summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
committerdim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
commit60b571e49a90d38697b3aca23020d9da42fc7d7f (patch)
tree99351324c24d6cb146b6285b6caffa4d26fce188 /contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
parentbea1b22c7a9bce1dfdd73e6e5b65bc4752215180 (diff)
downloadFreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.zip
FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.tar.gz
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release:
MFC r309142 (by emaste): Add WITH_LLD_AS_LD build knob If set it installs LLD as /usr/bin/ld. LLD (as of version 3.9) is not capable of linking the world and kernel, but can self-host and link many substantial applications. GNU ld continues to be used for the world and kernel build, regardless of how this knob is set. It is on by default for arm64, and off for all other CPU architectures. Sponsored by: The FreeBSD Foundation MFC r310840: Reapply 310775, now it also builds correctly if lldb is disabled: Move llvm-objdump from CLANG_EXTRAS to installed by default We currently install three tools from binutils 2.17.50: as, ld, and objdump. Work is underway to migrate to a permissively-licensed tool-chain, with one goal being the retirement of binutils 2.17.50. LLVM's llvm-objdump is intended to be compatible with GNU objdump although it is currently missing some options and may have formatting differences. Enable it by default for testing and further investigation. It may later be changed to install as /usr/bin/objdump, it becomes a fully viable replacement. Reviewed by: emaste Differential Revision: https://reviews.freebsd.org/D8879 MFC r312855 (by emaste): Rename LLD_AS_LD to LLD_IS_LD, for consistency with CLANG_IS_CC Reported by: Dan McGregor <dan.mcgregor usask.ca> MFC r313559 | glebius | 2017-02-10 18:34:48 +0100 (Fri, 10 Feb 2017) | 5 lines Don't check struct rtentry on FreeBSD, it is an internal kernel structure. On other systems it may be API structure for SIOCADDRT/SIOCDELRT. Reviewed by: emaste, dim MFC r314152 (by jkim): Remove an assembler flag, which is redundant since r309124. The upstream took care of it by introducing a macro NO_EXEC_STACK_DIRECTIVE. http://llvm.org/viewvc/llvm-project?rev=273500&view=rev Reviewed by: dim MFC r314564: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 (branches/release_40 296509). The release will follow soon. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Also note that as of 4.0.0, lld should be able to link the base system on amd64 and aarch64. See the WITH_LLD_IS_LLD setting in src.conf(5). Though please be aware that this is work in progress. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/4.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Jan Beich, Antoine Brodin and Eric Fiselier for their help. Relnotes: yes Exp-run: antoine PR: 215969, 216008 MFC r314708: For now, revert r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 This commit is the cause of excessive compile times on skein_block.c (and possibly other files) during kernel builds on amd64. We never saw the problematic behavior described in this upstream commit, so for now it is better to revert it. An upstream bug has been filed here: https://bugs.llvm.org/show_bug.cgi?id=32142 Reported by: mjg MFC r314795: Reapply r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 Pull in r296992 from upstream llvm trunk (by Sanjoy Das): [SCEV] Decrease the recursion threshold for CompareValueComplexity Fixes PR32142. r287232 accidentally increased the recursion threshold for CompareValueComplexity from 2 to 32. This change reverses that change by introducing a separate flag for CompareValueComplexity's threshold. The latter revision fixes the excessive compile times for skein_block.c. MFC r314907 | mmel | 2017-03-08 12:40:27 +0100 (Wed, 08 Mar 2017) | 7 lines Unbreak ARMv6 world. The new compiler_rt library imported with clang 4.0.0 have several fatal issues (non-functional __udivsi3 for example) with ARM specific instrict functions. As temporary workaround, until upstream solve these problems, disable all thumb[1][2] related feature. MFC r315016: Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release. We were already very close to the last release candidate, so this is a pretty minor update. Relnotes: yes MFC r316005: Revert r314907, and pull in r298713 from upstream compiler-rt trunk (by Weiming Zhao): builtins: Select correct code fragments when compiling for Thumb1/Thum2/ARM ISA. Summary: Value of __ARM_ARCH_ISA_THUMB isn't based on the actual compilation mode (-mthumb, -marm), it reflect's capability of given CPU. Due to this: - use __tbumb__ and __thumb2__ insteand of __ARM_ARCH_ISA_THUMB - use '.thumb' directive consistently in all affected files - decorate all thumb functions using DEFINE_COMPILERRT_THUMB_FUNCTION() --------- Note: This patch doesn't fix broken Thumb1 variant of __udivsi3 ! Reviewers: weimingz, rengolin, compnerd Subscribers: aemerson, dim Differential Revision: https://reviews.llvm.org/D30938 Discussed with: mmel
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp82
1 files changed, 71 insertions, 11 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
index 55ffc23..1870c3d 100644
--- a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -134,7 +134,7 @@ bool JumpThreading::runOnFunction(Function &F) {
}
PreservedAnalyses JumpThreadingPass::run(Function &F,
- AnalysisManager<Function> &AM) {
+ FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &LVI = AM.getResult<LazyValueAnalysis>(F);
@@ -951,12 +951,17 @@ bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// Scan a few instructions up from the load, to see if it is obviously live at
// the entry to its block.
BasicBlock::iterator BBIt(LI);
-
+ bool IsLoadCSE;
if (Value *AvailableVal =
- FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
+ FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) {
// If the value of the load is locally available within the block, just use
// it. This frequently occurs for reg2mem'd allocas.
+ if (IsLoadCSE) {
+ LoadInst *NLI = cast<LoadInst>(AvailableVal);
+ combineMetadataForCSE(NLI, LI);
+ };
+
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
@@ -983,6 +988,7 @@ bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
AvailablePredsTy AvailablePreds;
BasicBlock *OneUnavailablePred = nullptr;
+ SmallVector<LoadInst*, 8> CSELoads;
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
@@ -993,17 +999,17 @@ bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// Scan the predecessor to see if the value is available in the pred.
BBIt = PredBB->end();
- AAMDNodes ThisAATags;
Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
DefMaxInstsToScan,
- nullptr, &ThisAATags);
+ nullptr,
+ &IsLoadCSE);
if (!PredAvailable) {
OneUnavailablePred = PredBB;
continue;
}
- // If AA tags disagree or are not present, forget about them.
- if (AATags != ThisAATags) AATags = AAMDNodes();
+ if (IsLoadCSE)
+ CSELoads.push_back(cast<LoadInst>(PredAvailable));
// If so, this load is partially redundant. Remember this info so that we
// can create a PHI node.
@@ -1101,6 +1107,10 @@ bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
PN->addIncoming(PredV, I->first);
}
+ for (LoadInst *PredLI : CSELoads) {
+ combineMetadataForCSE(PredLI, LI);
+ }
+
LI->replaceAllUsesWith(PN);
LI->eraseFromParent();
@@ -1157,8 +1167,7 @@ FindMostPopularDest(BasicBlock *BB,
for (unsigned i = 0; ; ++i) {
assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
- if (std::find(SamePopularity.begin(), SamePopularity.end(),
- TI->getSuccessor(i)) == SamePopularity.end())
+ if (!is_contained(SamePopularity, TI->getSuccessor(i)))
continue;
MostPopularDest = TI->getSuccessor(i);
@@ -1594,7 +1603,7 @@ bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
}
/// Create a new basic block that will be the predecessor of BB and successor of
-/// all blocks in Preds. When profile data is availble, update the frequency of
+/// all blocks in Preds. When profile data is available, update the frequency of
/// this new block.
BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
ArrayRef<BasicBlock *> Preds,
@@ -1615,6 +1624,23 @@ BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
return PredBB;
}
+bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
+ const TerminatorInst *TI = BB->getTerminator();
+ assert(TI->getNumSuccessors() > 1 && "not a split");
+
+ MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
+ if (!WeightsNode)
+ return false;
+
+ MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
+ if (MDName->getString() != "branch_weights")
+ return false;
+
+ // Ensure there are weights for all of the successors. Note that the first
+ // operand to the metadata node is a name, not a weight.
+ return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
+}
+
/// Update the block frequency of BB and branch weight and the metadata on the
/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
/// Freq(PredBB->BB) / Freq(BB->SuccBB).
@@ -1665,7 +1691,41 @@ void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
- if (BBSuccProbs.size() >= 2) {
+ // Update the profile metadata as well.
+ //
+ // Don't do this if the profile of the transformed blocks was statically
+ // estimated. (This could occur despite the function having an entry
+ // frequency in completely cold parts of the CFG.)
+ //
+ // In this case we don't want to suggest to subsequent passes that the
+ // calculated weights are fully consistent. Consider this graph:
+ //
+ // check_1
+ // 50% / |
+ // eq_1 | 50%
+ // \ |
+ // check_2
+ // 50% / |
+ // eq_2 | 50%
+ // \ |
+ // check_3
+ // 50% / |
+ // eq_3 | 50%
+ // \ |
+ //
+ // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
+ // the overall probabilities are inconsistent; the total probability that the
+ // value is either 1, 2 or 3 is 150%.
+ //
+ // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
+ // becomes 0%. This is even worse if the edge whose probability becomes 0% is
+ // the loop exit edge. Then based solely on static estimation we would assume
+ // the loop was extremely hot.
+ //
+ // FIXME this locally as well so that BPI and BFI are consistent as well. We
+ // shouldn't make edges extremely likely or unlikely based solely on static
+ // estimation.
+ if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
SmallVector<uint32_t, 4> Weights;
for (auto Prob : BBSuccProbs)
Weights.push_back(Prob.getNumerator());
OpenPOWER on IntegriCloud