summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-09-26 19:56:36 +0000
committerLuiz Souza <luiz@netgate.com>2018-02-21 15:12:19 -0300
commit1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch)
tree4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
parentf45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff)
downloadFreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip
FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste): Correct lld llvm-tblgen dependency file name MFC r309169: Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump and llvm-lto. The mergeinfo confuses Subversion enormously, and these directories will just use the mergeinfo for llvm itself. MFC r312765: Pull in r276136 from upstream llvm trunk (by Wei Mi): Use ValueOffsetPair to enhance value reuse during SCEV expansion. In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion. However, const folding and sext/zext distribution can make the reuse still difficult. A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and S1 = S2 + C_a S3 = S2 + C_b where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused by the fact that S3 is generated from S1 after const folding. In order to do that, we represent ExprValueMap as a mapping from SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b. Differential Revision: https://reviews.llvm.org/D21313 This should fix assertion failures when building OpenCV >= 3.1. PR: 215649 MFC r312831: Revert r312765 for now, since it causes assertions when building lang/spidermonkey24. Reported by: antoine PR: 215649 MFC r316511 (by jhb): Add an implementation of __ffssi2() derived from __ffsdi2(). Newer versions of GCC include an __ffssi2() symbol in libgcc and the compiler can emit calls to it in generated code. This is true for at least GCC 6.2 when compiling world for mips and mips64. Reviewed by: jmallett, dim Sponsored by: DARPA / AFRL Differential Revision: https://reviews.freebsd.org/D10086 MFC r318601 (by adrian): [libcompiler-rt] add bswapdi2/bswapsi2 This is required for mips gcc 6.3 userland to build/run. Reviewed by: emaste, dim Approved by: emaste Differential Revision: https://reviews.freebsd.org/D10838 MFC r318884 (by emaste): lldb: map TRAP_CAP to a trace trap In the absense of a more specific handler for TRAP_CAP (generated by ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace trap. Example usage (testing the bug in PR219173): % proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls ... (lldb) run Process 12980 launching Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64) Process 12980 stopped * thread #1, stop reason = trace frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10 ... In the future we should have LLDB control the trapcap procctl itself (as it does with ASLR), as well as report a specific stop reason. This change eliminates an assertion failure from LLDB for now. MFC r319796: Remove a few unneeded files from libllvm, libclang and liblldb. MFC r319885 (by emaste): lld: ELF: Fix ICF crash on absolute symbol relocations. If two sections contained relocations to absolute symbols with the same value we would crash when trying to access their sections. Add a check that both symbols point to sections before accessing their sections, and treat absolute symbols as equal if their values are equal. Obtained from: LLD commit r292578 MFC r319918: Revert r319796 for now, it can cause undefined references when linking in some circumstances. Reported by: Shawn Webb <shawn.webb@hardenedbsd.org> MFC r319957 (by emaste): lld: Add armelf emulation mode Obtained from: LLD r305375 MFC r321369: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release, which should be in about a month. Please report bugs and regressions, so we can get them into the release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. MFC r321420: Add a few more object files to liblldb, which should solve errors when linking the lldb executable in some cases. In particular, when the -ffunction-sections -fdata-sections options are turned off, or ineffective. Reported by: Shawn Webb, Mark Millard MFC r321433: Cleanup stale Options.inc files from the previous libllvm build for clang 4.0.0. Otherwise, these can get included before the two newly generated ones (which are different) for clang 5.0.0. Reported by: Mark Millard MFC r321439 (by bdrewery): Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm. The files are only ever generated to .OBJDIR, not to WORLDTMP (as a sysroot) and are only ever included from a compilation. So using a beforebuild target here removes the file before the compilation tries to include it. MFC r321664: Pull in r308891 from upstream llvm trunk (by Benjamin Kramer): [CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses. This avoids excessive compile time. The case I'm looking at is Function.cpp from an old version of LLVM that still had the giant memcmp string matcher in it. Before r308322 this compiled in about 2 minutes, after it, clang takes infinite* time to compile it. With this patch we're at 5 min, which is still bad but this is a pathological case. The cut off at 20 uses was chosen by looking at other cut-offs in LLVM for user scanning. It's probably too high, but does the job and is very unlikely to regress anything. Fixes PR33900. * I'm impatient and aborted after 15 minutes, on the bug report it was killed after 2h. Pull in r308986 from upstream llvm trunk (by Simon Pilgrim): [X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914) D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914). Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os). This patch should be considered for the 5.0.0 release branch as well Differential Revision: https://reviews.llvm.org/D35830 These fix a hang (or extremely long compile time) when building older LLVM ports. Reported by: antoine PR: 219139 MFC r321719: Pull in r309503 from upstream clang trunk (by Richard Smith): PR33902: Invalidate line number cache when adding more text to existing buffer. This led to crashes as the line number cache would report a bogus line number for a line of code, and we'd try to find a nonexistent column within the line when printing diagnostics. This fixes an assertion when building the graphics/champlain port. Reported by: antoine, kwm PR: 219139 MFC r321723: Upgrade our copies of clang, llvm, lld and lldb to r309439 from the upstream release_50 branch. This is just after upstream's 5.0.0-rc1. MFC r322320: Upgrade our copies of clang, llvm and libc++ to r310316 from the upstream release_50 branch. MFC r322326 (by emaste): lldb: Make i386-*-freebsd expression work on JIT path * Enable i386 ABI creation for freebsd * Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap syscall * Unlike linux, the last argument of mmap is actually 64-bit(off_t). This requires us to push an additional word for the higher order bits. * Prior to this change, ktrace dump will show mmap failures due to invalid argument coming from the 6th mmap argument. Submitted by: Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D34776 MFC r322360 (by emaste): lldb: Report inferior signals as signals, not exceptions, on FreeBSD This is the FreeBSD equivalent of LLVM r238549. This serves 2 purposes: * LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/ SIGFPE the way it is suppose to be handled. Prior to this fix these signals will neither create a coredump, nor exit from the debugger or work for signal handling scenario. * eInvalidCrashReason need not report "unknown crash reason" if we have a valid si_signo llvm.org/pr23699 Patch by Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D35223 Submitted by: Karnajit Wangkhem Obtained from: LLVM r310591 MFC r322474 (by emaste): lld: Add `-z muldefs` option. Obtained from: LLVM r310757 MFC r322740: Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the upstream release_50 branch. MFC r322855: Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from the upstream release_50 branch. As of this version, lib/msun's trig test should also work correctly again (see bug 220989 for more information). PR: 220989 MFC r323112: Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from the upstream release_50 branch. This corresponds to 5.0.0 rc4. As of this version, the cad/stepcode port should now compile in a more reasonable time on i386 (see bug 221836 for more information). PR: 221836 MFC r323245: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 release (upstream r312559). Release notes for llvm, clang and lld will be available here soon: <http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html> Relnotes: yes (cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp969
1 files changed, 969 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp b/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
new file mode 100644
index 0000000..89b28f0
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
@@ -0,0 +1,969 @@
+//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// CUDA C/C++ includes memory space designation as variable type qualifers (such
+// as __global__ and __shared__). Knowing the space of a memory access allows
+// CUDA compilers to emit faster PTX loads and stores. For example, a load from
+// shared memory can be translated to `ld.shared` which is roughly 10% faster
+// than a generic `ld` on an NVIDIA Tesla K40c.
+//
+// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
+// compilers must infer the memory space of an address expression from
+// type-qualified variables.
+//
+// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
+// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
+// places only type-qualified variables in specific address spaces, and then
+// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
+// (so-called the generic address space) for other instructions to use.
+//
+// For example, the Clang translates the following CUDA code
+// __shared__ float a[10];
+// float v = a[i];
+// to
+// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
+// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
+// %v = load float, float* %1 ; emits ld.f32
+// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
+// redirected to %0 (the generic version of @a).
+//
+// The optimization implemented in this file propagates specific address spaces
+// from type-qualified variable declarations to its users. For example, it
+// optimizes the above IR to
+// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
+// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
+// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
+// codegen is able to emit ld.shared.f32 for %v.
+//
+// Address space inference works in two steps. First, it uses a data-flow
+// analysis to infer as many generic pointers as possible to point to only one
+// specific address space. In the above example, it can prove that %1 only
+// points to addrspace(3). This algorithm was published in
+// CUDA: Compiling and optimizing for a GPU platform
+// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
+// ICCS 2012
+//
+// Then, address space inference replaces all refinable generic pointers with
+// equivalent specific pointers.
+//
+// The major challenge of implementing this optimization is handling PHINodes,
+// which may create loops in the data flow graph. This brings two complications.
+//
+// First, the data flow analysis in Step 1 needs to be circular. For example,
+// %generic.input = addrspacecast float addrspace(3)* %input to float*
+// loop:
+// %y = phi [ %generic.input, %y2 ]
+// %y2 = getelementptr %y, 1
+// %v = load %y2
+// br ..., label %loop, ...
+// proving %y specific requires proving both %generic.input and %y2 specific,
+// but proving %y2 specific circles back to %y. To address this complication,
+// the data flow analysis operates on a lattice:
+// uninitialized > specific address spaces > generic.
+// All address expressions (our implementation only considers phi, bitcast,
+// addrspacecast, and getelementptr) start with the uninitialized address space.
+// The monotone transfer function moves the address space of a pointer down a
+// lattice path from uninitialized to specific and then to generic. A join
+// operation of two different specific address spaces pushes the expression down
+// to the generic address space. The analysis completes once it reaches a fixed
+// point.
+//
+// Second, IR rewriting in Step 2 also needs to be circular. For example,
+// converting %y to addrspace(3) requires the compiler to know the converted
+// %y2, but converting %y2 needs the converted %y. To address this complication,
+// we break these cycles using "undef" placeholders. When converting an
+// instruction `I` to a new address space, if its operand `Op` is not converted
+// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
+// For instance, our algorithm first converts %y to
+// %y' = phi float addrspace(3)* [ %input, undef ]
+// Then, it converts %y2 to
+// %y2' = getelementptr %y', 1
+// Finally, it fixes the undef in %y' so that
+// %y' = phi float addrspace(3)* [ %input, %y2' ]
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+
+#define DEBUG_TYPE "infer-address-spaces"
+
+using namespace llvm;
+
+namespace {
+static const unsigned UninitializedAddressSpace = ~0u;
+
+using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
+
+/// \brief InferAddressSpaces
+class InferAddressSpaces : public FunctionPass {
+ /// Target specific address space which uses of should be replaced if
+ /// possible.
+ unsigned FlatAddrSpace;
+
+public:
+ static char ID;
+
+ InferAddressSpaces() : FunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override;
+
+private:
+ // Returns the new address space of V if updated; otherwise, returns None.
+ Optional<unsigned>
+ updateAddressSpace(const Value &V,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
+
+ // Tries to infer the specific address space of each address expression in
+ // Postorder.
+ void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace) const;
+
+ bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
+
+ // Changes the flat address expressions in function F to point to specific
+ // address spaces if InferredAddrSpace says so. Postorder is the postorder of
+ // all flat expressions in the use-def graph of function F.
+ bool
+ rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace,
+ Function *F) const;
+
+ void appendsFlatAddressExpressionToPostorderStack(
+ Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
+ DenseSet<Value *> &Visited) const;
+
+ bool rewriteIntrinsicOperands(IntrinsicInst *II,
+ Value *OldV, Value *NewV) const;
+ void collectRewritableIntrinsicOperands(
+ IntrinsicInst *II,
+ std::vector<std::pair<Value *, bool>> &PostorderStack,
+ DenseSet<Value *> &Visited) const;
+
+ std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
+
+ Value *cloneValueWithNewAddressSpace(
+ Value *V, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) const;
+ unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
+};
+} // end anonymous namespace
+
+char InferAddressSpaces::ID = 0;
+
+namespace llvm {
+void initializeInferAddressSpacesPass(PassRegistry &);
+}
+
+INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
+ false, false)
+
+// Returns true if V is an address expression.
+// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
+// getelementptr operators.
+static bool isAddressExpression(const Value &V) {
+ if (!isa<Operator>(V))
+ return false;
+
+ switch (cast<Operator>(V).getOpcode()) {
+ case Instruction::PHI:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ case Instruction::Select:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Returns the pointer operands of V.
+//
+// Precondition: V is an address expression.
+static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
+ const Operator &Op = cast<Operator>(V);
+ switch (Op.getOpcode()) {
+ case Instruction::PHI: {
+ auto IncomingValues = cast<PHINode>(Op).incoming_values();
+ return SmallVector<Value *, 2>(IncomingValues.begin(),
+ IncomingValues.end());
+ }
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::GetElementPtr:
+ return {Op.getOperand(0)};
+ case Instruction::Select:
+ return {Op.getOperand(1), Op.getOperand(2)};
+ default:
+ llvm_unreachable("Unexpected instruction type.");
+ }
+}
+
+// TODO: Move logic to TTI?
+bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
+ Value *OldV,
+ Value *NewV) const {
+ Module *M = II->getParent()->getParent()->getParent();
+
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:{
+ const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
+ if (!IsVolatile || !IsVolatile->isZero())
+ return false;
+
+ LLVM_FALLTHROUGH;
+ }
+ case Intrinsic::objectsize: {
+ Type *DestTy = II->getType();
+ Type *SrcTy = NewV->getType();
+ Function *NewDecl =
+ Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
+ II->setArgOperand(0, NewV);
+ II->setCalledFunction(NewDecl);
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+// TODO: Move logic to TTI?
+void InferAddressSpaces::collectRewritableIntrinsicOperands(
+ IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
+ DenseSet<Value *> &Visited) const {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::objectsize:
+ case Intrinsic::amdgcn_atomic_inc:
+ case Intrinsic::amdgcn_atomic_dec:
+ appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
+ PostorderStack, Visited);
+ break;
+ default:
+ break;
+ }
+}
+
+// Returns all flat address expressions in function F. The elements are
+// If V is an unvisited flat address expression, appends V to PostorderStack
+// and marks it as visited.
+void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
+ Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
+ DenseSet<Value *> &Visited) const {
+ assert(V->getType()->isPointerTy());
+
+ // Generic addressing expressions may be hidden in nested constant
+ // expressions.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ // TODO: Look in non-address parts, like icmp operands.
+ if (isAddressExpression(*CE) && Visited.insert(CE).second)
+ PostorderStack.push_back(std::make_pair(CE, false));
+
+ return;
+ }
+
+ if (isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
+ if (Visited.insert(V).second) {
+ PostorderStack.push_back(std::make_pair(V, false));
+
+ Operator *Op = cast<Operator>(V);
+ for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
+ if (isAddressExpression(*CE) && Visited.insert(CE).second)
+ PostorderStack.emplace_back(CE, false);
+ }
+ }
+ }
+ }
+}
+
+// Returns all flat address expressions in function F. The elements are ordered
+// ordered in postorder.
+std::vector<WeakTrackingVH>
+InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
+ // This function implements a non-recursive postorder traversal of a partial
+ // use-def graph of function F.
+ std::vector<std::pair<Value *, bool>> PostorderStack;
+ // The set of visited expressions.
+ DenseSet<Value *> Visited;
+
+ auto PushPtrOperand = [&](Value *Ptr) {
+ appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
+ Visited);
+ };
+
+ // Look at operations that may be interesting accelerate by moving to a known
+ // address space. We aim at generating after loads and stores, but pure
+ // addressing calculations may also be faster.
+ for (Instruction &I : instructions(F)) {
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ if (!GEP->getType()->isVectorTy())
+ PushPtrOperand(GEP->getPointerOperand());
+ } else if (auto *LI = dyn_cast<LoadInst>(&I))
+ PushPtrOperand(LI->getPointerOperand());
+ else if (auto *SI = dyn_cast<StoreInst>(&I))
+ PushPtrOperand(SI->getPointerOperand());
+ else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
+ PushPtrOperand(RMW->getPointerOperand());
+ else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
+ PushPtrOperand(CmpX->getPointerOperand());
+ else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
+ // For memset/memcpy/memmove, any pointer operand can be replaced.
+ PushPtrOperand(MI->getRawDest());
+
+ // Handle 2nd operand for memcpy/memmove.
+ if (auto *MTI = dyn_cast<MemTransferInst>(MI))
+ PushPtrOperand(MTI->getRawSource());
+ } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
+ else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
+ // FIXME: Handle vectors of pointers
+ if (Cmp->getOperand(0)->getType()->isPointerTy()) {
+ PushPtrOperand(Cmp->getOperand(0));
+ PushPtrOperand(Cmp->getOperand(1));
+ }
+ } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
+ if (!ASC->getType()->isVectorTy())
+ PushPtrOperand(ASC->getPointerOperand());
+ }
+ }
+
+ std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
+ while (!PostorderStack.empty()) {
+ Value *TopVal = PostorderStack.back().first;
+ // If the operands of the expression on the top are already explored,
+ // adds that expression to the resultant postorder.
+ if (PostorderStack.back().second) {
+ if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
+ Postorder.push_back(TopVal);
+ PostorderStack.pop_back();
+ continue;
+ }
+ // Otherwise, adds its operands to the stack and explores them.
+ PostorderStack.back().second = true;
+ for (Value *PtrOperand : getPointerOperands(*TopVal)) {
+ appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
+ Visited);
+ }
+ }
+ return Postorder;
+}
+
+// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
+// of OperandUse.get() in the new address space. If the clone is not ready yet,
+// returns an undef in the new address space as a placeholder.
+static Value *operandWithNewAddressSpaceOrCreateUndef(
+ const Use &OperandUse, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Value *Operand = OperandUse.get();
+
+ Type *NewPtrTy =
+ Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (Constant *C = dyn_cast<Constant>(Operand))
+ return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
+
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
+ return NewOperand;
+
+ UndefUsesToFix->push_back(&OperandUse);
+ return UndefValue::get(NewPtrTy);
+}
+
+// Returns a clone of `I` with its operands converted to those specified in
+// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
+// operand whose address space needs to be modified might not exist in
+// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
+// adds that operand use to UndefUsesToFix so that caller can fix them later.
+//
+// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
+// from a pointer whose type already matches. Therefore, this function returns a
+// Value* instead of an Instruction*.
+static Value *cloneInstructionWithNewAddressSpace(
+ Instruction *I, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) {
+ Type *NewPtrType =
+ I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (I->getOpcode() == Instruction::AddrSpaceCast) {
+ Value *Src = I->getOperand(0);
+ // Because `I` is flat, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space, according
+ // to our algorithm.
+ assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
+ if (Src->getType() != NewPtrType)
+ return new BitCastInst(Src, NewPtrType);
+ return Src;
+ }
+
+ // Computes the converted pointer operands.
+ SmallVector<Value *, 4> NewPointerOperands;
+ for (const Use &OperandUse : I->operands()) {
+ if (!OperandUse.get()->getType()->isPointerTy())
+ NewPointerOperands.push_back(nullptr);
+ else
+ NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
+ OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
+ }
+
+ switch (I->getOpcode()) {
+ case Instruction::BitCast:
+ return new BitCastInst(NewPointerOperands[0], NewPtrType);
+ case Instruction::PHI: {
+ assert(I->getType()->isPointerTy());
+ PHINode *PHI = cast<PHINode>(I);
+ PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
+ for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
+ unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
+ NewPHI->addIncoming(NewPointerOperands[OperandNo],
+ PHI->getIncomingBlock(Index));
+ }
+ return NewPHI;
+ }
+ case Instruction::GetElementPtr: {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
+ GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
+ GEP->getSourceElementType(), NewPointerOperands[0],
+ SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
+ NewGEP->setIsInBounds(GEP->isInBounds());
+ return NewGEP;
+ }
+ case Instruction::Select: {
+ assert(I->getType()->isPointerTy());
+ return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
+ NewPointerOperands[2], "", nullptr, I);
+ }
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
+// constant expression `CE` with its operands replaced as specified in
+// ValueWithNewAddrSpace.
+static Value *cloneConstantExprWithNewAddressSpace(
+ ConstantExpr *CE, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace) {
+ Type *TargetType =
+ CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
+
+ if (CE->getOpcode() == Instruction::AddrSpaceCast) {
+ // Because CE is flat, the source address space must be specific.
+ // Therefore, the inferred address space must be the source space according
+ // to our algorithm.
+ assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
+ NewAddrSpace);
+ return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
+ }
+
+ if (CE->getOpcode() == Instruction::BitCast) {
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
+ return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
+ return ConstantExpr::getAddrSpaceCast(CE, TargetType);
+ }
+
+ if (CE->getOpcode() == Instruction::Select) {
+ Constant *Src0 = CE->getOperand(1);
+ Constant *Src1 = CE->getOperand(2);
+ if (Src0->getType()->getPointerAddressSpace() ==
+ Src1->getType()->getPointerAddressSpace()) {
+
+ return ConstantExpr::getSelect(
+ CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
+ ConstantExpr::getAddrSpaceCast(Src1, TargetType));
+ }
+ }
+
+ // Computes the operands of the new constant expression.
+ bool IsNew = false;
+ SmallVector<Constant *, 4> NewOperands;
+ for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
+ Constant *Operand = CE->getOperand(Index);
+ // If the address space of `Operand` needs to be modified, the new operand
+ // with the new address space should already be in ValueWithNewAddrSpace
+ // because (1) the constant expressions we consider (i.e. addrspacecast,
+ // bitcast, and getelementptr) do not incur cycles in the data flow graph
+ // and (2) this function is called on constant expressions in postorder.
+ if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
+ IsNew = true;
+ NewOperands.push_back(cast<Constant>(NewOperand));
+ } else {
+ // Otherwise, reuses the old operand.
+ NewOperands.push_back(Operand);
+ }
+ }
+
+ // If !IsNew, we will replace the Value with itself. However, replaced values
+ // are assumed to wrapped in a addrspace cast later so drop it now.
+ if (!IsNew)
+ return nullptr;
+
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // Needs to specify the source type while constructing a getelementptr
+ // constant expression.
+ return CE->getWithOperands(
+ NewOperands, TargetType, /*OnlyIfReduced=*/false,
+ NewOperands[0]->getType()->getPointerElementType());
+ }
+
+ return CE->getWithOperands(NewOperands, TargetType);
+}
+
+// Returns a clone of the value `V`, with its operands replaced as specified in
+// ValueWithNewAddrSpace. This function is called on every flat address
+// expression whose address space needs to be modified, in postorder.
+//
+// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
+Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
+ Value *V, unsigned NewAddrSpace,
+ const ValueToValueMapTy &ValueWithNewAddrSpace,
+ SmallVectorImpl<const Use *> *UndefUsesToFix) const {
+ // All values in Postorder are flat address expressions.
+ assert(isAddressExpression(*V) &&
+ V->getType()->getPointerAddressSpace() == FlatAddrSpace);
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Value *NewV = cloneInstructionWithNewAddressSpace(
+ I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
+ if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
+ if (NewI->getParent() == nullptr) {
+ NewI->insertBefore(I);
+ NewI->takeName(I);
+ }
+ }
+ return NewV;
+ }
+
+ return cloneConstantExprWithNewAddressSpace(
+ cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
+}
+
+// Defines the join operation on the address space lattice (see the file header
+// comments).
+unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
+ unsigned AS2) const {
+ if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
+ return FlatAddrSpace;
+
+ if (AS1 == UninitializedAddressSpace)
+ return AS2;
+ if (AS2 == UninitializedAddressSpace)
+ return AS1;
+
+ // The join of two different specific address spaces is flat.
+ return (AS1 == AS2) ? AS1 : FlatAddrSpace;
+}
+
+bool InferAddressSpaces::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ FlatAddrSpace = TTI.getFlatAddressSpace();
+ if (FlatAddrSpace == UninitializedAddressSpace)
+ return false;
+
+ // Collects all flat address expressions in postorder.
+ std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
+
+ // Runs a data-flow analysis to refine the address spaces of every expression
+ // in Postorder.
+ ValueToAddrSpaceMapTy InferredAddrSpace;
+ inferAddressSpaces(Postorder, &InferredAddrSpace);
+
+ // Changes the address spaces of the flat address expressions who are inferred
+ // to point to a specific address space.
+ return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
+}
+
+// Constants need to be tracked through RAUW to handle cases with nested
+// constant expressions, so wrap values in WeakTrackingVH.
+void InferAddressSpaces::inferAddressSpaces(
+ ArrayRef<WeakTrackingVH> Postorder,
+ ValueToAddrSpaceMapTy *InferredAddrSpace) const {
+ SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
+ // Initially, all expressions are in the uninitialized address space.
+ for (Value *V : Postorder)
+ (*InferredAddrSpace)[V] = UninitializedAddressSpace;
+
+ while (!Worklist.empty()) {
+ Value *V = Worklist.pop_back_val();
+
+ // Tries to update the address space of the stack top according to the
+ // address spaces of its operands.
+ DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
+ Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
+ if (!NewAS.hasValue())
+ continue;
+ // If any updates are made, grabs its users to the worklist because
+ // their address spaces can also be possibly updated.
+ DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
+ (*InferredAddrSpace)[V] = NewAS.getValue();
+
+ for (Value *User : V->users()) {
+ // Skip if User is already in the worklist.
+ if (Worklist.count(User))
+ continue;
+
+ auto Pos = InferredAddrSpace->find(User);
+ // Our algorithm only updates the address spaces of flat address
+ // expressions, which are those in InferredAddrSpace.
+ if (Pos == InferredAddrSpace->end())
+ continue;
+
+ // Function updateAddressSpace moves the address space down a lattice
+ // path. Therefore, nothing to do if User is already inferred as flat (the
+ // bottom element in the lattice).
+ if (Pos->second == FlatAddrSpace)
+ continue;
+
+ Worklist.insert(User);
+ }
+ }
+}
+
+Optional<unsigned> InferAddressSpaces::updateAddressSpace(
+ const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
+ assert(InferredAddrSpace.count(&V));
+
+ // The new inferred address space equals the join of the address spaces
+ // of all its pointer operands.
+ unsigned NewAS = UninitializedAddressSpace;
+
+ const Operator &Op = cast<Operator>(V);
+ if (Op.getOpcode() == Instruction::Select) {
+ Value *Src0 = Op.getOperand(1);
+ Value *Src1 = Op.getOperand(2);
+
+ auto I = InferredAddrSpace.find(Src0);
+ unsigned Src0AS = (I != InferredAddrSpace.end()) ?
+ I->second : Src0->getType()->getPointerAddressSpace();
+
+ auto J = InferredAddrSpace.find(Src1);
+ unsigned Src1AS = (J != InferredAddrSpace.end()) ?
+ J->second : Src1->getType()->getPointerAddressSpace();
+
+ auto *C0 = dyn_cast<Constant>(Src0);
+ auto *C1 = dyn_cast<Constant>(Src1);
+
+ // If one of the inputs is a constant, we may be able to do a constant
+ // addrspacecast of it. Defer inferring the address space until the input
+ // address space is known.
+ if ((C1 && Src0AS == UninitializedAddressSpace) ||
+ (C0 && Src1AS == UninitializedAddressSpace))
+ return None;
+
+ if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
+ NewAS = Src1AS;
+ else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
+ NewAS = Src0AS;
+ else
+ NewAS = joinAddressSpaces(Src0AS, Src1AS);
+ } else {
+ for (Value *PtrOperand : getPointerOperands(V)) {
+ auto I = InferredAddrSpace.find(PtrOperand);
+ unsigned OperandAS = I != InferredAddrSpace.end() ?
+ I->second : PtrOperand->getType()->getPointerAddressSpace();
+
+ // join(flat, *) = flat. So we can break if NewAS is already flat.
+ NewAS = joinAddressSpaces(NewAS, OperandAS);
+ if (NewAS == FlatAddrSpace)
+ break;
+ }
+ }
+
+ unsigned OldAS = InferredAddrSpace.lookup(&V);
+ assert(OldAS != FlatAddrSpace);
+ if (OldAS == NewAS)
+ return None;
+ return NewAS;
+}
+
+/// \p returns true if \p U is the pointer operand of a memory instruction with
+/// a single pointer operand that can have its address space changed by simply
+/// mutating the use to a new value.
+static bool isSimplePointerUseValidToReplace(Use &U) {
+ User *Inst = U.getUser();
+ unsigned OpNo = U.getOperandNo();
+
+ if (auto *LI = dyn_cast<LoadInst>(Inst))
+ return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
+
+ if (auto *SI = dyn_cast<StoreInst>(Inst))
+ return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
+
+ if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
+ return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
+
+ if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
+ return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
+ !CmpX->isVolatile();
+ }
+
+ return false;
+}
+
+/// Update memory intrinsic uses that require more complex processing than
+/// simple memory instructions. Thse require re-mangling and may have multiple
+/// pointer operands.
+static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
+ Value *NewV) {
+ IRBuilder<> B(MI);
+ MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
+ MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
+ MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
+
+ if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
+ B.CreateMemSet(NewV, MSI->getValue(),
+ MSI->getLength(), MSI->getAlignment(),
+ false, // isVolatile
+ TBAA, ScopeMD, NoAliasMD);
+ } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
+ Value *Src = MTI->getRawSource();
+ Value *Dest = MTI->getRawDest();
+
+ // Be careful in case this is a self-to-self copy.
+ if (Src == OldV)
+ Src = NewV;
+
+ if (Dest == OldV)
+ Dest = NewV;
+
+ if (isa<MemCpyInst>(MTI)) {
+ MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
+ B.CreateMemCpy(Dest, Src, MTI->getLength(),
+ MTI->getAlignment(),
+ false, // isVolatile
+ TBAA, TBAAStruct, ScopeMD, NoAliasMD);
+ } else {
+ assert(isa<MemMoveInst>(MTI));
+ B.CreateMemMove(Dest, Src, MTI->getLength(),
+ MTI->getAlignment(),
+ false, // isVolatile
+ TBAA, ScopeMD, NoAliasMD);
+ }
+ } else
+ llvm_unreachable("unhandled MemIntrinsic");
+
+ MI->eraseFromParent();
+ return true;
+}
+
+// \p returns true if it is OK to change the address space of constant \p C with
+// a ConstantExpr addrspacecast.
+bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
+ assert(NewAS != UninitializedAddressSpace);
+
+ unsigned SrcAS = C->getType()->getPointerAddressSpace();
+ if (SrcAS == NewAS || isa<UndefValue>(C))
+ return true;
+
+ // Prevent illegal casts between different non-flat address spaces.
+ if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
+ return false;
+
+ if (isa<ConstantPointerNull>(C))
+ return true;
+
+ if (auto *Op = dyn_cast<Operator>(C)) {
+ // If we already have a constant addrspacecast, it should be safe to cast it
+ // off.
+ if (Op->getOpcode() == Instruction::AddrSpaceCast)
+ return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
+
+ if (Op->getOpcode() == Instruction::IntToPtr &&
+ Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
+ return true;
+ }
+
+ return false;
+}
+
+static Value::use_iterator skipToNextUser(Value::use_iterator I,
+ Value::use_iterator End) {
+ User *CurUser = I->getUser();
+ ++I;
+
+ while (I != End && I->getUser() == CurUser)
+ ++I;
+
+ return I;
+}
+
+bool InferAddressSpaces::rewriteWithNewAddressSpaces(
+ ArrayRef<WeakTrackingVH> Postorder,
+ const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
+ // For each address expression to be modified, creates a clone of it with its
+ // pointer operands converted to the new address space. Since the pointer
+ // operands are converted, the clone is naturally in the new address space by
+ // construction.
+ ValueToValueMapTy ValueWithNewAddrSpace;
+ SmallVector<const Use *, 32> UndefUsesToFix;
+ for (Value* V : Postorder) {
+ unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
+ if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
+ ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
+ V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
+ }
+ }
+
+ if (ValueWithNewAddrSpace.empty())
+ return false;
+
+ // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
+ for (const Use *UndefUse : UndefUsesToFix) {
+ User *V = UndefUse->getUser();
+ User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
+ unsigned OperandNo = UndefUse->getOperandNo();
+ assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
+ NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
+ }
+
+ SmallVector<Instruction *, 16> DeadInstructions;
+
+ // Replaces the uses of the old address expressions with the new ones.
+ for (const WeakTrackingVH &WVH : Postorder) {
+ assert(WVH && "value was unexpectedly deleted");
+ Value *V = WVH;
+ Value *NewV = ValueWithNewAddrSpace.lookup(V);
+ if (NewV == nullptr)
+ continue;
+
+ DEBUG(dbgs() << "Replacing the uses of " << *V
+ << "\n with\n " << *NewV << '\n');
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
+ C->getType());
+ if (C != Replace) {
+ DEBUG(dbgs() << "Inserting replacement const cast: "
+ << Replace << ": " << *Replace << '\n');
+ C->replaceAllUsesWith(Replace);
+ V = Replace;
+ }
+ }
+
+ Value::use_iterator I, E, Next;
+ for (I = V->use_begin(), E = V->use_end(); I != E; ) {
+ Use &U = *I;
+
+ // Some users may see the same pointer operand in multiple operands. Skip
+ // to the next instruction.
+ I = skipToNextUser(I, E);
+
+ if (isSimplePointerUseValidToReplace(U)) {
+ // If V is used as the pointer operand of a compatible memory operation,
+ // sets the pointer operand to NewV. This replacement does not change
+ // the element type, so the resultant load/store is still valid.
+ U.set(NewV);
+ continue;
+ }
+
+ User *CurUser = U.getUser();
+ // Handle more complex cases like intrinsic that need to be remangled.
+ if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
+ if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
+ continue;
+ }
+
+ if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
+ if (rewriteIntrinsicOperands(II, V, NewV))
+ continue;
+ }
+
+ if (isa<Instruction>(CurUser)) {
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
+ // If we can infer that both pointers are in the same addrspace,
+ // transform e.g.
+ // %cmp = icmp eq float* %p, %q
+ // into
+ // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
+
+ unsigned NewAS = NewV->getType()->getPointerAddressSpace();
+ int SrcIdx = U.getOperandNo();
+ int OtherIdx = (SrcIdx == 0) ? 1 : 0;
+ Value *OtherSrc = Cmp->getOperand(OtherIdx);
+
+ if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
+ if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
+ Cmp->setOperand(OtherIdx, OtherNewV);
+ Cmp->setOperand(SrcIdx, NewV);
+ continue;
+ }
+ }
+
+ // Even if the type mismatches, we can cast the constant.
+ if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
+ if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
+ Cmp->setOperand(SrcIdx, NewV);
+ Cmp->setOperand(OtherIdx,
+ ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
+ continue;
+ }
+ }
+ }
+
+ if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
+ unsigned NewAS = NewV->getType()->getPointerAddressSpace();
+ if (ASC->getDestAddressSpace() == NewAS) {
+ ASC->replaceAllUsesWith(NewV);
+ DeadInstructions.push_back(ASC);
+ continue;
+ }
+ }
+
+ // Otherwise, replaces the use with flat(NewV).
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ BasicBlock::iterator InsertPos = std::next(I->getIterator());
+ while (isa<PHINode>(InsertPos))
+ ++InsertPos;
+ U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
+ } else {
+ U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
+ V->getType()));
+ }
+ }
+ }
+
+ if (V->use_empty()) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ DeadInstructions.push_back(I);
+ }
+ }
+
+ for (Instruction *I : DeadInstructions)
+ RecursivelyDeleteTriviallyDeadInstructions(I);
+
+ return true;
+}
+
+FunctionPass *llvm::createInferAddressSpacesPass() {
+ return new InferAddressSpaces();
+}
OpenPOWER on IntegriCloud