diff options
author | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
commit | 9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch) | |
tree | c978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/Transforms/Scalar/SROA.cpp | |
parent | 03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff) | |
download | FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz |
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.
The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.
Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>
MFC 262121 (by emaste):
Update lldb for clang/llvm 3.4 import
This commit largely restores the lldb source to the upstream r196259
snapshot with the addition of threaded inferior support and a few bug
fixes.
Specific upstream lldb revisions restored include:
SVN git
181387 779e6ac
181703 7bef4e2
182099 b31044e
182650 f2dcf35
182683 0d91b80
183862 15c1774
183929 99447a6
184177 0b2934b
184948 4dc3761
184954 007e7bc
186990 eebd175
Sponsored by: DARPA, AFRL
MFC 262186 (by emaste):
Fix mismerge in r262121
A break statement was lost in the merge. The error had no functional
impact, but restore it to reduce the diff against upstream.
MFC 262303:
Pull in r197521 from upstream clang trunk (by rdivacky):
Use the integrated assembler by default on FreeBSD/ppc and ppc64.
Requested by: jhibbits
MFC 262611:
Pull in r196874 from upstream llvm trunk:
Fix a crash that occurs when PWD is invalid.
MCJIT needs to be able to run in hostile environments, even when PWD
is invalid. There's no need to crash MCJIT in this case.
The obvious fix is to simply leave MCContext's CompilationDir empty
when PWD can't be determined. This way, MCJIT clients,
and other clients that link with LLVM don't need a valid working directory.
If we do want to guarantee valid CompilationDir, that should be done
only for clients of getCompilationDir(). This is as simple as checking
for an empty string.
The only current use of getCompilationDir is EmitGenDwarfInfo, which
won't conceivably run with an invalid working dir. However, in the
purely hypothetically and untestable case that this happens, the
AT_comp_dir will be omitted from the compilation_unit DIE.
This should help fix assertions occurring with ports-mgmt/tinderbox,
when it is using jails, and sometimes invalidates clang's current
working directory.
Reported by: decke
MFC 262809:
Pull in r203007 from upstream clang trunk:
Don't produce an alias between destructors with different calling conventions.
Fixes pr19007.
(Please note that is an LLVM PR identifier, not a FreeBSD one.)
This should fix Firefox and/or libxul crashes (due to problems with
regparm/stdcall calling conventions) on i386.
Reported by: multiple users on freebsd-current
PR: bin/187103
MFC 263048:
Repair recognition of "CC" as an alias for the C++ compiler, since it
was silently broken by upstream for a Windows-specific use-case.
Apparently some versions of CMake still rely on this archaic feature...
Reported by: rakuco
MFC 263049:
Garbage collect the old way of adding the libstdc++ include directories
in clang's InitHeaderSearch.cpp. This has been superseded by David
Chisnall's commit in r255321.
Moreover, if libc++ is used, the libstdc++ include directories should
not be in the search path at all. These directories are now only used
if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SROA.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/SROA.cpp | 2802 |
1 files changed, 1314 insertions, 1488 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp index d073e78..9f3fc83 100644 --- a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp @@ -47,6 +47,7 @@ #include "llvm/InstVisitor.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" @@ -58,9 +59,9 @@ using namespace llvm; STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); -STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions"); -STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses found"); -STATISTIC(MaxPartitionUsesPerAlloca, "Maximum number of partition uses"); +STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); +STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); +STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); @@ -110,17 +111,39 @@ typedef llvm::IRBuilder<false, ConstantFolder, } namespace { -/// \brief A common base class for representing a half-open byte range. -struct ByteRange { +/// \brief A used slice of an alloca. +/// +/// This structure represents a slice of an alloca used by some instruction. It +/// stores both the begin and end offsets of this use, a pointer to the use +/// itself, and a flag indicating whether we can classify the use as splittable +/// or not when forming partitions of the alloca. +class Slice { /// \brief The beginning offset of the range. uint64_t BeginOffset; /// \brief The ending offset, not included in the range. uint64_t EndOffset; - ByteRange() : BeginOffset(), EndOffset() {} - ByteRange(uint64_t BeginOffset, uint64_t EndOffset) - : BeginOffset(BeginOffset), EndOffset(EndOffset) {} + /// \brief Storage for both the use of this slice and whether it can be + /// split. + PointerIntPair<Use *, 1, bool> UseAndIsSplittable; + +public: + Slice() : BeginOffset(), EndOffset() {} + Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) + : BeginOffset(BeginOffset), EndOffset(EndOffset), + UseAndIsSplittable(U, IsSplittable) {} + + uint64_t beginOffset() const { return BeginOffset; } + uint64_t endOffset() const { return EndOffset; } + + bool isSplittable() const { return UseAndIsSplittable.getInt(); } + void makeUnsplittable() { UseAndIsSplittable.setInt(false); } + + Use *getUse() const { return UseAndIsSplittable.getPointer(); } + + bool isDead() const { return getUse() == 0; } + void kill() { UseAndIsSplittable.setPointer(0); } /// \brief Support for ordering ranges. /// @@ -128,173 +151,67 @@ struct ByteRange { /// always increasing, and within equal start offsets, the end offsets are /// decreasing. Thus the spanning range comes first in a cluster with the /// same start position. - bool operator<(const ByteRange &RHS) const { - if (BeginOffset < RHS.BeginOffset) return true; - if (BeginOffset > RHS.BeginOffset) return false; - if (EndOffset > RHS.EndOffset) return true; + bool operator<(const Slice &RHS) const { + if (beginOffset() < RHS.beginOffset()) return true; + if (beginOffset() > RHS.beginOffset()) return false; + if (isSplittable() != RHS.isSplittable()) return !isSplittable(); + if (endOffset() > RHS.endOffset()) return true; return false; } /// \brief Support comparison with a single offset to allow binary searches. - friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) { - return LHS.BeginOffset < RHSOffset; + friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, + uint64_t RHSOffset) { + return LHS.beginOffset() < RHSOffset; } - friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, - const ByteRange &RHS) { - return LHSOffset < RHS.BeginOffset; + const Slice &RHS) { + return LHSOffset < RHS.beginOffset(); } - bool operator==(const ByteRange &RHS) const { - return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; + bool operator==(const Slice &RHS) const { + return isSplittable() == RHS.isSplittable() && + beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); } - bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } + bool operator!=(const Slice &RHS) const { return !operator==(RHS); } }; - -/// \brief A partition of an alloca. -/// -/// This structure represents a contiguous partition of the alloca. These are -/// formed by examining the uses of the alloca. During formation, they may -/// overlap but once an AllocaPartitioning is built, the Partitions within it -/// are all disjoint. -struct Partition : public ByteRange { - /// \brief Whether this partition is splittable into smaller partitions. - /// - /// We flag partitions as splittable when they are formed entirely due to - /// accesses by trivially splittable operations such as memset and memcpy. - bool IsSplittable; - - /// \brief Test whether a partition has been marked as dead. - bool isDead() const { - if (BeginOffset == UINT64_MAX) { - assert(EndOffset == UINT64_MAX); - return true; - } - return false; - } - - /// \brief Kill a partition. - /// This is accomplished by setting both its beginning and end offset to - /// the maximum possible value. - void kill() { - assert(!isDead() && "He's Dead, Jim!"); - BeginOffset = EndOffset = UINT64_MAX; - } - - Partition() : ByteRange(), IsSplittable() {} - Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) - : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} -}; - -/// \brief A particular use of a partition of the alloca. -/// -/// This structure is used to associate uses of a partition with it. They -/// mark the range of bytes which are referenced by a particular instruction, -/// and includes a handle to the user itself and the pointer value in use. -/// The bounds of these uses are determined by intersecting the bounds of the -/// memory use itself with a particular partition. As a consequence there is -/// intentionally overlap between various uses of the same partition. -class PartitionUse : public ByteRange { - /// \brief Combined storage for both the Use* and split state. - PointerIntPair<Use*, 1, bool> UsePtrAndIsSplit; - -public: - PartitionUse() : ByteRange(), UsePtrAndIsSplit() {} - PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U, - bool IsSplit) - : ByteRange(BeginOffset, EndOffset), UsePtrAndIsSplit(U, IsSplit) {} - - /// \brief The use in question. Provides access to both user and used value. - /// - /// Note that this may be null if the partition use is *dead*, that is, it - /// should be ignored. - Use *getUse() const { return UsePtrAndIsSplit.getPointer(); } - - /// \brief Set the use for this partition use range. - void setUse(Use *U) { UsePtrAndIsSplit.setPointer(U); } - - /// \brief Whether this use is split across multiple partitions. - bool isSplit() const { return UsePtrAndIsSplit.getInt(); } -}; -} +} // end anonymous namespace namespace llvm { -template <> struct isPodLike<Partition> : llvm::true_type {}; -template <> struct isPodLike<PartitionUse> : llvm::true_type {}; +template <typename T> struct isPodLike; +template <> struct isPodLike<Slice> { + static const bool value = true; +}; } namespace { -/// \brief Alloca partitioning representation. +/// \brief Representation of the alloca slices. /// -/// This class represents a partitioning of an alloca into slices, and -/// information about the nature of uses of each slice of the alloca. The goal -/// is that this information is sufficient to decide if and how to split the -/// alloca apart and replace slices with scalars. It is also intended that this -/// structure can capture the relevant information needed both to decide about -/// and to enact these transformations. -class AllocaPartitioning { +/// This class represents the slices of an alloca which are formed by its +/// various uses. If a pointer escapes, we can't fully build a representation +/// for the slices used and we reflect that in this structure. The uses are +/// stored, sorted by increasing beginning offset and with unsplittable slices +/// starting at a particular offset before splittable slices. +class AllocaSlices { public: - /// \brief Construct a partitioning of a particular alloca. - /// - /// Construction does most of the work for partitioning the alloca. This - /// performs the necessary walks of users and builds a partitioning from it. - AllocaPartitioning(const DataLayout &TD, AllocaInst &AI); + /// \brief Construct the slices of a particular alloca. + AllocaSlices(const DataLayout &DL, AllocaInst &AI); /// \brief Test whether a pointer to the allocation escapes our analysis. /// - /// If this is true, the partitioning is never fully built and should be + /// If this is true, the slices are never fully built and should be /// ignored. bool isEscaped() const { return PointerEscapingInstr; } - /// \brief Support for iterating over the partitions. + /// \brief Support for iterating over the slices. /// @{ - typedef SmallVectorImpl<Partition>::iterator iterator; - iterator begin() { return Partitions.begin(); } - iterator end() { return Partitions.end(); } + typedef SmallVectorImpl<Slice>::iterator iterator; + iterator begin() { return Slices.begin(); } + iterator end() { return Slices.end(); } - typedef SmallVectorImpl<Partition>::const_iterator const_iterator; - const_iterator begin() const { return Partitions.begin(); } - const_iterator end() const { return Partitions.end(); } - /// @} - - /// \brief Support for iterating over and manipulating a particular - /// partition's uses. - /// - /// The iteration support provided for uses is more limited, but also - /// includes some manipulation routines to support rewriting the uses of - /// partitions during SROA. - /// @{ - typedef SmallVectorImpl<PartitionUse>::iterator use_iterator; - use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } - use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } - use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } - use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } - - typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator; - const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } - const_use_iterator use_begin(const_iterator I) const { - return Uses[I - begin()].begin(); - } - const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } - const_use_iterator use_end(const_iterator I) const { - return Uses[I - begin()].end(); - } - - unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); } - unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); } - const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const { - return Uses[PIdx][UIdx]; - } - const PartitionUse &getUse(const_iterator I, unsigned UIdx) const { - return Uses[I - begin()][UIdx]; - } - - void use_push_back(unsigned Idx, const PartitionUse &PU) { - Uses[Idx].push_back(PU); - } - void use_push_back(const_iterator I, const PartitionUse &PU) { - Uses[I - begin()].push_back(PU); - } + typedef SmallVectorImpl<Slice>::const_iterator const_iterator; + const_iterator begin() const { return Slices.begin(); } + const_iterator end() const { return Slices.end(); } /// @} /// \brief Allow iterating the dead users for this alloca. @@ -320,66 +237,12 @@ public: dead_op_iterator dead_op_end() const { return DeadOperands.end(); } /// @} - /// \brief MemTransferInst auxiliary data. - /// This struct provides some auxiliary data about memory transfer - /// intrinsics such as memcpy and memmove. These intrinsics can use two - /// different ranges within the same alloca, and provide other challenges to - /// correctly represent. We stash extra data to help us untangle this - /// after the partitioning is complete. - struct MemTransferOffsets { - /// The destination begin and end offsets when the destination is within - /// this alloca. If the end offset is zero the destination is not within - /// this alloca. - uint64_t DestBegin, DestEnd; - - /// The source begin and end offsets when the source is within this alloca. - /// If the end offset is zero, the source is not within this alloca. - uint64_t SourceBegin, SourceEnd; - - /// Flag for whether an alloca is splittable. - bool IsSplittable; - }; - MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { - return MemTransferInstData.lookup(&II); - } - - /// \brief Map from a PHI or select operand back to a partition. - /// - /// When manipulating PHI nodes or selects, they can use more than one - /// partition of an alloca. We store a special mapping to allow finding the - /// partition referenced by each of these operands, if any. - iterator findPartitionForPHIOrSelectOperand(Use *U) { - SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt - = PHIOrSelectOpMap.find(U); - if (MapIt == PHIOrSelectOpMap.end()) - return end(); - - return begin() + MapIt->second.first; - } - - /// \brief Map from a PHI or select operand back to the specific use of - /// a partition. - /// - /// Similar to mapping these operands back to the partitions, this maps - /// directly to the use structure of that partition. - use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) { - SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt - = PHIOrSelectOpMap.find(U); - assert(MapIt != PHIOrSelectOpMap.end()); - return Uses[MapIt->second.first].begin() + MapIt->second.second; - } - - /// \brief Compute a common type among the uses of a particular partition. - /// - /// This routines walks all of the uses of a particular partition and tries - /// to find a common type between them. Untyped operations such as memset and - /// memcpy are ignored. - Type *getCommonType(iterator I) const; - #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; - void printUsers(raw_ostream &OS, const_iterator I, + void printSlice(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; + void printUse(raw_ostream &OS, const_iterator I, + StringRef Indent = " ") const; void print(raw_ostream &OS) const; void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; @@ -387,47 +250,36 @@ public: private: template <typename DerivedT, typename RetT = void> class BuilderBase; - class PartitionBuilder; - friend class AllocaPartitioning::PartitionBuilder; - class UseBuilder; - friend class AllocaPartitioning::UseBuilder; + class SliceBuilder; + friend class AllocaSlices::SliceBuilder; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// \brief Handle to alloca instruction to simplify method interfaces. AllocaInst &AI; #endif - /// \brief The instruction responsible for this alloca having no partitioning. + /// \brief The instruction responsible for this alloca not having a known set + /// of slices. /// /// When an instruction (potentially) escapes the pointer to the alloca, we - /// store a pointer to that here and abort trying to partition the alloca. - /// This will be null if the alloca is partitioned successfully. + /// store a pointer to that here and abort trying to form slices of the + /// alloca. This will be null if the alloca slices are analyzed successfully. Instruction *PointerEscapingInstr; - /// \brief The partitions of the alloca. + /// \brief The slices of the alloca. /// - /// We store a vector of the partitions over the alloca here. This vector is - /// sorted by increasing begin offset, and then by decreasing end offset. See - /// the Partition inner class for more details. Initially (during - /// construction) there are overlaps, but we form a disjoint sequence of - /// partitions while finishing construction and a fully constructed object is - /// expected to always have this as a disjoint space. - SmallVector<Partition, 8> Partitions; - - /// \brief The uses of the partitions. - /// - /// This is essentially a mapping from each partition to a list of uses of - /// that partition. The mapping is done with a Uses vector that has the exact - /// same number of entries as the partition vector. Each entry is itself - /// a vector of the uses. - SmallVector<SmallVector<PartitionUse, 2>, 8> Uses; + /// We store a vector of the slices formed by uses of the alloca here. This + /// vector is sorted by increasing begin offset, and then the unsplittable + /// slices before the splittable ones. See the Slice inner class for more + /// details. + SmallVector<Slice, 8> Slices; /// \brief Instructions which will become dead if we rewrite the alloca. /// - /// Note that these are not separated by partition. This is because we expect - /// a partitioned alloca to be completely rewritten or not rewritten at all. - /// If rewritten, all these instructions can simply be removed and replaced - /// with undef as they come from outside of the allocated space. + /// Note that these are not separated by slice. This is because we expect an + /// alloca to be completely rewritten or not rewritten at all. If rewritten, + /// all these instructions can simply be removed and replaced with undef as + /// they come from outside of the allocated space. SmallVector<Instruction *, 8> DeadUsers; /// \brief Operands which will become dead if we rewrite the alloca. @@ -439,26 +291,6 @@ private: /// want to swap this particular input for undef to simplify the use lists of /// the alloca. SmallVector<Use *, 8> DeadOperands; - - /// \brief The underlying storage for auxiliary memcpy and memset info. - SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData; - - /// \brief A side datastructure used when building up the partitions and uses. - /// - /// This mapping is only really used during the initial building of the - /// partitioning so that we can retain information about PHI and select nodes - /// processed. - SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes; - - /// \brief Auxiliary information for particular PHI or select operands. - SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap; - - /// \brief A utility routine called from the constructor. - /// - /// This does what it says on the tin. It is the key of the alloca partition - /// splitting and merging. After it is called we have the desired disjoint - /// collection of partitions. - void splitAndMergePartitions(); }; } @@ -474,29 +306,35 @@ static Value *foldSelectInst(SelectInst &SI) { return 0; } -/// \brief Builder for the alloca partitioning. +/// \brief Builder for the alloca slices. /// -/// This class builds an alloca partitioning by recursively visiting the uses -/// of an alloca and splitting the partitions for each load and store at each -/// offset. -class AllocaPartitioning::PartitionBuilder - : public PtrUseVisitor<PartitionBuilder> { - friend class PtrUseVisitor<PartitionBuilder>; - friend class InstVisitor<PartitionBuilder>; - typedef PtrUseVisitor<PartitionBuilder> Base; +/// This class builds a set of alloca slices by recursively visiting the uses +/// of an alloca and making a slice for each load and store at each offset. +class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { + friend class PtrUseVisitor<SliceBuilder>; + friend class InstVisitor<SliceBuilder>; + typedef PtrUseVisitor<SliceBuilder> Base; const uint64_t AllocSize; - AllocaPartitioning &P; + AllocaSlices &S; + + SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; + SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; - SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap; + /// \brief Set to de-duplicate dead instructions found in the use walk. + SmallPtrSet<Instruction *, 4> VisitedDeadInsts; public: - PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P) - : PtrUseVisitor<PartitionBuilder>(DL), - AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), - P(P) {} + SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S) + : PtrUseVisitor<SliceBuilder>(DL), + AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {} private: + void markAsDead(Instruction &I) { + if (VisitedDeadInsts.insert(&I)) + S.DeadUsers.push_back(&I); + } + void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, bool IsSplittable = false) { // Completely skip uses which have a zero size or start either before or @@ -505,9 +343,9 @@ private: DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset << " which has zero size or starts outside of the " << AllocSize << " byte alloca:\n" - << " alloca: " << P.AI << "\n" + << " alloca: " << S.AI << "\n" << " use: " << I << "\n"); - return; + return markAsDead(I); } uint64_t BeginOffset = Offset.getZExtValue(); @@ -523,13 +361,26 @@ private: if (Size > AllocSize - BeginOffset) { DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset << " to remain within the " << AllocSize << " byte alloca:\n" - << " alloca: " << P.AI << "\n" + << " alloca: " << S.AI << "\n" << " use: " << I << "\n"); EndOffset = AllocSize; } - Partition New(BeginOffset, EndOffset, IsSplittable); - P.Partitions.push_back(New); + S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); + } + + void visitBitCastInst(BitCastInst &BC) { + if (BC.use_empty()) + return markAsDead(BC); + + return Base::visitBitCastInst(BC); + } + + void visitGetElementPtrInst(GetElementPtrInst &GEPI) { + if (GEPI.use_empty()) + return markAsDead(GEPI); + + return Base::visitGetElementPtrInst(GEPI); } void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, @@ -580,9 +431,9 @@ private: DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset << " which extends past the end of the " << AllocSize << " byte alloca:\n" - << " alloca: " << P.AI << "\n" + << " alloca: " << S.AI << "\n" << " use: " << SI << "\n"); - return; + return markAsDead(SI); } assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && @@ -597,7 +448,7 @@ private: if ((Length && Length->getValue() == 0) || (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. - return; + return markAsDead(II); if (!IsOffsetKnown) return PI.setAborted(&II); @@ -613,7 +464,7 @@ private: if ((Length && Length->getValue() == 0) || (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) // Zero-length mem transfer intrinsics can be ignored entirely. - return; + return markAsDead(II); if (!IsOffsetKnown) return PI.setAborted(&II); @@ -622,63 +473,44 @@ private: uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; - MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; - - // Only intrinsics with a constant length can be split. - Offsets.IsSplittable = Length; + // Check for the special case where the same exact value is used for both + // source and dest. + if (*U == II.getRawDest() && *U == II.getRawSource()) { + // For non-volatile transfers this is a no-op. + if (!II.isVolatile()) + return markAsDead(II); - if (*U == II.getRawDest()) { - Offsets.DestBegin = RawOffset; - Offsets.DestEnd = RawOffset + Size; - } - if (*U == II.getRawSource()) { - Offsets.SourceBegin = RawOffset; - Offsets.SourceEnd = RawOffset + Size; + return insertUse(II, Offset, Size, /*IsSplittable=*/false); } - // If we have set up end offsets for both the source and the destination, - // we have found both sides of this transfer pointing at the same alloca. - bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd; - if (SeenBothEnds && II.getRawDest() != II.getRawSource()) { - unsigned PrevIdx = MemTransferPartitionMap[&II]; + // If we have seen both source and destination for a mem transfer, then + // they both point to the same alloca. + bool Inserted; + SmallDenseMap<Instruction *, unsigned>::iterator MTPI; + llvm::tie(MTPI, Inserted) = + MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); + unsigned PrevIdx = MTPI->second; + if (!Inserted) { + Slice &PrevP = S.Slices[PrevIdx]; // Check if the begin offsets match and this is a non-volatile transfer. // In that case, we can completely elide the transfer. - if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) { - P.Partitions[PrevIdx].kill(); - return; + if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { + PrevP.kill(); + return markAsDead(II); } // Otherwise we have an offset transfer within the same alloca. We can't // split those. - P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false; - } else if (SeenBothEnds) { - // Handle the case where this exact use provides both ends of the - // operation. - assert(II.getRawDest() == II.getRawSource()); - - // For non-volatile transfers this is a no-op. - if (!II.isVolatile()) - return; - - // Otherwise just suppress splitting. - Offsets.IsSplittable = false; + PrevP.makeUnsplittable(); } - // Insert the use now that we've fixed up the splittable nature. - insertUse(II, Offset, Size, Offsets.IsSplittable); - - // Setup the mapping from intrinsic to partition of we've not seen both - // ends of this transfer. - if (!SeenBothEnds) { - unsigned NewIdx = P.Partitions.size() - 1; - bool Inserted - = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second; - assert(Inserted && - "Already have intrinsic in map but haven't seen both ends"); - (void)Inserted; - } + insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); + + // Check that we ended up with a valid index in the map. + assert(S.Slices[PrevIdx].getUse()->getUser() == &II && + "Map index doesn't point back to a slice with this user."); } // Disable SRoA for any intrinsics except for lifetime invariants. @@ -702,7 +534,7 @@ private: Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { // We consider any PHI or select that results in a direct load or store of - // the same offset to be a viable use for partitioning purposes. These uses + // the same offset to be a viable use for slicing purposes. These uses // are considered unsplittable and the size is the maximum loaded or stored // size. SmallPtrSet<Instruction *, 4> Visited; @@ -747,234 +579,36 @@ private: void visitPHINode(PHINode &PN) { if (PN.use_empty()) - return; + return markAsDead(PN); if (!IsOffsetKnown) return PI.setAborted(&PN); // See if we already have computed info on this node. - std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN]; - if (PHIInfo.first) { - PHIInfo.second = true; - insertUse(PN, Offset, PHIInfo.first); - return; + uint64_t &PHISize = PHIOrSelectSizes[&PN]; + if (!PHISize) { + // This is a new PHI node, check for an unsafe use of the PHI node. + if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize)) + return PI.setAborted(UnsafeI); } - // Check for an unsafe use of the PHI node. - if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) - return PI.setAborted(UnsafeI); - - insertUse(PN, Offset, PHIInfo.first); - } - - void visitSelectInst(SelectInst &SI) { - if (SI.use_empty()) - return; - if (Value *Result = foldSelectInst(SI)) { - if (Result == *U) - // If the result of the constant fold will be the pointer, recurse - // through the select as if we had RAUW'ed it. - enqueueUsers(SI); - - return; - } - if (!IsOffsetKnown) - return PI.setAborted(&SI); - - // See if we already have computed info on this node. - std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI]; - if (SelectInfo.first) { - SelectInfo.second = true; - insertUse(SI, Offset, SelectInfo.first); - return; - } - - // Check for an unsafe use of the PHI node. - if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) - return PI.setAborted(UnsafeI); - - insertUse(SI, Offset, SelectInfo.first); - } - - /// \brief Disable SROA entirely if there are unhandled users of the alloca. - void visitInstruction(Instruction &I) { - PI.setAborted(&I); - } -}; - -/// \brief Use adder for the alloca partitioning. -/// -/// This class adds the uses of an alloca to all of the partitions which they -/// use. For splittable partitions, this can end up doing essentially a linear -/// walk of the partitions, but the number of steps remains bounded by the -/// total result instruction size: -/// - The number of partitions is a result of the number unsplittable -/// instructions using the alloca. -/// - The number of users of each partition is at worst the total number of -/// splittable instructions using the alloca. -/// Thus we will produce N * M instructions in the end, where N are the number -/// of unsplittable uses and M are the number of splittable. This visitor does -/// the exact same number of updates to the partitioning. -/// -/// In the more common case, this visitor will leverage the fact that the -/// partition space is pre-sorted, and do a logarithmic search for the -/// partition needed, making the total visit a classical ((N + M) * log(N)) -/// complexity operation. -class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> { - friend class PtrUseVisitor<UseBuilder>; - friend class InstVisitor<UseBuilder>; - typedef PtrUseVisitor<UseBuilder> Base; - - const uint64_t AllocSize; - AllocaPartitioning &P; - - /// \brief Set to de-duplicate dead instructions found in the use walk. - SmallPtrSet<Instruction *, 4> VisitedDeadInsts; - -public: - UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P) - : PtrUseVisitor<UseBuilder>(TD), - AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), - P(P) {} - -private: - void markAsDead(Instruction &I) { - if (VisitedDeadInsts.insert(&I)) - P.DeadUsers.push_back(&I); - } - - void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) { - // If the use has a zero size or extends outside of the allocation, record - // it as a dead use for elimination later. - if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) - return markAsDead(User); - - uint64_t BeginOffset = Offset.getZExtValue(); - uint64_t EndOffset = BeginOffset + Size; - - // Clamp the end offset to the end of the allocation. Note that this is - // formulated to handle even the case where "BeginOffset + Size" overflows. - assert(AllocSize >= BeginOffset); // Established above. - if (Size > AllocSize - BeginOffset) - EndOffset = AllocSize; - - // NB: This only works if we have zero overlapping partitions. - iterator I = std::lower_bound(P.begin(), P.end(), BeginOffset); - if (I != P.begin() && llvm::prior(I)->EndOffset > BeginOffset) - I = llvm::prior(I); - iterator E = P.end(); - bool IsSplit = llvm::next(I) != E && llvm::next(I)->BeginOffset < EndOffset; - for (; I != E && I->BeginOffset < EndOffset; ++I) { - PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset), - std::min(I->EndOffset, EndOffset), U, IsSplit); - P.use_push_back(I, NewPU); - if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser())) - P.PHIOrSelectOpMap[U] - = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); - } - } - - void visitBitCastInst(BitCastInst &BC) { - if (BC.use_empty()) - return markAsDead(BC); - - return Base::visitBitCastInst(BC); - } - - void visitGetElementPtrInst(GetElementPtrInst &GEPI) { - if (GEPI.use_empty()) - return markAsDead(GEPI); - - return Base::visitGetElementPtrInst(GEPI); - } - - void visitLoadInst(LoadInst &LI) { - assert(IsOffsetKnown); - uint64_t Size = DL.getTypeStoreSize(LI.getType()); - insertUse(LI, Offset, Size); - } - - void visitStoreInst(StoreInst &SI) { - assert(IsOffsetKnown); - uint64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType()); - - // If this memory access can be shown to *statically* extend outside the - // bounds of of the allocation, it's behavior is undefined, so simply - // ignore it. Note that this is more strict than the generic clamping - // behavior of insertUse. - if (Offset.isNegative() || Size > AllocSize || - Offset.ugt(AllocSize - Size)) - return markAsDead(SI); - - insertUse(SI, Offset, Size); - } - - void visitMemSetInst(MemSetInst &II) { - ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); - if ((Length && Length->getValue() == 0) || - (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) - return markAsDead(II); - - assert(IsOffsetKnown); - insertUse(II, Offset, Length ? Length->getLimitedValue() - : AllocSize - Offset.getLimitedValue()); - } - - void visitMemTransferInst(MemTransferInst &II) { - ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); - if ((Length && Length->getValue() == 0) || - (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) - return markAsDead(II); - - assert(IsOffsetKnown); - uint64_t Size = Length ? Length->getLimitedValue() - : AllocSize - Offset.getLimitedValue(); - - const MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; - if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd && - Offsets.DestBegin == Offsets.SourceBegin) - return markAsDead(II); // Skip identity transfers without side-effects. - - insertUse(II, Offset, Size); - } - - void visitIntrinsicInst(IntrinsicInst &II) { - assert(IsOffsetKnown); - assert(II.getIntrinsicID() == Intrinsic::lifetime_start || - II.getIntrinsicID() == Intrinsic::lifetime_end); - - ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); - insertUse(II, Offset, std::min(Length->getLimitedValue(), - AllocSize - Offset.getLimitedValue())); - } - - void insertPHIOrSelect(Instruction &User, const APInt &Offset) { - uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; - // For PHI and select operands outside the alloca, we can't nuke the entire // phi or select -- the other side might still be relevant, so we special // case them here and use a separate structure to track the operands // themselves which should be replaced with undef. - if ((Offset.isNegative() && Offset.uge(Size)) || + // FIXME: This should instead be escaped in the event we're instrumenting + // for address sanitization. + if ((Offset.isNegative() && (-Offset).uge(PHISize)) || (!Offset.isNegative() && Offset.uge(AllocSize))) { - P.DeadOperands.push_back(U); + S.DeadOperands.push_back(U); return; } - insertUse(User, Offset, Size); - } - - void visitPHINode(PHINode &PN) { - if (PN.use_empty()) - return markAsDead(PN); - - assert(IsOffsetKnown); - insertPHIOrSelect(PN, Offset); + insertUse(PN, Offset, PHISize); } void visitSelectInst(SelectInst &SI) { if (SI.use_empty()) return markAsDead(SI); - if (Value *Result = foldSelectInst(SI)) { if (Result == *U) // If the result of the constant fold will be the pointer, recurse @@ -983,276 +617,106 @@ private: else // Otherwise the operand to the select is dead, and we can replace it // with undef. - P.DeadOperands.push_back(U); + S.DeadOperands.push_back(U); return; } + if (!IsOffsetKnown) + return PI.setAborted(&SI); - assert(IsOffsetKnown); - insertPHIOrSelect(SI, Offset); - } - - /// \brief Unreachable, we've already visited the alloca once. - void visitInstruction(Instruction &I) { - llvm_unreachable("Unhandled instruction in use builder."); - } -}; - -void AllocaPartitioning::splitAndMergePartitions() { - size_t NumDeadPartitions = 0; - - // Track the range of splittable partitions that we pass when accumulating - // overlapping unsplittable partitions. - uint64_t SplitEndOffset = 0ull; - - Partition New(0ull, 0ull, false); - - for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { - ++j; - - if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { - assert(New.BeginOffset == New.EndOffset); - New = Partitions[i]; - } else { - assert(New.IsSplittable); - New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); - } - assert(New.BeginOffset != New.EndOffset); - - // Scan the overlapping partitions. - while (j != e && New.EndOffset > Partitions[j].BeginOffset) { - // If the new partition we are forming is splittable, stop at the first - // unsplittable partition. - if (New.IsSplittable && !Partitions[j].IsSplittable) - break; - - // Grow the new partition to include any equally splittable range. 'j' is - // always equally splittable when New is splittable, but when New is not - // splittable, we may subsume some (or part of some) splitable partition - // without growing the new one. - if (New.IsSplittable == Partitions[j].IsSplittable) { - New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); - } else { - assert(!New.IsSplittable); - assert(Partitions[j].IsSplittable); - SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); - } - - Partitions[j].kill(); - ++NumDeadPartitions; - ++j; - } - - // If the new partition is splittable, chop off the end as soon as the - // unsplittable subsequent partition starts and ensure we eventually cover - // the splittable area. - if (j != e && New.IsSplittable) { - SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); - New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); + // See if we already have computed info on this node. + uint64_t &SelectSize = PHIOrSelectSizes[&SI]; + if (!SelectSize) { + // This is a new Select, check for an unsafe use of it. + if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize)) + return PI.setAborted(UnsafeI); } - // Add the new partition if it differs from the original one and is - // non-empty. We can end up with an empty partition here if it was - // splittable but there is an unsplittable one that starts at the same - // offset. - if (New != Partitions[i]) { - if (New.BeginOffset != New.EndOffset) - Partitions.push_back(New); - // Mark the old one for removal. - Partitions[i].kill(); - ++NumDeadPartitions; + // For PHI and select operands outside the alloca, we can't nuke the entire + // phi or select -- the other side might still be relevant, so we special + // case them here and use a separate structure to track the operands + // themselves which should be replaced with undef. + // FIXME: This should instead be escaped in the event we're instrumenting + // for address sanitization. + if ((Offset.isNegative() && Offset.uge(SelectSize)) || + (!Offset.isNegative() && Offset.uge(AllocSize))) { + S.DeadOperands.push_back(U); + return; } - New.BeginOffset = New.EndOffset; - if (!New.IsSplittable) { - New.EndOffset = std::max(New.EndOffset, SplitEndOffset); - if (j != e && !Partitions[j].IsSplittable) - New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); - New.IsSplittable = true; - // If there is a trailing splittable partition which won't be fused into - // the next splittable partition go ahead and add it onto the partitions - // list. - if (New.BeginOffset < New.EndOffset && - (j == e || !Partitions[j].IsSplittable || - New.EndOffset < Partitions[j].BeginOffset)) { - Partitions.push_back(New); - New.BeginOffset = New.EndOffset = 0ull; - } - } + insertUse(SI, Offset, SelectSize); } - // Re-sort the partitions now that they have been split and merged into - // disjoint set of partitions. Also remove any of the dead partitions we've - // replaced in the process. - std::sort(Partitions.begin(), Partitions.end()); - if (NumDeadPartitions) { - assert(Partitions.back().isDead()); - assert((ptrdiff_t)NumDeadPartitions == - std::count(Partitions.begin(), Partitions.end(), Partitions.back())); + /// \brief Disable SROA entirely if there are unhandled users of the alloca. + void visitInstruction(Instruction &I) { + PI.setAborted(&I); } - Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); -} +}; -AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI) +AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) AI(AI), #endif PointerEscapingInstr(0) { - PartitionBuilder PB(TD, AI, *this); - PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI); + SliceBuilder PB(DL, AI, *this); + SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); if (PtrI.isEscaped() || PtrI.isAborted()) { // FIXME: We should sink the escape vs. abort info into the caller nicely, - // possibly by just storing the PtrInfo in the AllocaPartitioning. + // possibly by just storing the PtrInfo in the AllocaSlices. PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() : PtrI.getAbortingInst(); assert(PointerEscapingInstr && "Did not track a bad instruction"); return; } + Slices.erase(std::remove_if(Slices.begin(), Slices.end(), + std::mem_fun_ref(&Slice::isDead)), + Slices.end()); + // Sort the uses. This arranges for the offsets to be in ascending order, // and the sizes to be in descending order. - std::sort(Partitions.begin(), Partitions.end()); - - // Remove any partitions from the back which are marked as dead. - while (!Partitions.empty() && Partitions.back().isDead()) - Partitions.pop_back(); - - if (Partitions.size() > 1) { - // Intersect splittability for all partitions with equal offsets and sizes. - // Then remove all but the first so that we have a sequence of non-equal but - // potentially overlapping partitions. - for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; - I = J) { - ++J; - while (J != E && *I == *J) { - I->IsSplittable &= J->IsSplittable; - ++J; - } - } - Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), - Partitions.end()); - - // Split splittable and merge unsplittable partitions into a disjoint set - // of partitions over the used space of the allocation. - splitAndMergePartitions(); - } - - // Record how many partitions we end up with. - NumAllocaPartitions += Partitions.size(); - MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca); - - // Now build up the user lists for each of these disjoint partitions by - // re-walking the recursive users of the alloca. - Uses.resize(Partitions.size()); - UseBuilder UB(TD, AI, *this); - PtrI = UB.visitPtr(AI); - assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!"); - assert(!PtrI.isAborted() && "Early aborted the visit of the pointer."); - - unsigned NumUses = 0; -#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) - for (unsigned Idx = 0, Size = Uses.size(); Idx != Size; ++Idx) - NumUses += Uses[Idx].size(); -#endif - NumAllocaPartitionUses += NumUses; - MaxPartitionUsesPerAlloca = std::max<unsigned>(NumUses, MaxPartitionUsesPerAlloca); + std::sort(Slices.begin(), Slices.end()); } -Type *AllocaPartitioning::getCommonType(iterator I) const { - Type *Ty = 0; - for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { - Use *U = UI->getUse(); - if (!U) - continue; // Skip dead uses. - if (isa<IntrinsicInst>(*U->getUser())) - continue; - if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) - continue; - - Type *UserTy = 0; - if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) - UserTy = LI->getType(); - else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) - UserTy = SI->getValueOperand()->getType(); - else - return 0; // Bail if we have weird uses. - - if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) { - // If the type is larger than the partition, skip it. We only encounter - // this for split integer operations where we want to use the type of the - // entity causing the split. - if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8) - continue; - - // If we have found an integer type use covering the alloca, use that - // regardless of the other types, as integers are often used for a "bucket - // of bits" type. - return ITy; - } - - if (Ty && Ty != UserTy) - return 0; +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - Ty = UserTy; - } - return Ty; +void AllocaSlices::print(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + printSlice(OS, I, Indent); + printUse(OS, I, Indent); } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - -void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, - StringRef Indent) const { - OS << Indent << "partition #" << (I - begin()) - << " [" << I->BeginOffset << "," << I->EndOffset << ")" - << (I->IsSplittable ? " (splittable)" : "") - << (Uses[I - begin()].empty() ? " (zero uses)" : "") - << "\n"; +void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" + << " slice #" << (I - begin()) + << (I->isSplittable() ? " (splittable)" : "") << "\n"; } -void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, - StringRef Indent) const { - for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { - if (!UI->getUse()) - continue; // Skip dead uses. - OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " - << "used by: " << *UI->getUse()->getUser() << "\n"; - if (MemTransferInst *II = - dyn_cast<MemTransferInst>(UI->getUse()->getUser())) { - const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); - bool IsDest; - if (!MTO.IsSplittable) - IsDest = UI->BeginOffset == MTO.DestBegin; - else - IsDest = MTO.DestBegin != 0u; - OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " - << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) - << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; - } - } +void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; } -void AllocaPartitioning::print(raw_ostream &OS) const { +void AllocaSlices::print(raw_ostream &OS) const { if (PointerEscapingInstr) { - OS << "No partitioning for alloca: " << AI << "\n" + OS << "Can't analyze slices for alloca: " << AI << "\n" << " A pointer to this alloca escaped by:\n" << " " << *PointerEscapingInstr << "\n"; return; } - OS << "Partitioning of alloca: " << AI << "\n"; - for (const_iterator I = begin(), E = end(); I != E; ++I) { + OS << "Slices of alloca: " << AI << "\n"; + for (const_iterator I = begin(), E = end(); I != E; ++I) print(OS, I); - printUsers(OS, I); - } } -void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } -void AllocaPartitioning::dump() const { print(dbgs()); } +void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); } +void AllocaSlices::dump() const { print(dbgs()); } #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - namespace { /// \brief Implementation of LoadAndStorePromoter for promoting allocas. /// @@ -1269,12 +733,13 @@ class AllocaPromoter : public LoadAndStorePromoter { SmallVector<DbgValueInst *, 4> DVIs; public: - AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, + AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S, AllocaInst &AI, DIBuilder &DIB) - : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} + : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} void run(const SmallVectorImpl<Instruction*> &Insts) { - // Remember which alloca we're promoting (for isInstInList). + // Retain the debug information attached to the alloca for use when + // rewriting loads and stores. if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { for (Value::use_iterator UI = DebugNode->use_begin(), UE = DebugNode->use_end(); @@ -1286,7 +751,9 @@ public: } LoadAndStorePromoter::run(Insts); - AI.eraseFromParent(); + + // While we have the debug information, clear it off of the alloca. The + // caller takes care of deleting the alloca. while (!DDIs.empty()) DDIs.pop_back_val()->eraseFromParent(); while (!DVIs.empty()) @@ -1295,13 +762,34 @@ public: virtual bool isInstInList(Instruction *I, const SmallVectorImpl<Instruction*> &Insts) const { + Value *Ptr; if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->getOperand(0) == &AI; - return cast<StoreInst>(I)->getPointerOperand() == &AI; + Ptr = LI->getOperand(0); + else + Ptr = cast<StoreInst>(I)->getPointerOperand(); + + // Only used to detect cycles, which will be rare and quickly found as + // we're walking up a chain of defs rather than down through uses. + SmallPtrSet<Value *, 4> Visited; + + do { + if (Ptr == &AI) + return true; + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) + Ptr = BCI->getOperand(0); + else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) + Ptr = GEPI->getPointerOperand(); + else + return false; + + } while (Visited.insert(Ptr)); + + return false; } virtual void updateDebugInfo(Instruction *Inst) const { - for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), + for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), E = DDIs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) @@ -1309,7 +797,7 @@ public: else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) ConvertDebugDeclareToDebugValue(DDI, LI, DIB); } - for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), + for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; Value *Arg = 0; @@ -1360,7 +848,7 @@ class SROA : public FunctionPass { const bool RequiresDomTree; LLVMContext *C; - const DataLayout *TD; + const DataLayout *DL; DominatorTree *DT; /// \brief Worklist of alloca instructions to simplify. @@ -1390,10 +878,25 @@ class SROA : public FunctionPass { /// \brief A collection of alloca instructions we can directly promote. std::vector<AllocaInst *> PromotableAllocas; + /// \brief A worklist of PHIs to speculate prior to promoting allocas. + /// + /// All of these PHIs have been checked for the safety of speculation and by + /// being speculated will allow promoting allocas currently in the promotable + /// queue. + SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs; + + /// \brief A worklist of select instructions to speculate prior to promoting + /// allocas. + /// + /// All of these select instructions have been checked for the safety of + /// speculation and by being speculated will allow promoting allocas + /// currently in the promotable queue. + SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects; + public: SROA(bool RequiresDomTree = true) : FunctionPass(ID), RequiresDomTree(RequiresDomTree), - C(0), TD(0), DT(0) { + C(0), DL(0), DT(0) { initializeSROAPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); @@ -1404,13 +907,13 @@ public: private: friend class PHIOrSelectSpeculator; - friend class AllocaPartitionRewriter; - friend class AllocaPartitionVectorRewriter; + friend class AllocaSliceRewriter; - bool rewriteAllocaPartition(AllocaInst &AI, - AllocaPartitioning &P, - AllocaPartitioning::iterator PI); - bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); + bool rewritePartition(AllocaInst &AI, AllocaSlices &S, + AllocaSlices::iterator B, AllocaSlices::iterator E, + int64_t BeginOffset, int64_t EndOffset, + ArrayRef<AllocaSlices::iterator> SplitUses); + bool splitAlloca(AllocaInst &AI, AllocaSlices &S); bool runOnAlloca(AllocaInst &AI); void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); bool promoteAllocas(Function &F); @@ -1429,286 +932,255 @@ INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false, false) -namespace { -/// \brief Visitor to speculate PHIs and Selects where possible. -class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> { - // Befriend the base class so it can delegate to private visit methods. - friend class llvm::InstVisitor<PHIOrSelectSpeculator>; - - const DataLayout &TD; - AllocaPartitioning &P; - SROA &Pass; +/// Walk the range of a partitioning looking for a common type to cover this +/// sequence of slices. +static Type *findCommonType(AllocaSlices::const_iterator B, + AllocaSlices::const_iterator E, + uint64_t EndOffset) { + Type *Ty = 0; + bool IgnoreNonIntegralTypes = false; + for (AllocaSlices::const_iterator I = B; I != E; ++I) { + Use *U = I->getUse(); + if (isa<IntrinsicInst>(*U->getUser())) + continue; + if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) + continue; -public: - PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass) - : TD(TD), P(P), Pass(Pass) {} - - /// \brief Visit the users of an alloca partition and rewrite them. - void visitUsers(AllocaPartitioning::const_iterator PI) { - // Note that we need to use an index here as the underlying vector of uses - // may be grown during speculation. However, we never need to re-visit the - // new uses, and so we can use the initial size bound. - for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) { - const PartitionUse &PU = P.getUse(PI, Idx); - if (!PU.getUse()) - continue; // Skip dead use. - - visit(cast<Instruction>(PU.getUse()->getUser())); + Type *UserTy = 0; + if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + UserTy = LI->getType(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + UserTy = SI->getValueOperand()->getType(); + } else { + IgnoreNonIntegralTypes = true; // Give up on anything but an iN type. + continue; } - } -private: - // By default, skip this instruction. - void visitInstruction(Instruction &I) {} - - /// PHI instructions that use an alloca and are subsequently loaded can be - /// rewritten to load both input pointers in the pred blocks and then PHI the - /// results, allowing the load of the alloca to be promoted. - /// From this: - /// %P2 = phi [i32* %Alloca, i32* %Other] - /// %V = load i32* %P2 - /// to: - /// %V1 = load i32* %Alloca -> will be mem2reg'd - /// ... - /// %V2 = load i32* %Other - /// ... - /// %V = phi [i32 %V1, i32 %V2] - /// - /// We can do this to a select if its only uses are loads and if the operands - /// to the select can be loaded unconditionally. - /// - /// FIXME: This should be hoisted into a generic utility, likely in - /// Transforms/Util/Local.h - bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) { - // For now, we can only do this promotion if the load is in the same block - // as the PHI, and if there are no stores between the phi and load. - // TODO: Allow recursive phi users. - // TODO: Allow stores. - BasicBlock *BB = PN.getParent(); - unsigned MaxAlign = 0; - for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); - UI != UE; ++UI) { - LoadInst *LI = dyn_cast<LoadInst>(*UI); - if (LI == 0 || !LI->isSimple()) return false; - - // For now we only allow loads in the same block as the PHI. This is - // a common case that happens when instcombine merges two loads through - // a PHI. - if (LI->getParent() != BB) return false; - - // Ensure that there are no instructions between the PHI and the load that - // could store. - for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) - if (BBI->mayWriteToMemory()) - return false; - - MaxAlign = std::max(MaxAlign, LI->getAlignment()); - Loads.push_back(LI); + if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) { + // If the type is larger than the partition, skip it. We only encounter + // this for split integer operations where we want to use the type of the + // entity causing the split. Also skip if the type is not a byte width + // multiple. + if (ITy->getBitWidth() % 8 != 0 || + ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) + continue; + + // If we have found an integer type use covering the alloca, use that + // regardless of the other types, as integers are often used for + // a "bucket of bits" type. + // + // NB: This *must* be the only return from inside the loop so that the + // order of slices doesn't impact the computed type. + return ITy; + } else if (IgnoreNonIntegralTypes) { + continue; } - // We can only transform this if it is safe to push the loads into the - // predecessor blocks. The only thing to watch out for is that we can't put - // a possibly trapping load in the predecessor if it is a critical edge. - for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { - TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); - Value *InVal = PN.getIncomingValue(Idx); - - // If the value is produced by the terminator of the predecessor (an - // invoke) or it has side-effects, there is no valid place to put a load - // in the predecessor. - if (TI == InVal || TI->mayHaveSideEffects()) - return false; + if (Ty && Ty != UserTy) + IgnoreNonIntegralTypes = true; // Give up on anything but an iN type. - // If the predecessor has a single successor, then the edge isn't - // critical. - if (TI->getNumSuccessors() == 1) - continue; + Ty = UserTy; + } + return Ty; +} - // If this pointer is always safe to load, or if we can prove that there - // is already a load in the block, then we can move the load to the pred - // block. - if (InVal->isDereferenceablePointer() || - isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) - continue; +/// PHI instructions that use an alloca and are subsequently loaded can be +/// rewritten to load both input pointers in the pred blocks and then PHI the +/// results, allowing the load of the alloca to be promoted. +/// From this: +/// %P2 = phi [i32* %Alloca, i32* %Other] +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// ... +/// %V2 = load i32* %Other +/// ... +/// %V = phi [i32 %V1, i32 %V2] +/// +/// We can do this to a select if its only uses are loads and if the operands +/// to the select can be loaded unconditionally. +/// +/// FIXME: This should be hoisted into a generic utility, likely in +/// Transforms/Util/Local.h +static bool isSafePHIToSpeculate(PHINode &PN, + const DataLayout *DL = 0) { + // For now, we can only do this promotion if the load is in the same block + // as the PHI, and if there are no stores between the phi and load. + // TODO: Allow recursive phi users. + // TODO: Allow stores. + BasicBlock *BB = PN.getParent(); + unsigned MaxAlign = 0; + bool HaveLoad = false; + for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE; + ++UI) { + LoadInst *LI = dyn_cast<LoadInst>(*UI); + if (LI == 0 || !LI->isSimple()) + return false; + // For now we only allow loads in the same block as the PHI. This is + // a common case that happens when instcombine merges two loads through + // a PHI. + if (LI->getParent() != BB) return false; - } - return true; + // Ensure that there are no instructions between the PHI and the load that + // could store. + for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) + if (BBI->mayWriteToMemory()) + return false; + + MaxAlign = std::max(MaxAlign, LI->getAlignment()); + HaveLoad = true; } - void visitPHINode(PHINode &PN) { - DEBUG(dbgs() << " original: " << PN << "\n"); + if (!HaveLoad) + return false; - SmallVector<LoadInst *, 4> Loads; - if (!isSafePHIToSpeculate(PN, Loads)) - return; + // We can only transform this if it is safe to push the loads into the + // predecessor blocks. The only thing to watch out for is that we can't put + // a possibly trapping load in the predecessor if it is a critical edge. + for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { + TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); + Value *InVal = PN.getIncomingValue(Idx); + + // If the value is produced by the terminator of the predecessor (an + // invoke) or it has side-effects, there is no valid place to put a load + // in the predecessor. + if (TI == InVal || TI->mayHaveSideEffects()) + return false; - assert(!Loads.empty()); + // If the predecessor has a single successor, then the edge isn't + // critical. + if (TI->getNumSuccessors() == 1) + continue; - Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); - IRBuilderTy PHIBuilder(&PN); - PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), - PN.getName() + ".sroa.speculated"); + // If this pointer is always safe to load, or if we can prove that there + // is already a load in the block, then we can move the load to the pred + // block. + if (InVal->isDereferenceablePointer() || + isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) + continue; - // Get the TBAA tag and alignment to use from one of the loads. It doesn't - // matter which one we get and if any differ. - LoadInst *SomeLoad = cast<LoadInst>(Loads.back()); - MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); - unsigned Align = SomeLoad->getAlignment(); + return false; + } - // Rewrite all loads of the PN to use the new PHI. - do { - LoadInst *LI = Loads.pop_back_val(); - LI->replaceAllUsesWith(NewPN); - Pass.DeadInsts.insert(LI); - } while (!Loads.empty()); - - // Inject loads into all of the pred blocks. - for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { - BasicBlock *Pred = PN.getIncomingBlock(Idx); - TerminatorInst *TI = Pred->getTerminator(); - Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx)); - Value *InVal = PN.getIncomingValue(Idx); - IRBuilderTy PredBuilder(TI); - - LoadInst *Load - = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." + - Pred->getName())); - ++NumLoadsSpeculated; - Load->setAlignment(Align); - if (TBAATag) - Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); - NewPN->addIncoming(Load, Pred); - - Instruction *Ptr = dyn_cast<Instruction>(InVal); - if (!Ptr) - // No uses to rewrite. - continue; + return true; +} - // Try to lookup and rewrite any partition uses corresponding to this phi - // input. - AllocaPartitioning::iterator PI - = P.findPartitionForPHIOrSelectOperand(InUse); - if (PI == P.end()) - continue; +static void speculatePHINodeLoads(PHINode &PN) { + DEBUG(dbgs() << " original: " << PN << "\n"); + + Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); + IRBuilderTy PHIBuilder(&PN); + PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), + PN.getName() + ".sroa.speculated"); + + // Get the TBAA tag and alignment to use from one of the loads. It doesn't + // matter which one we get and if any differ. + LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin()); + MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); + unsigned Align = SomeLoad->getAlignment(); + + // Rewrite all loads of the PN to use the new PHI. + while (!PN.use_empty()) { + LoadInst *LI = cast<LoadInst>(*PN.use_begin()); + LI->replaceAllUsesWith(NewPN); + LI->eraseFromParent(); + } + + // Inject loads into all of the pred blocks. + for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { + BasicBlock *Pred = PN.getIncomingBlock(Idx); + TerminatorInst *TI = Pred->getTerminator(); + Value *InVal = PN.getIncomingValue(Idx); + IRBuilderTy PredBuilder(TI); + + LoadInst *Load = PredBuilder.CreateLoad( + InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); + ++NumLoadsSpeculated; + Load->setAlignment(Align); + if (TBAATag) + Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); + NewPN->addIncoming(Load, Pred); + } + + DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); + PN.eraseFromParent(); +} - // Replace the Use in the PartitionUse for this operand with the Use - // inside the load. - AllocaPartitioning::use_iterator UI - = P.findPartitionUseForPHIOrSelectOperand(InUse); - assert(isa<PHINode>(*UI->getUse()->getUser())); - UI->setUse(&Load->getOperandUse(Load->getPointerOperandIndex())); - } - DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); - } - - /// Select instructions that use an alloca and are subsequently loaded can be - /// rewritten to load both input pointers and then select between the result, - /// allowing the load of the alloca to be promoted. - /// From this: - /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other - /// %V = load i32* %P2 - /// to: - /// %V1 = load i32* %Alloca -> will be mem2reg'd - /// %V2 = load i32* %Other - /// %V = select i1 %cond, i32 %V1, i32 %V2 - /// - /// We can do this to a select if its only uses are loads and if the operand - /// to the select can be loaded unconditionally. - bool isSafeSelectToSpeculate(SelectInst &SI, - SmallVectorImpl<LoadInst *> &Loads) { - Value *TValue = SI.getTrueValue(); - Value *FValue = SI.getFalseValue(); - bool TDerefable = TValue->isDereferenceablePointer(); - bool FDerefable = FValue->isDereferenceablePointer(); - - for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); - UI != UE; ++UI) { - LoadInst *LI = dyn_cast<LoadInst>(*UI); - if (LI == 0 || !LI->isSimple()) return false; - - // Both operands to the select need to be dereferencable, either - // absolutely (e.g. allocas) or at this point because we can see other - // accesses to it. - if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, - LI->getAlignment(), &TD)) - return false; - if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, - LI->getAlignment(), &TD)) - return false; - Loads.push_back(LI); - } +/// Select instructions that use an alloca and are subsequently loaded can be +/// rewritten to load both input pointers and then select between the result, +/// allowing the load of the alloca to be promoted. +/// From this: +/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// %V2 = load i32* %Other +/// %V = select i1 %cond, i32 %V1, i32 %V2 +/// +/// We can do this to a select if its only uses are loads and if the operand +/// to the select can be loaded unconditionally. +static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) { + Value *TValue = SI.getTrueValue(); + Value *FValue = SI.getFalseValue(); + bool TDerefable = TValue->isDereferenceablePointer(); + bool FDerefable = FValue->isDereferenceablePointer(); + + for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE; + ++UI) { + LoadInst *LI = dyn_cast<LoadInst>(*UI); + if (LI == 0 || !LI->isSimple()) + return false; - return true; + // Both operands to the select need to be dereferencable, either + // absolutely (e.g. allocas) or at this point because we can see other + // accesses to it. + if (!TDerefable && + !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) + return false; + if (!FDerefable && + !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) + return false; } - void visitSelectInst(SelectInst &SI) { - DEBUG(dbgs() << " original: " << SI << "\n"); - - // If the select isn't safe to speculate, just use simple logic to emit it. - SmallVector<LoadInst *, 4> Loads; - if (!isSafeSelectToSpeculate(SI, Loads)) - return; + return true; +} - IRBuilderTy IRB(&SI); - Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) }; - AllocaPartitioning::iterator PIs[2]; - PartitionUse PUs[2]; - for (unsigned i = 0, e = 2; i != e; ++i) { - PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]); - if (PIs[i] != P.end()) { - // If the pointer is within the partitioning, remove the select from - // its uses. We'll add in the new loads below. - AllocaPartitioning::use_iterator UI - = P.findPartitionUseForPHIOrSelectOperand(Ops[i]); - PUs[i] = *UI; - // Clear out the use here so that the offsets into the use list remain - // stable but this use is ignored when rewriting. - UI->setUse(0); - } - } +static void speculateSelectInstLoads(SelectInst &SI) { + DEBUG(dbgs() << " original: " << SI << "\n"); - Value *TV = SI.getTrueValue(); - Value *FV = SI.getFalseValue(); - // Replace the loads of the select with a select of two loads. - while (!Loads.empty()) { - LoadInst *LI = Loads.pop_back_val(); + IRBuilderTy IRB(&SI); + Value *TV = SI.getTrueValue(); + Value *FV = SI.getFalseValue(); + // Replace the loads of the select with a select of two loads. + while (!SI.use_empty()) { + LoadInst *LI = cast<LoadInst>(*SI.use_begin()); + assert(LI->isSimple() && "We only speculate simple loads"); - IRB.SetInsertPoint(LI); - LoadInst *TL = + IRB.SetInsertPoint(LI); + LoadInst *TL = IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); - LoadInst *FL = + LoadInst *FL = IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); - NumLoadsSpeculated += 2; - - // Transfer alignment and TBAA info if present. - TL->setAlignment(LI->getAlignment()); - FL->setAlignment(LI->getAlignment()); - if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { - TL->setMetadata(LLVMContext::MD_tbaa, Tag); - FL->setMetadata(LLVMContext::MD_tbaa, Tag); - } + NumLoadsSpeculated += 2; - Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, - LI->getName() + ".sroa.speculated"); + // Transfer alignment and TBAA info if present. + TL->setAlignment(LI->getAlignment()); + FL->setAlignment(LI->getAlignment()); + if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { + TL->setMetadata(LLVMContext::MD_tbaa, Tag); + FL->setMetadata(LLVMContext::MD_tbaa, Tag); + } - LoadInst *Loads[2] = { TL, FL }; - for (unsigned i = 0, e = 2; i != e; ++i) { - if (PIs[i] != P.end()) { - Use *LoadUse = &Loads[i]->getOperandUse(0); - assert(PUs[i].getUse()->get() == LoadUse->get()); - PUs[i].setUse(LoadUse); - P.use_push_back(PIs[i], PUs[i]); - } - } + Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, + LI->getName() + ".sroa.speculated"); - DEBUG(dbgs() << " speculated to: " << *V << "\n"); - LI->replaceAllUsesWith(V); - Pass.DeadInsts.insert(LI); - } + DEBUG(dbgs() << " speculated to: " << *V << "\n"); + LI->replaceAllUsesWith(V); + LI->eraseFromParent(); } -}; + SI.eraseFromParent(); } /// \brief Build a GEP out of a base pointer and indices. @@ -1737,7 +1209,7 @@ static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, /// TargetTy. If we can't find one with the same type, we at least try to use /// one with the same size. If none of that works, we just produce the GEP as /// indicated by Indices to have the correct offset. -static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &TD, +static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, Value *BasePtr, Type *Ty, Type *TargetTy, SmallVectorImpl<Value *> &Indices) { if (Ty == TargetTy) @@ -1754,7 +1226,7 @@ static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &TD, ElementTy = SeqTy->getElementType(); // Note that we use the default address space as this index is over an // array or a vector, not a pointer. - Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0))); + Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0))); } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { if (STy->element_begin() == STy->element_end()) break; // Nothing left to descend into. @@ -1775,12 +1247,12 @@ static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &TD, /// /// This is the recursive step for getNaturalGEPWithOffset that walks down the /// element types adding appropriate indices for the GEP. -static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD, +static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, Type *Ty, APInt &Offset, Type *TargetTy, SmallVectorImpl<Value *> &Indices) { if (Offset == 0) - return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices); + return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices); // We can't recurse through pointer types. if (Ty->isPointerTy()) @@ -1790,7 +1262,7 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD, // extremely poorly defined currently. The long-term goal is to remove GEPing // over a vector from the IR completely. if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { - unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType()); + unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); if (ElementSizeInBits % 8) return 0; // GEPs over non-multiple of 8 size vector elements are invalid. APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); @@ -1799,20 +1271,20 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD, return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); - return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), + return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), Offset, TargetTy, Indices); } if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { Type *ElementTy = ArrTy->getElementType(); - APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); + APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); APInt NumSkippedElements = Offset.sdiv(ElementSize); if (NumSkippedElements.ugt(ArrTy->getNumElements())) return 0; Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); - return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } @@ -1820,18 +1292,18 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD, if (!STy) return 0; - const StructLayout *SL = TD.getStructLayout(STy); + const StructLayout *SL = DL.getStructLayout(STy); uint64_t StructOffset = Offset.getZExtValue(); if (StructOffset >= SL->getSizeInBytes()) return 0; unsigned Index = SL->getElementContainingOffset(StructOffset); Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); Type *ElementTy = STy->getElementType(Index); - if (Offset.uge(TD.getTypeAllocSize(ElementTy))) + if (Offset.uge(DL.getTypeAllocSize(ElementTy))) return 0; // The offset points into alignment padding. Indices.push_back(IRB.getInt32(Index)); - return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } @@ -1845,7 +1317,7 @@ static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD, /// Indices, and setting Ty to the result subtype. /// /// If no natural GEP can be constructed, this function returns null. -static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &TD, +static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *TargetTy, SmallVectorImpl<Value *> &Indices) { PointerType *Ty = cast<PointerType>(Ptr->getType()); @@ -1858,14 +1330,14 @@ static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &TD, Type *ElementTy = Ty->getElementType(); if (!ElementTy->isSized()) return 0; // We can't GEP through an unsized element. - APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); + APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); if (ElementSize == 0) return 0; // Zero-length arrays can't help us build a natural GEP. APInt NumSkippedElements = Offset.sdiv(ElementSize); Offset -= NumSkippedElements * ElementSize; Indices.push_back(IRB.getInt(NumSkippedElements)); - return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, Indices); } @@ -1884,7 +1356,7 @@ static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &TD, /// properties. The algorithm tries to fold as many constant indices into /// a single GEP as possible, thus making each GEP more independent of the /// surrounding code. -static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &TD, +static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, APInt Offset, Type *PointerTy) { // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. @@ -1908,7 +1380,7 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &TD, // First fold any existing GEPs into the offset. while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { APInt GEPOffset(Offset.getBitWidth(), 0); - if (!GEP->accumulateConstantOffset(TD, GEPOffset)) + if (!GEP->accumulateConstantOffset(DL, GEPOffset)) break; Offset += GEPOffset; Ptr = GEP->getPointerOperand(); @@ -1918,7 +1390,7 @@ static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &TD, // See if we can perform a natural GEP here. Indices.clear(); - if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, + if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, Indices)) { if (P->getType() == PointerTy) { // Zap any offset pointer that we ended up computing in previous rounds. @@ -1989,6 +1461,10 @@ static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) return false; + // We can convert pointers to integers and vice-versa. Same for vectors + // of pointers and integers. + OldTy = OldTy->getScalarType(); + NewTy = NewTy->getScalarType(); if (NewTy->isPointerTy() || OldTy->isPointerTy()) { if (NewTy->isPointerTy() && OldTy->isPointerTy()) return true; @@ -2007,24 +1483,126 @@ static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test /// two types for viability with this routine. static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, - Type *Ty) { - assert(canConvertValue(DL, V->getType(), Ty) && - "Value not convertable to type"); - if (V->getType() == Ty) + Type *NewTy) { + Type *OldTy = V->getType(); + assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); + + if (OldTy == NewTy) return V; - if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType())) - if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty)) + + if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) + if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) if (NewITy->getBitWidth() > OldITy->getBitWidth()) return IRB.CreateZExt(V, NewITy); - if (V->getType()->isIntegerTy() && Ty->isPointerTy()) - return IRB.CreateIntToPtr(V, Ty); - if (V->getType()->isPointerTy() && Ty->isIntegerTy()) - return IRB.CreatePtrToInt(V, Ty); - return IRB.CreateBitCast(V, Ty); + // See if we need inttoptr for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isIntegerTy() && + NewTy->getScalarType()->isPointerTy()) { + // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + return IRB.CreateIntToPtr(V, NewTy); + } + + // See if we need ptrtoint for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isPointerTy() && + NewTy->getScalarType()->isIntegerTy()) { + // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + return IRB.CreatePtrToInt(V, NewTy); + } + + return IRB.CreateBitCast(V, NewTy); } -/// \brief Test whether the given alloca partition can be promoted to a vector. +/// \brief Test whether the given slice use can be promoted to a vector. +/// +/// This function is called to test each entry in a partioning which is slated +/// for a single slice. +static bool isVectorPromotionViableForSlice( + const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset, + uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize, + AllocaSlices::const_iterator I) { + // First validate the slice offsets. + uint64_t BeginOffset = + std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset; + uint64_t BeginIndex = BeginOffset / ElementSize; + if (BeginIndex * ElementSize != BeginOffset || + BeginIndex >= Ty->getNumElements()) + return false; + uint64_t EndOffset = + std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset; + uint64_t EndIndex = EndOffset / ElementSize; + if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) + return false; + + assert(EndIndex > BeginIndex && "Empty vector!"); + uint64_t NumElements = EndIndex - BeginIndex; + Type *SliceTy = + (NumElements == 1) ? Ty->getElementType() + : VectorType::get(Ty->getElementType(), NumElements); + + Type *SplitIntTy = + Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); + + Use *U = I->getUse(); + + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { + if (MI->isVolatile()) + return false; + if (!I->isSplittable()) + return false; // Skip any unsplittable intrinsics. + } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { + // Disable vector promotion when there are loads or stores of an FCA. + return false; + } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + if (LI->isVolatile()) + return false; + Type *LTy = LI->getType(); + if (SliceBeginOffset > I->beginOffset() || + SliceEndOffset < I->endOffset()) { + assert(LTy->isIntegerTy()); + LTy = SplitIntTy; + } + if (!canConvertValue(DL, SliceTy, LTy)) + return false; + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + if (SI->isVolatile()) + return false; + Type *STy = SI->getValueOperand()->getType(); + if (SliceBeginOffset > I->beginOffset() || + SliceEndOffset < I->endOffset()) { + assert(STy->isIntegerTy()); + STy = SplitIntTy; + } + if (!canConvertValue(DL, STy, SliceTy)) + return false; + } else { + return false; + } + + return true; +} + +/// \brief Test whether the given alloca partitioning and range of slices can be +/// promoted to a vector. /// /// This is a quick test to check whether we can rewrite a particular alloca /// partition (and its newly formed alloca) into a vector alloca with only @@ -2032,75 +1610,103 @@ static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, /// SSA value. We only can ensure this for a limited set of operations, and we /// don't want to do the rewrites unless we are confident that the result will /// be promotable, so we have an early test here. -static bool isVectorPromotionViable(const DataLayout &TD, - Type *AllocaTy, - AllocaPartitioning &P, - uint64_t PartitionBeginOffset, - uint64_t PartitionEndOffset, - AllocaPartitioning::const_use_iterator I, - AllocaPartitioning::const_use_iterator E) { +static bool +isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S, + uint64_t SliceBeginOffset, uint64_t SliceEndOffset, + AllocaSlices::const_iterator I, + AllocaSlices::const_iterator E, + ArrayRef<AllocaSlices::iterator> SplitUses) { VectorType *Ty = dyn_cast<VectorType>(AllocaTy); if (!Ty) return false; - uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType()); + uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType()); // While the definition of LLVM vectors is bitpacked, we don't support sizes // that aren't byte sized. if (ElementSize % 8) return false; - assert((TD.getTypeSizeInBits(Ty) % 8) == 0 && + assert((DL.getTypeSizeInBits(Ty) % 8) == 0 && "vector size not a multiple of element size?"); ElementSize /= 8; - for (; I != E; ++I) { - Use *U = I->getUse(); - if (!U) - continue; // Skip dead use. - - uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; - uint64_t BeginIndex = BeginOffset / ElementSize; - if (BeginIndex * ElementSize != BeginOffset || - BeginIndex >= Ty->getNumElements()) + for (; I != E; ++I) + if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, + SliceEndOffset, Ty, ElementSize, I)) return false; - uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; - uint64_t EndIndex = EndOffset / ElementSize; - if (EndIndex * ElementSize != EndOffset || - EndIndex > Ty->getNumElements()) + + for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), + SUE = SplitUses.end(); + SUI != SUE; ++SUI) + if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, + SliceEndOffset, Ty, ElementSize, *SUI)) return false; - assert(EndIndex > BeginIndex && "Empty vector!"); - uint64_t NumElements = EndIndex - BeginIndex; - Type *PartitionTy - = (NumElements == 1) ? Ty->getElementType() - : VectorType::get(Ty->getElementType(), NumElements); + return true; +} - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { - if (MI->isVolatile()) - return false; - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) { - const AllocaPartitioning::MemTransferOffsets &MTO - = P.getMemTransferOffsets(*MTI); - if (!MTO.IsSplittable) - return false; - } - } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { - // Disable vector promotion when there are loads or stores of an FCA. +/// \brief Test whether a slice of an alloca is valid for integer widening. +/// +/// This implements the necessary checking for the \c isIntegerWideningViable +/// test below on a single slice of the alloca. +static bool isIntegerWideningViableForSlice(const DataLayout &DL, + Type *AllocaTy, + uint64_t AllocBeginOffset, + uint64_t Size, AllocaSlices &S, + AllocaSlices::const_iterator I, + bool &WholeAllocaOp) { + uint64_t RelBegin = I->beginOffset() - AllocBeginOffset; + uint64_t RelEnd = I->endOffset() - AllocBeginOffset; + + // We can't reasonably handle cases where the load or store extends past + // the end of the aloca's type and into its padding. + if (RelEnd > Size) + return false; + + Use *U = I->getUse(); + + if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + if (LI->isVolatile()) return false; - } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { - if (LI->isVolatile()) - return false; - if (!canConvertValue(TD, PartitionTy, LI->getType())) - return false; - } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { - if (SI->isVolatile()) + if (RelBegin == 0 && RelEnd == Size) + WholeAllocaOp = true; + if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { + if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) return false; - if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy)) + } else if (RelBegin != 0 || RelEnd != Size || + !canConvertValue(DL, AllocaTy, LI->getType())) { + // Non-integer loads need to be convertible from the alloca type so that + // they are promotable. + return false; + } + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + Type *ValueTy = SI->getValueOperand()->getType(); + if (SI->isVolatile()) + return false; + if (RelBegin == 0 && RelEnd == Size) + WholeAllocaOp = true; + if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { + if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) return false; - } else { + } else if (RelBegin != 0 || RelEnd != Size || + !canConvertValue(DL, ValueTy, AllocaTy)) { + // Non-integer stores need to be convertible to the alloca type so that + // they are promotable. return false; } + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { + if (MI->isVolatile() || !isa<Constant>(MI->getLength())) + return false; + if (!I->isSplittable()) + return false; // Skip any unsplittable intrinsics. + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; + } else { + return false; } + return true; } @@ -2110,97 +1716,50 @@ static bool isVectorPromotionViable(const DataLayout &TD, /// This is a quick test to check whether we can rewrite the integer loads and /// stores to a particular alloca into wider loads and stores and be able to /// promote the resulting alloca. -static bool isIntegerWideningViable(const DataLayout &TD, - Type *AllocaTy, - uint64_t AllocBeginOffset, - AllocaPartitioning &P, - AllocaPartitioning::const_use_iterator I, - AllocaPartitioning::const_use_iterator E) { - uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy); +static bool +isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy, + uint64_t AllocBeginOffset, AllocaSlices &S, + AllocaSlices::const_iterator I, + AllocaSlices::const_iterator E, + ArrayRef<AllocaSlices::iterator> SplitUses) { + uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); // Don't create integer types larger than the maximum bitwidth. if (SizeInBits > IntegerType::MAX_INT_BITS) return false; // Don't try to handle allocas with bit-padding. - if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy)) + if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) return false; // We need to ensure that an integer type with the appropriate bitwidth can // be converted to the alloca type, whatever that is. We don't want to force // the alloca itself to have an integer type if there is a more suitable one. Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); - if (!canConvertValue(TD, AllocaTy, IntTy) || - !canConvertValue(TD, IntTy, AllocaTy)) + if (!canConvertValue(DL, AllocaTy, IntTy) || + !canConvertValue(DL, IntTy, AllocaTy)) return false; - uint64_t Size = TD.getTypeStoreSize(AllocaTy); - - // Check the uses to ensure the uses are (likely) promotable integer uses. - // Also ensure that the alloca has a covering load or store. We don't want - // to widen the integer operations only to fail to promote due to some other - // unsplittable entry (which we may make splittable later). - bool WholeAllocaOp = false; - for (; I != E; ++I) { - Use *U = I->getUse(); - if (!U) - continue; // Skip dead use. + uint64_t Size = DL.getTypeStoreSize(AllocaTy); - uint64_t RelBegin = I->BeginOffset - AllocBeginOffset; - uint64_t RelEnd = I->EndOffset - AllocBeginOffset; + // While examining uses, we ensure that the alloca has a covering load or + // store. We don't want to widen the integer operations only to fail to + // promote due to some other unsplittable entry (which we may make splittable + // later). However, if there are only splittable uses, go ahead and assume + // that we cover the alloca. + bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits); - // We can't reasonably handle cases where the load or store extends past - // the end of the aloca's type and into its padding. - if (RelEnd > Size) + for (; I != E; ++I) + if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, + S, I, WholeAllocaOp)) return false; - if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { - if (LI->isVolatile()) - return false; - if (RelBegin == 0 && RelEnd == Size) - WholeAllocaOp = true; - if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { - if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy)) - return false; - continue; - } - // Non-integer loads need to be convertible from the alloca type so that - // they are promotable. - if (RelBegin != 0 || RelEnd != Size || - !canConvertValue(TD, AllocaTy, LI->getType())) - return false; - } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { - Type *ValueTy = SI->getValueOperand()->getType(); - if (SI->isVolatile()) - return false; - if (RelBegin == 0 && RelEnd == Size) - WholeAllocaOp = true; - if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { - if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy)) - return false; - continue; - } - // Non-integer stores need to be convertible to the alloca type so that - // they are promotable. - if (RelBegin != 0 || RelEnd != Size || - !canConvertValue(TD, ValueTy, AllocaTy)) - return false; - } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { - if (MI->isVolatile() || !isa<Constant>(MI->getLength())) - return false; - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) { - const AllocaPartitioning::MemTransferOffsets &MTO - = P.getMemTransferOffsets(*MTI); - if (!MTO.IsSplittable) - return false; - } - } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { - if (II->getIntrinsicID() != Intrinsic::lifetime_start && - II->getIntrinsicID() != Intrinsic::lifetime_end) - return false; - } else { + for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), + SUE = SplitUses.end(); + SUI != SUE; ++SUI) + if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, + S, *SUI, WholeAllocaOp)) return false; - } - } + return WholeAllocaOp; } @@ -2335,19 +1894,19 @@ static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, } namespace { -/// \brief Visitor to rewrite instructions using a partition of an alloca to -/// use a new alloca. +/// \brief Visitor to rewrite instructions using p particular slice of an alloca +/// to use a new alloca. /// /// Also implements the rewriting to vector-based accesses when the partition /// passes the isVectorPromotionViable predicate. Most of the rewriting logic /// lives here. -class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, - bool> { +class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { // Befriend the base class so it can delegate to private visit methods. - friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>; + friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; + typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; - const DataLayout &TD; - AllocaPartitioning &P; + const DataLayout &DL; + AllocaSlices &S; SROA &Pass; AllocaInst &OldAI, &NewAI; const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; @@ -2372,106 +1931,112 @@ class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, // integer type will be stored here for easy access during rewriting. IntegerType *IntTy; - // The offset of the partition user currently being rewritten. + // The offset of the slice currently being rewritten. uint64_t BeginOffset, EndOffset; + bool IsSplittable; bool IsSplit; Use *OldUse; Instruction *OldPtr; + // Output members carrying state about the result of visiting and rewriting + // the slice of the alloca. + bool IsUsedByRewrittenSpeculatableInstructions; + // Utility IR builder, whose name prefix is setup for each visited use, and // the insertion point is set to point to the user. IRBuilderTy IRB; public: - AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P, - AllocaPartitioning::iterator PI, - SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, - uint64_t NewBeginOffset, uint64_t NewEndOffset) - : TD(TD), P(P), Pass(Pass), - OldAI(OldAI), NewAI(NewAI), - NewAllocaBeginOffset(NewBeginOffset), - NewAllocaEndOffset(NewEndOffset), - NewAllocaTy(NewAI.getAllocatedType()), - VecTy(), ElementTy(), ElementSize(), IntTy(), - BeginOffset(), EndOffset(), IsSplit(), OldUse(), OldPtr(), - IRB(NewAI.getContext(), ConstantFolder()) { - } - - /// \brief Visit the users of the alloca partition and rewrite them. - bool visitUsers(AllocaPartitioning::const_use_iterator I, - AllocaPartitioning::const_use_iterator E) { - if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, - NewAllocaBeginOffset, NewAllocaEndOffset, - I, E)) { - ++NumVectorized; - VecTy = cast<VectorType>(NewAI.getAllocatedType()); - ElementTy = VecTy->getElementType(); - assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 && + AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, + AllocaInst &OldAI, AllocaInst &NewAI, + uint64_t NewBeginOffset, uint64_t NewEndOffset, + bool IsVectorPromotable = false, + bool IsIntegerPromotable = false) + : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), + NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset), + NewAllocaTy(NewAI.getAllocatedType()), + VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0), + ElementTy(VecTy ? VecTy->getElementType() : 0), + ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), + IntTy(IsIntegerPromotable + ? Type::getIntNTy( + NewAI.getContext(), + DL.getTypeSizeInBits(NewAI.getAllocatedType())) + : 0), + BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), + OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false), + IRB(NewAI.getContext(), ConstantFolder()) { + if (VecTy) { + assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && "Only multiple-of-8 sized vector elements are viable"); - ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8; - } else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(), - NewAllocaBeginOffset, P, I, E)) { - IntTy = Type::getIntNTy(NewAI.getContext(), - TD.getTypeSizeInBits(NewAI.getAllocatedType())); + ++NumVectorized; } + assert((!IsVectorPromotable && !IsIntegerPromotable) || + IsVectorPromotable != IsIntegerPromotable); + } + + bool visit(AllocaSlices::const_iterator I) { bool CanSROA = true; - for (; I != E; ++I) { - if (!I->getUse()) - continue; // Skip dead uses. - BeginOffset = I->BeginOffset; - EndOffset = I->EndOffset; - IsSplit = I->isSplit(); - OldUse = I->getUse(); - OldPtr = cast<Instruction>(OldUse->get()); - - Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); - IRB.SetInsertPoint(OldUserI); - IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); - IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + - "."); - - CanSROA &= visit(cast<Instruction>(OldUse->getUser())); - } - if (VecTy) { + BeginOffset = I->beginOffset(); + EndOffset = I->endOffset(); + IsSplittable = I->isSplittable(); + IsSplit = + BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; + + OldUse = I->getUse(); + OldPtr = cast<Instruction>(OldUse->get()); + + Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); + IRB.SetInsertPoint(OldUserI); + IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); + IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); + + CanSROA &= visit(cast<Instruction>(OldUse->getUser())); + if (VecTy || IntTy) assert(CanSROA); - VecTy = 0; - ElementTy = 0; - ElementSize = 0; - } - if (IntTy) { - assert(CanSROA); - IntTy = 0; - } return CanSROA; } + /// \brief Query whether this slice is used by speculatable instructions after + /// rewriting. + /// + /// These instructions (PHIs and Selects currently) require the alloca slice + /// to run back through the rewriter. Thus, they are promotable, but not on + /// this iteration. This is distinct from a slice which is unpromotable for + /// some other reason, in which case we don't even want to perform the + /// speculation. This can be querried at any time and reflects whether (at + /// that point) a visit call has rewritten a speculatable instruction on the + /// current slice. + bool isUsedByRewrittenSpeculatableInstructions() const { + return IsUsedByRewrittenSpeculatableInstructions; + } + private: + // Make sure the other visit overloads are visible. + using Base::visit; + // Every instruction which can end up as a user must have a rewrite rule. bool visitInstruction(Instruction &I) { DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); llvm_unreachable("No rewrite rule for this instruction!"); } - Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, Type *PointerTy) { - assert(BeginOffset >= NewAllocaBeginOffset); - APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); - return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy); + Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset, + Type *PointerTy) { + assert(Offset >= NewAllocaBeginOffset); + return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(), + Offset - NewAllocaBeginOffset), + PointerTy); } /// \brief Compute suitable alignment to access an offset into the new alloca. unsigned getOffsetAlign(uint64_t Offset) { unsigned NewAIAlign = NewAI.getAlignment(); if (!NewAIAlign) - NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType()); + NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); return MinAlign(NewAIAlign, Offset); } - /// \brief Compute suitable alignment to access this partition of the new - /// alloca. - unsigned getPartitionAlign() { - return getOffsetAlign(BeginOffset - NewAllocaBeginOffset); - } - /// \brief Compute suitable alignment to access a type at an offset of the /// new alloca. /// @@ -2479,15 +2044,7 @@ private: /// otherwise returns the maximal suitable alignment. unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { unsigned Align = getOffsetAlign(Offset); - return Align == TD.getABITypeAlignment(Ty) ? 0 : Align; - } - - /// \brief Compute suitable alignment to access a type at the beginning of - /// this partition of the new alloca. - /// - /// See \c getOffsetTypeAlign for details; this routine delegates to it. - unsigned getPartitionTypeAlign(Type *Ty) { - return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset); + return Align == DL.getABITypeAlignment(Ty) ? 0 : Align; } unsigned getIndex(uint64_t Offset) { @@ -2505,9 +2062,10 @@ private: Pass.DeadInsts.insert(I); } - Value *rewriteVectorizedLoadInst() { - unsigned BeginIndex = getIndex(BeginOffset); - unsigned EndIndex = getIndex(EndOffset); + Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset, + uint64_t NewEndOffset) { + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), @@ -2515,16 +2073,17 @@ private: return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); } - Value *rewriteIntegerLoad(LoadInst &LI) { + Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset, + uint64_t NewEndOffset) { assert(IntTy && "We cannot insert an integer to the alloca"); assert(!LI.isVolatile()); Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); - V = convertValue(TD, IRB, V, IntTy); - assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); - uint64_t Offset = BeginOffset - NewAllocaBeginOffset; - if (Offset > 0 || EndOffset < NewAllocaEndOffset) - V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset, + V = convertValue(DL, IRB, V, IntTy); + assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) + V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset, "extract"); return V; } @@ -2534,37 +2093,44 @@ private: Value *OldOp = LI.getOperand(0); assert(OldOp == OldPtr); - uint64_t Size = EndOffset - BeginOffset; + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + + uint64_t Size = NewEndOffset - NewBeginOffset; Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8) : LI.getType(); bool IsPtrAdjusted = false; Value *V; if (VecTy) { - V = rewriteVectorizedLoadInst(); + V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset); } else if (IntTy && LI.getType()->isIntegerTy()) { - V = rewriteIntegerLoad(LI); - } else if (BeginOffset == NewAllocaBeginOffset && - canConvertValue(TD, NewAllocaTy, LI.getType())) { + V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset); + } else if (NewBeginOffset == NewAllocaBeginOffset && + canConvertValue(DL, NewAllocaTy, LI.getType())) { V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(), "load"); } else { Type *LTy = TargetTy->getPointerTo(); - V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy), - getPartitionTypeAlign(TargetTy), - LI.isVolatile(), "load"); + V = IRB.CreateAlignedLoad( + getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy), + getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset), + LI.isVolatile(), "load"); IsPtrAdjusted = true; } - V = convertValue(TD, IRB, V, TargetTy); + V = convertValue(DL, IRB, V, TargetTy); if (IsSplit) { assert(!LI.isVolatile()); assert(LI.getType()->isIntegerTy() && "Only integer type loads and stores are split"); - assert(Size < TD.getTypeStoreSize(LI.getType()) && + assert(Size < DL.getTypeStoreSize(LI.getType()) && "Split load isn't smaller than original load"); assert(LI.getType()->getIntegerBitWidth() == - TD.getTypeStoreSizeInBits(LI.getType()) && + DL.getTypeStoreSizeInBits(LI.getType()) && "Non-byte-multiple bit width"); // Move the insertion point just past the load so that we can refer to it. IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); @@ -2574,7 +2140,7 @@ private: // LI only used for this computation. Value *Placeholder = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); - V = insertInteger(TD, IRB, Placeholder, V, BeginOffset, + V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset, "insert"); LI.replaceAllUsesWith(V); Placeholder->replaceAllUsesWith(&LI); @@ -2589,24 +2155,26 @@ private: return !LI.isVolatile() && !IsPtrAdjusted; } - bool rewriteVectorizedStoreInst(Value *V, - StoreInst &SI, Value *OldOp) { - unsigned BeginIndex = getIndex(BeginOffset); - unsigned EndIndex = getIndex(EndOffset); - assert(EndIndex > BeginIndex && "Empty vector!"); - unsigned NumElements = EndIndex - BeginIndex; - assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); - Type *PartitionTy - = (NumElements == 1) ? ElementTy - : VectorType::get(ElementTy, NumElements); - if (V->getType() != PartitionTy) - V = convertValue(TD, IRB, V, PartitionTy); - - // Mix in the existing elements. - Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), - "load"); - V = insertVector(IRB, Old, V, BeginIndex, "vec"); + bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, + uint64_t NewBeginOffset, + uint64_t NewEndOffset) { + if (V->getType() != VecTy) { + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); + assert(EndIndex > BeginIndex && "Empty vector!"); + unsigned NumElements = EndIndex - BeginIndex; + assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); + Type *SliceTy = + (NumElements == 1) ? ElementTy + : VectorType::get(ElementTy, NumElements); + if (V->getType() != SliceTy) + V = convertValue(DL, IRB, V, SliceTy); + // Mix in the existing elements. + Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), + "load"); + V = insertVector(IRB, Old, V, BeginIndex, "vec"); + } StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); Pass.DeadInsts.insert(&SI); @@ -2615,19 +2183,20 @@ private: return true; } - bool rewriteIntegerStore(Value *V, StoreInst &SI) { + bool rewriteIntegerStore(Value *V, StoreInst &SI, + uint64_t NewBeginOffset, uint64_t NewEndOffset) { assert(IntTy && "We cannot extract an integer from the alloca"); assert(!SI.isVolatile()); - if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { + if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); - Old = convertValue(TD, IRB, Old, IntTy); + Old = convertValue(DL, IRB, Old, IntTy); assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); uint64_t Offset = BeginOffset - NewAllocaBeginOffset; - V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset, + V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); } - V = convertValue(TD, IRB, V, NewAllocaTy); + V = convertValue(DL, IRB, V, NewAllocaTy); StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); Pass.DeadInsts.insert(&SI); (void)Store; @@ -2648,37 +2217,45 @@ private: if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) Pass.PostPromotionWorklist.insert(AI); - uint64_t Size = EndOffset - BeginOffset; - if (Size < TD.getTypeStoreSize(V->getType())) { + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + + uint64_t Size = NewEndOffset - NewBeginOffset; + if (Size < DL.getTypeStoreSize(V->getType())) { assert(!SI.isVolatile()); - assert(IsSplit && "A seemingly split store isn't splittable"); assert(V->getType()->isIntegerTy() && "Only integer type loads and stores are split"); assert(V->getType()->getIntegerBitWidth() == - TD.getTypeStoreSizeInBits(V->getType()) && + DL.getTypeStoreSizeInBits(V->getType()) && "Non-byte-multiple bit width"); IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); - V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset, + V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, "extract"); } if (VecTy) - return rewriteVectorizedStoreInst(V, SI, OldOp); + return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset, + NewEndOffset); if (IntTy && V->getType()->isIntegerTy()) - return rewriteIntegerStore(V, SI); + return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset); StoreInst *NewSI; - if (BeginOffset == NewAllocaBeginOffset && - EndOffset == NewAllocaEndOffset && - canConvertValue(TD, V->getType(), NewAllocaTy)) { - V = convertValue(TD, IRB, V, NewAllocaTy); + if (NewBeginOffset == NewAllocaBeginOffset && + NewEndOffset == NewAllocaEndOffset && + canConvertValue(DL, V->getType(), NewAllocaTy)) { + V = convertValue(DL, IRB, V, NewAllocaTy); NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), SI.isVolatile()); } else { - Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo()); - NewSI = IRB.CreateAlignedStore(V, NewPtr, - getPartitionTypeAlign(V->getType()), - SI.isVolatile()); + Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset, + V->getType()->getPointerTo()); + NewSI = IRB.CreateAlignedStore( + V, NewPtr, getOffsetTypeAlign( + V->getType(), NewBeginOffset - NewAllocaBeginOffset), + SI.isVolatile()); } (void)NewSI; Pass.DeadInsts.insert(&SI); @@ -2729,9 +2306,12 @@ private: // If the memset has a variable size, it cannot be split, just adjust the // pointer to the new alloca. if (!isa<Constant>(II.getLength())) { - II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); + assert(!IsSplit); + assert(BeginOffset >= NewAllocaBeginOffset); + II.setDest( + getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); - II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign())); + II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset))); deleteIfTriviallyDead(OldPtr); return false; @@ -2743,21 +2323,26 @@ private: Type *AllocaTy = NewAI.getAllocatedType(); Type *ScalarTy = AllocaTy->getScalarType(); + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; + // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memset. if (!VecTy && !IntTy && - (BeginOffset != NewAllocaBeginOffset || - EndOffset != NewAllocaEndOffset || + (BeginOffset > NewAllocaBeginOffset || + EndOffset < NewAllocaEndOffset || !AllocaTy->isSingleValueType() || - !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) || - TD.getTypeSizeInBits(ScalarTy)%8 != 0)) { + !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || + DL.getTypeSizeInBits(ScalarTy)%8 != 0)) { Type *SizeTy = II.getLength()->getType(); - Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); - CallInst *New - = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, - II.getRawDest()->getType()), - II.getValue(), Size, getPartitionAlign(), - II.isVolatile()); + Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); + CallInst *New = IRB.CreateMemSet( + getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()), + II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile()); (void)New; DEBUG(dbgs() << " to: " << *New << "\n"); return false; @@ -2774,15 +2359,15 @@ private: // If this is a memset of a vectorized alloca, insert it. assert(ElementTy == ScalarTy); - unsigned BeginIndex = getIndex(BeginOffset); - unsigned EndIndex = getIndex(EndOffset); + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); assert(EndIndex > BeginIndex && "Empty vector!"); unsigned NumElements = EndIndex - BeginIndex; assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); Value *Splat = - getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ElementTy) / 8); - Splat = convertValue(TD, IRB, Splat, ElementTy); + getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); + Splat = convertValue(DL, IRB, Splat, ElementTy); if (NumElements > 1) Splat = getVectorSplat(Splat, NumElements); @@ -2794,32 +2379,31 @@ private: // set integer. assert(!II.isVolatile()); - uint64_t Size = EndOffset - BeginOffset; + uint64_t Size = NewEndOffset - NewBeginOffset; V = getIntegerSplat(II.getValue(), Size); if (IntTy && (BeginOffset != NewAllocaBeginOffset || EndOffset != NewAllocaBeginOffset)) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); - Old = convertValue(TD, IRB, Old, IntTy); - assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); - uint64_t Offset = BeginOffset - NewAllocaBeginOffset; - V = insertInteger(TD, IRB, Old, V, Offset, "insert"); + Old = convertValue(DL, IRB, Old, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + V = insertInteger(DL, IRB, Old, V, Offset, "insert"); } else { assert(V->getType() == IntTy && "Wrong type for an alloca wide integer!"); } - V = convertValue(TD, IRB, V, AllocaTy); + V = convertValue(DL, IRB, V, AllocaTy); } else { // Established these invariants above. - assert(BeginOffset == NewAllocaBeginOffset); - assert(EndOffset == NewAllocaEndOffset); + assert(NewBeginOffset == NewAllocaBeginOffset); + assert(NewEndOffset == NewAllocaEndOffset); - V = getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ScalarTy) / 8); + V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) V = getVectorSplat(V, AllocaVecTy->getNumElements()); - V = convertValue(TD, IRB, V, AllocaTy); + V = convertValue(DL, IRB, V, AllocaTy); } Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), @@ -2835,21 +2419,25 @@ private: DEBUG(dbgs() << " original: " << II << "\n"); + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); bool IsDest = II.getRawDest() == OldPtr; - const AllocaPartitioning::MemTransferOffsets &MTO - = P.getMemTransferOffsets(II); - // Compute the relative offset within the transfer. - unsigned IntPtrWidth = TD.getPointerSizeInBits(); - APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin - : MTO.SourceBegin)); + unsigned IntPtrWidth = DL.getPointerSizeInBits(); + APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset); unsigned Align = II.getAlignment(); + uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; if (Align > 1) - Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), - MinAlign(II.getAlignment(), getPartitionAlign())); + Align = + MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), + MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset))); // For unsplit intrinsics, we simply modify the source and destination // pointers in place. This isn't just an optimization, it is a matter of @@ -2858,12 +2446,14 @@ private: // a variable length. We may also be dealing with memmove instead of // memcpy, and so simply updating the pointers is the necessary for us to // update both source and dest of a single call. - if (!MTO.IsSplittable) { + if (!IsSplittable) { Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); if (IsDest) - II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); + II.setDest( + getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); else - II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); + II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset, + II.getRawSource()->getType())); Type *CstTy = II.getAlignmentCst()->getType(); II.setAlignment(ConstantInt::get(CstTy, Align)); @@ -2881,24 +2471,21 @@ private: // If this doesn't map cleanly onto the alloca type, and that type isn't // a single value type, just emit a memcpy. bool EmitMemCpy - = !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset || - EndOffset != NewAllocaEndOffset || + = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || + EndOffset < NewAllocaEndOffset || !NewAI.getAllocatedType()->isSingleValueType()); // If we're just going to emit a memcpy, the alloca hasn't changed, and the // size hasn't been shrunk based on analysis of the viable range, this is // a no-op. if (EmitMemCpy && &OldAI == &NewAI) { - uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; - uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; // Ensure the start lines up. - assert(BeginOffset == OrigBegin); - (void)OrigBegin; + assert(NewBeginOffset == BeginOffset); // Rewrite the size as needed. - if (EndOffset != OrigEnd) + if (NewEndOffset != EndOffset) II.setLength(ConstantInt::get(II.getLength()->getType(), - EndOffset - BeginOffset)); + NewEndOffset - NewBeginOffset)); return false; } // Record this instruction for deletion. @@ -2917,13 +2504,13 @@ private: // Compute the other pointer, folding as much as possible to produce // a single, simple GEP in most cases. - OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy); + OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); - Value *OurPtr - = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() - : II.getRawSource()->getType()); + Value *OurPtr = getAdjustedAllocaPtr( + IRB, NewBeginOffset, + IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType()); Type *SizeTy = II.getLength()->getType(); - Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); + Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, @@ -2939,11 +2526,11 @@ private: if (!Align) Align = 1; - bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset && - EndOffset == NewAllocaEndOffset; - uint64_t Size = EndOffset - BeginOffset; - unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0; - unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0; + bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && + NewEndOffset == NewAllocaEndOffset; + uint64_t Size = NewEndOffset - NewBeginOffset; + unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; + unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; unsigned NumElements = EndIndex - BeginIndex; IntegerType *SubIntTy = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0; @@ -2960,7 +2547,7 @@ private: OtherPtrTy = SubIntTy->getPointerTo(); } - Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy); + Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); Value *DstPtr = &NewAI; if (!IsDest) std::swap(SrcPtr, DstPtr); @@ -2973,10 +2560,9 @@ private: } else if (IntTy && !IsWholeAlloca && !IsDest) { Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); - Src = convertValue(TD, IRB, Src, IntTy); - assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); - uint64_t Offset = BeginOffset - NewAllocaBeginOffset; - Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, "extract"); + Src = convertValue(DL, IRB, Src, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); } else { Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), "copyload"); @@ -2989,11 +2575,10 @@ private: } else if (IntTy && !IsWholeAlloca && IsDest) { Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); - Old = convertValue(TD, IRB, Old, IntTy); - assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); - uint64_t Offset = BeginOffset - NewAllocaBeginOffset; - Src = insertInteger(TD, IRB, Old, Src, Offset, "insert"); - Src = convertValue(TD, IRB, Src, NewAllocaTy); + Old = convertValue(DL, IRB, Old, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); + Src = convertValue(DL, IRB, Src, NewAllocaTy); } StoreInst *Store = cast<StoreInst>( @@ -3009,13 +2594,20 @@ private: DEBUG(dbgs() << " original: " << II << "\n"); assert(II.getArgOperand(1) == OldPtr); + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + // Record this instruction for deletion. Pass.DeadInsts.insert(&II); ConstantInt *Size = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), - EndOffset - BeginOffset); - Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); + NewEndOffset - NewBeginOffset); + Value *Ptr = + getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType()); Value *New; if (II.getIntrinsicID() == Intrinsic::lifetime_start) New = IRB.CreateLifetimeStart(Ptr, Size); @@ -3029,30 +2621,45 @@ private: bool visitPHINode(PHINode &PN) { DEBUG(dbgs() << " original: " << PN << "\n"); + assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); + assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); // We would like to compute a new pointer in only one place, but have it be // as local as possible to the PHI. To do that, we re-use the location of // the old pointer, which necessarily must be in the right position to // dominate the PHI. - IRBuilderTy PtrBuilder(cast<Instruction>(OldPtr)); + IRBuilderTy PtrBuilder(OldPtr); PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); - Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); + Value *NewPtr = + getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType()); // Replace the operands which were using the old pointer. std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); DEBUG(dbgs() << " to: " << PN << "\n"); deleteIfTriviallyDead(OldPtr); - return false; + + // Check whether we can speculate this PHI node, and if so remember that + // fact and queue it up for another iteration after the speculation + // occurs. + if (isSafePHIToSpeculate(PN, &DL)) { + Pass.SpeculatablePHIs.insert(&PN); + IsUsedByRewrittenSpeculatableInstructions = true; + return true; + } + + return false; // PHIs can't be promoted on their own. } bool visitSelectInst(SelectInst &SI) { DEBUG(dbgs() << " original: " << SI << "\n"); assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && "Pointer isn't an operand!"); + assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); + assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); - Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); + Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType()); // Replace the operands which were using the old pointer. if (SI.getOperand(1) == OldPtr) SI.setOperand(1, NewPtr); @@ -3061,7 +2668,17 @@ private: DEBUG(dbgs() << " to: " << SI << "\n"); deleteIfTriviallyDead(OldPtr); - return false; + + // Check whether we can speculate this select instruction, and if so + // remember that fact and queue it up for another iteration after the + // speculation occurs. + if (isSafeSelectToSpeculate(SI, &DL)) { + Pass.SpeculatableSelects.insert(&SI); + IsUsedByRewrittenSpeculatableInstructions = true; + return true; + } + + return false; // Selects can't be promoted on their own. } }; @@ -3077,7 +2694,7 @@ class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { // Befriend the base class so it can delegate to private visit methods. friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; - const DataLayout &TD; + const DataLayout &DL; /// Queue of pointer uses to analyze and potentially rewrite. SmallVector<Use *, 8> Queue; @@ -3090,7 +2707,7 @@ class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { Use *U; public: - AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {} + AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} /// Rewrite loads and stores through a pointer and all pointers derived from /// it. @@ -3319,12 +2936,12 @@ static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { /// when the size or offset cause either end of type-based partition to be off. /// Also, this is a best-effort routine. It is reasonable to give up and not /// return a type if necessary. -static Type *getTypePartition(const DataLayout &TD, Type *Ty, +static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, uint64_t Size) { - if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) - return stripAggregateTypeWrapping(TD, Ty); - if (Offset > TD.getTypeAllocSize(Ty) || - (TD.getTypeAllocSize(Ty) - Offset) < Size) + if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) + return stripAggregateTypeWrapping(DL, Ty); + if (Offset > DL.getTypeAllocSize(Ty) || + (DL.getTypeAllocSize(Ty) - Offset) < Size) return 0; if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { @@ -3333,7 +2950,7 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, return 0; Type *ElementTy = SeqTy->getElementType(); - uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); + uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); uint64_t NumSkippedElements = Offset / ElementSize; if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { if (NumSkippedElements >= ArrTy->getNumElements()) @@ -3350,12 +2967,12 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, if ((Offset + Size) > ElementSize) return 0; // Recurse through the element type trying to peel off offset bytes. - return getTypePartition(TD, ElementTy, Offset, Size); + return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) - return stripAggregateTypeWrapping(TD, ElementTy); + return stripAggregateTypeWrapping(DL, ElementTy); assert(Size > ElementSize); uint64_t NumElements = Size / ElementSize; if (NumElements * ElementSize != Size) @@ -3367,7 +2984,7 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, if (!STy) return 0; - const StructLayout *SL = TD.getStructLayout(STy); + const StructLayout *SL = DL.getStructLayout(STy); if (Offset >= SL->getSizeInBytes()) return 0; uint64_t EndOffset = Offset + Size; @@ -3378,7 +2995,7 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, Offset -= SL->getElementOffset(Index); Type *ElementTy = STy->getElementType(Index); - uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); + uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); if (Offset >= ElementSize) return 0; // The offset points into alignment padding. @@ -3386,12 +3003,12 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, if (Offset > 0 || Size < ElementSize) { if ((Offset + Size) > ElementSize) return 0; - return getTypePartition(TD, ElementTy, Offset, Size); + return getTypePartition(DL, ElementTy, Offset, Size); } assert(Offset == 0); if (Size == ElementSize) - return stripAggregateTypeWrapping(TD, ElementTy); + return stripAggregateTypeWrapping(DL, ElementTy); StructType::element_iterator EI = STy->element_begin() + Index, EE = STy->element_end(); @@ -3414,7 +3031,7 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, // Try to build up a sub-structure. StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); - const StructLayout *SubSL = TD.getStructLayout(SubTy); + const StructLayout *SubSL = DL.getStructLayout(SubTy); if (Size != SubSL->getSizeInBytes()) return 0; // The sub-struct doesn't have quite the size needed. @@ -3431,113 +3048,280 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, /// appropriate new offsets. It also evaluates how successful the rewrite was /// at enabling promotion and if it was successful queues the alloca to be /// promoted. -bool SROA::rewriteAllocaPartition(AllocaInst &AI, - AllocaPartitioning &P, - AllocaPartitioning::iterator PI) { - uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; - bool IsLive = false; - for (AllocaPartitioning::use_iterator UI = P.use_begin(PI), - UE = P.use_end(PI); - UI != UE && !IsLive; ++UI) - if (UI->getUse()) - IsLive = true; - if (!IsLive) - return false; // No live uses left of this partition. - - DEBUG(dbgs() << "Speculating PHIs and selects in partition " - << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n"); - - PHIOrSelectSpeculator Speculator(*TD, P, *this); - DEBUG(dbgs() << " speculating "); - DEBUG(P.print(dbgs(), PI, "")); - Speculator.visitUsers(PI); +bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, + AllocaSlices::iterator B, AllocaSlices::iterator E, + int64_t BeginOffset, int64_t EndOffset, + ArrayRef<AllocaSlices::iterator> SplitUses) { + assert(BeginOffset < EndOffset); + uint64_t SliceSize = EndOffset - BeginOffset; // Try to compute a friendly type for this partition of the alloca. This // won't always succeed, in which case we fall back to a legal integer type // or an i8 array of an appropriate size. - Type *AllocaTy = 0; - if (Type *PartitionTy = P.getCommonType(PI)) - if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) - AllocaTy = PartitionTy; - if (!AllocaTy) - if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), - PI->BeginOffset, AllocaSize)) - AllocaTy = PartitionTy; - if ((!AllocaTy || - (AllocaTy->isArrayTy() && - AllocaTy->getArrayElementType()->isIntegerTy())) && - TD->isLegalInteger(AllocaSize * 8)) - AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); - if (!AllocaTy) - AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); - assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); + Type *SliceTy = 0; + if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) + if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) + SliceTy = CommonUseTy; + if (!SliceTy) + if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(), + BeginOffset, SliceSize)) + SliceTy = TypePartitionTy; + if ((!SliceTy || (SliceTy->isArrayTy() && + SliceTy->getArrayElementType()->isIntegerTy())) && + DL->isLegalInteger(SliceSize * 8)) + SliceTy = Type::getIntNTy(*C, SliceSize * 8); + if (!SliceTy) + SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize); + assert(DL->getTypeAllocSize(SliceTy) >= SliceSize); + + bool IsVectorPromotable = isVectorPromotionViable( + *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses); + + bool IsIntegerPromotable = + !IsVectorPromotable && + isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses); // Check for the case where we're going to rewrite to a new alloca of the // exact same type as the original, and with the same access offsets. In that // case, re-use the existing alloca, but still run through the rewriter to // perform phi and select speculation. AllocaInst *NewAI; - if (AllocaTy == AI.getAllocatedType()) { - assert(PI->BeginOffset == 0 && + if (SliceTy == AI.getAllocatedType()) { + assert(BeginOffset == 0 && "Non-zero begin offset but same alloca type"); - assert(PI == P.begin() && "Begin offset is zero on later partition"); NewAI = &AI; + // FIXME: We should be able to bail at this point with "nothing changed". + // FIXME: We might want to defer PHI speculation until after here. } else { unsigned Alignment = AI.getAlignment(); if (!Alignment) { // The minimum alignment which users can rely on when the explicit // alignment is omitted or zero is that required by the ABI for this // type. - Alignment = TD->getABITypeAlignment(AI.getAllocatedType()); + Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); } - Alignment = MinAlign(Alignment, PI->BeginOffset); + Alignment = MinAlign(Alignment, BeginOffset); // If we will get at least this much alignment from the type alone, leave // the alloca's alignment unconstrained. - if (Alignment <= TD->getABITypeAlignment(AllocaTy)) + if (Alignment <= DL->getABITypeAlignment(SliceTy)) Alignment = 0; - NewAI = new AllocaInst(AllocaTy, 0, Alignment, - AI.getName() + ".sroa." + Twine(PI - P.begin()), - &AI); + NewAI = new AllocaInst(SliceTy, 0, Alignment, + AI.getName() + ".sroa." + Twine(B - S.begin()), &AI); ++NumNewAllocas; } DEBUG(dbgs() << "Rewriting alloca partition " - << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " - << *NewAI << "\n"); + << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI + << "\n"); - // Track the high watermark of the post-promotion worklist. We will reset it - // to this point if the alloca is not in fact scheduled for promotion. + // Track the high watermark on several worklists that are only relevant for + // promoted allocas. We will reset it to this point if the alloca is not in + // fact scheduled for promotion. unsigned PPWOldSize = PostPromotionWorklist.size(); + unsigned SPOldSize = SpeculatablePHIs.size(); + unsigned SSOldSize = SpeculatableSelects.size(); + unsigned NumUses = 0; + + AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset, + EndOffset, IsVectorPromotable, + IsIntegerPromotable); + bool Promotable = true; + for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), + SUE = SplitUses.end(); + SUI != SUE; ++SUI) { + DEBUG(dbgs() << " rewriting split "); + DEBUG(S.printSlice(dbgs(), *SUI, "")); + Promotable &= Rewriter.visit(*SUI); + ++NumUses; + } + for (AllocaSlices::iterator I = B; I != E; ++I) { + DEBUG(dbgs() << " rewriting "); + DEBUG(S.printSlice(dbgs(), I, "")); + Promotable &= Rewriter.visit(I); + ++NumUses; + } + + NumAllocaPartitionUses += NumUses; + MaxUsesPerAllocaPartition = + std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); - AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, - PI->BeginOffset, PI->EndOffset); - DEBUG(dbgs() << " rewriting "); - DEBUG(P.print(dbgs(), PI, "")); - bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI)); - if (Promotable) { + if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) { DEBUG(dbgs() << " and queuing for promotion\n"); PromotableAllocas.push_back(NewAI); - } else if (NewAI != &AI) { + } else if (NewAI != &AI || + (Promotable && + Rewriter.isUsedByRewrittenSpeculatableInstructions())) { // If we can't promote the alloca, iterate on it to check for new // refinements exposed by splitting the current alloca. Don't iterate on an // alloca which didn't actually change and didn't get promoted. + // + // Alternatively, if we could promote the alloca but have speculatable + // instructions then we will speculate them after finishing our processing + // of the original alloca. Mark the new one for re-visiting in the next + // iteration so the speculated operations can be rewritten. + // + // FIXME: We should actually track whether the rewriter changed anything. Worklist.insert(NewAI); } // Drop any post-promotion work items if promotion didn't happen. - if (!Promotable) + if (!Promotable) { while (PostPromotionWorklist.size() > PPWOldSize) PostPromotionWorklist.pop_back(); + while (SpeculatablePHIs.size() > SPOldSize) + SpeculatablePHIs.pop_back(); + while (SpeculatableSelects.size() > SSOldSize) + SpeculatableSelects.pop_back(); + } return true; } -/// \brief Walks the partitioning of an alloca rewriting uses of each partition. -bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { +namespace { +struct IsSliceEndLessOrEqualTo { + uint64_t UpperBound; + + IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {} + + bool operator()(const AllocaSlices::iterator &I) { + return I->endOffset() <= UpperBound; + } +}; +} + +static void +removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses, + uint64_t &MaxSplitUseEndOffset, uint64_t Offset) { + if (Offset >= MaxSplitUseEndOffset) { + SplitUses.clear(); + MaxSplitUseEndOffset = 0; + return; + } + + size_t SplitUsesOldSize = SplitUses.size(); + SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(), + IsSliceEndLessOrEqualTo(Offset)), + SplitUses.end()); + if (SplitUsesOldSize == SplitUses.size()) + return; + + // Recompute the max. While this is linear, so is remove_if. + MaxSplitUseEndOffset = 0; + for (SmallVectorImpl<AllocaSlices::iterator>::iterator + SUI = SplitUses.begin(), + SUE = SplitUses.end(); + SUI != SUE; ++SUI) + MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset); +} + +/// \brief Walks the slices of an alloca and form partitions based on them, +/// rewriting each of their uses. +bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { + if (S.begin() == S.end()) + return false; + + unsigned NumPartitions = 0; bool Changed = false; - for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; - ++PI) - Changed |= rewriteAllocaPartition(AI, P, PI); + SmallVector<AllocaSlices::iterator, 4> SplitUses; + uint64_t MaxSplitUseEndOffset = 0; + + uint64_t BeginOffset = S.begin()->beginOffset(); + + for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end(); + SI != SE; SI = SJ) { + uint64_t MaxEndOffset = SI->endOffset(); + + if (!SI->isSplittable()) { + // When we're forming an unsplittable region, it must always start at the + // first slice and will extend through its end. + assert(BeginOffset == SI->beginOffset()); + + // Form a partition including all of the overlapping slices with this + // unsplittable slice. + while (SJ != SE && SJ->beginOffset() < MaxEndOffset) { + if (!SJ->isSplittable()) + MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); + ++SJ; + } + } else { + assert(SI->isSplittable()); // Established above. + + // Collect all of the overlapping splittable slices. + while (SJ != SE && SJ->beginOffset() < MaxEndOffset && + SJ->isSplittable()) { + MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); + ++SJ; + } + + // Back up MaxEndOffset and SJ if we ended the span early when + // encountering an unsplittable slice. + if (SJ != SE && SJ->beginOffset() < MaxEndOffset) { + assert(!SJ->isSplittable()); + MaxEndOffset = SJ->beginOffset(); + } + } + + // Check if we have managed to move the end offset forward yet. If so, + // we'll have to rewrite uses and erase old split uses. + if (BeginOffset < MaxEndOffset) { + // Rewrite a sequence of overlapping slices. + Changed |= + rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses); + ++NumPartitions; + + removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset); + } + + // Accumulate all the splittable slices from the [SI,SJ) region which + // overlap going forward. + for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK) + if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) { + SplitUses.push_back(SK); + MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset); + } + + // If we're already at the end and we have no split uses, we're done. + if (SJ == SE && SplitUses.empty()) + break; + + // If we have no split uses or no gap in offsets, we're ready to move to + // the next slice. + if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) { + BeginOffset = SJ->beginOffset(); + continue; + } + + // Even if we have split slices, if the next slice is splittable and the + // split slices reach it, we can simply set up the beginning offset of the + // next iteration to bridge between them. + if (SJ != SE && SJ->isSplittable() && + MaxSplitUseEndOffset > SJ->beginOffset()) { + BeginOffset = MaxEndOffset; + continue; + } + + // Otherwise, we have a tail of split slices. Rewrite them with an empty + // range of slices. + uint64_t PostSplitEndOffset = + SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset(); + + Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset, + SplitUses); + ++NumPartitions; + + if (SJ == SE) + break; // Skip the rest, we don't need to do any cleanup. + + removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, + PostSplitEndOffset); + + // Now just reset the begin offset for the next iteration. + BeginOffset = SJ->beginOffset(); + } + + NumAllocaPartitions += NumPartitions; + MaxPartitionsPerAlloca = + std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); return Changed; } @@ -3545,7 +3329,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { /// \brief Analyze an alloca for SROA. /// /// This analyzes the alloca to ensure we can reason about it, builds -/// a partitioning of the alloca, and then hands it off to be split and +/// the slices of the alloca, and then hands it off to be split and /// rewritten as needed. bool SROA::runOnAlloca(AllocaInst &AI) { DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); @@ -3559,32 +3343,32 @@ bool SROA::runOnAlloca(AllocaInst &AI) { // Skip alloca forms that this analysis can't handle. if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || - TD->getTypeAllocSize(AI.getAllocatedType()) == 0) + DL->getTypeAllocSize(AI.getAllocatedType()) == 0) return false; bool Changed = false; // First, split any FCA loads and stores touching this alloca to promote // better splitting and promotion opportunities. - AggLoadStoreRewriter AggRewriter(*TD); + AggLoadStoreRewriter AggRewriter(*DL); Changed |= AggRewriter.rewrite(AI); - // Build the partition set using a recursive instruction-visiting builder. - AllocaPartitioning P(*TD, AI); - DEBUG(P.print(dbgs())); - if (P.isEscaped()) + // Build the slices using a recursive instruction-visiting builder. + AllocaSlices S(*DL, AI); + DEBUG(S.print(dbgs())); + if (S.isEscaped()) return Changed; // Delete all the dead users of this alloca before splitting and rewriting it. - for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), - DE = P.dead_user_end(); + for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(), + DE = S.dead_user_end(); DI != DE; ++DI) { Changed = true; (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); DeadInsts.insert(*DI); } - for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), - DE = P.dead_op_end(); + for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(), + DE = S.dead_op_end(); DO != DE; ++DO) { Value *OldV = **DO; // Clobber the use with an undef value. @@ -3596,11 +3380,21 @@ bool SROA::runOnAlloca(AllocaInst &AI) { } } - // No partitions to split. Leave the dead alloca for a later pass to clean up. - if (P.begin() == P.end()) + // No slices to split. Leave the dead alloca for a later pass to clean up. + if (S.begin() == S.end()) return Changed; - return splitAlloca(AI, P) || Changed; + Changed |= splitAlloca(AI, S); + + DEBUG(dbgs() << " Speculating PHIs\n"); + while (!SpeculatablePHIs.empty()) + speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); + + DEBUG(dbgs() << " Speculating Selects\n"); + while (!SpeculatableSelects.empty()) + speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); + + return Changed; } /// \brief Delete the dead instructions accumulated in this run. @@ -3635,6 +3429,15 @@ void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { } } +static void enqueueUsersInWorklist(Instruction &I, + SmallVectorImpl<Instruction *> &Worklist, + SmallPtrSet<Instruction *, 8> &Visited) { + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; + ++UI) + if (Visited.insert(cast<Instruction>(*UI))) + Worklist.push_back(cast<Instruction>(*UI)); +} + /// \brief Promote the allocas, using the best available technique. /// /// This attempts to promote whatever allocas have been identified as viable in @@ -3659,25 +3462,28 @@ bool SROA::promoteAllocas(Function &F) { DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); SSAUpdater SSA; DIBuilder DIB(*F.getParent()); - SmallVector<Instruction*, 64> Insts; + SmallVector<Instruction *, 64> Insts; + + // We need a worklist to walk the uses of each alloca. + SmallVector<Instruction *, 8> Worklist; + SmallPtrSet<Instruction *, 8> Visited; + SmallVector<Instruction *, 32> DeadInsts; for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { AllocaInst *AI = PromotableAllocas[Idx]; - for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); - UI != UE;) { - Instruction *I = cast<Instruction>(*UI++); + Insts.clear(); + Worklist.clear(); + Visited.clear(); + + enqueueUsersInWorklist(*AI, Worklist, Visited); + + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + // FIXME: Currently the SSAUpdater infrastructure doesn't reason about // lifetime intrinsics and so we strip them (and the bitcasts+GEPs // leading to them) here. Eventually it should use them to optimize the // scalar values produced. - if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { - assert(onlyUsedByLifetimeMarkers(I) && - "Found a bitcast used outside of a lifetime marker."); - while (!I->use_empty()) - cast<Instruction>(*I->use_begin())->eraseFromParent(); - I->eraseFromParent(); - continue; - } if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { assert(II->getIntrinsicID() == Intrinsic::lifetime_start || II->getIntrinsicID() == Intrinsic::lifetime_end); @@ -3685,10 +3491,30 @@ bool SROA::promoteAllocas(Function &F) { continue; } - Insts.push_back(I); + // Push the loads and stores we find onto the list. SROA will already + // have validated that all loads and stores are viable candidates for + // promotion. + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + assert(LI->getType() == AI->getAllocatedType()); + Insts.push_back(LI); + continue; + } + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + assert(SI->getValueOperand()->getType() == AI->getAllocatedType()); + Insts.push_back(SI); + continue; + } + + // For everything else, we know that only no-op bitcasts and GEPs will + // make it this far, just recurse through them and recall them for later + // removal. + DeadInsts.push_back(I); + enqueueUsersInWorklist(*I, Worklist, Visited); } AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); - Insts.clear(); + while (!DeadInsts.empty()) + DeadInsts.pop_back_val()->eraseFromParent(); + AI->eraseFromParent(); } PromotableAllocas.clear(); @@ -3712,8 +3538,8 @@ namespace { bool SROA::runOnFunction(Function &F) { DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); C = &F.getContext(); - TD = getAnalysisIfAvailable<DataLayout>(); - if (!TD) { + DL = getAnalysisIfAvailable<DataLayout>(); + if (!DL) { DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); return false; } |