
+ return;
+ }
+ assert(Action != CloningDirector::SkipInstruction &&
+ "SkipInstruction is not valid for terminators.");
+ }
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
if (BI->isConditional()) {
// If the condition was a known constant in the callee...
@@ -409,39 +461,53 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
}
}
-/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
-/// except that it does some simple constant prop and DCE on the fly. The
-/// effect of this is to copy significantly less code in cases where (for
-/// example) a function call with constant arguments is inlined, and those
-/// constant arguments cause a significant amount of code in the callee to be
-/// dead. Since this doesn't produce an exact copy of the input, it can't be
-/// used for things like CloneFunction or CloneModule.
-void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
+/// This works like CloneAndPruneFunctionInto, except that it does not clone the
+/// entire function. Instead it starts at an instruction provided by the caller
+/// and copies (and prunes) only the code reachable from that instruction.
+void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
+ const Instruction *StartingInst,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
- SmallVectorImpl<ReturnInst*> &Returns,
+ SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
- const DataLayout *DL,
- Instruction *TheCall) {
+ CloningDirector *Director) {
assert(NameSuffix && "NameSuffix cannot be null!");
-
+
+ ValueMapTypeRemapper *TypeMapper = nullptr;
+ ValueMaterializer *Materializer = nullptr;
+
+ if (Director) {
+ TypeMapper = Director->getTypeRemapper();
+ Materializer = Director->getValueMaterializer();
+ }
+
#ifndef NDEBUG
- for (Function::const_arg_iterator II = OldFunc->arg_begin(),
- E = OldFunc->arg_end(); II != E; ++II)
- assert(VMap.count(II) && "No mapping from source argument specified!");
+ // If the cloning starts at the begining of the function, verify that
+ // the function arguments are mapped.
+ if (!StartingInst)
+ for (Function::const_arg_iterator II = OldFunc->arg_begin(),
+ E = OldFunc->arg_end(); II != E; ++II)
+ assert(VMap.count(II) && "No mapping from source argument specified!");
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
- NameSuffix, CodeInfo, DL);
+ NameSuffix, CodeInfo, Director);
+ const BasicBlock *StartingBB;
+ if (StartingInst)
+ StartingBB = StartingInst->getParent();
+ else {
+ StartingBB = &OldFunc->getEntryBlock();
+ StartingInst = StartingBB->begin();
+ }
// Clone the entry block, and anything recursively reachable from it.
std::vector<const BasicBlock*> CloneWorklist;
- CloneWorklist.push_back(&OldFunc->getEntryBlock());
+ PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist);
while (!CloneWorklist.empty()) {
const BasicBlock *BB = CloneWorklist.back();
CloneWorklist.pop_back();
- PFC.CloneBlock(BB, CloneWorklist);
+ PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
}
// Loop over all of the basic blocks in the old function. If the block was
@@ -461,16 +527,24 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
// Handle PHI nodes specially, as we have to remove references to dead
// blocks.
- for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
- if (const PHINode *PN = dyn_cast<PHINode>(I))
- PHIToResolve.push_back(PN);
- else
+ for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+ // PHI nodes may have been remapped to non-PHI nodes by the caller or
+ // during the cloning process.
+ if (const PHINode *PN = dyn_cast<PHINode>(I)) {
+ if (isa<PHINode>(VMap[PN]))
+ PHIToResolve.push_back(PN);
+ else
+ break;
+ } else {
break;
+ }
+ }
// Finally, remap the terminator instructions, as those can't be remapped
// until all BBs are mapped.
RemapInstruction(NewBB->getTerminator(), VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
}
// Defer PHI resolution until rest of function is resolved, PHI resolution
@@ -563,13 +637,13 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
// node).
for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
- recursivelySimplifyInstruction(PN, DL);
+ recursivelySimplifyInstruction(PN);
// Now that the inlined function body has been fully constructed, go through
- // and zap unconditional fall-through branches. This happen all the time when
+ // and zap unconditional fall-through branches. This happens all the time when
// specializing code: code specialization turns conditional branches into
// uncond branches, and this code folds them.
- Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
+ Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]);
Function::iterator I = Begin;
while (I != NewFunc->end()) {
// Check if this block has become dead during inlining or other
@@ -617,12 +691,32 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
// Do not increment I, iteratively merge all things this block branches to.
}
- // Make a final pass over the basic blocks from theh old function to gather
+ // Make a final pass over the basic blocks from the old function to gather
// any return instructions which survived folding. We have to do this here
// because we can iteratively remove and merge returns above.
- for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
+ for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]),
E = NewFunc->end();
I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
Returns.push_back(RI);
}
+
+
+/// This works exactly like CloneFunctionInto,
+/// except that it does some simple constant prop and DCE on the fly. The
+/// effect of this is to copy significantly less code in cases where (for
+/// example) a function call with constant arguments is inlined, and those
+/// constant arguments cause a significant amount of code in the callee to be
+/// dead. Since this doesn't produce an exact copy of the input, it can't be
+/// used for things like CloneFunction or CloneModule.
+void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst*> &Returns,
+ const char *NameSuffix,
+ ClonedCodeInfo *CodeInfo,
+ Instruction *TheCall) {
+ CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap,
+ ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
+ nullptr);
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
index fae9ff5..2693322 100644
--- a/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CloneModule.cpp
@@ -69,9 +69,7 @@ Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I) {
auto *PTy = cast<PointerType>(I->getType());
- auto *GA =
- GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
- I->getLinkage(), I->getName(), New);
+ auto *GA = GlobalAlias::create(PTy, I->getLinkage(), I->getName(), New);
GA->copyAttributesFrom(I);
VMap[I] = GA;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
index e70a7d6..ab89b41 100644
--- a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
@@ -332,11 +332,11 @@ Function *CodeExtractor::constructFunction(const ValueSet &inputs,
DEBUG(dbgs() << **i << ", ");
DEBUG(dbgs() << ")\n");
+ StructType *StructTy;
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
- PointerType *StructPtr =
- PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
+ StructTy = StructType::get(M->getContext(), paramTy);
paramTy.clear();
- paramTy.push_back(StructPtr);
+ paramTy.push_back(PointerType::getUnqual(StructTy));
}
FunctionType *funcType =
FunctionType::get(RetTy, paramTy, false);
@@ -364,8 +364,8 @@ Function *CodeExtractor::constructFunction(const ValueSet &inputs,
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
TerminatorInst *TI = newFunction->begin()->getTerminator();
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
+ GetElementPtrInst *GEP = GetElementPtrInst::Create(
+ StructTy, AI, Idx, "gep_" + inputs[i]->getName(), TI);
RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
} else
RewriteVal = AI++;
@@ -447,6 +447,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
}
}
+ StructType *StructArgTy = nullptr;
AllocaInst *Struct = nullptr;
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
std::vector<Type*> ArgTypes;
@@ -455,7 +456,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
ArgTypes.push_back((*v)->getType());
// Allocate a struct at the beginning of this function
- Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
+ StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
Struct =
new AllocaInst(StructArgTy, nullptr, "structArg",
codeReplacer->getParent()->begin()->begin());
@@ -465,9 +466,8 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(Struct, Idx,
- "gep_" + StructValues[i]->getName());
+ GetElementPtrInst *GEP = GetElementPtrInst::Create(
+ StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
codeReplacer->getInstList().push_back(GEP);
StoreInst *SI = new StoreInst(StructValues[i], GEP);
codeReplacer->getInstList().push_back(SI);
@@ -491,9 +491,8 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
- GetElementPtrInst *GEP
- = GetElementPtrInst::Create(Struct, Idx,
- "gep_reload_" + outputs[i]->getName());
+ GetElementPtrInst *GEP = GetElementPtrInst::Create(
+ StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
codeReplacer->getInstList().push_back(GEP);
Output = GEP;
} else {
@@ -606,10 +605,9 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
FirstOut+out);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(OAI, Idx,
- "gep_" + outputs[out]->getName(),
- NTRet);
+ GetElementPtrInst *GEP = GetElementPtrInst::Create(
+ StructArgTy, OAI, Idx, "gep_" + outputs[out]->getName(),
+ NTRet);
new StoreInst(outputs[out], GEP, NTRet);
} else {
new StoreInst(outputs[out], OAI, NTRet);
diff --git a/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp b/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
index 26875e8..dc95089 100644
--- a/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/CtorUtils.cpp
@@ -11,14 +11,15 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/ADT/BitVector.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
+#include "llvm/ADT/BitVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "ctor_utils"
diff --git a/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp b/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
index 9972b22..003da58 100644
--- a/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -39,6 +39,19 @@ AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
F->getEntryBlock().begin());
}
+ // We cannot demote invoke instructions to the stack if their normal edge
+ // is critical. Therefore, split the critical edge and create a basic block
+ // into which the store can be inserted.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ if (!II->getNormalDest()->getSinglePredecessor()) {
+ unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest());
+ assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
+ BasicBlock *BB = SplitCriticalEdge(II, SuccNum);
+ assert(BB && "Unable to split critical edge.");
+ (void)BB;
+ }
+ }
+
// Change all of the users of the instruction to read from the stack slot.
while (!I.use_empty()) {
Instruction *U = cast<Instruction>(I.user_back());
@@ -71,7 +84,6 @@ AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
}
}
-
// Insert stores of the computed value into the stack slot. We have to be
// careful if I is an invoke instruction, because we can't insert the store
// AFTER the terminator instruction.
@@ -79,27 +91,13 @@ AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
if (!isa<TerminatorInst>(I)) {
InsertPt = &I;
++InsertPt;
+ for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
+ /* empty */; // Don't insert before PHI nodes or landingpad instrs.
} else {
InvokeInst &II = cast<InvokeInst>(I);
- if (II.getNormalDest()->getSinglePredecessor())
- InsertPt = II.getNormalDest()->getFirstInsertionPt();
- else {
- // We cannot demote invoke instructions to the stack if their normal edge
- // is critical. Therefore, split the critical edge and insert the store
- // in the newly created basic block.
- unsigned SuccNum = GetSuccessorNumber(I.getParent(), II.getNormalDest());
- TerminatorInst *TI = &cast<TerminatorInst>(I);
- assert (isCriticalEdge(TI, SuccNum) &&
- "Expected a critical edge!");
- BasicBlock *BB = SplitCriticalEdge(TI, SuccNum);
- assert (BB && "Unable to split critical edge.");
- InsertPt = BB->getFirstInsertionPt();
- }
+ InsertPt = II.getNormalDest()->getFirstInsertionPt();
}
- for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
- /* empty */; // Don't insert before PHI nodes or landingpad instrs.
-
new StoreInst(&I, Slot, InsertPt);
return Slot;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp b/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
index 52e2d59..44b7d25 100644
--- a/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/GlobalStatus.cpp
@@ -150,7 +150,7 @@ static bool analyzeGlobalAux(const Value *V, GlobalStatus &GS,
if (MSI->isVolatile())
return true;
GS.StoredType = GlobalStatus::Stored;
- } else if (ImmutableCallSite C = I) {
+ } else if (auto C = ImmutableCallSite(I)) {
if (!C.isCallee(&U))
return true;
GS.IsLoaded = true;
diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
index 2a86eb5..ddeaff0 100644
--- a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -30,6 +30,7 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
@@ -88,7 +89,7 @@ namespace {
CallerLPad = cast<LandingPadInst>(I);
}
- /// getOuterResumeDest - The outer unwind destination is the target of
+ /// The outer unwind destination is the target of
/// unwind edges introduced for calls within the inlined function.
BasicBlock *getOuterResumeDest() const {
return OuterResumeDest;
@@ -98,17 +99,16 @@ namespace {
LandingPadInst *getLandingPadInst() const { return CallerLPad; }
- /// forwardResume - Forward the 'resume' instruction to the caller's landing
- /// pad block. When the landing pad block has only one predecessor, this is
+ /// Forward the 'resume' instruction to the caller's landing pad block.
+ /// When the landing pad block has only one predecessor, this is
/// a simple branch. When there is more than one predecessor, we need to
/// split the landing pad block after the landingpad instruction and jump
/// to there.
void forwardResume(ResumeInst *RI,
SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
- /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
- /// destination block for the given basic block, using the values for the
- /// original invoke's source block.
+ /// Add incoming-PHI values to the unwind destination block for the given
+ /// basic block, using the values for the original invoke's source block.
void addIncomingPHIValuesFor(BasicBlock *BB) const {
addIncomingPHIValuesForInto(BB, OuterResumeDest);
}
@@ -123,7 +123,7 @@ namespace {
};
}
-/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
+/// Get or create a target for the branch from ResumeInsts.
BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
if (InnerResumeDest) return InnerResumeDest;
@@ -158,8 +158,8 @@ BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
return InnerResumeDest;
}
-/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
-/// block. When the landing pad block has only one predecessor, this is a simple
+/// Forward the 'resume' instruction to the caller's landing pad block.
+/// When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI,
@@ -177,9 +177,9 @@ void InvokeInliningInfo::forwardResume(ResumeInst *RI,
RI->eraseFromParent();
}
-/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
-/// an invoke, we have to turn all of the calls that can throw into
-/// invokes. This function analyze BB to see if there are any calls, and if so,
+/// When we inline a basic block into an invoke,
+/// we have to turn all of the calls that can throw into invokes.
+/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
@@ -227,7 +227,7 @@ static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
}
}
-/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
+/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined. FirstNewBlock is the first
@@ -278,8 +278,8 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
InvokeDest->removePredecessor(II->getParent());
}
-/// CloneAliasScopeMetadata - When inlining a function that contains noalias
-/// scope metadata, this metadata needs to be cloned so that the inlined blocks
+/// When inlining a function that contains noalias scope metadata,
+/// this metadata needs to be cloned so that the inlined blocks
/// have different "unqiue scopes" at every call site. Were this not done, then
/// aliasing scopes from a function inlined into a caller multiple times could
/// not be differentiated (and this would lead to miscompiles because the
@@ -319,13 +319,12 @@ static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
// Now we have a complete set of all metadata in the chains used to specify
// the noalias scopes and the lists of those scopes.
- SmallVector<MDNode *, 16> DummyNodes;
+ SmallVector<TempMDTuple, 16> DummyNodes;
DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
I != IE; ++I) {
- MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None);
- DummyNodes.push_back(Dummy);
- MDMap[*I].reset(Dummy);
+ DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
+ MDMap[*I].reset(DummyNodes.back().get());
}
// Create new metadata nodes to replace the dummy nodes, replacing old
@@ -343,7 +342,8 @@ static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
}
MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
- MDNodeFwdDecl *TempM = cast<MDNodeFwdDecl>(MDMap[*I]);
+ MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
+ assert(TempM->isTemporary() && "Expected temporary node");
TempM->replaceAllUsesWith(NewM);
}
@@ -388,18 +388,14 @@ static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
NI->setMetadata(LLVMContext::MD_noalias, M);
}
}
-
- // Now that everything has been replaced, delete the dummy nodes.
- for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i)
- MDNode::deleteTemporary(DummyNodes[i]);
}
-/// AddAliasScopeMetadata - If the inlined function has noalias arguments, then
-/// add new alias scopes for each noalias argument, tag the mapped noalias
+/// If the inlined function has noalias arguments,
+/// then add new alias scopes for each noalias argument, tag the mapped noalias
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
- const DataLayout *DL, AliasAnalysis *AA) {
+ const DataLayout &DL, AliasAnalysis *AA) {
if (!EnableNoAliasConversion)
return;
@@ -625,8 +621,9 @@ static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
/// If the inlined function has non-byval align arguments, then
/// add @llvm.assume-based alignment assumptions to preserve this information.
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
- if (!PreserveAlignmentAssumptions || !IFI.DL)
+ if (!PreserveAlignmentAssumptions)
return;
+ auto &DL = CS.getCaller()->getParent()->getDataLayout();
// To avoid inserting redundant assumptions, we should check for assumptions
// already in the caller. To do this, we might need a DT of the caller.
@@ -648,20 +645,20 @@ static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
// If we can already prove the asserted alignment in the context of the
// caller, then don't bother inserting the assumption.
Value *Arg = CS.getArgument(I->getArgNo());
- if (getKnownAlignment(Arg, IFI.DL,
+ if (getKnownAlignment(Arg, DL, CS.getInstruction(),
&IFI.ACT->getAssumptionCache(*CalledFunc),
- CS.getInstruction(), &DT) >= Align)
+ &DT) >= Align)
continue;
- IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg,
- Align);
+ IRBuilder<>(CS.getInstruction())
+ .CreateAlignmentAssumption(DL, Arg, Align);
}
}
}
-/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
-/// into the caller, update the specified callgraph to reflect the changes we
-/// made. Note that it's possible that not all code was copied over, so only
+/// Once we have cloned code over from a callee into the caller,
+/// update the specified callgraph to reflect the changes we made.
+/// Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
Function::iterator FirstNewBlock,
@@ -696,8 +693,15 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
// If the call was inlined, but then constant folded, there is no edge to
// add. Check for this case.
Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
- if (!NewCall) continue;
+ if (!NewCall)
+ continue;
+ // We do not treat intrinsic calls like real function calls because we
+ // expect them to become inline code; do not add an edge for an intrinsic.
+ CallSite CS = CallSite(NewCall);
+ if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
+ continue;
+
// Remember that this call site got inlined for the client of
// InlineFunction.
IFI.InlinedCalls.push_back(NewCall);
@@ -729,11 +733,7 @@ static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
IRBuilder<> Builder(InsertBlock->begin());
- Value *Size;
- if (IFI.DL == nullptr)
- Size = ConstantExpr::getSizeOf(AggTy);
- else
- Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy));
+ Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
@@ -741,7 +741,7 @@ static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
}
-/// HandleByValArgument - When inlining a call site that has a byval argument,
+/// When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
const Function *CalledFunc,
@@ -762,11 +762,13 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
return Arg;
+ const DataLayout &DL = Caller->getParent()->getDataLayout();
+
// If the pointer is already known to be sufficiently aligned, or if we can
// round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.DL,
- &IFI.ACT->getAssumptionCache(*Caller),
- TheCall) >= ByValAlignment)
+ if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
+ &IFI.ACT->getAssumptionCache(*Caller)) >=
+ ByValAlignment)
return Arg;
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
@@ -774,10 +776,9 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
}
// Create the alloca. If we have DataLayout, use nice alignment.
- unsigned Align = 1;
- if (IFI.DL)
- Align = IFI.DL->getPrefTypeAlignment(AggTy);
-
+ unsigned Align =
+ Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
+
// If the byval had an alignment specified, we *must* use at least that
// alignment, as it is required by the byval argument (and uses of the
// pointer inside the callee).
@@ -792,8 +793,7 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
return NewAlloca;
}
-// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
-// intrinsic.
+// Check whether this Value is used by a lifetime intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
for (User *U : V->users()) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
@@ -808,7 +808,7 @@ static bool isUsedByLifetimeMarker(Value *V) {
return false;
}
-// hasLifetimeMarkers - Check whether the given alloca already has
+// Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
Type *Ty = AI->getType();
@@ -827,35 +827,69 @@ static bool hasLifetimeMarkers(AllocaInst *AI) {
return false;
}
-/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
-/// recursively update InlinedAtEntry of a DebugLoc.
-static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
- const DebugLoc &InlinedAtDL,
- LLVMContext &Ctx) {
- if (MDNode *IA = DL.getInlinedAt(Ctx)) {
- DebugLoc NewInlinedAtDL
- = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- NewInlinedAtDL.getAsMDNode(Ctx));
+/// Rebuild the entire inlined-at chain for this instruction so that the top of
+/// the chain now is inlined-at the new call site.
+static DebugLoc
+updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx,
+ DenseMap<const DILocation *, DILocation *> &IANodes) {
+ SmallVector<DILocation *, 3> InlinedAtLocations;
+ DILocation *Last = InlinedAtNode;
+ DILocation *CurInlinedAt = DL;
+
+ // Gather all the inlined-at nodes
+ while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
+ // Skip any we've already built nodes for
+ if (DILocation *Found = IANodes[IA]) {
+ Last = Found;
+ break;
+ }
+
+ InlinedAtLocations.push_back(IA);
+ CurInlinedAt = IA;
}
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- InlinedAtDL.getAsMDNode(Ctx));
+ // Starting from the top, rebuild the nodes to point to the new inlined-at
+ // location (then rebuilding the rest of the chain behind it) and update the
+ // map of already-constructed inlined-at nodes.
+ for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend();
+ I != E; ++I) {
+ const DILocation *MD = *I;
+ Last = IANodes[MD] = DILocation::getDistinct(
+ Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
+ }
+
+ // And finally create the normal location for this instruction, referring to
+ // the new inlined-at chain.
+ return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
}
-/// fixupLineNumbers - Update inlined instructions' line numbers to
+/// Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
Instruction *TheCall) {
DebugLoc TheCallDL = TheCall->getDebugLoc();
- if (TheCallDL.isUnknown())
+ if (!TheCallDL)
return;
+ auto &Ctx = Fn->getContext();
+ DILocation *InlinedAtNode = TheCallDL;
+
+ // Create a unique call site, not to be confused with any other call from the
+ // same location.
+ InlinedAtNode = DILocation::getDistinct(
+ Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
+ InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
+
+ // Cache the inlined-at nodes as they're built so they are reused, without
+ // this every instruction's inlined-at chain would become distinct from each
+ // other.
+ DenseMap<const DILocation *, DILocation *> IANodes;
+
for (; FI != Fn->end(); ++FI) {
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {
DebugLoc DL = BI->getDebugLoc();
- if (DL.isUnknown()) {
+ if (!DL) {
// If the inlined instruction has no line number, make it look as if it
// originates from the call location. This is important for
// ((__always_inline__, __nodebug__)) functions which must use caller
@@ -868,29 +902,15 @@ static void fixupLineNumbers(Function *Fn, Function::iterator FI,
BI->setDebugLoc(TheCallDL);
} else {
- BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
- LLVMContext &Ctx = BI->getContext();
- MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DVI->setOperand(2, MetadataAsValue::get(
- Ctx, createInlinedVariable(DVI->getVariable(),
- InlinedAt, Ctx)));
- } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) {
- LLVMContext &Ctx = BI->getContext();
- MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DDI->setOperand(1, MetadataAsValue::get(
- Ctx, createInlinedVariable(DDI->getVariable(),
- InlinedAt, Ctx)));
- }
+ BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
}
}
}
}
-/// InlineFunction - This function inlines the called function into the basic
-/// block of the caller. This returns false if it is not possible to inline
-/// this call. The program is still in a well defined state if this occurs
-/// though.
+/// This function inlines the called function into the basic block of the
+/// caller. This returns false if it is not possible to inline this call.
+/// The program is still in a well defined state if this occurs though.
///
/// Note that this only does one level of inlining. For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
@@ -975,6 +995,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Keep a list of pair (dst, src) to emit byval initializations.
SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
+ auto &DL = Caller->getParent()->getDataLayout();
+
assert(CalledFunc->arg_size() == CS.arg_size() &&
"No varargs calls can be inlined!");
@@ -1009,9 +1031,9 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
+ CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
/*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, IFI.DL, TheCall);
+ &InlinedFunctionInfo, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
@@ -1032,7 +1054,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
CloneAliasScopeMetadata(CS, VMap);
// Add noalias metadata if necessary.
- AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA);
+ AddAliasScopeMetadata(CS, VMap, DL, IFI.AA);
// FIXME: We could register any cloned assumptions instead of clearing the
// whole function's cache.
@@ -1079,6 +1101,10 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
FirstNewBlock->getInstList(),
AI, I);
}
+ // Move any dbg.declares describing the allocas into the entry basic block.
+ DIBuilder DIB(*Caller->getParent());
+ for (auto &AI : IFI.StaticAllocas)
+ replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
}
bool InlinedMustTailCalls = false;
@@ -1136,18 +1162,21 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
ConstantInt *AllocaSize = nullptr;
if (ConstantInt *AIArraySize =
dyn_cast<ConstantInt>(AI->getArraySize())) {
- if (IFI.DL) {
- Type *AllocaType = AI->getAllocatedType();
- uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType);
- uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
- assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
- // Check that array size doesn't saturate uint64_t and doesn't
- // overflow when it's multiplied by type size.
- if (AllocaArraySize != ~0ULL &&
- UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
- AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
- AllocaArraySize * AllocaTypeSize);
- }
+ auto &DL = Caller->getParent()->getDataLayout();
+ Type *AllocaType = AI->getAllocatedType();
+ uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
+ uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
+
+ // Don't add markers for zero-sized allocas.
+ if (AllocaArraySize == 0)
+ continue;
+
+ // Check that array size doesn't saturate uint64_t and doesn't
+ // overflow when it's multiplied by type size.
+ if (AllocaArraySize != ~0ULL &&
+ UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
+ AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
+ AllocaArraySize * AllocaTypeSize);
}
}
@@ -1173,7 +1202,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Insert the llvm.stacksave.
CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, "savedstack");
+ .CreateCall(StackSave, {}, "savedstack");
// Insert a call to llvm.stackrestore before any return instructions in the
// inlined function.
@@ -1408,7 +1437,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// the entries are the same or undef). If so, remove the PHI so it doesn't
// block other optimizations.
if (PHI) {
- if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr,
+ auto &DL = Caller->getParent()->getDataLayout();
+ if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
&IFI.ACT->getAssumptionCache(*Caller))) {
PHI->replaceAllUsesWith(V);
PHI->eraseFromParent();
diff --git a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
index 0ae746c..30edf3b 100644
--- a/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/IntegerDivision.cpp
@@ -252,8 +252,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
- Value *Tmp0 = Builder.CreateCall2(CTLZ, Divisor, True);
- Value *Tmp1 = Builder.CreateCall2(CTLZ, Dividend, True);
+ Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
+ Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
diff --git a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
index 3f9b702..9d40b69 100644
--- a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
@@ -112,17 +112,17 @@ static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
if (SSAUpdate.HasValueForBlock(ExitBB))
continue;
- PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB),
+ PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
Inst.getName() + ".lcssa", ExitBB->begin());
// Add inputs from inside the loop for this PHI.
- for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
- PN->addIncoming(&Inst, *PI);
+ for (BasicBlock *Pred : PredCache.get(ExitBB)) {
+ PN->addIncoming(&Inst, Pred);
// If the exit block has a predecessor not within the loop, arrange for
// the incoming value use corresponding to that predecessor to be
// rewritten in terms of a different LCSSA PHI.
- if (!L.contains(*PI))
+ if (!L.contains(Pred))
UsesToRewrite.push_back(
&PN->getOperandUse(PN->getOperandNumForIncomingValue(
PN->getNumIncomingValues() - 1)));
@@ -294,21 +294,18 @@ struct LCSSA : public FunctionPass {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfo>();
+ AU.addRequired<LoopInfoWrapperPass>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
}
-
-private:
- void verifyAnalysis() const override;
};
}
char LCSSA::ID = 0;
INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
@@ -318,7 +315,7 @@ char &llvm::LCSSAID = LCSSA::ID;
/// Process all loops in the function, inner-most out.
bool LCSSA::runOnFunction(Function &F) {
bool Changed = false;
- LI = &getAnalysis<LoopInfo>();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = getAnalysisIfAvailable<ScalarEvolution>();
@@ -329,18 +326,3 @@ bool LCSSA::runOnFunction(Function &F) {
return Changed;
}
-static void verifyLoop(Loop &L, DominatorTree &DT) {
- // Recurse depth-first through inner loops.
- for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
- verifyLoop(**LI, DT);
-
- // Check the special guarantees that LCSSA makes.
- //assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!");
-}
-
-void LCSSA::verifyAnalysis() const {
- // Verify each loop nest in the function, assuming LI still points at that
- // function's loop info.
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- verifyLoop(**I, *DT);
-}
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
index 2a84d7e..70c77b0 100644
--- a/contrib/llvm/lib/Transforms/Utils/Local.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -18,6 +18,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
@@ -110,11 +111,17 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch into a
- // single branch instruction!
+ // If we are switching on a constant, we can convert the switch to an
+ // unconditional branch.
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *TheOnlyDest = SI->getDefaultDest();
- BasicBlock *DefaultDest = TheOnlyDest;
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ BasicBlock *TheOnlyDest = DefaultDest;
+
+ // If the default is unreachable, ignore it when searching for TheOnlyDest.
+ if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
+ SI->getNumCases() > 0) {
+ TheOnlyDest = SI->case_begin().getCaseSuccessor();
+ }
// Figure out which case it goes to.
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
@@ -410,7 +417,7 @@ bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
-bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
const TargetLibraryInfo *TLI) {
bool MadeChange = false;
@@ -427,7 +434,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
Instruction *Inst = BI++;
WeakVH BIHandle(BI);
- if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
+ if (recursivelySimplifyInstruction(Inst, TLI)) {
MadeChange = true;
if (BIHandle != BI)
BI = BB->begin();
@@ -457,8 +464,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
-void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- DataLayout *TD) {
+void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
@@ -473,7 +479,7 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN, TD))
+ if (!recursivelySimplifyInstruction(PN))
continue;
// If recursive simplification ended up deleting the next PHI node we would
@@ -489,7 +495,7 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
///
-void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
// If BB has single-entry PHI nodes, fold them.
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
Value *NewVal = PN->getIncomingValue(0);
@@ -525,14 +531,10 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
if (PredBB == &DestBB->getParent()->getEntryBlock())
DestBB->moveAfter(PredBB);
- if (P) {
- if (DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
- DominatorTree &DT = DTWP->getDomTree();
- BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock();
- DT.changeImmediateDominator(DestBB, PredBBIDom);
- DT.eraseNode(PredBB);
- }
+ if (DT) {
+ BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
+ DT->changeImmediateDominator(DestBB, PredBBIDom);
+ DT->eraseNode(PredBB);
}
// Nuke BB.
PredBB->eraseFromParent();
@@ -897,13 +899,14 @@ bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
/// their preferred alignment from the beginning.
///
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign, const DataLayout *TD) {
+ unsigned PrefAlign,
+ const DataLayout &DL) {
V = V->stripPointerCasts();
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
// If the preferred alignment is greater than the natural stack alignment
// then don't round up. This avoids dynamic stack realignment.
- if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
+ if (DL.exceedsNaturalStackAlignment(PrefAlign))
return Align;
// If there is a requested alignment and if this is an alloca, round up.
if (AI->getAlignment() >= PrefAlign)
@@ -942,13 +945,13 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *DL,
- AssumptionCache *AC,
+ const DataLayout &DL,
const Instruction *CxtI,
+ AssumptionCache *AC,
const DominatorTree *DT) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
@@ -975,7 +978,7 @@ unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
///
/// See if there is a dbg.value intrinsic for DIVar before I.
-static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
+static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) {
// Since we can't guarantee that the original dbg.declare instrinsic
// is removed by LowerDbgDeclare(), we need to make sure that we are
// not inserting the same dbg.value intrinsic over and over.
@@ -995,17 +998,13 @@ static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
/// that has an associated llvm.dbg.decl intrinsic.
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
if (LdStHasDebugValue(DIVar, SI))
return true;
- Instruction *DbgVal = nullptr;
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
Argument *ExtendedArg = nullptr;
@@ -1014,11 +1013,11 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
if (ExtendedArg)
- DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI);
+ Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
+ DDI->getDebugLoc(), SI);
else
- DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar,
- DIExpr, SI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
+ Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
+ DDI->getDebugLoc(), SI);
return true;
}
@@ -1026,19 +1025,15 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
/// that has an associated llvm.dbg.decl intrinsic.
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
if (LdStHasDebugValue(DIVar, LI))
return true;
- Instruction *DbgVal =
- Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
+ Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr,
+ DDI->getDebugLoc(), LI);
return true;
}
@@ -1080,10 +1075,9 @@ bool llvm::LowerDbgDeclare(Function &F) {
// This is a call by-value or some other instruction that
// takes a pointer to the variable. Insert a *value*
// intrinsic that describes the alloca.
- auto DbgVal = DIB.insertDbgValueIntrinsic(
- AI, 0, DIVariable(DDI->getVariable()),
- DIExpression(DDI->getExpression()), CI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
+ DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
+ DDI->getExpression(), DDI->getDebugLoc(),
+ CI);
}
DDI->eraseFromParent();
}
@@ -1104,32 +1098,31 @@ DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
}
bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder) {
+ DIBuilder &Builder, bool Deref) {
DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
if (!DDI)
return false;
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
-
- // Create a copy of the original DIDescriptor for user variable, prepending
- // "deref" operation to a list of address elements, as new llvm.dbg.declare
- // will take a value storing address of the memory for variable, not
- // alloca itself.
- SmallVector<int64_t, 4> NewDIExpr;
- NewDIExpr.push_back(dwarf::DW_OP_deref);
- if (DIExpr)
- for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i)
- NewDIExpr.push_back(DIExpr.getElement(i));
+ DebugLoc Loc = DDI->getDebugLoc();
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (Deref) {
+ // Create a copy of the original DIDescriptor for user variable, prepending
+ // "deref" operation to a list of address elements, as new llvm.dbg.declare
+ // will take a value storing address of the memory for variable, not
+ // alloca itself.
+ SmallVector<uint64_t, 4> NewDIExpr;
+ NewDIExpr.push_back(dwarf::DW_OP_deref);
+ if (DIExpr)
+ NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
+ DIExpr = Builder.createExpression(NewDIExpr);
+ }
// Insert llvm.dbg.declare in the same basic block as the original alloca,
// and remove old llvm.dbg.declare.
BasicBlock *BB = AI->getParent();
- Builder.insertDeclare(NewAllocaAddress, DIVar,
- Builder.createExpression(NewDIExpr), BB);
+ Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB);
DDI->eraseFromParent();
return true;
}
@@ -1254,7 +1247,7 @@ static bool markAliveBlocks(BasicBlock *BB,
if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
changeToUnreachable(II, true);
Changed = true;
- } else if (II->doesNotThrow()) {
+ } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(II)) {
if (II->use_empty() && II->onlyReadsMemory()) {
// jump to the normal destination branch.
BranchInst::Create(II->getNormalDest(), II);
@@ -1350,3 +1343,23 @@ void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsign
}
}
}
+
+unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
+ DominatorTree &DT,
+ const BasicBlockEdge &Root) {
+ assert(From->getType() == To->getType());
+
+ unsigned Count = 0;
+ for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE; ) {
+ Use &U = *UI++;
+ if (DT.dominates(Root, U)) {
+ U.set(To);
+ DEBUG(dbgs() << "Replace dominated use of '"
+ << From->getName() << "' as "
+ << *To << " in " << *U << "\n");
+ ++Count;
+ }
+ }
+ return Count;
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
index c832a4b..90dfaba 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp
@@ -57,8 +57,10 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
@@ -113,6 +115,14 @@ static void placeSplitBlockCarefully(BasicBlock *NewBB,
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
BasicBlock *Header = L->getHeader();
+ // Get analyses that we try to update.
+ auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>();
+ auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
+ bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
+
// Compute the set of predecessors of the loop that are not in the loop.
SmallVector<BasicBlock*, 8> OutsideBlocks;
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
@@ -131,15 +141,8 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
// Split out the loop pre-header.
BasicBlock *PreheaderBB;
- if (!Header->isLandingPad()) {
- PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
- PP);
- } else {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
- ".split-lp", PP, NewBBs);
- PreheaderBB = NewBBs[0];
- }
+ PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
+ AA, DT, LI, PreserveLCSSA);
PreheaderBB->getTerminator()->setDebugLoc(
Header->getFirstNonPHI()->getDebugLoc());
@@ -157,7 +160,9 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
///
/// This method is used to split exit blocks that have predecessors outside of
/// the loop.
-static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
+static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
+ AliasAnalysis *AA, DominatorTree *DT,
+ LoopInfo *LI, Pass *PP) {
SmallVector<BasicBlock*, 8> LoopBlocks;
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
BasicBlock *P = *I;
@@ -172,15 +177,10 @@ static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
BasicBlock *NewExitBB = nullptr;
- if (Exit->isLandingPad()) {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Exit, LoopBlocks,
- ".loopexit", ".nonloopexit",
- PP, NewBBs);
- NewExitBB = NewBBs[0];
- } else {
- NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
- }
+ bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
+
+ NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT,
+ LI, PreserveLCSSA);
DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n");
@@ -211,10 +211,11 @@ static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
DominatorTree *DT,
AssumptionCache *AC) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
@@ -287,9 +288,11 @@ static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
if (SE)
SE->forgetLoop(L);
+ bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
+
BasicBlock *Header = L->getHeader();
- BasicBlock *NewBB =
- SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", PP);
+ BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
+ AA, DT, LI, PreserveLCSSA);
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
@@ -460,7 +463,7 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
// Update Loop Information - we know that this block is now in the current
// loop and all parent loops.
- L->addBasicBlockToLoop(BEBlock, LI->getBase());
+ L->addBasicBlockToLoop(BEBlock, *LI);
// Update dominator information
DT->splitBlock(BEBlock);
@@ -476,7 +479,7 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
/// explicit if they accepted the analysis directly and then updated it.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, Pass *PP, const DataLayout *DL,
+ ScalarEvolution *SE, Pass *PP,
AssumptionCache *AC) {
bool Changed = false;
ReprocessLoop:
@@ -567,7 +570,7 @@ ReprocessLoop:
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
// allowed.
if (!L->contains(*PI)) {
- if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
+ if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) {
++NumInserted;
Changed = true;
}
@@ -608,13 +611,15 @@ ReprocessLoop:
}
}
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
// Scan over the PHI nodes in the loop header. Since they now have only two
// incoming values (the loop is canonicalized), we may have simplified the PHI
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
if (AA) AA->deleteValue(PN);
if (SE) SE->forgetValue(PN);
PN->replaceAllUsesWith(V);
@@ -676,7 +681,8 @@ ReprocessLoop:
// The block has now been cleared of all instructions except for
// a comparison and a conditional branch. SimplifyCFG may be able
// to fold it now.
- if (!FoldBranchToCommonDest(BI, DL)) continue;
+ if (!FoldBranchToCommonDest(BI))
+ continue;
// Success. The block is now dead, so remove it from the loop,
// update the dominator tree and delete it.
@@ -714,7 +720,7 @@ ReprocessLoop:
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
AliasAnalysis *AA, ScalarEvolution *SE,
- const DataLayout *DL, AssumptionCache *AC) {
+ AssumptionCache *AC) {
bool Changed = false;
// Worklist maintains our depth-first queue of loops in this nest to process.
@@ -726,13 +732,12 @@ bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
// order. We can use this simple process because loops form a tree.
for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
Loop *L2 = Worklist[Idx];
- for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
- Worklist.push_back(*I);
+ Worklist.append(L2->begin(), L2->end());
}
while (!Worklist.empty())
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
- SE, PP, DL, AC);
+ SE, PP, AC);
return Changed;
}
@@ -750,7 +755,6 @@ namespace {
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
- const DataLayout *DL;
AssumptionCache *AC;
bool runOnFunction(Function &F) override;
@@ -762,8 +766,8 @@ namespace {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfo>();
- AU.addPreserved<LoopInfo>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
@@ -781,7 +785,7 @@ INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
"Canonicalize natural loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
"Canonicalize natural loops", false, false)
@@ -795,16 +799,14 @@ Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
bool LoopSimplify::runOnFunction(Function &F) {
bool Changed = false;
AA = getAnalysisIfAvailable<AliasAnalysis>();
- LI = &getAnalysis<LoopInfo>();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = getAnalysisIfAvailable<ScalarEvolution>();
- DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : nullptr;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AC);
+ Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
return Changed;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
index 5745920..1dbce47 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -26,8 +26,8 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -146,6 +146,13 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
/// execute without exiting the loop.
///
+/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
+/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
+/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
+/// iterations before branching into the unrolled loop. UnrollLoop will not
+/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
+/// AllowExpensiveTripCount is false.
+///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
@@ -154,8 +161,9 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
/// available from the Pass it must also preserve those analyses.
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
- bool AllowRuntime, unsigned TripMultiple, LoopInfo *LI,
- Pass *PP, LPPassManager *LPM, AssumptionCache *AC) {
+ bool AllowRuntime, bool AllowExpensiveTripCount,
+ unsigned TripMultiple, LoopInfo *LI, Pass *PP,
+ LPPassManager *LPM, AssumptionCache *AC) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
@@ -218,7 +226,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// flag is specified.
bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
- if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
+ if (RuntimeTripCount &&
+ !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM))
return false;
// Notify ScalarEvolution that the loop will be substantially changed,
@@ -311,7 +320,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// Tell LI about New.
if (*BB == Header) {
assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
- L->addBasicBlockToLoop(New, LI->getBase());
+ L->addBasicBlockToLoop(New, *LI);
} else {
// Figure out which loop New is in.
const Loop *OldLoop = LI->getLoopFor(*BB);
@@ -333,7 +342,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (SE)
SE->forgetLoop(OldLoop);
}
- NewLoop->addBasicBlockToLoop(New, LI->getBase());
+ NewLoop->addBasicBlockToLoop(New, *LI);
}
if (*BB == Header)
@@ -500,6 +509,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
+ const DataLayout &DL = Header->getModule()->getDataLayout();
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
@@ -508,7 +518,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
- else if (Value *V = SimplifyInstruction(Inst))
+ else if (Value *V = SimplifyInstruction(Inst, DL))
if (LI->replacementPreservesLCSSAForm(Inst, V)) {
Inst->replaceAllUsesWith(V);
(*BB)->getInstList().erase(Inst);
@@ -531,9 +541,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (!OuterL && !CompletelyUnroll)
OuterL = L;
if (OuterL) {
- DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>();
- const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
- simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL, AC);
+ simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC);
// LCSSA must be performed on the outermost affected loop. The unrolled
// loop's last loop latch is guaranteed to be in the outermost loop after
@@ -549,3 +557,26 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
return true;
}
+
+/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
+/// node with the given name (for example, "llvm.loop.unroll.count"). If no
+/// such metadata node exists, then nullptr is returned.
+MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (!MD)
+ continue;
+
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ if (!S)
+ continue;
+
+ if (Name.equals(S->getString()))
+ return MD;
+ }
+ return nullptr;
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index 8a32215..d1774df 100644
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -23,14 +23,18 @@
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
@@ -58,7 +62,8 @@ STATISTIC(NumRuntimeUnrolled,
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
- ValueToValueMapTy &VMap, Pass *P) {
+ ValueToValueMapTy &VMap, AliasAnalysis *AA,
+ DominatorTree *DT, LoopInfo *LI, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
@@ -122,13 +127,8 @@ static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
assert(Exit && "Loop must have a single exit block only");
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
- if (!Exit->isLandingPad()) {
- SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
- } else {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
- P, NewBBs);
- }
+ SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
+ P->mustPreserveAnalysisID(LCSSAID));
// Add the branch to the exit block (around the unrolled loop)
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
InsertPt->eraseFromParent();
@@ -167,9 +167,9 @@ static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
NewBlocks.push_back(NewBB);
if (NewLoop)
- NewLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ NewLoop->addBasicBlockToLoop(NewBB, *LI);
else if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
if (Header == *BB) {
@@ -278,7 +278,8 @@ static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
/// ...
/// End:
///
-bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
+bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
+ bool AllowExpensiveTripCount, LoopInfo *LI,
LPPassManager *LPM) {
// for now, only unroll loops that contain a single exit
if (!L->getExitingBlock())
@@ -312,15 +313,20 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
+ BasicBlock *Header = L->getHeader();
+ const DataLayout &DL = Header->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "loop-unroll");
+ if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
+ return false;
+
// We only handle cases when the unroll factor is a power of 2.
// Count is the loop unroll factor, the number of extra copies added + 1.
if (!isPowerOf2_32(Count))
return false;
// This constraint lets us deal with an overflowing trip count easily; see the
- // comment on ModVal below. This check is equivalent to `Log2(Count) <
- // BEWidth`.
- if (static_cast<uint64_t>(Count) > (1ULL << BEWidth))
+ // comment on ModVal below.
+ if (Log2_32(Count) > BEWidth)
return false;
// If this loop is nested, then the loop unroller changes the code in
@@ -328,18 +334,20 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
+ // Grab analyses that we preserve.
+ auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+
BasicBlock *PH = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to splits the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader
- BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
- BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
+ BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
+ BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
- SCEVExpander Expander(*SE, "loop-unroll");
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
@@ -408,7 +416,7 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
// PHI functions.
BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
- LPM->getAsPass());
+ /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
}
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
new file mode 100644
index 0000000..a5890c0
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -0,0 +1,499 @@
+//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common loop utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "loop-utils"
+
+bool ReductionDescriptor::areAllUsesIn(Instruction *I,
+ SmallPtrSetImpl<Instruction *> &Set) {
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+ if (!Set.count(dyn_cast<Instruction>(*Use)))
+ return false;
+ return true;
+}
+
+bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
+ Loop *TheLoop, bool HasFunNoNaNAttr,
+ ReductionDescriptor &RedDes) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = nullptr;
+ // Indicates that we found a reduction operation in our scan.
+ bool FoundReduxOp = false;
+
+ // We start with the PHI node and scan for all of the users of this
+ // instruction. All users must be instructions that can be used as reduction
+ // variables (such as ADD). We must have a single out-of-block user. The cycle
+ // must include the original PHI.
+ bool FoundStartPHI = false;
+
+ // To recognize min/max patterns formed by a icmp select sequence, we store
+ // the number of instruction we saw from the recognized min/max pattern,
+ // to make sure we only see exactly the two instructions.
+ unsigned NumCmpSelectPatternInst = 0;
+ ReductionInstDesc ReduxDesc(false, nullptr);
+
+ SmallPtrSet<Instruction *, 8> VisitedInsts;
+ SmallVector<Instruction *, 8> Worklist;
+ Worklist.push_back(Phi);
+ VisitedInsts.insert(Phi);
+
+ // A value in the reduction can be used:
+ // - By the reduction:
+ // - Reduction operation:
+ // - One use of reduction value (safe).
+ // - Multiple use of reduction value (not safe).
+ // - PHI:
+ // - All uses of the PHI must be the reduction (safe).
+ // - Otherwise, not safe.
+ // - By one instruction outside of the loop (safe).
+ // - By further instructions outside of the loop (not safe).
+ // - By an instruction that is not part of the reduction (not safe).
+ // This is either:
+ // * An instruction type other than PHI or the reduction operation.
+ // * A PHI in the header other than the initial PHI.
+ while (!Worklist.empty()) {
+ Instruction *Cur = Worklist.back();
+ Worklist.pop_back();
+
+ // No Users.
+ // If the instruction has no users then this is a broken chain and can't be
+ // a reduction variable.
+ if (Cur->use_empty())
+ return false;
+
+ bool IsAPhi = isa<PHINode>(Cur);
+
+ // A header PHI use other than the original PHI.
+ if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only possible if the
+ // LHS is the reduction variable.
+ if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+ !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+ !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+ return false;
+
+ // Any reduction instruction must be of one of the allowed kinds.
+ ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+ if (!ReduxDesc.isReduction())
+ return false;
+
+ // A reduction operation must only have one use of the reduction value.
+ if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
+ hasMultipleUsesOf(Cur, VisitedInsts))
+ return false;
+
+ // All inputs to a PHI node must be a reduction value.
+ if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+ return false;
+
+ if (Kind == RK_IntegerMinMax &&
+ (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+ if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+
+ // Check whether we found a reduction operator.
+ FoundReduxOp |= !IsAPhi;
+
+ // Process users of current instruction. Push non-PHI nodes after PHI nodes
+ // onto the stack. This way we are going to have seen all inputs to PHI
+ // nodes once we get to them.
+ SmallVector<Instruction *, 8> NonPHIs;
+ SmallVector<Instruction *, 8> PHIs;
+ for (User *U : Cur->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = UI->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // Exit if you find multiple outside users or if the header phi node is
+ // being used. In this case the user uses the value of the previous
+ // iteration, in which case we would loose "VF-1" iterations of the
+ // reduction operation if we vectorize.
+ if (ExitInstruction != nullptr || Cur == Phi)
+ return false;
+
+ // The instruction used by an outside user must be the last instruction
+ // before we feed back to the reduction phi. Otherwise, we loose VF-1
+ // operations on the value.
+ if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
+ return false;
+
+ ExitInstruction = Cur;
+ continue;
+ }
+
+ // Process instructions only once (termination). Each reduction cycle
+ // value must only be used once, except by phi nodes and min/max
+ // reductions which are represented as a cmp followed by a select.
+ ReductionInstDesc IgnoredVal(false, nullptr);
+ if (VisitedInsts.insert(UI).second) {
+ if (isa<PHINode>(UI))
+ PHIs.push_back(UI);
+ else
+ NonPHIs.push_back(UI);
+ } else if (!isa<PHINode>(UI) &&
+ ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
+ !isa<SelectInst>(UI)) ||
+ !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
+ return false;
+
+ // Remember that we completed the cycle.
+ if (UI == Phi)
+ FoundStartPHI = true;
+ }
+ Worklist.append(PHIs.begin(), PHIs.end());
+ Worklist.append(NonPHIs.begin(), NonPHIs.end());
+ }
+
+ // This means we have seen one but not the other instruction of the
+ // pattern or more than just a select and cmp.
+ if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+ NumCmpSelectPatternInst != 2)
+ return false;
+
+ if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+ return false;
+
+ // We found a reduction var if we have reached the original phi node and we
+ // only have a single instruction with out-of-loop users.
+
+ // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
+ // is saved as part of the ReductionDescriptor.
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
+ ReduxDesc.getMinMaxKind());
+
+ RedDes = RD;
+
+ return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+ReductionInstDesc
+ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
+ ReductionInstDesc &Prev) {
+
+ assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+ "Expect a select instruction");
+ Instruction *Cmp = nullptr;
+ SelectInst *Select = nullptr;
+
+ // We must handle the select(cmp()) as a single instruction. Advance to the
+ // select.
+ if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+ if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(Select, Prev.getMinMaxKind());
+ }
+
+ // Only handle single use cases for now.
+ if (!(Select = dyn_cast<SelectInst>(I)))
+ return ReductionInstDesc(false, I);
+ if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+ !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+ return ReductionInstDesc(false, I);
+ if (!Cmp->hasOneUse())
+ return ReductionInstDesc(false, I);
+
+ Value *CmpLeft;
+ Value *CmpRight;
+
+ // Look for a min/max pattern.
+ if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
+ else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
+ else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
+ else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
+ else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+ else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+
+ return ReductionInstDesc(false, I);
+}
+
+ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
+ ReductionKind Kind,
+ ReductionInstDesc &Prev,
+ bool HasFunNoNaNAttr) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = FP && I->hasUnsafeAlgebra();
+ switch (I->getOpcode()) {
+ default:
+ return ReductionInstDesc(false, I);
+ case Instruction::PHI:
+ if (FP &&
+ (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(I, Prev.getMinMaxKind());
+ case Instruction::Sub:
+ case Instruction::Add:
+ return ReductionInstDesc(Kind == RK_IntegerAdd, I);
+ case Instruction::Mul:
+ return ReductionInstDesc(Kind == RK_IntegerMult, I);
+ case Instruction::And:
+ return ReductionInstDesc(Kind == RK_IntegerAnd, I);
+ case Instruction::Or:
+ return ReductionInstDesc(Kind == RK_IntegerOr, I);
+ case Instruction::Xor:
+ return ReductionInstDesc(Kind == RK_IntegerXor, I);
+ case Instruction::FMul:
+ return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+ case Instruction::FSub:
+ case Instruction::FAdd:
+ return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ if (Kind != RK_IntegerMinMax &&
+ (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return isMinMaxSelectCmpPattern(I, Prev);
+ }
+}
+
+bool ReductionDescriptor::hasMultipleUsesOf(
+ Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
+ unsigned NumUses = 0;
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
+ ++Use) {
+ if (Insts.count(dyn_cast<Instruction>(*Use)))
+ ++NumUses;
+ if (NumUses > 1)
+ return true;
+ }
+
+ return false;
+}
+bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+ ReductionDescriptor &RedDes) {
+
+ bool HasFunNoNaNAttr = false;
+ BasicBlock *Header = TheLoop->getHeader();
+ Function &F = *Header->getParent();
+ if (F.hasFnAttribute("no-nans-fp-math"))
+ HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
+ RedDes)) {
+ DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ // Not a reduction of known type.
+ return false;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
+ switch (K) {
+ case RK_IntegerXor:
+ case RK_IntegerAdd:
+ case RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown reduction kind");
+ }
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
+ switch (Kind) {
+ case RK_IntegerAdd:
+ return Instruction::Add;
+ case RK_IntegerMult:
+ return Instruction::Mul;
+ case RK_IntegerOr:
+ return Instruction::Or;
+ case RK_IntegerAnd:
+ return Instruction::And;
+ case RK_IntegerXor:
+ return Instruction::Xor;
+ case RK_FloatMult:
+ return Instruction::FMul;
+ case RK_FloatAdd:
+ return Instruction::FAdd;
+ case RK_IntegerMinMax:
+ return Instruction::ICmp;
+ case RK_FloatMinMax:
+ return Instruction::FCmp;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
+Value *
+ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
+ ReductionInstDesc::MinMaxReductionKind RK,
+ Value *Left, Value *Right) {
+ CmpInst::Predicate P = CmpInst::ICMP_NE;
+ switch (RK) {
+ default:
+ llvm_unreachable("Unknown min/max reduction kind");
+ case ReductionInstDesc::MRK_UIntMin:
+ P = CmpInst::ICMP_ULT;
+ break;
+ case ReductionInstDesc::MRK_UIntMax:
+ P = CmpInst::ICMP_UGT;
+ break;
+ case ReductionInstDesc::MRK_SIntMin:
+ P = CmpInst::ICMP_SLT;
+ break;
+ case ReductionInstDesc::MRK_SIntMax:
+ P = CmpInst::ICMP_SGT;
+ break;
+ case ReductionInstDesc::MRK_FloatMin:
+ P = CmpInst::FCMP_OLT;
+ break;
+ case ReductionInstDesc::MRK_FloatMax:
+ P = CmpInst::FCMP_OGT;
+ break;
+ }
+
+ Value *Cmp;
+ if (RK == ReductionInstDesc::MRK_FloatMin ||
+ RK == ReductionInstDesc::MRK_FloatMax)
+ Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
+ else
+ Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
+
+ Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+ return Select;
+}
+
+bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
+ ConstantInt *&StepValue) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return false;
+
+ // Check that the PHI is consecutive.
+ const SCEV *PhiScev = SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return false;
+
+ ConstantInt *CV = C->getValue();
+ if (PhiTy->isIntegerTy()) {
+ StepValue = CV;
+ return true;
+ }
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ Type *PointerElementType = PhiTy->getPointerElementType();
+ // The pointer stride cannot be determined if the pointer element type is not
+ // sized.
+ if (!PointerElementType->isSized())
+ return false;
+
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+ int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
+ int64_t CVSize = CV->getSExtValue();
+ if (CVSize % Size)
+ return false;
+ StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
+ return true;
+}
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp b/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
deleted file mode 100644
index ff89e74..0000000
--- a/contrib/llvm/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
+++ /dev/null
@@ -1,188 +0,0 @@
-//===- LowerExpectIntrinsic.cpp - Lower expect intrinsic ------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass lowers the 'expect' intrinsic to LLVM metadata.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "lower-expect-intrinsic"
-
-STATISTIC(IfHandled, "Number of 'expect' intrinsic instructions handled");
-
-static cl::opt<uint32_t>
-LikelyBranchWeight("likely-branch-weight", cl::Hidden, cl::init(64),
- cl::desc("Weight of the branch likely to be taken (default = 64)"));
-static cl::opt<uint32_t>
-UnlikelyBranchWeight("unlikely-branch-weight", cl::Hidden, cl::init(4),
- cl::desc("Weight of the branch unlikely to be taken (default = 4)"));
-
-namespace {
-
- class LowerExpectIntrinsic : public FunctionPass {
-
- bool HandleSwitchExpect(SwitchInst *SI);
-
- bool HandleIfExpect(BranchInst *BI);
-
- public:
- static char ID;
- LowerExpectIntrinsic() : FunctionPass(ID) {
- initializeLowerExpectIntrinsicPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
- };
-}
-
-
-bool LowerExpectIntrinsic::HandleSwitchExpect(SwitchInst *SI) {
- CallInst *CI = dyn_cast<CallInst>(SI->getCondition());
- if (!CI)
- return false;
-
- Function *Fn = CI->getCalledFunction();
- if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
- return false;
-
- Value *ArgValue = CI->getArgOperand(0);
- ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!ExpectedValue)
- return false;
-
- SwitchInst::CaseIt Case = SI->findCaseValue(ExpectedValue);
- unsigned n = SI->getNumCases(); // +1 for default case.
- std::vector<uint32_t> Weights(n + 1);
-
- Weights[0] = Case == SI->case_default() ? LikelyBranchWeight
- : UnlikelyBranchWeight;
- for (unsigned i = 0; i != n; ++i)
- Weights[i + 1] = i == Case.getCaseIndex() ? LikelyBranchWeight
- : UnlikelyBranchWeight;
-
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(CI->getContext()).createBranchWeights(Weights));
-
- SI->setCondition(ArgValue);
- return true;
-}
-
-
-bool LowerExpectIntrinsic::HandleIfExpect(BranchInst *BI) {
- if (BI->isUnconditional())
- return false;
-
- // Handle non-optimized IR code like:
- // %expval = call i64 @llvm.expect.i64(i64 %conv1, i64 1)
- // %tobool = icmp ne i64 %expval, 0
- // br i1 %tobool, label %if.then, label %if.end
- //
- // Or the following simpler case:
- // %expval = call i1 @llvm.expect.i1(i1 %cmp, i1 1)
- // br i1 %expval, label %if.then, label %if.end
-
- CallInst *CI;
-
- ICmpInst *CmpI = dyn_cast<ICmpInst>(BI->getCondition());
- if (!CmpI) {
- CI = dyn_cast<CallInst>(BI->getCondition());
- } else {
- if (CmpI->getPredicate() != CmpInst::ICMP_NE)
- return false;
- CI = dyn_cast<CallInst>(CmpI->getOperand(0));
- }
-
- if (!CI)
- return false;
-
- Function *Fn = CI->getCalledFunction();
- if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
- return false;
-
- Value *ArgValue = CI->getArgOperand(0);
- ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!ExpectedValue)
- return false;
-
- MDBuilder MDB(CI->getContext());
- MDNode *Node;
-
- // If expect value is equal to 1 it means that we are more likely to take
- // branch 0, in other case more likely is branch 1.
- if (ExpectedValue->isOne())
- Node = MDB.createBranchWeights(LikelyBranchWeight, UnlikelyBranchWeight);
- else
- Node = MDB.createBranchWeights(UnlikelyBranchWeight, LikelyBranchWeight);
-
- BI->setMetadata(LLVMContext::MD_prof, Node);
-
- if (CmpI)
- CmpI->setOperand(0, ArgValue);
- else
- BI->setCondition(ArgValue);
- return true;
-}
-
-
-bool LowerExpectIntrinsic::runOnFunction(Function &F) {
- for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
- BasicBlock *BB = I++;
-
- // Create "block_weights" metadata.
- if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
- if (HandleIfExpect(BI))
- IfHandled++;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
- if (HandleSwitchExpect(SI))
- IfHandled++;
- }
-
- // remove llvm.expect intrinsics.
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
- BI != BE; ) {
- CallInst *CI = dyn_cast<CallInst>(BI++);
- if (!CI)
- continue;
-
- Function *Fn = CI->getCalledFunction();
- if (Fn && Fn->getIntrinsicID() == Intrinsic::expect) {
- Value *Exp = CI->getArgOperand(0);
- CI->replaceAllUsesWith(Exp);
- CI->eraseFromParent();
- }
- }
- }
-
- return false;
-}
-
-
-char LowerExpectIntrinsic::ID = 0;
-INITIALIZE_PASS(LowerExpectIntrinsic, "lower-expect", "Lower 'expect' "
- "Intrinsics", false, false)
-
-FunctionPass *llvm::createLowerExpectIntrinsicPass() {
- return new LowerExpectIntrinsic();
-}
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
index 04b9130..e0e0e90 100644
--- a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp
@@ -14,17 +14,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/CFG.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include <algorithm>
using namespace llvm;
@@ -32,6 +32,23 @@ using namespace llvm;
#define DEBUG_TYPE "lower-switch"
namespace {
+ struct IntRange {
+ int64_t Low, High;
+ };
+ // Return true iff R is covered by Ranges.
+ static bool IsInRanges(const IntRange &R,
+ const std::vector<IntRange> &Ranges) {
+ // Note: Ranges must be sorted, non-overlapping and non-adjacent.
+
+ // Find the first range whose High field is >= R.High,
+ // then check if the Low field is <= R.Low. If so, we
+ // have a Range that covers R.
+ auto I = std::lower_bound(
+ Ranges.begin(), Ranges.end(), R,
+ [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
+ return I != Ranges.end() && I->Low <= R.Low;
+ }
+
/// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
/// instructions.
class LowerSwitch : public FunctionPass {
@@ -50,13 +67,12 @@ namespace {
}
struct CaseRange {
- Constant* Low;
- Constant* High;
+ ConstantInt* Low;
+ ConstantInt* High;
BasicBlock* BB;
- CaseRange(Constant *low = nullptr, Constant *high = nullptr,
- BasicBlock *bb = nullptr) :
- Low(low), High(high), BB(bb) { }
+ CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
+ : Low(low), High(high), BB(bb) {}
};
typedef std::vector<CaseRange> CaseVector;
@@ -67,7 +83,8 @@ namespace {
BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
ConstantInt *LowerBound, ConstantInt *UpperBound,
Value *Val, BasicBlock *Predecessor,
- BasicBlock *OrigBlock, BasicBlock *Default);
+ BasicBlock *OrigBlock, BasicBlock *Default,
+ const std::vector<IntRange> &UnreachableRanges);
BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
BasicBlock *Default);
unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
@@ -158,11 +175,16 @@ static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
// Remove additional occurences coming from condensed cases and keep the
// number of incoming values equal to the number of branches to SuccBB.
+ SmallVector<unsigned, 8> Indices;
for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
if (PN->getIncomingBlock(Idx) == OrigBB) {
- PN->removeIncomingValue(Idx);
+ Indices.push_back(Idx);
LocalNumMergedCases--;
}
+ // Remove incoming values in the reverse order to prevent invalidating
+ // *successive* index.
+ for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III)
+ PN->removeIncomingValue(*III);
}
}
@@ -171,12 +193,12 @@ static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
// LowerBound and UpperBound are used to keep track of the bounds for Val
// that have already been checked by a block emitted by one of the previous
// calls to switchConvert in the call stack.
-BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
- ConstantInt *LowerBound,
- ConstantInt *UpperBound, Value *Val,
- BasicBlock *Predecessor,
- BasicBlock *OrigBlock,
- BasicBlock *Default) {
+BasicBlock *
+LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
+ ConstantInt *UpperBound, Value *Val,
+ BasicBlock *Predecessor, BasicBlock *OrigBlock,
+ BasicBlock *Default,
+ const std::vector<IntRange> &UnreachableRanges) {
unsigned Size = End - Begin;
if (Size == 1) {
@@ -203,32 +225,32 @@ BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
CaseRange &Pivot = *(Begin + Mid);
DEBUG(dbgs() << "Pivot ==> "
- << cast<ConstantInt>(Pivot.Low)->getValue()
- << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
+ << Pivot.Low->getValue()
+ << " -" << Pivot.High->getValue() << "\n");
// NewLowerBound here should never be the integer minimal value.
// This is because it is computed from a case range that is never
// the smallest, so there is always a case range that has at least
// a smaller value.
- ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
- ConstantInt *NewUpperBound;
-
- // If we don't have a Default block then it means that we can never
- // have a value outside of a case range, so set the UpperBound to the highest
- // value in the LHS part of the case ranges.
- if (Default != nullptr) {
- // Because NewLowerBound is never the smallest representable integer
- // it is safe here to subtract one.
- NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
- NewLowerBound->getValue() - 1);
- } else {
- CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
- NewUpperBound = cast<ConstantInt>(LastLHS->High);
+ ConstantInt *NewLowerBound = Pivot.Low;
+
+ // Because NewLowerBound is never the smallest representable integer
+ // it is safe here to subtract one.
+ ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
+ NewLowerBound->getValue() - 1);
+
+ if (!UnreachableRanges.empty()) {
+ // Check if the gap between LHS's highest and NewLowerBound is unreachable.
+ int64_t GapLow = LHS.back().High->getSExtValue() + 1;
+ int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
+ IntRange Gap = { GapLow, GapHigh };
+ if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
+ NewUpperBound = LHS.back().High;
}
DEBUG(dbgs() << "LHS Bounds ==> ";
if (LowerBound) {
- dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
+ dbgs() << LowerBound->getSExtValue();
} else {
dbgs() << "NONE";
}
@@ -236,7 +258,7 @@ BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
dbgs() << "RHS Bounds ==> ";
dbgs() << NewLowerBound->getSExtValue() << " - ";
if (UpperBound) {
- dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
+ dbgs() << UpperBound->getSExtValue() << "\n";
} else {
dbgs() << "NONE\n";
});
@@ -251,10 +273,10 @@ BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
NewUpperBound, Val, NewNode, OrigBlock,
- Default);
+ Default, UnreachableRanges);
BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
UpperBound, Val, NewNode, OrigBlock,
- Default);
+ Default, UnreachableRanges);
Function::iterator FI = OrigBlock;
F->getBasicBlockList().insert(++FI, NewNode);
@@ -287,11 +309,11 @@ BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
Leaf.Low, "SwitchLeaf");
} else {
// Make range comparison
- if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
+ if (Leaf.Low->isMinValue(true /*isSigned*/)) {
// Val >= Min && Val <= Hi --> Val <= Hi
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
"SwitchLeaf");
- } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
+ } else if (Leaf.Low->isZero()) {
// Val >= 0 && Val <= Hi --> Val <=u Hi
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
"SwitchLeaf");
@@ -316,8 +338,8 @@ BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode* PN = cast<PHINode>(I);
// Remove all but one incoming entries from the cluster
- uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
- cast<ConstantInt>(Leaf.Low)->getSExtValue();
+ uint64_t Range = Leaf.High->getSExtValue() -
+ Leaf.Low->getSExtValue();
for (uint64_t j = 0; j < Range; ++j) {
PN->removeIncomingValue(OrigBlock);
}
@@ -345,8 +367,8 @@ unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
if (Cases.size()>=2)
for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
J != Cases.end();) {
- int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
- int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
+ int64_t nextValue = J->Low->getSExtValue();
+ int64_t currentValue = I->High->getSExtValue();
BasicBlock* nextBB = J->BB;
BasicBlock* currentBB = I->BB;
@@ -379,26 +401,102 @@ void LowerSwitch::processSwitchInst(SwitchInst *SI) {
Value *Val = SI->getCondition(); // The value we are switching on...
BasicBlock* Default = SI->getDefaultDest();
- // If there is only the default destination, don't bother with the code below.
+ // If there is only the default destination, just branch.
if (!SI->getNumCases()) {
- BranchInst::Create(SI->getDefaultDest(), CurBlock);
- CurBlock->getInstList().erase(SI);
+ BranchInst::Create(Default, CurBlock);
+ SI->eraseFromParent();
return;
}
- const bool DefaultIsUnreachable =
- Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
+ // Prepare cases vector.
+ CaseVector Cases;
+ unsigned numCmps = Clusterify(Cases, SI);
+ DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << "\n");
+ DEBUG(dbgs() << "Cases: " << Cases << "\n");
+ (void)numCmps;
+
+ ConstantInt *LowerBound = nullptr;
+ ConstantInt *UpperBound = nullptr;
+ std::vector<IntRange> UnreachableRanges;
+
+ if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
+ // Make the bounds tightly fitted around the case value range, becase we
+ // know that the value passed to the switch must be exactly one of the case
+ // values.
+ assert(!Cases.empty());
+ LowerBound = Cases.front().Low;
+ UpperBound = Cases.back().High;
+
+ DenseMap<BasicBlock *, unsigned> Popularity;
+ unsigned MaxPop = 0;
+ BasicBlock *PopSucc = nullptr;
+
+ IntRange R = { INT64_MIN, INT64_MAX };
+ UnreachableRanges.push_back(R);
+ for (const auto &I : Cases) {
+ int64_t Low = I.Low->getSExtValue();
+ int64_t High = I.High->getSExtValue();
+
+ IntRange &LastRange = UnreachableRanges.back();
+ if (LastRange.Low == Low) {
+ // There is nothing left of the previous range.
+ UnreachableRanges.pop_back();
+ } else {
+ // Terminate the previous range.
+ assert(Low > LastRange.Low);
+ LastRange.High = Low - 1;
+ }
+ if (High != INT64_MAX) {
+ IntRange R = { High + 1, INT64_MAX };
+ UnreachableRanges.push_back(R);
+ }
+
+ // Count popularity.
+ int64_t N = High - Low + 1;
+ unsigned &Pop = Popularity[I.BB];
+ if ((Pop += N) > MaxPop) {
+ MaxPop = Pop;
+ PopSucc = I.BB;
+ }
+ }
+#ifndef NDEBUG
+ /* UnreachableRanges should be sorted and the ranges non-adjacent. */
+ for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
+ I != E; ++I) {
+ assert(I->Low <= I->High);
+ auto Next = I + 1;
+ if (Next != E) {
+ assert(Next->Low > I->High);
+ }
+ }
+#endif
+
+ // Use the most popular block as the new default, reducing the number of
+ // cases.
+ assert(MaxPop > 0 && PopSucc);
+ Default = PopSucc;
+ for (CaseItr I = Cases.begin(); I != Cases.end();) {
+ if (I->BB == PopSucc)
+ I = Cases.erase(I);
+ else
+ ++I;
+ }
+
+ // If there are no cases left, just branch.
+ if (Cases.empty()) {
+ BranchInst::Create(Default, CurBlock);
+ SI->eraseFromParent();
+ return;
+ }
+ }
+
// Create a new, empty default block so that the new hierarchy of
// if-then statements go to this and the PHI nodes are happy.
- // if the default block is set as an unreachable we avoid creating one
- // because will never be a valid target.
- BasicBlock *NewDefault = nullptr;
- if (!DefaultIsUnreachable) {
- NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
- F->getBasicBlockList().insert(Default, NewDefault);
-
- BranchInst::Create(Default, NewDefault);
- }
+ BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
+ F->getBasicBlockList().insert(Default, NewDefault);
+ BranchInst::Create(Default, NewDefault);
+
// If there is an entry in any PHI nodes for the default edge, make sure
// to update them as well.
for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
@@ -408,40 +506,18 @@ void LowerSwitch::processSwitchInst(SwitchInst *SI) {
PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
}
- // Prepare cases vector.
- CaseVector Cases;
- unsigned numCmps = Clusterify(Cases, SI);
-
- DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << "\n");
- DEBUG(dbgs() << "Cases: " << Cases << "\n");
- (void)numCmps;
-
- ConstantInt *UpperBound = nullptr;
- ConstantInt *LowerBound = nullptr;
-
- // Optimize the condition where Default is an unreachable block. In this case
- // we can make the bounds tightly fitted around the case value ranges,
- // because we know that the value passed to the switch should always be
- // exactly one of the case values.
- if (DefaultIsUnreachable) {
- CaseItr LastCase = Cases.begin() + Cases.size() - 1;
- UpperBound = cast<ConstantInt>(LastCase->High);
- LowerBound = cast<ConstantInt>(Cases.begin()->Low);
- }
BasicBlock *SwitchBlock =
switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
- OrigBlock, OrigBlock, NewDefault);
+ OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
// Branch to our shiny new if-then stuff...
BranchInst::Create(SwitchBlock, OrigBlock);
// We are now done with the switch instruction, delete it.
+ BasicBlock *OldDefault = SI->getDefaultDest();
CurBlock->getInstList().erase(SI);
- pred_iterator PI = pred_begin(Default), E = pred_end(Default);
- // If the Default block has no more predecessors just remove it
- if (PI == E) {
- DeleteDeadBlock(Default);
- }
+ // If the Default block has no more predecessors just remove it.
+ if (pred_begin(OldDefault) == pred_end(OldDefault))
+ DeleteDeadBlock(OldDefault);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
index 35c701e..d69a81e 100644
--- a/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ModuleUtils.cpp
@@ -17,6 +17,7 @@
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -93,3 +94,34 @@ llvm::collectUsedGlobalVariables(Module &M, SmallPtrSetImpl<GlobalValue *> &Set,
}
return GV;
}
+
+Function *llvm::checkSanitizerInterfaceFunction(Constant *FuncOrBitcast) {
+ if (isa<Function>(FuncOrBitcast))
+ return cast<Function>(FuncOrBitcast);
+ FuncOrBitcast->dump();
+ std::string Err;
+ raw_string_ostream Stream(Err);
+ Stream << "Sanitizer interface function redefined: " << *FuncOrBitcast;
+ report_fatal_error(Err);
+}
+
+std::pair<Function *, Function *> llvm::createSanitizerCtorAndInitFunctions(
+ Module &M, StringRef CtorName, StringRef InitName,
+ ArrayRef<Type *> InitArgTypes, ArrayRef<Value *> InitArgs) {
+ assert(!InitName.empty() && "Expected init function name");
+ assert(InitArgTypes.size() == InitArgTypes.size() &&
+ "Sanitizer's init function expects different number of arguments");
+ Function *Ctor = Function::Create(
+ FunctionType::get(Type::getVoidTy(M.getContext()), false),
+ GlobalValue::InternalLinkage, CtorName, &M);
+ BasicBlock *CtorBB = BasicBlock::Create(M.getContext(), "", Ctor);
+ IRBuilder<> IRB(ReturnInst::Create(M.getContext(), CtorBB));
+ Function *InitFunction =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ InitName, FunctionType::get(IRB.getVoidTy(), InitArgTypes, false),
+ AttributeSet()));
+ InitFunction->setLinkage(Function::ExternalLinkage);
+ IRB.CreateCall(InitFunction, InitArgs);
+ return std::make_pair(Ctor, InitFunction);
+}
+
diff --git a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index dabadb7..623dbc9 100644
--- a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -13,16 +13,6 @@
// traversing the function in depth-first order to rewrite loads and stores as
// appropriate.
//
-// The algorithm used here is based on:
-//
-// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
-// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
-// Programming Languages
-// POPL '95. ACM, New York, NY, 62-73.
-//
-// It has been modified to not explicitly use the DJ graph data structure and to
-// directly compute pruned SSA using per-variable liveness information.
-//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
@@ -34,6 +24,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
@@ -45,9 +36,9 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
-#include <queue>
using namespace llvm;
#define DEBUG_TYPE "mem2reg"
@@ -274,9 +265,6 @@ struct PromoteMem2Reg {
/// behavior.
DenseMap<BasicBlock *, unsigned> BBNumbers;
- /// Maps DomTreeNodes to their level in the dominator tree.
- DenseMap<DomTreeNode *, unsigned> DomLevels;
-
/// Lazily compute the number of predecessors a block has.
DenseMap<const BasicBlock *, unsigned> BBNumPreds;
@@ -303,8 +291,6 @@ private:
return NP - 1;
}
- void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info);
void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
@@ -531,6 +517,7 @@ void PromoteMem2Reg::run() {
AllocaInfo Info;
LargeBlockInfo LBI;
+ IDFCalculator IDF(DT);
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
@@ -578,31 +565,12 @@ void PromoteMem2Reg::run() {
continue;
}
- // If we haven't computed dominator tree levels, do so now.
- if (DomLevels.empty()) {
- SmallVector<DomTreeNode *, 32> Worklist;
-
- DomTreeNode *Root = DT.getRootNode();
- DomLevels[Root] = 0;
- Worklist.push_back(Root);
-
- while (!Worklist.empty()) {
- DomTreeNode *Node = Worklist.pop_back_val();
- unsigned ChildLevel = DomLevels[Node] + 1;
- for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
- CI != CE; ++CI) {
- DomLevels[*CI] = ChildLevel;
- Worklist.push_back(*CI);
- }
- }
- }
-
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
- BBNumbers[I] = ID++;
+ for (auto &BB : F)
+ BBNumbers[&BB] = ID++;
}
// If we have an AST to keep updated, remember some pointer value that is
@@ -621,7 +589,34 @@ void PromoteMem2Reg::run() {
// the standard SSA construction algorithm. Determine which blocks need PHI
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
- DetermineInsertionPoint(AI, AllocaNum, Info);
+
+
+ // Unique the set of defining blocks for efficient lookup.
+ SmallPtrSet<BasicBlock *, 32> DefBlocks;
+ DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
+
+ // Determine which blocks the value is live in. These are blocks which lead
+ // to uses.
+ SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
+ ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
+
+ // At this point, we're committed to promoting the alloca using IDF's, and
+ // the standard SSA construction algorithm. Determine which blocks need phi
+ // nodes and see if we can optimize out some work by avoiding insertion of
+ // dead phi nodes.
+ IDF.setLiveInBlocks(LiveInBlocks);
+ IDF.setDefiningBlocks(DefBlocks);
+ SmallVector<BasicBlock *, 32> PHIBlocks;
+ IDF.calculate(PHIBlocks);
+ if (PHIBlocks.size() > 1)
+ std::sort(PHIBlocks.begin(), PHIBlocks.end(),
+ [this](BasicBlock *A, BasicBlock *B) {
+ return BBNumbers.lookup(A) < BBNumbers.lookup(B);
+ });
+
+ unsigned CurrentVersion = 0;
+ for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i)
+ QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion);
}
if (Allocas.empty())
@@ -667,6 +662,8 @@ void PromoteMem2Reg::run() {
A->eraseFromParent();
}
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
// Remove alloca's dbg.declare instrinsics from the function.
for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
@@ -691,7 +688,7 @@ void PromoteMem2Reg::run() {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
if (AST && PN->getType()->isPointerTy())
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
@@ -841,95 +838,6 @@ void PromoteMem2Reg::ComputeLiveInBlocks(
}
}
-/// At this point, we're committed to promoting the alloca using IDF's, and the
-/// standard SSA construction algorithm. Determine which blocks need phi nodes
-/// and see if we can optimize out some work by avoiding insertion of dead phi
-/// nodes.
-void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info) {
- // Unique the set of defining blocks for efficient lookup.
- SmallPtrSet<BasicBlock *, 32> DefBlocks;
- DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
-
- // Determine which blocks the value is live in. These are blocks which lead
- // to uses.
- SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
- ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
-
- // Use a priority queue keyed on dominator tree level so that inserted nodes
- // are handled from the bottom of the dominator tree upwards.
- typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
- typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
- less_second> IDFPriorityQueue;
- IDFPriorityQueue PQ;
-
- for (BasicBlock *BB : DefBlocks) {
- if (DomTreeNode *Node = DT.getNode(BB))
- PQ.push(std::make_pair(Node, DomLevels[Node]));
- }
-
- SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
- SmallPtrSet<DomTreeNode *, 32> Visited;
- SmallVector<DomTreeNode *, 32> Worklist;
- while (!PQ.empty()) {
- DomTreeNodePair RootPair = PQ.top();
- PQ.pop();
- DomTreeNode *Root = RootPair.first;
- unsigned RootLevel = RootPair.second;
-
- // Walk all dominator tree children of Root, inspecting their CFG edges with
- // targets elsewhere on the dominator tree. Only targets whose level is at
- // most Root's level are added to the iterated dominance frontier of the
- // definition set.
-
- Worklist.clear();
- Worklist.push_back(Root);
-
- while (!Worklist.empty()) {
- DomTreeNode *Node = Worklist.pop_back_val();
- BasicBlock *BB = Node->getBlock();
-
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
- ++SI) {
- DomTreeNode *SuccNode = DT.getNode(*SI);
-
- // Quickly skip all CFG edges that are also dominator tree edges instead
- // of catching them below.
- if (SuccNode->getIDom() == Node)
- continue;
-
- unsigned SuccLevel = DomLevels[SuccNode];
- if (SuccLevel > RootLevel)
- continue;
-
- if (!Visited.insert(SuccNode).second)
- continue;
-
- BasicBlock *SuccBB = SuccNode->getBlock();
- if (!LiveInBlocks.count(SuccBB))
- continue;
-
- DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
- if (!DefBlocks.count(SuccBB))
- PQ.push(std::make_pair(SuccNode, SuccLevel));
- }
-
- for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
- ++CI) {
- if (!Visited.count(*CI))
- Worklist.push_back(*CI);
- }
- }
- }
-
- if (DFBlocks.size() > 1)
- std::sort(DFBlocks.begin(), DFBlocks.end());
-
- unsigned CurrentVersion = 0;
- for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
- QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
-}
-
/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
///
/// Returns true if there wasn't already a phi-node for that variable
diff --git a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
index 3fcb789..88b39dd 100644
--- a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
@@ -19,6 +19,7 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -150,12 +151,13 @@ Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
ProtoName, &BB->front());
// Fill in all the predecessors of the PHI.
- for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
- InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
+ for (const auto &PredValue : PredValues)
+ InsertedPHI->addIncoming(PredValue.second, PredValue.first);
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
- if (Value *V = SimplifyInstruction(InsertedPHI)) {
+ if (Value *V =
+ SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
InsertedPHI->eraseFromParent();
return V;
}
@@ -245,8 +247,7 @@ public:
// but it is relatively slow. If we already have PHI nodes in this
// block, walk one of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
- for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
- Preds->push_back(SomePhi->getIncomingBlock(PI));
+ Preds->append(SomePhi->block_begin(), SomePhi->block_end());
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Preds->push_back(*PI);
@@ -321,12 +322,12 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
//===----------------------------------------------------------------------===//
LoadAndStorePromoter::
-LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
+LoadAndStorePromoter(ArrayRef<const Instruction*> Insts,
SSAUpdater &S, StringRef BaseName) : SSA(S) {
if (Insts.empty()) return;
- Value *SomeVal;
- if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
+ const Value *SomeVal;
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
SomeVal = LI;
else
SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
@@ -344,20 +345,17 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
-
- for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
- Instruction *User = Insts[i];
+
+ for (Instruction *User : Insts)
UsesByBlock[User->getParent()].push_back(User);
- }
// Okay, now we can iterate over all the blocks in the function with uses,
// processing them. Keep track of which loads are loading a live-in value.
// Walk the uses in the use-list order to be determinstic.
SmallVector<LoadInst*, 32> LiveInLoads;
DenseMap<Value*, Value*> ReplacedLoads;
-
- for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
- Instruction *User = Insts[i];
+
+ for (Instruction *User : Insts) {
BasicBlock *BB = User->getParent();
TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
@@ -380,8 +378,8 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// Otherwise, check to see if this block is all loads.
bool HasStore = false;
- for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
- if (isa<StoreInst>(BlockUses[i])) {
+ for (Instruction *I : BlockUses) {
+ if (isa<StoreInst>(I)) {
HasStore = true;
break;
}
@@ -391,8 +389,8 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// efficient way to tell which on is first in the block and don't want to
// scan large blocks, so just add all loads as live ins.
if (!HasStore) {
- for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
- LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
+ for (Instruction *I : BlockUses)
+ LiveInLoads.push_back(cast<LoadInst>(I));
BlockUses.clear();
continue;
}
@@ -403,8 +401,8 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// block is a load, then it uses the live in value. The last store defines
// the live out value. We handle this by doing a linear scan of the block.
Value *StoredValue = nullptr;
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
- if (LoadInst *L = dyn_cast<LoadInst>(II)) {
+ for (Instruction &I : *BB) {
+ if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
// If this is a load from an unrelated pointer, ignore it.
if (!isInstInList(L, Insts)) continue;
@@ -419,8 +417,8 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
}
continue;
}
-
- if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
// If this is a store to an unrelated pointer, ignore it.
if (!isInstInList(SI, Insts)) continue;
updateDebugInfo(SI);
@@ -438,8 +436,7 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// Okay, now we rewrite all loads that use live-in values in the loop,
// inserting PHI nodes as necessary.
- for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
- LoadInst *ALoad = LiveInLoads[i];
+ for (LoadInst *ALoad : LiveInLoads) {
Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
replaceLoadWithValue(ALoad, NewVal);
@@ -454,9 +451,7 @@ run(const SmallVectorImpl<Instruction*> &Insts) const {
// Now that everything is rewritten, delete the old instructions from the
// function. They should all be dead now.
- for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
- Instruction *User = Insts[i];
-
+ for (Instruction *User : Insts) {
// If this is a load that still has uses, then the load must have been added
// as a live value in the SSAUpdate data structure for a block (e.g. because
// the loaded value was stored later). In this case, we need to recursively
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
index f6867c2..60ac271 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -53,9 +53,13 @@ using namespace PatternMatch;
#define DEBUG_TYPE "simplifycfg"
+// Chosen as 2 so as to be cheap, but still to have enough power to fold
+// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
+// To catch this, we need to fold a compare and a select, hence '2' being the
+// minimum reasonable default.
static cl::opt<unsigned>
-PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
- cl::desc("Control the amount of phi node folding to perform (default = 1)"));
+PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
+ cl::desc("Control the amount of phi node folding to perform (default = 2)"));
static cl::opt<bool>
DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
@@ -106,8 +110,8 @@ namespace {
class SimplifyCFGOpt {
const TargetTransformInfo &TTI;
+ const DataLayout &DL;
unsigned BonusInstThreshold;
- const DataLayout *const DL;
AssumptionCache *AC;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
@@ -127,9 +131,9 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
- const DataLayout *DL, AssumptionCache *AC)
- : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
+ unsigned BonusInstThreshold, AssumptionCache *AC)
+ : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
bool run(BasicBlock *BB);
};
}
@@ -216,45 +220,15 @@ static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
}
/// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
-/// given instruction, which is assumed to be safe to speculate. 1 means
-/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
-static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
- assert(isSafeToSpeculativelyExecute(I, DL) &&
+/// given instruction, which is assumed to be safe to speculate. TCC_Free means
+/// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively
+/// expensive.
+static unsigned ComputeSpeculationCost(const User *I,
+ const TargetTransformInfo &TTI) {
+ assert(isSafeToSpeculativelyExecute(I) &&
"Instruction is not safe to speculatively execute!");
- switch (Operator::getOpcode(I)) {
- default:
- // In doubt, be conservative.
- return UINT_MAX;
- case Instruction::GetElementPtr:
- // GEPs are cheap if all indices are constant.
- if (!cast<GEPOperator>(I)->hasAllConstantIndices())
- return UINT_MAX;
- return 1;
- case Instruction::ExtractValue:
- case Instruction::Load:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::ICmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::BitCast:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- return 1; // These are all cheap.
-
- case Instruction::Call:
- case Instruction::Select:
- return 2;
- }
+ return TTI.getUserCost(I);
}
-
/// DominatesMergePoint - If we have a merge point of an "if condition" as
/// accepted above, return true if the specified value dominates the block. We
/// don't handle the true generality of domination here, just a special case
@@ -275,7 +249,7 @@ static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
SmallPtrSetImpl<Instruction*> *AggressiveInsts,
unsigned &CostRemaining,
- const DataLayout *DL) {
+ const TargetTransformInfo &TTI) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
// Non-instructions all dominate instructions, but not all constantexprs
@@ -308,10 +282,10 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// Okay, it looks like the instruction IS in the "condition". Check to
// see if it's a cheap instruction to unconditionally compute, and if it
// only uses stuff defined outside of the condition. If so, hoist it out.
- if (!isSafeToSpeculativelyExecute(I, DL))
+ if (!isSafeToSpeculativelyExecute(I))
return false;
- unsigned Cost = ComputeSpeculationCost(I, DL);
+ unsigned Cost = ComputeSpeculationCost(I, TTI);
if (Cost > CostRemaining)
return false;
@@ -321,7 +295,7 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// Okay, we can only really hoist these out if their operands do
// not take us over the cost threshold.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
+ if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
return false;
// Okay, it's safe to do this! Remember this instruction.
AggressiveInsts->insert(I);
@@ -330,15 +304,15 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
-static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
+static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
// Normal constant int.
ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
+ if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
return CI;
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
- IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
+ IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))
@@ -371,23 +345,22 @@ namespace {
/// while for a chain of '&&' it will build the set elements that make the test
/// fail.
struct ConstantComparesGatherer {
-
+ const DataLayout &DL;
Value *CompValue; /// Value found for the switch comparison
Value *Extra; /// Extra clause to be checked before the switch
SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
/// Construct and compute the result for the comparison instruction Cond
- ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL)
- : CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
- gather(Cond, DL);
+ ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
+ : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
+ gather(Cond);
}
/// Prevent copy
- ConstantComparesGatherer(const ConstantComparesGatherer &)
- LLVM_DELETED_FUNCTION;
+ ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
ConstantComparesGatherer &
- operator=(const ConstantComparesGatherer &) LLVM_DELETED_FUNCTION;
+ operator=(const ConstantComparesGatherer &) = delete;
private:
@@ -406,7 +379,7 @@ private:
/// against is placed in CompValue.
/// If CompValue is already set, the function is expected to fail if a match
/// is found but the value compared to is different.
- bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) {
+ bool matchInstruction(Instruction *I, bool isEQ) {
// If this is an icmp against a constant, handle this as one of the cases.
ICmpInst *ICI;
ConstantInt *C;
@@ -448,8 +421,8 @@ private:
}
// If we have "x ult 3", for example, then we can add 0,1,2 to the set.
- ConstantRange Span = ConstantRange::makeICmpRegion(ICI->getPredicate(),
- C->getValue());
+ ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
+ ICI->getPredicate(), C->getValue());
// Shift the range if the compare is fed by an add. This is the range
// compare idiom as emitted by instcombine.
@@ -488,7 +461,7 @@ private:
/// the value being compared, and stick the list constants into the Vals
/// vector.
/// One "Extra" case is allowed to differ from the other.
- void gather(Value *V, const DataLayout *DL) {
+ void gather(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
bool isEQ = (I->getOpcode() == Instruction::Or);
@@ -510,7 +483,7 @@ private:
}
// Try to match the current instruction
- if (matchInstruction(I, DL, isEQ))
+ if (matchInstruction(I, isEQ))
// Match succeed, continue the loop
continue;
}
@@ -558,15 +531,16 @@ Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
CV = SI->getCondition();
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional() && BI->getCondition()->hasOneUse())
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
CV = ICI->getOperand(0);
+ }
// Unwrap any lossless ptrtoint cast.
- if (DL && CV) {
+ if (CV) {
if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
Value *Ptr = PTII->getPointerOperand();
- if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
+ if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
CV = Ptr;
}
}
@@ -1007,8 +981,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
Builder.SetInsertPoint(PTI);
// Convert pointer to int before we switch.
if (CV->getType()->isPointerTy()) {
- assert(DL && "Cannot switch on pointer without DataLayout");
- CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
+ CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
"magicptr");
}
@@ -1079,7 +1052,8 @@ static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block. The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
-static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
+static bool HoistThenElseCodeToIf(BranchInst *BI,
+ const TargetTransformInfo &TTI) {
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. In particular, we don't want to get into
// O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
@@ -1114,6 +1088,9 @@ static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
if (isa<TerminatorInst>(I1))
goto HoistTerminator;
+ if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
+ return Changed;
+
// For a normal instruction, we just move one to right before the branch,
// then replace all uses of the other with the first. Finally, we remove
// the now redundant second instruction.
@@ -1167,9 +1144,9 @@ HoistTerminator:
passingValueIsAlwaysUndefined(BB2V, PN))
return Changed;
- if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
+ if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
return Changed;
- if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
+ if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
return Changed;
}
}
@@ -1489,7 +1466,7 @@ static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
///
/// \returns true if the conditional block is removed.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
- const DataLayout *DL) {
+ const TargetTransformInfo &TTI) {
// Be conservative for now. FP select instruction can often be expensive.
Value *BrCond = BI->getCondition();
if (isa<FCmpInst>(BrCond))
@@ -1525,20 +1502,20 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
if (isa<DbgInfoIntrinsic>(I))
continue;
- // Only speculatively execution a single instruction (not counting the
+ // Only speculatively execute a single instruction (not counting the
// terminator) for now.
++SpeculationCost;
if (SpeculationCost > 1)
return false;
// Don't hoist the instruction if it's unsafe or expensive.
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !(HoistCondStores &&
- (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
- EndBB))))
+ if (!isSafeToSpeculativelyExecute(I) &&
+ !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
+ I, BB, ThenBB, EndBB))))
return false;
if (!SpeculatedStoreValue &&
- ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
+ ComputeSpeculationCost(I, TTI) >
+ PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
return false;
// Store the store speculation candidate.
@@ -1594,12 +1571,14 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
if (!OrigCE && !ThenCE)
continue; // Known safe and cheap.
- if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
- (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
+ if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
+ (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
return false;
- unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
- unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
- if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
+ unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
+ unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
+ unsigned MaxCost = 2 * PHINodeFoldingThreshold *
+ TargetTransformInfo::TCC_Basic;
+ if (OrigCost + ThenCost > MaxCost)
return false;
// Account for the cost of an unfolded ConstantExpr which could end up
@@ -1706,7 +1685,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
-static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
@@ -1804,7 +1783,8 @@ static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
-static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
+static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
+ const DataLayout &DL) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
@@ -1835,6 +1815,8 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
SmallPtrSet<Instruction*, 4> AggressiveInsts;
unsigned MaxCostVal0 = PHINodeFoldingThreshold,
MaxCostVal1 = PHINodeFoldingThreshold;
+ MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
+ MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
PHINode *PN = cast<PHINode>(II++);
@@ -1845,9 +1827,9 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
}
if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
- MaxCostVal0, DL) ||
+ MaxCostVal0, TTI) ||
!DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
- MaxCostVal1, DL))
+ MaxCostVal1, TTI))
return false;
}
@@ -2067,8 +2049,7 @@ static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
/// predecessor branches to us and one of our successors, fold the block into
/// the predecessor and use logical operations to pick the right destination.
-bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
- unsigned BonusInstThreshold) {
+bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
BasicBlock *BB = BI->getParent();
Instruction *Cond = nullptr;
@@ -2124,7 +2105,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
- if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL))
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
return false;
// I has only one use and can be executed unconditionally.
Instruction *User = dyn_cast<Instruction>(I->user_back());
@@ -2536,17 +2517,15 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// The weight to CommonDest should be PredCommon * SuccTotal +
// PredOther * SuccCommon.
// The weight to OtherDest should be PredOther * SuccOther.
- SmallVector<uint64_t, 2> NewWeights;
- NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
- PredOther * SuccCommon);
- NewWeights.push_back(PredOther * SuccOther);
+ uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
+ PredOther * SuccCommon,
+ PredOther * SuccOther};
// Halve the weights if any of them cannot fit in an uint32_t
FitWeights(NewWeights);
- SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
PBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BI->getContext()).
- createBranchWeights(MDWeights));
+ MDBuilder(BI->getContext())
+ .createBranchWeights(NewWeights[0], NewWeights[1]));
}
// OtherDest may have phi nodes. If so, add an entry from PBI's
@@ -2719,8 +2698,9 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
static bool TryToSimplifyUncondBranchWithICmpInIt(
- ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
- unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) {
+ ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
+ const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
+ AssumptionCache *AC) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2753,7 +2733,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2769,7 +2749,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2825,8 +2805,8 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
-static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
- IRBuilder<> &Builder) {
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
+ const DataLayout &DL) {
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond) return false;
@@ -2901,10 +2881,8 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
Builder.SetInsertPoint(BI);
// Convert pointer to int before we switch.
if (CompVal->getType()->isPointerTy()) {
- assert(DL && "Cannot switch on pointer without DataLayout");
- CompVal = Builder.CreatePtrToInt(CompVal,
- DL->getIntPtrType(CompVal->getType()),
- "magicptr");
+ CompVal = Builder.CreatePtrToInt(
+ CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
}
// Create the new switch instruction now.
@@ -2949,20 +2927,9 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
return false;
// Turn all invokes that unwind here into calls and delete the basic block.
- bool InvokeRequiresTableEntry = false;
- bool Changed = false;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
-
- if (II->hasFnAttr(Attribute::UWTable)) {
- // Don't remove an `invoke' instruction if the ABI requires an entry into
- // the table.
- InvokeRequiresTableEntry = true;
- continue;
- }
-
SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
-
// Insert a call instruction before the invoke.
CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
Call->takeName(II);
@@ -2982,14 +2949,11 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
// Finally, delete the invoke instruction!
II->eraseFromParent();
- Changed = true;
}
- if (!InvokeRequiresTableEntry)
- // The landingpad is now unreachable. Zap it.
- BB->eraseFromParent();
-
- return Changed;
+ // The landingpad is now unreachable. Zap it.
+ BB->eraseFromParent();
+ return true;
}
bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
@@ -3121,55 +3085,6 @@ bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
--i; --e;
Changed = true;
}
- // If the default value is unreachable, figure out the most popular
- // destination and make it the default.
- if (SI->getDefaultDest() == BB) {
- std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- std::pair<unsigned, unsigned> &entry =
- Popularity[i.getCaseSuccessor()];
- if (entry.first == 0) {
- entry.first = 1;
- entry.second = i.getCaseIndex();
- } else {
- entry.first++;
- }
- }
-
- // Find the most popular block.
- unsigned MaxPop = 0;
- unsigned MaxIndex = 0;
- BasicBlock *MaxBlock = nullptr;
- for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
- I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
- if (I->second.first > MaxPop ||
- (I->second.first == MaxPop && MaxIndex > I->second.second)) {
- MaxPop = I->second.first;
- MaxIndex = I->second.second;
- MaxBlock = I->first;
- }
- }
- if (MaxBlock) {
- // Make this the new default, allowing us to delete any explicit
- // edges to it.
- SI->setDefaultDest(MaxBlock);
- Changed = true;
-
- // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
- // it.
- if (isa<PHINode>(MaxBlock->begin()))
- for (unsigned i = 0; i != MaxPop-1; ++i)
- MaxBlock->removePredecessor(SI->getParent());
-
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i)
- if (i.getCaseSuccessor() == MaxBlock) {
- SI->removeCase(i);
- --i; --e;
- }
- }
- }
} else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
if (II->getUnwindDest() == BB) {
// Convert the invoke to a call instruction. This would be a good
@@ -3203,70 +3118,122 @@ bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
return Changed;
}
-/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
-/// integer range comparison into a sub, an icmp and a branch.
-static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
- assert(SI->getNumCases() > 1 && "Degenerate switch?");
+static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
+ assert(Cases.size() >= 1);
- // Make sure all cases point to the same destination and gather the values.
- SmallVector<ConstantInt *, 16> Cases;
- SwitchInst::CaseIt I = SI->case_begin();
- Cases.push_back(I.getCaseValue());
- SwitchInst::CaseIt PrevI = I++;
- for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
- if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
+ array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
+ for (size_t I = 1, E = Cases.size(); I != E; ++I) {
+ if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
return false;
- Cases.push_back(I.getCaseValue());
}
- assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
+ return true;
+}
- // Sort the case values, then check if they form a range we can transform.
- array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
- for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
- if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
- return false;
+/// Turn a switch with two reachable destinations into an integer range
+/// comparison and branch.
+static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
+ assert(SI->getNumCases() > 1 && "Degenerate switch?");
+
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+
+ // Partition the cases into two sets with different destinations.
+ BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
+ BasicBlock *DestB = nullptr;
+ SmallVector <ConstantInt *, 16> CasesA;
+ SmallVector <ConstantInt *, 16> CasesB;
+
+ for (SwitchInst::CaseIt I : SI->cases()) {
+ BasicBlock *Dest = I.getCaseSuccessor();
+ if (!DestA) DestA = Dest;
+ if (Dest == DestA) {
+ CasesA.push_back(I.getCaseValue());
+ continue;
+ }
+ if (!DestB) DestB = Dest;
+ if (Dest == DestB) {
+ CasesB.push_back(I.getCaseValue());
+ continue;
+ }
+ return false; // More than two destinations.
}
- Constant *Offset = ConstantExpr::getNeg(Cases.back());
- Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
+ assert(DestA && DestB && "Single-destination switch should have been folded.");
+ assert(DestA != DestB);
+ assert(DestB != SI->getDefaultDest());
+ assert(!CasesB.empty() && "There must be non-default cases.");
+ assert(!CasesA.empty() || HasDefault);
+
+ // Figure out if one of the sets of cases form a contiguous range.
+ SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
+ BasicBlock *ContiguousDest = nullptr;
+ BasicBlock *OtherDest = nullptr;
+ if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
+ ContiguousCases = &CasesA;
+ ContiguousDest = DestA;
+ OtherDest = DestB;
+ } else if (CasesAreContiguous(CasesB)) {
+ ContiguousCases = &CasesB;
+ ContiguousDest = DestB;
+ OtherDest = DestA;
+ } else
+ return false;
+
+ // Start building the compare and branch.
+
+ Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
+ Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
Value *Sub = SI->getCondition();
if (!Offset->isNullValue())
- Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
+ Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
+
Value *Cmp;
// If NumCases overflowed, then all possible values jump to the successor.
- if (NumCases->isNullValue() && SI->getNumCases() != 0)
+ if (NumCases->isNullValue() && !ContiguousCases->empty())
Cmp = ConstantInt::getTrue(SI->getContext());
else
Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
- BranchInst *NewBI = Builder.CreateCondBr(
- Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
+ BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
// Update weight for the newly-created conditional branch.
- SmallVector<uint64_t, 8> Weights;
- bool HasWeights = HasBranchWeights(SI);
- if (HasWeights) {
+ if (HasBranchWeights(SI)) {
+ SmallVector<uint64_t, 8> Weights;
GetBranchWeights(SI, Weights);
if (Weights.size() == 1 + SI->getNumCases()) {
- // Combine all weights for the cases to be the true weight of NewBI.
- // We assume that the sum of all weights for a Terminator can fit into 32
- // bits.
- uint32_t NewTrueWeight = 0;
- for (unsigned I = 1, E = Weights.size(); I != E; ++I)
- NewTrueWeight += (uint32_t)Weights[I];
+ uint64_t TrueWeight = 0;
+ uint64_t FalseWeight = 0;
+ for (size_t I = 0, E = Weights.size(); I != E; ++I) {
+ if (SI->getSuccessor(I) == ContiguousDest)
+ TrueWeight += Weights[I];
+ else
+ FalseWeight += Weights[I];
+ }
+ while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
+ TrueWeight /= 2;
+ FalseWeight /= 2;
+ }
NewBI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(SI->getContext()).
- createBranchWeights(NewTrueWeight,
- (uint32_t)Weights[0]));
+ MDBuilder(SI->getContext()).createBranchWeights(
+ (uint32_t)TrueWeight, (uint32_t)FalseWeight));
}
}
- // Prune obsolete incoming values off the successor's PHI nodes.
- for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
- isa<PHINode>(BBI); ++BBI) {
- for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
+ // Prune obsolete incoming values off the successors' PHI nodes.
+ for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = ContiguousCases->size();
+ if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+ for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
+ if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
}
+
+ // Drop the switch.
SI->eraseFromParent();
return true;
@@ -3274,8 +3241,8 @@ static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
-static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL,
- AssumptionCache *AC) {
+static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
+ const DataLayout &DL) {
Value *Cond = SI->getCondition();
unsigned Bits = Cond->getType()->getIntegerBitWidth();
APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
@@ -3426,9 +3393,8 @@ static Constant *LookupConstant(Value *V,
/// constant or can be replaced by constants from the ConstantPool. Returns the
/// resulting constant on success, 0 otherwise.
static Constant *
-ConstantFold(Instruction *I,
- const SmallDenseMap<Value *, Constant *> &ConstantPool,
- const DataLayout *DL) {
+ConstantFold(Instruction *I, const DataLayout &DL,
+ const SmallDenseMap<Value *, Constant *> &ConstantPool) {
if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
if (!A)
@@ -3448,9 +3414,10 @@ ConstantFold(Instruction *I,
return nullptr;
}
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
COps[1], DL);
+ }
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
}
@@ -3460,12 +3427,10 @@ ConstantFold(Instruction *I,
/// destionations CaseDest corresponding to value CaseVal (0 for the default
/// case), of a switch instruction SI.
static bool
-GetCaseResults(SwitchInst *SI,
- ConstantInt *CaseVal,
- BasicBlock *CaseDest,
+GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
BasicBlock **CommonDest,
- SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
- const DataLayout *DL) {
+ SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
+ const DataLayout &DL) {
// The block from which we enter the common destination.
BasicBlock *Pred = SI->getParent();
@@ -3484,7 +3449,7 @@ GetCaseResults(SwitchInst *SI,
} else if (isa<DbgInfoIntrinsic>(I)) {
// Skip debug intrinsic.
continue;
- } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
+ } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
// Instruction is side-effect free and constant.
// If the instruction has uses outside this block or a phi node slot for
@@ -3555,11 +3520,11 @@ static void MapCaseToResult(ConstantInt *CaseVal,
// results for the PHI node of the common destination block for a switch
// instruction. Returns false if multiple PHI nodes have been found or if
// there is not a common destination block for the switch.
-static bool InitializeUniqueCases(
- SwitchInst *SI, const DataLayout *DL, PHINode *&PHI,
- BasicBlock *&CommonDest,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *&DefaultResult) {
+static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
+ BasicBlock *&CommonDest,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *&DefaultResult,
+ const DataLayout &DL) {
for (auto &I : SI->cases()) {
ConstantInt *CaseVal = I.getCaseValue();
@@ -3666,15 +3631,15 @@ static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
/// phi nodes in a common successor block with only two different
/// constant values, replace the switch with select.
static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
- const DataLayout *DL, AssumptionCache *AC) {
+ AssumptionCache *AC, const DataLayout &DL) {
Value *const Cond = SI->getCondition();
PHINode *PHI = nullptr;
BasicBlock *CommonDest = nullptr;
Constant *DefaultResult;
SwitchCaseResultVectorTy UniqueResults;
// Collect all the cases that will deliver the same value from the switch.
- if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults,
- DefaultResult))
+ if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
+ DL))
return false;
// Selects choose between maximum two values.
if (UniqueResults.size() != 2)
@@ -3701,12 +3666,10 @@ namespace {
/// SwitchLookupTable - Create a lookup table to use as a switch replacement
/// with the contents of Values, using DefaultValue to fill any holes in the
/// table.
- SwitchLookupTable(Module &M,
- uint64_t TableSize,
- ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
- Constant *DefaultValue,
- const DataLayout *DL);
+ SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL);
/// BuildLookup - Build instructions with Builder to retrieve the value at
/// the position given by Index in the lookup table.
@@ -3714,8 +3677,7 @@ namespace {
/// WouldFitInRegister - Return true if a table with TableSize elements of
/// type ElementType would fit in a target-legal register.
- static bool WouldFitInRegister(const DataLayout *DL,
- uint64_t TableSize,
+ static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
const Type *ElementType);
private:
@@ -3757,12 +3719,10 @@ namespace {
};
}
-SwitchLookupTable::SwitchLookupTable(Module &M,
- uint64_t TableSize,
- ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
- Constant *DefaultValue,
- const DataLayout *DL)
+SwitchLookupTable::SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL)
: SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
assert(Values.size() && "Can't build lookup table without values!");
@@ -3924,19 +3884,17 @@ Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
"switch.tableidx.zext");
Value *GEPIndices[] = { Builder.getInt32(0), Index };
- Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
- "switch.gep");
+ Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
+ GEPIndices, "switch.gep");
return Builder.CreateLoad(GEP, "switch.load");
}
}
llvm_unreachable("Unknown lookup table kind!");
}
-bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
uint64_t TableSize,
const Type *ElementType) {
- if (!DL)
- return false;
const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
if (!IT)
return false;
@@ -3946,17 +3904,16 @@ bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
// Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
if (TableSize >= UINT_MAX/IT->getBitWidth())
return false;
- return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
+ return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
}
/// ShouldBuildLookupTable - Determine whether a lookup table should be built
/// for this switch, based on the number of cases, size of the table and the
/// types of the results.
-static bool ShouldBuildLookupTable(SwitchInst *SI,
- uint64_t TableSize,
- const TargetTransformInfo &TTI,
- const DataLayout *DL,
- const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
+static bool
+ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
+ const TargetTransformInfo &TTI, const DataLayout &DL,
+ const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
return false; // TableSize overflowed, or mul below might overflow.
@@ -4079,10 +4036,9 @@ static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
/// SwitchToLookupTable - If the switch is only used to initialize one or more
/// phi nodes in a common successor block with different constant values,
/// replace the switch with lookup tables.
-static bool SwitchToLookupTable(SwitchInst *SI,
- IRBuilder<> &Builder,
- const TargetTransformInfo &TTI,
- const DataLayout* DL) {
+static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Only build lookup table when we have a target that supports it.
@@ -4153,14 +4109,14 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// or a bitmask that fits in a register.
SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
- &CommonDest, DefaultResultsList, DL);
+ &CommonDest, DefaultResultsList, DL);
bool NeedMask = (TableHasHoles && !HasDefaultResults);
if (NeedMask) {
// As an extra penalty for the validity test we require more cases.
if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
return false;
- if (!(DL && DL->fitsInLegalInteger(TableSize)))
+ if (!DL.fitsInLegalInteger(TableSize))
return false;
}
@@ -4193,19 +4149,18 @@ static bool SwitchToLookupTable(SwitchInst *SI,
"It is impossible for a switch to have more entries than the max "
"representable value of its input integer type's size.");
- // If we have a fully covered lookup table, unconditionally branch to the
- // lookup table BB. Otherwise, check if the condition value is within the case
- // range. If it is so, branch to the new BB. Otherwise branch to SI's default
- // destination.
+ // If the default destination is unreachable, or if the lookup table covers
+ // all values of the conditional variable, branch directly to the lookup table
+ // BB. Otherwise, check that the condition is within the case range.
+ const bool DefaultIsReachable =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
BranchInst *RangeCheckBranch = nullptr;
- const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
- if (GeneratingCoveredLookupTable) {
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
Builder.CreateBr(LookupBB);
- // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
- // do not delete PHINodes here.
- SI->getDefaultDest()->removePredecessor(SI->getParent(),
- true/*DontDeleteUselessPHIs*/);
+ // Note: We call removeProdecessor later since we need to be able to get the
+ // PHI value for the default case in case we're using a bit mask.
} else {
Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
MinCaseVal->getType(), TableSize));
@@ -4257,6 +4212,13 @@ static bool SwitchToLookupTable(SwitchInst *SI,
AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
}
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
+ // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
+ // do not delete PHINodes here.
+ SI->getDefaultDest()->removePredecessor(SI->getParent(),
+ /*DontDeleteUselessPHIs=*/true);
+ }
+
bool ReturnedEarly = false;
for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
PHINode *PHI = PHIs[I];
@@ -4317,12 +4279,12 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
@@ -4332,25 +4294,25 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// Remove unreachable cases.
- if (EliminateDeadSwitchCases(SI, DL, AC))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (EliminateDeadSwitchCases(SI, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToSelect(SI, Builder, DL, AC))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SwitchToSelect(SI, Builder, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToLookupTable(SI, Builder, TTI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SwitchToLookupTable(SI, Builder, DL, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4387,11 +4349,87 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
return Changed;
}
+/// Given an block with only a single landing pad and a unconditional branch
+/// try to find another basic block which this one can be merged with. This
+/// handles cases where we have multiple invokes with unique landing pads, but
+/// a shared handler.
+///
+/// We specifically choose to not worry about merging non-empty blocks
+/// here. That is a PRE/scheduling problem and is best solved elsewhere. In
+/// practice, the optimizer produces empty landing pad blocks quite frequently
+/// when dealing with exception dense code. (see: instcombine, gvn, if-else
+/// sinking in this file)
+///
+/// This is primarily a code size optimization. We need to avoid performing
+/// any transform which might inhibit optimization (such as our ability to
+/// specialize a particular handler via tail commoning). We do this by not
+/// merging any blocks which require us to introduce a phi. Since the same
+/// values are flowing through both blocks, we don't loose any ability to
+/// specialize. If anything, we make such specialization more likely.
+///
+/// TODO - This transformation could remove entries from a phi in the target
+/// block when the inputs in the phi are the same for the two blocks being
+/// merged. In some cases, this could result in removal of the PHI entirely.
+static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
+ BasicBlock *BB) {
+ auto Succ = BB->getUniqueSuccessor();
+ assert(Succ);
+ // If there's a phi in the successor block, we'd likely have to introduce
+ // a phi into the merged landing pad block.
+ if (isa<PHINode>(*Succ->begin()))
+ return false;
+
+ for (BasicBlock *OtherPred : predecessors(Succ)) {
+ if (BB == OtherPred)
+ continue;
+ BasicBlock::iterator I = OtherPred->begin();
+ LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
+ if (!LPad2 || !LPad2->isIdenticalTo(LPad))
+ continue;
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
+ BranchInst *BI2 = dyn_cast<BranchInst>(I);
+ if (!BI2 || !BI2->isIdenticalTo(BI))
+ continue;
+
+ // We've found an identical block. Update our predeccessors to take that
+ // path instead and make ourselves dead.
+ SmallSet<BasicBlock *, 16> Preds;
+ Preds.insert(pred_begin(BB), pred_end(BB));
+ for (BasicBlock *Pred : Preds) {
+ InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
+ assert(II->getNormalDest() != BB &&
+ II->getUnwindDest() == BB && "unexpected successor");
+ II->setUnwindDest(OtherPred);
+ }
+
+ // The debug info in OtherPred doesn't cover the merged control flow that
+ // used to go through BB. We need to delete it or update it.
+ for (auto I = OtherPred->begin(), E = OtherPred->end();
+ I != E;) {
+ Instruction &Inst = *I; I++;
+ if (isa<DbgInfoIntrinsic>(Inst))
+ Inst.eraseFromParent();
+ }
+
+ SmallSet<BasicBlock *, 16> Succs;
+ Succs.insert(succ_begin(BB), succ_end(BB));
+ for (BasicBlock *Succ : Succs) {
+ Succ->removePredecessor(BB);
+ }
+
+ IRBuilder<> Builder(BI);
+ Builder.CreateUnreachable();
+ BI->eraseFromParent();
+ return true;
+ }
+ return false;
+}
+
bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
BasicBlock *BB = BI->getParent();
@@ -4411,17 +4449,26 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI,
- BonusInstThreshold, DL, AC))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
+ BonusInstThreshold, AC))
return true;
}
+ // See if we can merge an empty landing pad block with another which is
+ // equivalent.
+ if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
+ if (I->isTerminator() &&
+ TryToMergeLandingPad(LPad, BI, BB))
+ return true;
+ }
+
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and our successor, fold the comparison into the
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
- if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4436,7 +4483,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -4446,26 +4493,26 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
}
// Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
- if (SimplifyBranchOnICmpChain(BI, DL, Builder))
+ if (SimplifyBranchOnICmpChain(BI, Builder, DL))
return true;
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -4473,16 +4520,16 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// can hoist it up to the branching block.
if (BI->getSuccessor(0)->getSinglePredecessor()) {
if (BI->getSuccessor(1)->getSinglePredecessor()) {
- if (HoistThenElseCodeToIf(BI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (HoistThenElseCodeToIf(BI, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to Successor #1.
TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -4490,8 +4537,8 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -4499,14 +4546,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4618,7 +4665,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
// eliminate it, do so now.
if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
if (PN->getNumIncomingValues() == 2)
- Changed |= FoldTwoEntryPHINode(PN, DL);
+ Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
Builder.SetInsertPoint(BB->getTerminator());
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
@@ -4650,7 +4697,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// of the CFG. It returns true if a modification was made.
///
bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- unsigned BonusInstThreshold, const DataLayout *DL,
- AssumptionCache *AC) {
- return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB);
+ unsigned BonusInstThreshold, AssumptionCache *AC) {
+ return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
+ BonusInstThreshold, AC).run(BB);
}
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
index d54c09a..3757a80 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -17,7 +17,6 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
@@ -48,22 +47,15 @@ namespace {
Loop *L;
LoopInfo *LI;
ScalarEvolution *SE;
- const DataLayout *DL; // May be NULL
SmallVectorImpl<WeakVH> &DeadInsts;
bool Changed;
public:
- SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
- SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) :
- L(Loop),
- LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
- SE(SE),
- DeadInsts(Dead),
- Changed(false) {
- DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : nullptr;
+ SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI,
+ SmallVectorImpl<WeakVH> &Dead)
+ : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) {
assert(LI && "IV simplification requires LoopInfo");
}
@@ -277,95 +269,57 @@ bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
Value *IVOperand) {
- // Currently we only handle instructions of the form "add <indvar> <value>"
- unsigned Op = BO->getOpcode();
- if (Op != Instruction::Add)
+ // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
+ if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
return false;
- // If BO is already both nuw and nsw then there is nothing left to do
- if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
+ const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
+ SCEV::NoWrapFlags);
+
+ switch (BO->getOpcode()) {
+ default:
return false;
- IntegerType *IT = cast<IntegerType>(IVOperand->getType());
- Value *OtherOperand = nullptr;
- if (BO->getOperand(0) == IVOperand) {
- OtherOperand = BO->getOperand(1);
- } else {
- assert(BO->getOperand(1) == IVOperand && "only other use!");
- OtherOperand = BO->getOperand(0);
+ case Instruction::Add:
+ GetExprForBO = &ScalarEvolution::getAddExpr;
+ break;
+
+ case Instruction::Sub:
+ GetExprForBO = &ScalarEvolution::getMinusSCEV;
+ break;
+
+ case Instruction::Mul:
+ GetExprForBO = &ScalarEvolution::getMulExpr;
+ break;
}
- bool Changed = false;
- const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand);
- if (OtherOpSCEV == SE->getCouldNotCompute())
- return false;
+ unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
+ Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
+ const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
+ const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
- const SCEV *IVOpSCEV = SE->getSCEV(IVOperand);
- const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0);
+ bool Changed = false;
- if (!BO->hasNoSignedWrap()) {
- // Upgrade the add to an "add nsw" if we can prove that it will never
- // sign-overflow or sign-underflow.
-
- const SCEV *SignedMax =
- SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth()));
- const SCEV *SignedMin =
- SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth()));
-
- // The addition "IVOperand + OtherOp" does not sign-overflow if the result
- // is sign-representable in 2's complement in the given bit-width.
- //
- // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp,
- // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp].
- // Everything in [SignedMin, SignedMax + OtherOp] is representable since
- // SignedMax + OtherOp is at least -1.
- //
- // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax -
- // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax].
- // Everything in [SignedMin + OtherOp, SignedMax] is representable since
- // SignedMin + OtherOp is at most -1.
- //
- // It follows that for all values of IVOperand in [SignedMin - smin(0,
- // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is
- // representable (i.e. there is no sign-overflow).
-
- const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV);
- const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta);
-
- bool NeverSignedOverflows =
- SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit);
-
- if (NeverSignedOverflows) {
- const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV);
- const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta);
-
- bool NeverSignedUnderflows =
- SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit);
- if (NeverSignedUnderflows) {
- BO->setHasNoSignedWrap(true);
- Changed = true;
- }
+ if (!BO->hasNoUnsignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoUnsignedWrap();
+ SE->forgetValue(BO);
+ Changed = true;
}
}
- if (!BO->hasNoUnsignedWrap()) {
- // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can
- // prove that it will never unsigned-overflow (i.e. the result will always
- // be representable in the given bit-width).
- //
- // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it
- // does not produce a carry. "IVOperand + OtherOp" produces no carry iff
- // IVOperand ULE (UnsignedMax - OtherOp).
-
- const SCEV *UnsignedMax =
- SE->getConstant(APInt::getMaxValue(IT->getBitWidth()));
- const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV);
-
- bool NeverUnsignedOverflows =
- SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit);
-
- if (NeverUnsignedOverflows) {
- BO->setHasNoUnsignedWrap(true);
+ if (!BO->hasNoSignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoSignedWrap();
+ SE->forgetValue(BO);
Changed = true;
}
}
@@ -562,8 +516,8 @@ void IVVisitor::anchor() { }
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
{
- LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
- SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
+ LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead);
SIV.simplifyUsers(CurrIV, V);
return SIV.hasChanged();
}
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
index cc97098..c499c87 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -25,7 +25,7 @@
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
@@ -43,7 +43,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfo>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
}
/// runOnFunction - Remove instructions that simplify.
@@ -51,9 +51,9 @@ namespace {
const DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
const DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
- const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
@@ -106,7 +106,7 @@ char InstSimplifier::ID = 0;
INITIALIZE_PASS_BEGIN(InstSimplifier, "instsimplify",
"Remove redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(InstSimplifier, "instsimplify",
"Remove redundant instructions", false, false)
char &llvm::InstructionSimplifierID = InstSimplifier::ID;
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 5a0d52e..6bbf828 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -30,7 +30,7 @@
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
@@ -120,12 +120,12 @@ static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
/// string/memory copying library function \p Func.
/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
/// Their fortified (_chk) counterparts are also accepted.
-static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func,
- const DataLayout *DL) {
+static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
+ const DataLayout &DL = F->getParent()->getDataLayout();
FunctionType *FT = F->getFunctionType();
LLVMContext &Context = F->getContext();
Type *PCharTy = Type::getInt8PtrTy(Context);
- Type *SizeTTy = DL ? DL->getIntPtrType(Context) : nullptr;
+ Type *SizeTTy = DL.getIntPtrType(Context);
unsigned NumParams = FT->getNumParams();
// All string libfuncs return the same type as the first parameter.
@@ -208,10 +208,6 @@ Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
if (Len == 0)
return Dst;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return emitStrLenMemCpy(Src, Dst, Len, B);
}
@@ -226,13 +222,13 @@ Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
+ Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(
- CpyDst, Src,
- ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
+ B.CreateMemCpy(CpyDst, Src,
+ ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
+ 1);
return Dst;
}
@@ -269,10 +265,6 @@ Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
if (SrcLen == 0 || Len == 0)
return Dst;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// We don't optimize this case
if (Len < SrcLen)
return nullptr;
@@ -297,25 +289,21 @@ Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!CharC) {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
return nullptr;
- return EmitMemChr(
- SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
+ return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
+ B, DL, TLI);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
- if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
- return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
+ if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
return nullptr;
}
@@ -328,7 +316,7 @@ Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
return Constant::getNullValue(CI->getType());
// strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
}
Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
@@ -350,8 +338,8 @@ Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
- if (DL && CharC->isZero())
- return EmitStrChr(SrcStr, '\0', B, DL, TLI);
+ if (CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, TLI);
return nullptr;
}
@@ -363,7 +351,7 @@ Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
return Constant::getNullValue(CI->getType());
// strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
}
Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
@@ -398,12 +386,8 @@ Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL->getIntPtrType(CI->getContext()),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
std::min(Len1, Len2)),
B, DL, TLI);
}
@@ -435,7 +419,7 @@ Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
- if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
StringRef Str1, Str2;
@@ -462,17 +446,13 @@ Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0)
@@ -481,7 +461,7 @@ Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
return Dst;
}
@@ -490,17 +470,13 @@ Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
// Verify the "stpcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy, DL))
- return nullptr;
-
- // These optimizations require DataLayout.
- if (!DL)
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
}
// See if we can get the length of the input string.
@@ -509,9 +485,9 @@ Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
return nullptr;
Type *PT = FT->getParamType(0);
- Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
+ Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
Value *DstEnd =
- B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
+ B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
@@ -523,7 +499,7 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
return nullptr;
Value *Dst = CI->getArgOperand(0);
@@ -551,17 +527,13 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
if (Len == 0)
return Dst; // strncpy(x, y, 0) -> x
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// Let strncpy handle the zero padding
if (Len > SrcLen + 1)
return nullptr;
Type *PT = FT->getParamType(0);
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
+ B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
return Dst;
}
@@ -625,12 +597,12 @@ Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
if (I == StringRef::npos) // No match.
return Constant::getNullValue(CI->getType());
- return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
+ return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
}
// strpbrk(s, "a") -> strchr(s, 'a')
- if (DL && HasS2 && S2.size() == 1)
- return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
+ if (HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
return nullptr;
}
@@ -706,7 +678,7 @@ Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
}
// strcspn(s, "") -> strlen(s)
- if (DL && HasS2 && S2.empty())
+ if (HasS2 && S2.empty())
return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
return nullptr;
@@ -725,7 +697,7 @@ Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
if (!StrLen)
return nullptr;
@@ -767,12 +739,98 @@ Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
+ Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
}
return nullptr;
}
+Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy(32) ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+
+ // memchr(x, y, 0) -> null
+ if (LenC && LenC->isNullValue())
+ return Constant::getNullValue(CI->getType());
+
+ // From now on we need at least constant length and string.
+ StringRef Str;
+ if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
+ return nullptr;
+
+ // Truncate the string to LenC. If Str is smaller than LenC we will still only
+ // scan the string, as reading past the end of it is undefined and we can just
+ // return null if we don't find the char.
+ Str = Str.substr(0, LenC->getZExtValue());
+
+ // If the char is variable but the input str and length are not we can turn
+ // this memchr call into a simple bit field test. Of course this only works
+ // when the return value is only checked against null.
+ //
+ // It would be really nice to reuse switch lowering here but we can't change
+ // the CFG at this point.
+ //
+ // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
+ // after bounds check.
+ if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
+ unsigned char Max =
+ *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
+ reinterpret_cast<const unsigned char *>(Str.end()));
+
+ // Make sure the bit field we're about to create fits in a register on the
+ // target.
+ // FIXME: On a 64 bit architecture this prevents us from using the
+ // interesting range of alpha ascii chars. We could do better by emitting
+ // two bitfields or shifting the range by 64 if no lower chars are used.
+ if (!DL.fitsInLegalInteger(Max + 1))
+ return nullptr;
+
+ // For the bit field use a power-of-2 type with at least 8 bits to avoid
+ // creating unnecessary illegal types.
+ unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
+
+ // Now build the bit field.
+ APInt Bitfield(Width, 0);
+ for (char C : Str)
+ Bitfield.setBit((unsigned char)C);
+ Value *BitfieldC = B.getInt(Bitfield);
+
+ // First check that the bit field access is within bounds.
+ Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
+ Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
+ "memchr.bounds");
+
+ // Create code that checks if the given bit is set in the field.
+ Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
+ Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
+
+ // Finally merge both checks and cast to pointer type. The inttoptr
+ // implicitly zexts the i1 to intptr type.
+ return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
+ }
+
+ // Check if all arguments are constants. If so, we can constant fold.
+ if (!CharC)
+ return nullptr;
+
+ // Compute the offset.
+ size_t I = Str.find(CharC->getSExtValue() & 0xFF);
+ if (I == StringRef::npos) // Didn't find the char. memchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // memchr(s+n,c,l) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
+}
+
Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
@@ -827,11 +885,8 @@ Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
return nullptr;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
@@ -842,11 +897,8 @@ Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
return nullptr;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
@@ -857,11 +909,8 @@ Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
return nullptr;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
@@ -924,7 +973,7 @@ Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
// floor((double)floatval) -> (double)floorf(floatval)
if (Callee->isIntrinsic()) {
Module *M = CI->getParent()->getParent()->getParent();
- Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
+ Intrinsic::ID IID = Callee->getIntrinsicID();
Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
V = B.CreateCall(F, V);
} else {
@@ -1101,7 +1150,7 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
Value *Callee =
M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
Op->getType(), B.getInt32Ty(), nullptr);
- CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -1387,7 +1436,7 @@ Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
Type *ArgType = Op->getType();
Value *F =
Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ Value *V = B.CreateCall(F, {Op, B.getFalse()}, "cttz");
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
V = B.CreateIntCast(V, B.getInt32Ty(), false);
@@ -1521,7 +1570,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("x") -> putchar('x'), even for '%'.
if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
if (CI->use_empty() || !Res)
return Res;
return B.CreateIntCast(Res, CI->getType(), true);
@@ -1534,7 +1583,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// pass to be run after this pass, to merge duplicate strings.
FormatStr = FormatStr.drop_back();
Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, DL, TLI);
+ Value *NewCI = EmitPutS(GV, B, TLI);
return (CI->use_empty() || !NewCI)
? NewCI
: ConstantInt::get(CI->getType(), FormatStr.size() + 1);
@@ -1544,7 +1593,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("%c", chr) --> putchar(chr)
if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
if (CI->use_empty() || !Res)
return Res;
@@ -1554,7 +1603,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
+ return EmitPutS(CI->getArgOperand(1), B, TLI);
}
return nullptr;
}
@@ -1600,16 +1649,11 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
if (FormatStr[i] == '%')
return nullptr; // we found a format specifier, bail out.
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(
- CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()),
- FormatStr.size() + 1),
- 1); // Copy the null byte.
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1),
+ 1); // Copy the null byte.
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1627,17 +1671,13 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
B.CreateStore(B.getInt8(0), Ptr);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
@@ -1702,13 +1742,9 @@ Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
return nullptr; // We found a format specifier.
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return EmitFWrite(
CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
CI->getArgOperand(0), B, DL, TLI);
}
@@ -1723,14 +1759,14 @@ Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
// fprintf(F, "%c", chr) --> fputc(chr, F)
if (!CI->getArgOperand(2)->getType()->isIntegerTy())
return nullptr;
- return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
}
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) --> fputs(str, F)
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
}
return nullptr;
}
@@ -1790,7 +1826,7 @@ Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
// This optimisation is only valid, if the return value is unused.
if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
}
@@ -1802,10 +1838,6 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// Require two pointers. Also, we can't optimize if return value is used.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
@@ -1820,7 +1852,7 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
// Known to have no uses (see above).
return EmitFWrite(
CI->getArgOperand(0),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
CI->getArgOperand(1), B, DL, TLI);
}
@@ -1839,7 +1871,7 @@ Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
if (Str.empty() && CI->use_empty()) {
// puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
if (CI->use_empty() || !Res)
return Res;
return B.CreateIntCast(Res, CI->getType(), true);
@@ -1906,6 +1938,8 @@ Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
return optimizeStrCSpn(CI, Builder);
case LibFunc::strstr:
return optimizeStrStr(CI, Builder);
+ case LibFunc::memchr:
+ return optimizeMemChr(CI, Builder);
case LibFunc::memcmp:
return optimizeMemCmp(CI, Builder);
case LibFunc::memcpy:
@@ -2088,15 +2122,19 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
return nullptr;
}
-LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
- const TargetLibraryInfo *TLI) :
- FortifiedSimplifier(DL, TLI),
- DL(DL),
- TLI(TLI),
- UnsafeFPShrink(false) {
+LibCallSimplifier::LibCallSimplifier(
+ const DataLayout &DL, const TargetLibraryInfo *TLI,
+ function_ref<void(Instruction *, Value *)> Replacer)
+ : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
+ Replacer(Replacer) {}
+
+void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
+ // Indirect through the replacer used in this instance.
+ Replacer(I, With);
}
-void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
+/*static*/ void LibCallSimplifier::replaceAllUsesWithDefault(Instruction *I,
+ Value *With) {
I->replaceAllUsesWith(With);
I->eraseFromParent();
}
@@ -2183,7 +2221,7 @@ bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2197,7 +2235,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2211,7 +2249,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<>
Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2227,8 +2265,9 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
LibFunc::Func Func) {
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
+ const DataLayout &DL = CI->getModule()->getDataLayout();
- if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
@@ -2237,7 +2276,7 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
// __stpcpy_chk(x,x,...) -> x+strlen(x)
if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
}
// If a) we don't have any length information, or b) we know this will
@@ -2245,29 +2284,25 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
// st[rp]cpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
- if (isFortifiedCallFoldable(CI, 2, 1, true)) {
- Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
- return Ret;
- } else if (!OnlyLowerUnknownSize) {
- // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
+ if (isFortifiedCallFoldable(CI, 2, 1, true))
+ return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
- // This optimization requires DataLayout.
- if (!DL)
- return nullptr;
+ if (OnlyLowerUnknownSize)
+ return nullptr;
- Type *SizeTTy = DL->getIntPtrType(CI->getContext());
- Value *LenV = ConstantInt::get(SizeTTy, Len);
- Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
- // If the function was an __stpcpy_chk, and we were able to fold it into
- // a __memcpy_chk, we still need to return the correct end pointer.
- if (Ret && Func == LibFunc::stpcpy_chk)
- return B.CreateGEP(Dst, ConstantInt::get(SizeTTy, Len - 1));
- return Ret;
- }
- return nullptr;
+ // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+
+ Type *SizeTTy = DL.getIntPtrType(CI->getContext());
+ Value *LenV = ConstantInt::get(SizeTTy, Len);
+ Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
+ // If the function was an __stpcpy_chk, and we were able to fold it into
+ // a __memcpy_chk, we still need to return the correct end pointer.
+ if (Ret && Func == LibFunc::stpcpy_chk)
+ return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
+ return Ret;
}
Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
@@ -2276,20 +2311,29 @@ Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
- if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret =
- EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
+ Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
return Ret;
}
return nullptr;
}
Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
- if (CI->isNoBuiltin())
- return nullptr;
+ // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
+ // Some clang users checked for _chk libcall availability using:
+ // __has_builtin(__builtin___memcpy_chk)
+ // When compiling with -fno-builtin, this is always true.
+ // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
+ // end up with fortified libcalls, which isn't acceptable in a freestanding
+ // environment which only provides their non-fortified counterparts.
+ //
+ // Until we change clang and/or teach external users to check for availability
+ // differently, disregard the "nobuiltin" attribute and TLI::has.
+ //
+ // PR23093.
LibFunc::Func Func;
Function *Callee = CI->getCalledFunction();
@@ -2298,7 +2342,7 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
// First, check that this is a known library functions.
- if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func))
+ if (!TLI->getLibFunc(FuncName, Func))
return nullptr;
// We never change the calling convention.
@@ -2324,8 +2368,6 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
return nullptr;
}
-FortifiedLibCallSimplifier::
-FortifiedLibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI,
- bool OnlyLowerUnknownSize)
- : DL(DL), TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {
-}
+FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
+ const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
+ : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
diff --git a/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp b/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp
index d36283e..a2a54da 100644
--- a/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SymbolRewriter.cpp
@@ -60,7 +60,8 @@
#define DEBUG_TYPE "symbol-rewriter"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MemoryBuffer.h"
@@ -72,15 +73,15 @@
#include "llvm/Transforms/Utils/SymbolRewriter.h"
using namespace llvm;
+using namespace SymbolRewriter;
static cl::list<std::string> RewriteMapFiles("rewrite-map-file",
cl::desc("Symbol Rewrite Map"),
cl::value_desc("filename"));
-namespace llvm {
-namespace SymbolRewriter {
-void rewriteComdat(Module &M, GlobalObject *GO, const std::string &Source,
- const std::string &Target) {
+static void rewriteComdat(Module &M, GlobalObject *GO,
+ const std::string &Source,
+ const std::string &Target) {
if (Comdat *CD = GO->getComdat()) {
auto &Comdats = M.getComdatSymbolTable();
@@ -92,6 +93,7 @@ void rewriteComdat(Module &M, GlobalObject *GO, const std::string &Source,
}
}
+namespace {
template <RewriteDescriptor::Type DT, typename ValueType,
ValueType *(llvm::Module::*Get)(StringRef) const>
class ExplicitRewriteDescriptor : public RewriteDescriptor {
@@ -226,6 +228,7 @@ typedef PatternRewriteDescriptor<RewriteDescriptor::Type::NamedAlias,
&llvm::Module::getNamedAlias,
&llvm::Module::aliases>
PatternRewriteNamedAliasDescriptor;
+} // namespace
bool RewriteMapParser::parse(const std::string &MapFile,
RewriteDescriptorList *DL) {
@@ -489,8 +492,6 @@ parseRewriteGlobalAliasDescriptor(yaml::Stream &YS, yaml::ScalarNode *K,
return true;
}
-}
-}
namespace {
class RewriteSymbols : public ModulePass {
diff --git a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
index 65f2ae2..cac80ac 100644
--- a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
@@ -155,13 +156,12 @@ static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
}
static Metadata *MapMetadataImpl(const Metadata *MD,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
+ SmallVectorImpl<MDNode *> &Cycles,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer);
-static Metadata *mapMetadataOp(Metadata *Op,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
+static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
@@ -182,157 +182,85 @@ static Metadata *mapMetadataOp(Metadata *Op,
return nullptr;
}
-static Metadata *cloneMDTuple(const MDTuple *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer,
- bool IsDistinct) {
- // Distinct MDTuples have their own code path.
- assert(!IsDistinct && "Unexpected distinct tuple");
- (void)IsDistinct;
-
- SmallVector<Metadata *, 4> Elts;
- Elts.reserve(Node->getNumOperands());
- for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
- Elts.push_back(mapMetadataOp(Node->getOperand(I), Cycles, VM, Flags,
- TypeMapper, Materializer));
-
- return MDTuple::get(Node->getContext(), Elts);
-}
-
-static Metadata *cloneMDLocation(const MDLocation *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer,
- bool IsDistinct) {
- return (IsDistinct ? MDLocation::getDistinct : MDLocation::get)(
- Node->getContext(), Node->getLine(), Node->getColumn(),
- mapMetadataOp(Node->getScope(), Cycles, VM, Flags, TypeMapper,
- Materializer),
- mapMetadataOp(Node->getInlinedAt(), Cycles, VM, Flags, TypeMapper,
- Materializer));
-}
-
-static Metadata *cloneMDNode(const UniquableMDNode *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer, bool IsDistinct) {
- switch (Node->getMetadataID()) {
- default:
- llvm_unreachable("Invalid UniquableMDNode subclass");
-#define HANDLE_UNIQUABLE_LEAF(CLASS) \
- case Metadata::CLASS##Kind: \
- return clone##CLASS(cast<CLASS>(Node), Cycles, VM, Flags, TypeMapper, \
- Materializer, IsDistinct);
-#include "llvm/IR/Metadata.def"
+/// \brief Remap nodes.
+///
+/// Insert \c NewNode in the value map, and then remap \c OldNode's operands.
+/// Assumes that \c NewNode is already a clone of \c OldNode.
+///
+/// \pre \c NewNode is a clone of \c OldNode.
+static bool remap(const MDNode *OldNode, MDNode *NewNode,
+ SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM,
+ RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(OldNode->getNumOperands() == NewNode->getNumOperands() &&
+ "Expected nodes to match");
+ assert(OldNode->isResolved() && "Expected resolved node");
+ assert(!NewNode->isUniqued() && "Expected non-uniqued node");
+
+ // Map the node upfront so it's available for cyclic references.
+ mapToMetadata(VM, OldNode, NewNode);
+ bool AnyChanged = false;
+ for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) {
+ Metadata *Old = OldNode->getOperand(I);
+ assert(NewNode->getOperand(I) == Old &&
+ "Expected old operands to already be in place");
+
+ Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags,
+ TypeMapper, Materializer);
+ if (Old != New) {
+ AnyChanged = true;
+ NewNode->replaceOperandWith(I, New);
+ }
}
-}
-static void
-trackCyclesUnderDistinct(const UniquableMDNode *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles) {
- // Track any cycles beneath this node.
- for (Metadata *Op : Node->operands())
- if (auto *N = dyn_cast_or_null<UniquableMDNode>(Op))
- if (!N->isResolved())
- Cycles.push_back(N);
+ return AnyChanged;
}
/// \brief Map a distinct MDNode.
///
/// Distinct nodes are not uniqued, so they must always recreated.
-static Metadata *mapDistinctNode(const UniquableMDNode *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
+static Metadata *mapDistinctNode(const MDNode *Node,
+ SmallVectorImpl<MDNode *> &Cycles,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(Node->isDistinct() && "Expected distinct node");
- // Optimization for MDTuples.
- if (isa<MDTuple>(Node)) {
- // Create the node first so it's available for cyclical references.
- SmallVector<Metadata *, 4> EmptyOps(Node->getNumOperands());
- MDTuple *NewMD = MDTuple::getDistinct(Node->getContext(), EmptyOps);
- mapToMetadata(VM, Node, NewMD);
-
- // Fix the operands.
- for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
- NewMD->replaceOperandWith(I,
- mapMetadataOp(Node->getOperand(I), Cycles, VM,
- Flags, TypeMapper, Materializer));
-
- trackCyclesUnderDistinct(NewMD, Cycles);
- return NewMD;
- }
+ MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone());
+ remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer);
- // In general we need a dummy node, since whether the operands are null can
- // affect the size of the node.
- std::unique_ptr<MDNodeFwdDecl> Dummy(
- MDNode::getTemporary(Node->getContext(), None));
- mapToMetadata(VM, Node, Dummy.get());
- auto *NewMD = cast<UniquableMDNode>(cloneMDNode(Node, Cycles, VM, Flags,
- TypeMapper, Materializer,
- /* IsDistinct */ true));
- Dummy->replaceAllUsesWith(NewMD);
- trackCyclesUnderDistinct(NewMD, Cycles);
- return mapToMetadata(VM, Node, NewMD);
-}
+ // Track any cycles beneath this node.
+ for (Metadata *Op : NewMD->operands())
+ if (auto *Node = dyn_cast_or_null<MDNode>(Op))
+ if (!Node->isResolved())
+ Cycles.push_back(Node);
-/// \brief Check whether a uniqued node needs to be remapped.
-///
-/// Check whether a uniqued node needs to be remapped (due to any operands
-/// changing).
-static bool shouldRemapUniquedNode(const UniquableMDNode *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- // Check all operands to see if any need to be remapped.
- for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
- Metadata *Op = Node->getOperand(I);
- if (Op != mapMetadataOp(Op, Cycles, VM, Flags, TypeMapper, Materializer))
- return true;
- }
- return false;
+ return NewMD;
}
/// \brief Map a uniqued MDNode.
///
/// Uniqued nodes may not need to be recreated (they may map to themselves).
-static Metadata *mapUniquedNode(const UniquableMDNode *Node,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
+static Metadata *mapUniquedNode(const MDNode *Node,
+ SmallVectorImpl<MDNode *> &Cycles,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
- assert(!Node->isDistinct() && "Expected uniqued node");
-
- // Create a dummy node in case we have a metadata cycle.
- MDNodeFwdDecl *Dummy = MDNode::getTemporary(Node->getContext(), None);
- mapToMetadata(VM, Node, Dummy);
-
- // Check all operands to see if any need to be remapped.
- if (!shouldRemapUniquedNode(Node, Cycles, VM, Flags, TypeMapper,
- Materializer)) {
- // Use an identity mapping.
- mapToSelf(VM, Node);
- MDNode::deleteTemporary(Dummy);
- return const_cast<Metadata *>(static_cast<const Metadata *>(Node));
- }
+ assert(Node->isUniqued() && "Expected uniqued node");
- // At least one operand needs remapping.
- Metadata *NewMD =
- cloneMDNode(Node, Cycles, VM, Flags, TypeMapper, Materializer,
- /* IsDistinct */ false);
- Dummy->replaceAllUsesWith(NewMD);
- MDNode::deleteTemporary(Dummy);
- return mapToMetadata(VM, Node, NewMD);
+ // Create a temporary node upfront in case we have a metadata cycle.
+ auto ClonedMD = Node->clone();
+ if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer))
+ // No operands changed, so use the identity mapping.
+ return mapToSelf(VM, Node);
+
+ // At least one operand has changed, so uniquify the cloned node.
+ return mapToMetadata(VM, Node,
+ MDNode::replaceWithUniqued(std::move(ClonedMD)));
}
static Metadata *MapMetadataImpl(const Metadata *MD,
- SmallVectorImpl<UniquableMDNode *> &Cycles,
+ SmallVectorImpl<MDNode *> &Cycles,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
@@ -364,14 +292,18 @@ static Metadata *MapMetadataImpl(const Metadata *MD,
return nullptr;
}
- const UniquableMDNode *Node = cast<UniquableMDNode>(MD);
- assert(Node->isResolved() && "Unexpected unresolved node");
+ // Note: this cast precedes the Flags check so we always get its associated
+ // assertion.
+ const MDNode *Node = cast<MDNode>(MD);
// If this is a module-level metadata and we know that nothing at the
// module level is changing, then use an identity mapping.
if (Flags & RF_NoModuleLevelChanges)
return mapToSelf(VM, MD);
+ // Require resolved nodes whenever metadata might be remapped.
+ assert(Node->isResolved() && "Unexpected unresolved node");
+
if (Node->isDistinct())
return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
@@ -381,17 +313,19 @@ static Metadata *MapMetadataImpl(const Metadata *MD,
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
- SmallVector<UniquableMDNode *, 8> Cycles;
+ SmallVector<MDNode *, 8> Cycles;
Metadata *NewMD =
MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer);
// Resolve cycles underneath MD.
if (NewMD && NewMD != MD) {
- if (auto *N = dyn_cast<UniquableMDNode>(NewMD))
- N->resolveCycles();
+ if (auto *N = dyn_cast<MDNode>(NewMD))
+ if (!N->isResolved())
+ N->resolveCycles();
- for (UniquableMDNode *N : Cycles)
- N->resolveCycles();
+ for (MDNode *N : Cycles)
+ if (!N->isResolved())
+ N->resolveCycles();
} else {
// Shouldn't get unresolved cycles if nothing was remapped.
assert(Cycles.empty() && "Expected no unresolved cycles");
@@ -450,7 +384,24 @@ void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
I->setMetadata(MI->first, New);
}
+ if (!TypeMapper)
+ return;
+
// If the instruction's type is being remapped, do so now.
- if (TypeMapper)
- I->mutateType(TypeMapper->remapType(I->getType()));
+ if (auto CS = CallSite(I)) {
+ SmallVector<Type *, 3> Tys;
+ FunctionType *FTy = CS.getFunctionType();
+ Tys.reserve(FTy->getNumParams());
+ for (Type *Ty : FTy->params())
+ Tys.push_back(TypeMapper->remapType(Ty));
+ CS.mutateFunctionType(FunctionType::get(
+ TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
+ return;
+ }
+ if (auto *AI = dyn_cast<AllocaInst>(I))
+ AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
+ GEP->setSourceElementType(
+ TypeMapper->remapType(GEP->getSourceElementType()));
+ I->mutateType(TypeMapper->remapType(I->getType()));
}
OpenPOWER on IntegriCloud