summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-09-26 19:56:36 +0000
committerLuiz Souza <luiz@netgate.com>2018-02-21 15:12:19 -0300
commit1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch)
tree4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
parentf45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff)
downloadFreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip
FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste): Correct lld llvm-tblgen dependency file name MFC r309169: Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump and llvm-lto. The mergeinfo confuses Subversion enormously, and these directories will just use the mergeinfo for llvm itself. MFC r312765: Pull in r276136 from upstream llvm trunk (by Wei Mi): Use ValueOffsetPair to enhance value reuse during SCEV expansion. In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion. However, const folding and sext/zext distribution can make the reuse still difficult. A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and S1 = S2 + C_a S3 = S2 + C_b where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused by the fact that S3 is generated from S1 after const folding. In order to do that, we represent ExprValueMap as a mapping from SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b. Differential Revision: https://reviews.llvm.org/D21313 This should fix assertion failures when building OpenCV >= 3.1. PR: 215649 MFC r312831: Revert r312765 for now, since it causes assertions when building lang/spidermonkey24. Reported by: antoine PR: 215649 MFC r316511 (by jhb): Add an implementation of __ffssi2() derived from __ffsdi2(). Newer versions of GCC include an __ffssi2() symbol in libgcc and the compiler can emit calls to it in generated code. This is true for at least GCC 6.2 when compiling world for mips and mips64. Reviewed by: jmallett, dim Sponsored by: DARPA / AFRL Differential Revision: https://reviews.freebsd.org/D10086 MFC r318601 (by adrian): [libcompiler-rt] add bswapdi2/bswapsi2 This is required for mips gcc 6.3 userland to build/run. Reviewed by: emaste, dim Approved by: emaste Differential Revision: https://reviews.freebsd.org/D10838 MFC r318884 (by emaste): lldb: map TRAP_CAP to a trace trap In the absense of a more specific handler for TRAP_CAP (generated by ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace trap. Example usage (testing the bug in PR219173): % proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls ... (lldb) run Process 12980 launching Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64) Process 12980 stopped * thread #1, stop reason = trace frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10 ... In the future we should have LLDB control the trapcap procctl itself (as it does with ASLR), as well as report a specific stop reason. This change eliminates an assertion failure from LLDB for now. MFC r319796: Remove a few unneeded files from libllvm, libclang and liblldb. MFC r319885 (by emaste): lld: ELF: Fix ICF crash on absolute symbol relocations. If two sections contained relocations to absolute symbols with the same value we would crash when trying to access their sections. Add a check that both symbols point to sections before accessing their sections, and treat absolute symbols as equal if their values are equal. Obtained from: LLD commit r292578 MFC r319918: Revert r319796 for now, it can cause undefined references when linking in some circumstances. Reported by: Shawn Webb <shawn.webb@hardenedbsd.org> MFC r319957 (by emaste): lld: Add armelf emulation mode Obtained from: LLD r305375 MFC r321369: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release, which should be in about a month. Please report bugs and regressions, so we can get them into the release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. MFC r321420: Add a few more object files to liblldb, which should solve errors when linking the lldb executable in some cases. In particular, when the -ffunction-sections -fdata-sections options are turned off, or ineffective. Reported by: Shawn Webb, Mark Millard MFC r321433: Cleanup stale Options.inc files from the previous libllvm build for clang 4.0.0. Otherwise, these can get included before the two newly generated ones (which are different) for clang 5.0.0. Reported by: Mark Millard MFC r321439 (by bdrewery): Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm. The files are only ever generated to .OBJDIR, not to WORLDTMP (as a sysroot) and are only ever included from a compilation. So using a beforebuild target here removes the file before the compilation tries to include it. MFC r321664: Pull in r308891 from upstream llvm trunk (by Benjamin Kramer): [CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses. This avoids excessive compile time. The case I'm looking at is Function.cpp from an old version of LLVM that still had the giant memcmp string matcher in it. Before r308322 this compiled in about 2 minutes, after it, clang takes infinite* time to compile it. With this patch we're at 5 min, which is still bad but this is a pathological case. The cut off at 20 uses was chosen by looking at other cut-offs in LLVM for user scanning. It's probably too high, but does the job and is very unlikely to regress anything. Fixes PR33900. * I'm impatient and aborted after 15 minutes, on the bug report it was killed after 2h. Pull in r308986 from upstream llvm trunk (by Simon Pilgrim): [X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914) D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914). Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os). This patch should be considered for the 5.0.0 release branch as well Differential Revision: https://reviews.llvm.org/D35830 These fix a hang (or extremely long compile time) when building older LLVM ports. Reported by: antoine PR: 219139 MFC r321719: Pull in r309503 from upstream clang trunk (by Richard Smith): PR33902: Invalidate line number cache when adding more text to existing buffer. This led to crashes as the line number cache would report a bogus line number for a line of code, and we'd try to find a nonexistent column within the line when printing diagnostics. This fixes an assertion when building the graphics/champlain port. Reported by: antoine, kwm PR: 219139 MFC r321723: Upgrade our copies of clang, llvm, lld and lldb to r309439 from the upstream release_50 branch. This is just after upstream's 5.0.0-rc1. MFC r322320: Upgrade our copies of clang, llvm and libc++ to r310316 from the upstream release_50 branch. MFC r322326 (by emaste): lldb: Make i386-*-freebsd expression work on JIT path * Enable i386 ABI creation for freebsd * Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap syscall * Unlike linux, the last argument of mmap is actually 64-bit(off_t). This requires us to push an additional word for the higher order bits. * Prior to this change, ktrace dump will show mmap failures due to invalid argument coming from the 6th mmap argument. Submitted by: Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D34776 MFC r322360 (by emaste): lldb: Report inferior signals as signals, not exceptions, on FreeBSD This is the FreeBSD equivalent of LLVM r238549. This serves 2 purposes: * LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/ SIGFPE the way it is suppose to be handled. Prior to this fix these signals will neither create a coredump, nor exit from the debugger or work for signal handling scenario. * eInvalidCrashReason need not report "unknown crash reason" if we have a valid si_signo llvm.org/pr23699 Patch by Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D35223 Submitted by: Karnajit Wangkhem Obtained from: LLVM r310591 MFC r322474 (by emaste): lld: Add `-z muldefs` option. Obtained from: LLVM r310757 MFC r322740: Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the upstream release_50 branch. MFC r322855: Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from the upstream release_50 branch. As of this version, lib/msun's trig test should also work correctly again (see bug 220989 for more information). PR: 220989 MFC r323112: Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from the upstream release_50 branch. This corresponds to 5.0.0 rc4. As of this version, the cad/stepcode port should now compile in a more reasonable time on i386 (see bug 221836 for more information). PR: 221836 MFC r323245: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 release (upstream r312559). Release notes for llvm, clang and lld will be available here soon: <http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html> Relnotes: yes (cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp2097
1 files changed, 988 insertions, 1109 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index da5384a..fdc9c37 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -23,21 +23,6 @@ using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
-static inline Value *dyn_castNotVal(Value *V) {
- // If this is not(not(x)) don't return that this is a not: we want the two
- // not's to be folded first.
- if (BinaryOperator::isNot(V)) {
- Value *Operand = BinaryOperator::getNotArgument(V);
- if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
- return Operand;
- }
-
- // Constants can be considered to be not'ed values...
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantInt::get(C->getType(), ~C->getValue());
- return nullptr;
-}
-
/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
/// a four bit mask.
static unsigned getFCmpCode(FCmpInst::Predicate CC) {
@@ -69,17 +54,17 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC) {
/// instruction. The sign is passed in to determine which kind of predicate to
/// use in the new icmp instruction.
static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
ICmpInst::Predicate NewPred;
if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
return NewConstant;
- return Builder->CreateICmp(NewPred, LHS, RHS);
+ return Builder.CreateICmp(NewPred, LHS, RHS);
}
/// This is the complement of getFCmpCode, which turns an opcode and two
/// operands into either a FCmp instruction, or a true/false constant.
static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
const auto Pred = static_cast<FCmpInst::Predicate>(Code);
assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
"Unexpected FCmp predicate!");
@@ -87,59 +72,50 @@ static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
if (Pred == FCmpInst::FCMP_TRUE)
return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
- return Builder->CreateFCmp(Pred, LHS, RHS);
+ return Builder.CreateFCmp(Pred, LHS, RHS);
}
-/// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
+/// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
+/// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
/// \param I Binary operator to transform.
/// \return Pointer to node that must replace the original binary operator, or
/// null pointer if no transformation was made.
-Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
- IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
-
- // Can't do vectors.
- if (I.getType()->isVectorTy())
- return nullptr;
-
- // Can only do bitwise ops.
- if (!I.isBitwiseLogicOp())
- return nullptr;
+static Value *SimplifyBSwap(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
Value *OldLHS = I.getOperand(0);
Value *OldRHS = I.getOperand(1);
- ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
- ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
- IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
- IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
- bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
- bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
-
- if (!IsBswapLHS && !IsBswapRHS)
- return nullptr;
-
- if (!IsBswapLHS && !ConstLHS)
- return nullptr;
- if (!IsBswapRHS && !ConstRHS)
+ Value *NewLHS;
+ if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
return nullptr;
- /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
- /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
- Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
- Builder->getInt(ConstLHS->getValue().byteSwap());
+ Value *NewRHS;
+ const APInt *C;
- Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
- Builder->getInt(ConstRHS->getValue().byteSwap());
+ if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
+ // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
+ if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
+ return nullptr;
+ // NewRHS initialized by the matcher.
+ } else if (match(OldRHS, m_APInt(C))) {
+ // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
+ if (!OldLHS->hasOneUse())
+ return nullptr;
+ NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
+ } else
+ return nullptr;
- Value *BinOp = Builder->CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
- Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
- return Builder->CreateCall(F, BinOp);
+ Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
+ Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
+ I.getType());
+ return Builder.CreateCall(F, BinOp);
}
/// This handles expressions of the form ((val OP C1) & C2). Where
-/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
-/// guaranteed to be a binary operator.
-Instruction *InstCombiner::OptAndOp(Instruction *Op,
+/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
+Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
ConstantInt *OpRHS,
ConstantInt *AndRHS,
BinaryOperator &TheAnd) {
@@ -149,30 +125,24 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Together = ConstantExpr::getAnd(AndRHS, OpRHS);
switch (Op->getOpcode()) {
+ default: break;
case Instruction::Xor:
if (Op->hasOneUse()) {
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Value *And = Builder->CreateAnd(X, AndRHS);
+ Value *And = Builder.CreateAnd(X, AndRHS);
And->takeName(Op);
return BinaryOperator::CreateXor(And, Together);
}
break;
case Instruction::Or:
if (Op->hasOneUse()){
- if (Together != OpRHS) {
- // (X | C1) & C2 --> (X | (C1&C2)) & C2
- Value *Or = Builder->CreateOr(X, Together);
- Or->takeName(Op);
- return BinaryOperator::CreateAnd(Or, AndRHS);
- }
-
ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
if (TogetherCI && !TogetherCI->isZero()){
// (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
// NOTE: This reduces the number of bits set in the & mask, which
// can expose opportunities for store narrowing.
Together = ConstantExpr::getXor(AndRHS, Together);
- Value *And = Builder->CreateAnd(X, Together);
+ Value *And = Builder.CreateAnd(X, Together);
And->takeName(Op);
return BinaryOperator::CreateOr(And, OpRHS);
}
@@ -194,17 +164,17 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
const APInt& AddRHS = OpRHS->getValue();
// Check to see if any bits below the one bit set in AndRHSV are set.
- if ((AddRHS & (AndRHSV-1)) == 0) {
+ if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
// If not, the only thing that can effect the output of the AND is
// the bit specified by AndRHSV. If that bit is set, the effect of
// the XOR is to toggle the bit. If it is clear, then the ADD has
// no effect.
- if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
+ if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
TheAnd.setOperand(0, X);
return &TheAnd;
} else {
// Pull the XOR out of the AND.
- Value *NewAnd = Builder->CreateAnd(X, AndRHS);
+ Value *NewAnd = Builder.CreateAnd(X, AndRHS);
NewAnd->takeName(Op);
return BinaryOperator::CreateXor(NewAnd, AndRHS);
}
@@ -220,7 +190,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
+ ConstantInt *CI = Builder.getInt(AndRHS->getValue() & ShlMask);
if (CI->getValue() == ShlMask)
// Masking out bits that the shift already masks.
@@ -240,7 +210,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
+ ConstantInt *CI = Builder.getInt(AndRHS->getValue() & ShrMask);
if (CI->getValue() == ShrMask)
// Masking out bits that the shift already masks.
@@ -260,12 +230,12 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
+ Constant *C = Builder.getInt(AndRHS->getValue() & ShrMask);
if (C == AndRHS) { // Masking out bits shifted in.
// (Val ashr C1) & C2 -> (Val lshr C1) & C2
// Make the argument unsigned.
Value *ShVal = Op->getOperand(0);
- ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
+ ShVal = Builder.CreateLShr(ShVal, OpRHS, Op->getName());
return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
}
}
@@ -291,189 +261,102 @@ Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
- return Builder->CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
+ return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
}
// V >= Lo && V < Hi --> V - Lo u< Hi - Lo
// V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
Value *VMinusLo =
- Builder->CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
+ Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
- return Builder->CreateICmp(Pred, VMinusLo, HiMinusLo);
+ return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
}
-/// Returns true iff Val consists of one contiguous run of 1s with any number
-/// of 0s on either side. The 1s are allowed to wrap from LSB to MSB,
-/// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
-/// not, since all 1s are not contiguous.
-static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
- const APInt& V = Val->getValue();
- uint32_t BitWidth = Val->getType()->getBitWidth();
- if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
-
- // look for the first zero bit after the run of ones
- MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
- // look for the first non-zero bit
- ME = V.getActiveBits();
- return true;
-}
-
-/// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
-/// whether the operator is a sub. If we can fold one of the following xforms:
+/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
+/// that can be simplified.
+/// One of A and B is considered the mask. The other is the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum contains
+/// only "Mask", then both A and B can be considered masks. If A is the mask,
+/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
+/// If both A and C are constants, this proof is also easy.
+/// For the following explanations, we assume that A is the mask.
///
-/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
-/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
-/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
+/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
+/// bits of A are set in B.
+/// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
///
-/// return (A +/- B).
+/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
+/// bits of A are cleared in B.
+/// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
+///
+/// "Mixed" declares that (A & B) == C and C might or might not contain any
+/// number of one bits and zero bits.
+/// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
+///
+/// "Not" means that in above descriptions "==" should be replaced by "!=".
+/// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
///
-Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
- ConstantInt *Mask, bool isSub,
- Instruction &I) {
- Instruction *LHSI = dyn_cast<Instruction>(LHS);
- if (!LHSI || LHSI->getNumOperands() != 2 ||
- !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
-
- ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
-
- switch (LHSI->getOpcode()) {
- default: return nullptr;
- case Instruction::And:
- if (ConstantExpr::getAnd(N, Mask) == Mask) {
- // If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
- Mask->getValue().getBitWidth())
- break;
-
- // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
- // part, we don't need any explicit masks to take them out of A. If that
- // is all N is, ignore it.
- uint32_t MB = 0, ME = 0;
- if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
- uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
- APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
- if (MaskedValueIsZero(RHS, Mask, 0, &I))
- break;
- }
- }
- return nullptr;
- case Instruction::Or:
- case Instruction::Xor:
- // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
- && ConstantExpr::getAnd(N, Mask)->isNullValue())
- break;
- return nullptr;
- }
-
- if (isSub)
- return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
- return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
-}
-
-/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
-/// One of A and B is considered the mask, the other the value. This is
-/// described as the "AMask" or "BMask" part of the enum. If the enum
-/// contains only "Mask", then both A and B can be considered masks.
-/// If A is the mask, then it was proven, that (A & C) == C. This
-/// is trivial if C == A, or C == 0. If both A and C are constants, this
-/// proof is also easy.
-/// For the following explanations we assume that A is the mask.
-/// The part "AllOnes" declares, that the comparison is true only
-/// if (A & B) == A, or all bits of A are set in B.
-/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
-/// The part "AllZeroes" declares, that the comparison is true only
-/// if (A & B) == 0, or all bits of A are cleared in B.
-/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
-/// The part "Mixed" declares, that (A & B) == C and C might or might not
-/// contain any number of one bits and zero bits.
-/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
-/// The Part "Not" means, that in above descriptions "==" should be replaced
-/// by "!=".
-/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
/// If the mask A contains a single bit, then the following is equivalent:
/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
enum MaskedICmpType {
- FoldMskICmp_AMask_AllOnes = 1,
- FoldMskICmp_AMask_NotAllOnes = 2,
- FoldMskICmp_BMask_AllOnes = 4,
- FoldMskICmp_BMask_NotAllOnes = 8,
- FoldMskICmp_Mask_AllZeroes = 16,
- FoldMskICmp_Mask_NotAllZeroes = 32,
- FoldMskICmp_AMask_Mixed = 64,
- FoldMskICmp_AMask_NotMixed = 128,
- FoldMskICmp_BMask_Mixed = 256,
- FoldMskICmp_BMask_NotMixed = 512
+ AMask_AllOnes = 1,
+ AMask_NotAllOnes = 2,
+ BMask_AllOnes = 4,
+ BMask_NotAllOnes = 8,
+ Mask_AllZeros = 16,
+ Mask_NotAllZeros = 32,
+ AMask_Mixed = 64,
+ AMask_NotMixed = 128,
+ BMask_Mixed = 256,
+ BMask_NotMixed = 512
};
-/// Return the set of pattern classes (from MaskedICmpType)
-/// that (icmp SCC (A & B), C) satisfies.
-static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
- ICmpInst::Predicate SCC)
-{
+/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
+/// satisfies.
+static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
+ ICmpInst::Predicate Pred) {
ConstantInt *ACst = dyn_cast<ConstantInt>(A);
ConstantInt *BCst = dyn_cast<ConstantInt>(B);
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
- bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
- bool icmp_abit = (ACst && !ACst->isZero() &&
- ACst->getValue().isPowerOf2());
- bool icmp_bbit = (BCst && !BCst->isZero() &&
- BCst->getValue().isPowerOf2());
- unsigned result = 0;
+ bool IsEq = (Pred == ICmpInst::ICMP_EQ);
+ bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
+ bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
+ unsigned MaskVal = 0;
if (CCst && CCst->isZero()) {
// if C is zero, then both A and B qualify as mask
- result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_AMask_Mixed |
- FoldMskICmp_BMask_Mixed)
- : (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_AMask_NotMixed |
- FoldMskICmp_BMask_NotMixed));
- if (icmp_abit)
- result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed)
- : (FoldMskICmp_AMask_AllOnes |
- FoldMskICmp_AMask_Mixed));
- if (icmp_bbit)
- result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed)
- : (FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_BMask_Mixed));
- return result;
+ MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
+ : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
+ if (IsAPow2)
+ MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
+ : (AMask_AllOnes | AMask_Mixed));
+ if (IsBPow2)
+ MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
+ : (BMask_AllOnes | BMask_Mixed));
+ return MaskVal;
}
+
if (A == C) {
- result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
- FoldMskICmp_AMask_Mixed)
- : (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed));
- if (icmp_abit)
- result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_AMask_NotMixed)
- : (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_AMask_Mixed));
- } else if (ACst && CCst &&
- ConstantExpr::getAnd(ACst, CCst) == CCst) {
- result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
- : FoldMskICmp_AMask_NotMixed);
+ MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
+ : (AMask_NotAllOnes | AMask_NotMixed));
+ if (IsAPow2)
+ MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
+ : (Mask_AllZeros | AMask_Mixed));
+ } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
}
+
if (B == C) {
- result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_BMask_Mixed)
- : (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed));
- if (icmp_bbit)
- result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_BMask_NotMixed)
- : (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_BMask_Mixed));
- } else if (BCst && CCst &&
- ConstantExpr::getAnd(BCst, CCst) == CCst) {
- result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
- : FoldMskICmp_BMask_NotMixed);
- }
- return result;
+ MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
+ : (BMask_NotAllOnes | BMask_NotMixed));
+ if (IsBPow2)
+ MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
+ : (Mask_AllZeros | BMask_Mixed));
+ } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
+ }
+
+ return MaskVal;
}
/// Convert an analysis of a masked ICmp into its equivalent if all boolean
@@ -482,32 +365,30 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
/// involves swapping those bits over.
static unsigned conjugateICmpMask(unsigned Mask) {
unsigned NewMask;
- NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
- FoldMskICmp_BMask_Mixed))
+ NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
+ AMask_Mixed | BMask_Mixed))
<< 1;
- NewMask |=
- (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
- FoldMskICmp_BMask_NotMixed))
- >> 1;
+ NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
+ AMask_NotMixed | BMask_NotMixed))
+ >> 1;
return NewMask;
}
-/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
-/// Return the set of pattern classes (from MaskedICmpType)
-/// that both LHS and RHS satisfy.
-static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
- Value*& B, Value*& C,
- Value*& D, Value*& E,
- ICmpInst *LHS, ICmpInst *RHS,
- ICmpInst::Predicate &LHSCC,
- ICmpInst::Predicate &RHSCC) {
- if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
+/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
+/// Return the set of pattern classes (from MaskedICmpType) that both LHS and
+/// RHS satisfy.
+static unsigned getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
+ Value *&D, Value *&E, ICmpInst *LHS,
+ ICmpInst *RHS,
+ ICmpInst::Predicate &PredL,
+ ICmpInst::Predicate &PredR) {
+ if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
+ return 0;
// vectors are not (yet?) supported
- if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
+ if (LHS->getOperand(0)->getType()->isVectorTy())
+ return 0;
// Here comes the tricky part:
// LHS might be of the form L11 & L12 == X, X == L21 & L22,
@@ -517,9 +398,9 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
// above.
Value *L1 = LHS->getOperand(0);
Value *L2 = LHS->getOperand(1);
- Value *L11,*L12,*L21,*L22;
+ Value *L11, *L12, *L21, *L22;
// Check whether the icmp can be decomposed into a bit test.
- if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
+ if (decomposeBitTestICmp(LHS, PredL, L11, L12, L2)) {
L21 = L22 = L1 = nullptr;
} else {
// Look for ANDs in the LHS icmp.
@@ -543,22 +424,26 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
}
// Bail if LHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(LHSCC))
+ if (!ICmpInst::isEquality(PredL))
return 0;
Value *R1 = RHS->getOperand(0);
Value *R2 = RHS->getOperand(1);
- Value *R11,*R12;
- bool ok = false;
- if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
+ Value *R11, *R12;
+ bool Ok = false;
+ if (decomposeBitTestICmp(RHS, PredR, R11, R12, R2)) {
if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12;
+ A = R11;
+ D = R12;
} else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11;
+ A = R12;
+ D = R11;
} else {
return 0;
}
- E = R2; R1 = nullptr; ok = true;
+ E = R2;
+ R1 = nullptr;
+ Ok = true;
} else if (R1->getType()->isIntegerTy()) {
if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
// As before, model no mask as a trivial mask if it'll let us do an
@@ -568,60 +453,78 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
}
if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12; E = R2; ok = true;
+ A = R11;
+ D = R12;
+ E = R2;
+ Ok = true;
} else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11; E = R2; ok = true;
+ A = R12;
+ D = R11;
+ E = R2;
+ Ok = true;
}
}
// Bail if RHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(RHSCC))
+ if (!ICmpInst::isEquality(PredR))
return 0;
// Look for ANDs on the right side of the RHS icmp.
- if (!ok && R2->getType()->isIntegerTy()) {
+ if (!Ok && R2->getType()->isIntegerTy()) {
if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
R11 = R2;
R12 = Constant::getAllOnesValue(R2->getType());
}
if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12; E = R1; ok = true;
+ A = R11;
+ D = R12;
+ E = R1;
+ Ok = true;
} else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11; E = R1; ok = true;
+ A = R12;
+ D = R11;
+ E = R1;
+ Ok = true;
} else {
return 0;
}
}
- if (!ok)
+ if (!Ok)
return 0;
if (L11 == A) {
- B = L12; C = L2;
+ B = L12;
+ C = L2;
} else if (L12 == A) {
- B = L11; C = L2;
+ B = L11;
+ C = L2;
} else if (L21 == A) {
- B = L22; C = L1;
+ B = L22;
+ C = L1;
} else if (L22 == A) {
- B = L21; C = L1;
+ B = L21;
+ C = L1;
}
- unsigned LeftType = getTypeOfMaskedICmp(A, B, C, LHSCC);
- unsigned RightType = getTypeOfMaskedICmp(A, D, E, RHSCC);
+ unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
+ unsigned RightType = getMaskedICmpType(A, D, E, PredR);
return LeftType & RightType;
}
/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// into a single (icmp(A & X) ==/!= Y).
static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
- llvm::InstCombiner::BuilderTy *Builder) {
+ llvm::InstCombiner::BuilderTy &Builder) {
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
- unsigned Mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
- LHSCC, RHSCC);
- if (Mask == 0) return nullptr;
- assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
- "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+ unsigned Mask =
+ getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
+ if (Mask == 0)
+ return nullptr;
+
+ assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
+ "Expected equality predicates for masked type of icmps.");
// In full generality:
// (icmp (A & B) Op C) | (icmp (A & D) Op E)
@@ -642,41 +545,43 @@ static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
Mask = conjugateICmpMask(Mask);
}
- if (Mask & FoldMskICmp_Mask_AllZeroes) {
+ if (Mask & Mask_AllZeros) {
// (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
// -> (icmp eq (A & (B|D)), 0)
- Value *NewOr = Builder->CreateOr(B, D);
- Value *NewAnd = Builder->CreateAnd(A, NewOr);
+ Value *NewOr = Builder.CreateOr(B, D);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr);
// We can't use C as zero because we might actually handle
// (icmp ne (A & B), B) & (icmp ne (A & D), D)
// with B and D, having a single bit set.
Value *Zero = Constant::getNullValue(A->getType());
- return Builder->CreateICmp(NewCC, NewAnd, Zero);
+ return Builder.CreateICmp(NewCC, NewAnd, Zero);
}
- if (Mask & FoldMskICmp_BMask_AllOnes) {
+ if (Mask & BMask_AllOnes) {
// (icmp eq (A & B), B) & (icmp eq (A & D), D)
// -> (icmp eq (A & (B|D)), (B|D))
- Value *NewOr = Builder->CreateOr(B, D);
- Value *NewAnd = Builder->CreateAnd(A, NewOr);
- return Builder->CreateICmp(NewCC, NewAnd, NewOr);
+ Value *NewOr = Builder.CreateOr(B, D);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr);
+ return Builder.CreateICmp(NewCC, NewAnd, NewOr);
}
- if (Mask & FoldMskICmp_AMask_AllOnes) {
+ if (Mask & AMask_AllOnes) {
// (icmp eq (A & B), A) & (icmp eq (A & D), A)
// -> (icmp eq (A & (B&D)), A)
- Value *NewAnd1 = Builder->CreateAnd(B, D);
- Value *NewAnd2 = Builder->CreateAnd(A, NewAnd1);
- return Builder->CreateICmp(NewCC, NewAnd2, A);
+ Value *NewAnd1 = Builder.CreateAnd(B, D);
+ Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
+ return Builder.CreateICmp(NewCC, NewAnd2, A);
}
// Remaining cases assume at least that B and D are constant, and depend on
// their actual values. This isn't strictly necessary, just a "handle the
// easy cases for now" decision.
ConstantInt *BCst = dyn_cast<ConstantInt>(B);
- if (!BCst) return nullptr;
+ if (!BCst)
+ return nullptr;
ConstantInt *DCst = dyn_cast<ConstantInt>(D);
- if (!DCst) return nullptr;
+ if (!DCst)
+ return nullptr;
- if (Mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
+ if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
// (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
// (icmp ne (A & B), B) & (icmp ne (A & D), D)
// -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
@@ -689,7 +594,8 @@ static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
else if (NewMask == DCst->getValue())
return RHS;
}
- if (Mask & FoldMskICmp_AMask_NotAllOnes) {
+
+ if (Mask & AMask_NotAllOnes) {
// (icmp ne (A & B), B) & (icmp ne (A & D), D)
// -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
// Only valid if one of the masks is a superset of the other (check "B|D" is
@@ -701,7 +607,8 @@ static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
else if (NewMask == DCst->getValue())
return RHS;
}
- if (Mask & FoldMskICmp_BMask_Mixed) {
+
+ if (Mask & BMask_Mixed) {
// (icmp eq (A & B), C) & (icmp eq (A & D), E)
// We already know that B & C == C && D & E == E.
// If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
@@ -713,23 +620,28 @@ static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
// (icmp ne (A & B), B) & (icmp eq (A & D), D)
// with B and D, having a single bit set.
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
- if (!CCst) return nullptr;
+ if (!CCst)
+ return nullptr;
ConstantInt *ECst = dyn_cast<ConstantInt>(E);
- if (!ECst) return nullptr;
- if (LHSCC != NewCC)
+ if (!ECst)
+ return nullptr;
+ if (PredL != NewCC)
CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
- if (RHSCC != NewCC)
+ if (PredR != NewCC)
ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
+
// If there is a conflict, we should actually return a false for the
// whole construct.
if (((BCst->getValue() & DCst->getValue()) &
- (CCst->getValue() ^ ECst->getValue())) != 0)
+ (CCst->getValue() ^ ECst->getValue())).getBoolValue())
return ConstantInt::get(LHS->getType(), !IsAnd);
- Value *NewOr1 = Builder->CreateOr(B, D);
+
+ Value *NewOr1 = Builder.CreateOr(B, D);
Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
- Value *NewAnd = Builder->CreateAnd(A, NewOr1);
- return Builder->CreateICmp(NewCC, NewAnd, NewOr2);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr1);
+ return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
}
+
return nullptr;
}
@@ -778,23 +690,123 @@ Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
}
// This simplification is only valid if the upper range is not negative.
- bool IsNegative, IsNotNegative;
- ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
- if (!IsNotNegative)
+ KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
+ if (!Known.isNonNegative())
return nullptr;
if (Inverted)
NewPred = ICmpInst::getInversePredicate(NewPred);
- return Builder->CreateICmp(NewPred, Input, RangeEnd);
+ return Builder.CreateICmp(NewPred, Input, RangeEnd);
+}
+
+static Value *
+foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
+ bool JoinedByAnd,
+ InstCombiner::BuilderTy &Builder) {
+ Value *X = LHS->getOperand(0);
+ if (X != RHS->getOperand(0))
+ return nullptr;
+
+ const APInt *C1, *C2;
+ if (!match(LHS->getOperand(1), m_APInt(C1)) ||
+ !match(RHS->getOperand(1), m_APInt(C2)))
+ return nullptr;
+
+ // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
+ ICmpInst::Predicate Pred = LHS->getPredicate();
+ if (Pred != RHS->getPredicate())
+ return nullptr;
+ if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+ if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
+ return nullptr;
+
+ // The larger unsigned constant goes on the right.
+ if (C1->ugt(*C2))
+ std::swap(C1, C2);
+
+ APInt Xor = *C1 ^ *C2;
+ if (Xor.isPowerOf2()) {
+ // If LHSC and RHSC differ by only one bit, then set that bit in X and
+ // compare against the larger constant:
+ // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
+ // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
+ // We choose an 'or' with a Pow2 constant rather than the inverse mask with
+ // 'and' because that may lead to smaller codegen from a smaller constant.
+ Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
+ return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
+ }
+
+ // Special case: get the ordering right when the values wrap around zero.
+ // Ie, we assumed the constants were unsigned when swapping earlier.
+ if (C1->isNullValue() && C2->isAllOnesValue())
+ std::swap(C1, C2);
+
+ if (*C1 == *C2 - 1) {
+ // (X == 13 || X == 14) --> X - 13 <=u 1
+ // (X != 13 && X != 14) --> X - 13 >u 1
+ // An 'add' is the canonical IR form, so favor that over a 'sub'.
+ Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
+ auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
+ return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
+ }
+
+ return nullptr;
+}
+
+// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
+// Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
+Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
+ bool JoinedByAnd,
+ Instruction &CxtI) {
+ ICmpInst::Predicate Pred = LHS->getPredicate();
+ if (Pred != RHS->getPredicate())
+ return nullptr;
+ if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+ if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
+ return nullptr;
+
+ // TODO support vector splats
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
+ return nullptr;
+
+ Value *A, *B, *C, *D;
+ if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
+ match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
+ if (A == D || B == D)
+ std::swap(C, D);
+ if (B == C)
+ std::swap(A, B);
+
+ if (A == C &&
+ isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
+ isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
+ Value *Mask = Builder.CreateOr(B, D);
+ Value *Masked = Builder.CreateAnd(A, Mask);
+ auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+ return Builder.CreateICmp(NewPred, Masked, Mask);
+ }
+ }
+
+ return nullptr;
}
/// Fold (icmp)&(icmp) if possible.
-Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ Instruction &CxtI) {
+ // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
+ // if K1 and K2 are a one-bit mask.
+ if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
+ return V;
+
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
// (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (PredicatesFoldable(LHSCC, RHSCC)) {
+ if (PredicatesFoldable(PredL, PredR)) {
if (LHS->getOperand(0) == RHS->getOperand(1) &&
LHS->getOperand(1) == RHS->getOperand(0))
LHS->swapOperands();
@@ -819,86 +831,91 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
return V;
+ if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
+ return V;
+
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
- ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
- ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
- if (!LHSCst || !RHSCst) return nullptr;
+ Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (!LHSC || !RHSC)
+ return nullptr;
- if (LHSCst == RHSCst && LHSCC == RHSCC) {
+ if (LHSC == RHSC && PredL == PredR) {
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2 or
// (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
- if ((LHSCC == ICmpInst::ICMP_ULT && LHSCst->getValue().isPowerOf2()) ||
- (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero())) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
+ if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
+ (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
+ Value *NewOr = Builder.CreateOr(LHS0, RHS0);
+ return Builder.CreateICmp(PredL, NewOr, LHSC);
}
}
// (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
// where CMAX is the all ones value for the truncated type,
// iff the lower bits of C2 and CA are zero.
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
- LHS->hasOneUse() && RHS->hasOneUse()) {
+ if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
+ RHS->hasOneUse()) {
Value *V;
- ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
+ ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
// (trunc x) == C1 & (and x, CA) == C2
// (and x, CA) == C2 & (trunc x) == C1
- if (match(Val2, m_Trunc(m_Value(V))) &&
- match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
- SmallCst = RHSCst;
- BigCst = LHSCst;
- } else if (match(Val, m_Trunc(m_Value(V))) &&
- match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
- SmallCst = LHSCst;
- BigCst = RHSCst;
+ if (match(RHS0, m_Trunc(m_Value(V))) &&
+ match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
+ SmallC = RHSC;
+ BigC = LHSC;
+ } else if (match(LHS0, m_Trunc(m_Value(V))) &&
+ match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
+ SmallC = LHSC;
+ BigC = RHSC;
}
- if (SmallCst && BigCst) {
- unsigned BigBitSize = BigCst->getType()->getBitWidth();
- unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
+ if (SmallC && BigC) {
+ unsigned BigBitSize = BigC->getType()->getBitWidth();
+ unsigned SmallBitSize = SmallC->getType()->getBitWidth();
// Check that the low bits are zero.
APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
- if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
- Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
- APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
- Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
- return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
+ if ((Low & AndC->getValue()).isNullValue() &&
+ (Low & BigC->getValue()).isNullValue()) {
+ Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
+ APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
+ Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
+ return Builder.CreateICmp(PredL, NewAnd, NewVal);
}
}
}
// From here on, we only handle:
// (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return nullptr;
+ if (LHS0 != RHS0)
+ return nullptr;
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+ // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
+ if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
+ PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
+ PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
+ PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
return nullptr;
// We can't fold (ugt x, C) & (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
+ if (!PredicatesFoldable(PredL, PredR))
return nullptr;
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+ if (CmpInst::isSigned(PredL) ||
+ (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
+ ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+ ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
if (ShouldSwap) {
std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
+ std::swap(LHSC, RHSC);
+ std::swap(PredL, PredR);
}
// At this point, we know we have two icmp instructions
@@ -907,113 +924,55 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
// (from the icmp folding check above), that the two constants
// are not equal and that the larger constant is on the RHS
- assert(LHSCst != RHSCst && "Compares not folded above?");
+ assert(LHSC != RHSC && "Compares not folded above?");
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
- case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
- case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
- return LHS;
- }
+ switch (PredL) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_ULT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
- return Builder->CreateICmpULT(Val, LHSCst);
- if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13
- return insertRangeTest(Val, LHSCst->getValue() + 1, RHSCst->getValue(),
+ if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13
+ return Builder.CreateICmpULT(LHS0, LHSC);
+ if (LHSC->isZero()) // (X != 0 & X u< 14) -> X-1 u< 13
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
false, true);
- break; // (X != 13 & X u< 15) -> no change
+ break; // (X != 13 & X u< 15) -> no change
case ICmpInst::ICMP_SLT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
- return Builder->CreateICmpSLT(Val, LHSCst);
- break; // (X != 13 & X s< 15) -> no change
- case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
- case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
- return RHS;
+ if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13
+ return Builder.CreateICmpSLT(LHS0, LHSC);
+ break; // (X != 13 & X s< 15) -> no change
case ICmpInst::ICMP_NE:
- // Special case to get the ordering right when the values wrap around
- // zero.
- if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
- std::swap(LHSCst, RHSCst);
- if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
- Val->getName()+".cmp");
- }
- break; // (X != 13 & X != 15) -> no change
- }
- break;
- case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
- case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
- case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
- return LHS;
- case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
- case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
- return LHS;
- case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
+ // Potential folds for this case should already be handled.
break;
}
break;
case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
- return RHS;
- case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
- break;
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
- return Builder->CreateICmp(LHSCC, Val, RHSCst);
- break; // (X u> 13 & X != 15) -> no change
- case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return insertRangeTest(Val, LHSCst->getValue() + 1, RHSCst->getValue(),
+ if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14
+ return Builder.CreateICmp(PredL, LHS0, RHSC);
+ break; // (X u> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
false, true);
- case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
- break;
}
break;
case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
- return RHS;
- case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
- break;
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
- return Builder->CreateICmp(LHSCC, Val, RHSCst);
- break; // (X s> 13 & X != 15) -> no change
- case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return insertRangeTest(Val, LHSCst->getValue() + 1, RHSCst->getValue(),
- true, true);
- case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
- break;
+ if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14
+ return Builder.CreateICmp(PredL, LHS0, RHSC);
+ break; // (X s> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
+ true);
}
break;
}
@@ -1023,7 +982,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
/// Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of instcombine, this returns
/// a Value which should already be inserted into the function.
-Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
+Value *InstCombiner::foldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
@@ -1058,15 +1017,15 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// If either of the constants are nans, then the whole thing returns
// false.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return Builder->getFalse();
- return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
+ return Builder.getFalse();
+ return Builder.CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
// Handle vector zeros. This occurs because the canonical form of
// "fcmp ord x,x" is "fcmp ord x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
+ return Builder.CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
return nullptr;
}
@@ -1077,26 +1036,22 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// (~A & ~B) == (~(A | B))
/// (~A | ~B) == (~(A & B))
static Instruction *matchDeMorgansLaws(BinaryOperator &I,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
auto Opcode = I.getOpcode();
assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
"Trying to match De Morgan's Laws with something other than and/or");
+
// Flip the logic operation.
- if (Opcode == Instruction::And)
- Opcode = Instruction::Or;
- else
- Opcode = Instruction::And;
+ Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- // TODO: Use pattern matchers instead of dyn_cast.
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
- I.getName() + ".demorgan");
- return BinaryOperator::CreateNot(LogicOp);
- }
+ Value *A, *B;
+ if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
+ match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
+ !IsFreeToInvert(A, A->hasOneUse()) &&
+ !IsFreeToInvert(B, B->hasOneUse())) {
+ Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
+ return BinaryOperator::CreateNot(AndOr);
+ }
return nullptr;
}
@@ -1125,7 +1080,7 @@ bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
/// Fold {and,or,xor} (cast X), C.
static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
- InstCombiner::BuilderTy *Builder) {
+ InstCombiner::BuilderTy &Builder) {
Constant *C;
if (!match(Logic.getOperand(1), m_Constant(C)))
return nullptr;
@@ -1134,26 +1089,17 @@ static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
Type *DestTy = Logic.getType();
Type *SrcTy = Cast->getSrcTy();
- // If the first operand is bitcast, move the logic operation ahead of the
- // bitcast (do the logic operation in the original type). This can eliminate
- // bitcasts and allow combines that would otherwise be impeded by the bitcast.
+ // Move the logic operation ahead of a zext if the constant is unchanged in
+ // the smaller source type. Performing the logic in a smaller type may provide
+ // more information to later folds, and the smaller logic instruction may be
+ // cheaper (particularly in the case of vectors).
Value *X;
- if (match(Cast, m_BitCast(m_Value(X)))) {
- Value *NewConstant = ConstantExpr::getBitCast(C, SrcTy);
- Value *NewOp = Builder->CreateBinOp(LogicOpc, X, NewConstant);
- return CastInst::CreateBitOrPointerCast(NewOp, DestTy);
- }
-
- // Similarly, move the logic operation ahead of a zext if the constant is
- // unchanged in the smaller source type. Performing the logic in a smaller
- // type may provide more information to later folds, and the smaller logic
- // instruction may be cheaper (particularly in the case of vectors).
if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
if (ZextTruncC == C) {
// LogicOpc (zext X), C --> zext (LogicOpc X, C)
- Value *NewOp = Builder->CreateBinOp(LogicOpc, X, TruncC);
+ Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
return new ZExtInst(NewOp, DestTy);
}
}
@@ -1196,7 +1142,7 @@ Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
// fold logic(cast(A), cast(B)) -> cast(logic(A, B))
if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
- Value *NewOp = Builder->CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
+ Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
I.getName());
return CastInst::Create(CastOpcode, NewOp, DestTy);
}
@@ -1210,8 +1156,8 @@ Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
if (ICmp0 && ICmp1) {
- Value *Res = LogicOpc == Instruction::And ? FoldAndOfICmps(ICmp0, ICmp1)
- : FoldOrOfICmps(ICmp0, ICmp1, &I);
+ Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
+ : foldOrOfICmps(ICmp0, ICmp1, I);
if (Res)
return CastInst::Create(CastOpcode, Res, DestTy);
return nullptr;
@@ -1222,8 +1168,8 @@ Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
if (FCmp0 && FCmp1) {
- Value *Res = LogicOpc == Instruction::And ? FoldAndOfFCmps(FCmp0, FCmp1)
- : FoldOrOfFCmps(FCmp0, FCmp1);
+ Value *Res = LogicOpc == Instruction::And ? foldAndOfFCmps(FCmp0, FCmp1)
+ : foldOrOfFCmps(FCmp0, FCmp1);
if (Res)
return CastInst::Create(CastOpcode, Res, DestTy);
return nullptr;
@@ -1242,15 +1188,14 @@ static Instruction *foldBoolSextMaskToSelect(BinaryOperator &I) {
// Fold (and (sext bool to A), B) --> (select bool, B, 0)
Value *X = nullptr;
- if (match(Op0, m_SExt(m_Value(X))) &&
- X->getType()->getScalarType()->isIntegerTy(1)) {
+ if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Zero = Constant::getNullValue(Op1->getType());
return SelectInst::Create(X, Op1, Zero);
}
// Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
- X->getType()->getScalarType()->isIntegerTy(1)) {
+ X->getType()->isIntOrIntVectorTy(1)) {
Value *Zero = Constant::getNullValue(Op0->getType());
return SelectInst::Create(X, Zero, Op1);
}
@@ -1258,6 +1203,58 @@ static Instruction *foldBoolSextMaskToSelect(BinaryOperator &I) {
return nullptr;
}
+static Instruction *foldAndToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::And);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // Operand complexity canonicalization guarantees that the 'or' is Op0.
+ // (A | B) & ~(A & B) --> A ^ B
+ // (A | B) & ~(B & A) --> A ^ B
+ if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B)))))
+ return BinaryOperator::CreateXor(A, B);
+
+ // (A | ~B) & (~A | B) --> ~(A ^ B)
+ // (A | ~B) & (B | ~A) --> ~(A ^ B)
+ // (~B | A) & (~A | B) --> ~(A ^ B)
+ // (~B | A) & (B | ~A) --> ~(A ^ B)
+ if (Op0->hasOneUse() || Op1->hasOneUse())
+ if (match(Op0, m_c_Or(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_c_Or(m_Not(m_Specific(A)), m_Specific(B))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ return nullptr;
+}
+
+static Instruction *foldOrToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::Or);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // Operand complexity canonicalization guarantees that the 'and' is Op0.
+ // (A & B) | ~(A | B) --> ~(A ^ B)
+ // (A & B) | ~(B | A) --> ~(A ^ B)
+ if (Op0->hasOneUse() || Op1->hasOneUse())
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ // (A & ~B) | (~A & B) --> A ^ B
+ // (A & ~B) | (B & ~A) --> A ^ B
+ // (~B & A) | (~A & B) --> A ^ B
+ // (~B & A) | (B & ~A) --> A ^ B
+ if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
+ return BinaryOperator::CreateXor(A, B);
+
+ return nullptr;
+}
+
// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
// here. We should standardize that construct where it is needed or choose some
// other way to ensure that commutated variants of patterns are not missed.
@@ -1268,11 +1265,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyAndInst(Op0, Op1, DL, &TLI, &DT, &AC))
- return replaceInstUsesWith(I, V);
-
- // (A|B)&(A|C) -> A|(B&C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
+ if (Value *V = SimplifyAndInst(Op0, Op1, SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// See if we can simplify any instructions used by the instruction whose sole
@@ -1280,9 +1273,27 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
- if (Value *V = SimplifyBSwap(I))
+ // Do this before using distributive laws to catch simple and/or/not patterns.
+ if (Instruction *Xor = foldAndToXor(I, Builder))
+ return Xor;
+
+ // (A|B)&(A|C) -> A|(B&C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
+ if (Value *V = SimplifyBSwap(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ if (match(Op1, m_One())) {
+ // (1 << x) & 1 --> zext(x == 0)
+ // (1 >> x) & 1 --> zext(x == 0)
+ Value *X;
+ if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X))))) {
+ Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
+ return new ZExtInst(IsZero, I.getType());
+ }
+ }
+
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
@@ -1300,65 +1311,47 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
APInt NotAndRHS(~AndRHSMask);
if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
// Not masking anything out for the LHS, move to RHS.
- Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
- Op0RHS->getName()+".masked");
+ Value *NewRHS = Builder.CreateAnd(Op0RHS, AndRHS,
+ Op0RHS->getName()+".masked");
return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
}
if (!isa<Constant>(Op0RHS) &&
MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
// Not masking anything out for the RHS, move to LHS.
- Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
- Op0LHS->getName()+".masked");
+ Value *NewLHS = Builder.CreateAnd(Op0LHS, AndRHS,
+ Op0LHS->getName()+".masked");
return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
}
break;
}
- case Instruction::Add:
- // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
- if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
- break;
+ }
+ // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
+ // of X and OP behaves well when given trunc(C1) and X.
+ switch (Op0I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Xor:
+ case Instruction::Or:
+ case Instruction::Mul:
+ case Instruction::Add:
case Instruction::Sub:
- // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
-
- // -x & 1 -> x & 1
- if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
- return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
-
- // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
- // has 1's for all bits that the subtraction with A might affect.
- if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
- uint32_t BitWidth = AndRHSMask.getBitWidth();
- uint32_t Zeros = AndRHSMask.countLeadingZeros();
- APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
-
- if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
- Value *NewNeg = Builder->CreateNeg(Op0RHS);
- return BinaryOperator::CreateAnd(NewNeg, AndRHS);
+ Value *X;
+ ConstantInt *C1;
+ if (match(Op0I, m_c_BinOp(m_ZExt(m_Value(X)), m_ConstantInt(C1)))) {
+ if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
+ auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
+ Value *BinOp;
+ if (isa<ZExtInst>(Op0LHS))
+ BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
+ else
+ BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
+ auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
+ auto *And = Builder.CreateAnd(BinOp, TruncC2);
+ return new ZExtInst(And, I.getType());
}
}
- break;
-
- case Instruction::Shl:
- case Instruction::LShr:
- // (1 << x) & 1 --> zext(x == 0)
- // (1 >> x) & 1 --> zext(x == 0)
- if (AndRHSMask == 1 && Op0LHS == AndRHS) {
- Value *NewICmp =
- Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
- return new ZExtInst(NewICmp, I.getType());
- }
- break;
}
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
@@ -1375,34 +1368,23 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// into : and (trunc X to T), trunc(YC) & C2
// This will fold the two constants together, which may allow
// other simplifications.
- Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
+ Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
C3 = ConstantExpr::getAnd(C3, AndRHS);
return BinaryOperator::CreateAnd(NewCast, C3);
}
}
+ }
+ if (isa<Constant>(Op1))
if (Instruction *FoldedLogic = foldOpWithConstantIntoOperand(I))
return FoldedLogic;
- }
if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
return DeMorgan;
{
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- // (A|B) & ~(A&B) -> A^B
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
-
- // ~(A&B) & (A|B) -> A^B
- if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
- match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
-
+ Value *A = nullptr, *B = nullptr, *C = nullptr;
// A&(A^B) => A & ~B
{
Value *tmpOp0 = Op0;
@@ -1424,38 +1406,35 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// an endless loop. By checking that A is non-constant we ensure that
// we will never get to the loop.
if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
+ return BinaryOperator::CreateAnd(A, Builder.CreateNot(B));
}
}
- // (A&((~A)|B)) -> A&B
- if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
- match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(A, Op1);
- if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
- match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
- return BinaryOperator::CreateAnd(A, Op0);
-
// (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
- return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
+ if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
+ return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
// ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
- return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
+ if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
+ return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
// (A | B) & ((~A) ^ B) -> (A & B)
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
+ // (A | B) & (B ^ (~A)) -> (A & B)
+ // (B | A) & ((~A) ^ B) -> (A & B)
+ // (B | A) & (B ^ (~A)) -> (A & B)
+ if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateAnd(A, B);
// ((~A) ^ B) & (A | B) -> (A & B)
// ((~A) ^ B) & (B | A) -> (A & B)
- if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ // (B ^ (~A)) & (A | B) -> (A & B)
+ // (B ^ (~A)) & (B | A) -> (A & B)
+ if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateAnd(A, B);
}
@@ -1464,7 +1443,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
if (LHS && RHS)
- if (Value *Res = FoldAndOfICmps(LHS, RHS))
+ if (Value *Res = foldAndOfICmps(LHS, RHS, I))
return replaceInstUsesWith(I, Res);
// TODO: Make this recursive; it's a little tricky because an arbitrary
@@ -1472,26 +1451,26 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Value *X, *Y;
if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldAndOfICmps(LHS, Cmp))
- return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
+ if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldAndOfICmps(LHS, Cmp))
- return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
+ if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
}
if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldAndOfICmps(Cmp, RHS))
- return replaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
+ if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldAndOfICmps(Cmp, RHS))
- return replaceInstUsesWith(I, Builder->CreateAnd(Res, X));
+ if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
}
}
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = FoldAndOfFCmps(LHS, RHS))
+ if (Value *Res = foldAndOfFCmps(LHS, RHS))
return replaceInstUsesWith(I, Res);
if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
@@ -1566,16 +1545,19 @@ static Value *getSelectCondition(Value *A, Value *B,
InstCombiner::BuilderTy &Builder) {
// If these are scalars or vectors of i1, A can be used directly.
Type *Ty = A->getType();
- if (match(A, m_Not(m_Specific(B))) && Ty->getScalarType()->isIntegerTy(1))
+ if (match(A, m_Not(m_Specific(B))) && Ty->isIntOrIntVectorTy(1))
return A;
// If A and B are sign-extended, look through the sexts to find the booleans.
Value *Cond;
+ Value *NotB;
if (match(A, m_SExt(m_Value(Cond))) &&
- Cond->getType()->getScalarType()->isIntegerTy(1) &&
- match(B, m_CombineOr(m_Not(m_SExt(m_Specific(Cond))),
- m_SExt(m_Not(m_Specific(Cond))))))
- return Cond;
+ Cond->getType()->isIntOrIntVectorTy(1) &&
+ match(B, m_OneUse(m_Not(m_Value(NotB))))) {
+ NotB = peekThroughBitcast(NotB, true);
+ if (match(NotB, m_SExt(m_Specific(Cond))))
+ return Cond;
+ }
// All scalar (and most vector) possibilities should be handled now.
// Try more matches that only apply to non-splat constant vectors.
@@ -1592,7 +1574,7 @@ static Value *getSelectCondition(Value *A, Value *B,
// operand, see if the constants are inverse bitmasks.
if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) &&
match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) &&
- Cond->getType()->getScalarType()->isIntegerTy(1) &&
+ Cond->getType()->isIntOrIntVectorTy(1) &&
areInverseVectorBitmasks(AC, BC)) {
AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
return Builder.CreateXor(Cond, AC);
@@ -1607,12 +1589,8 @@ static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
// The potential condition of the select may be bitcasted. In that case, look
// through its bitcast and the corresponding bitcast of the 'not' condition.
Type *OrigType = A->getType();
- Value *SrcA, *SrcB;
- if (match(A, m_OneUse(m_BitCast(m_Value(SrcA)))) &&
- match(B, m_OneUse(m_BitCast(m_Value(SrcB))))) {
- A = SrcA;
- B = SrcB;
- }
+ A = peekThroughBitcast(A, true);
+ B = peekThroughBitcast(B, true);
if (Value *Cond = getSelectCondition(A, B, Builder)) {
// ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
@@ -1628,46 +1606,17 @@ static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
}
/// Fold (icmp)|(icmp) if possible.
-Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
- Instruction *CxtI) {
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
-
+Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ Instruction &CxtI) {
// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
// if K1 and K2 are a one-bit mask.
- ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
- ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
-
- if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
- RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
-
- BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
- BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
- if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
- LAnd->getOpcode() == Instruction::And &&
- RAnd->getOpcode() == Instruction::And) {
-
- Value *Mask = nullptr;
- Value *Masked = nullptr;
- if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, &AC, CxtI,
- &DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, &AC, CxtI,
- &DT)) {
- Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
- Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
- } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, &AC,
- CxtI, &DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, &AC,
- CxtI, &DT)) {
- Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
- Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
- }
+ if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
+ return V;
- if (Masked)
- return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
- }
- }
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
// Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
// --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
@@ -1680,52 +1629,52 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
// 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
// This implies all values in the two ranges differ by exactly one bit.
- if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
- LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
- RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
- LHSCst->getValue() == (RHSCst->getValue())) {
+ if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
+ PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
+ LHSC->getType() == RHSC->getType() &&
+ LHSC->getValue() == (RHSC->getValue())) {
Value *LAdd = LHS->getOperand(0);
Value *RAdd = RHS->getOperand(0);
Value *LAddOpnd, *RAddOpnd;
- ConstantInt *LAddCst, *RAddCst;
- if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
- match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
- LAddCst->getValue().ugt(LHSCst->getValue()) &&
- RAddCst->getValue().ugt(LHSCst->getValue())) {
-
- APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
- if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
- ConstantInt *MaxAddCst = nullptr;
- if (LAddCst->getValue().ult(RAddCst->getValue()))
- MaxAddCst = RAddCst;
+ ConstantInt *LAddC, *RAddC;
+ if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
+ match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
+ LAddC->getValue().ugt(LHSC->getValue()) &&
+ RAddC->getValue().ugt(LHSC->getValue())) {
+
+ APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
+ if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
+ ConstantInt *MaxAddC = nullptr;
+ if (LAddC->getValue().ult(RAddC->getValue()))
+ MaxAddC = RAddC;
else
- MaxAddCst = LAddCst;
+ MaxAddC = LAddC;
- APInt RRangeLow = -RAddCst->getValue();
- APInt RRangeHigh = RRangeLow + LHSCst->getValue();
- APInt LRangeLow = -LAddCst->getValue();
- APInt LRangeHigh = LRangeLow + LHSCst->getValue();
+ APInt RRangeLow = -RAddC->getValue();
+ APInt RRangeHigh = RRangeLow + LHSC->getValue();
+ APInt LRangeLow = -LAddC->getValue();
+ APInt LRangeHigh = LRangeLow + LHSC->getValue();
APInt LowRangeDiff = RRangeLow ^ LRangeLow;
APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
: RRangeLow - LRangeLow;
if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
- RangeDiff.ugt(LHSCst->getValue())) {
- Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
+ RangeDiff.ugt(LHSC->getValue())) {
+ Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
- Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
- Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
- return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
+ Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
+ Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
+ return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
}
}
}
}
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
- if (PredicatesFoldable(LHSCC, RHSCC)) {
+ if (PredicatesFoldable(PredL, PredR)) {
if (LHS->getOperand(0) == RHS->getOperand(1) &&
LHS->getOperand(1) == RHS->getOperand(0))
LHS->swapOperands();
@@ -1743,31 +1692,31 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
return V;
- Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
+ Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
if (LHS->hasOneUse() || RHS->hasOneUse()) {
// (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
// (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
Value *A = nullptr, *B = nullptr;
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
- B = Val;
- if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
- A = Val2;
- else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
+ if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
+ B = LHS0;
+ if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
+ A = RHS0;
+ else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
A = RHS->getOperand(1);
}
// (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
// (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
- else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
- B = Val2;
- if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
- A = Val;
- else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
+ else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
+ B = RHS0;
+ if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
+ A = LHS0;
+ else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
A = LHS->getOperand(1);
}
if (A && B)
- return Builder->CreateICmp(
+ return Builder.CreateICmp(
ICmpInst::ICMP_UGE,
- Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
+ Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
}
// E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
@@ -1778,54 +1727,58 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
return V;
+ if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
+ return V;
+
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!LHSCst || !RHSCst) return nullptr;
+ if (!LHSC || !RHSC)
+ return nullptr;
- if (LHSCst == RHSCst && LHSCC == RHSCC) {
+ if (LHSC == RHSC && PredL == PredR) {
// (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
- if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
+ if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
+ Value *NewOr = Builder.CreateOr(LHS0, RHS0);
+ return Builder.CreateICmp(PredL, NewOr, LHSC);
}
}
// (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
// iff C2 + CA == C1.
- if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
- ConstantInt *AddCst;
- if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
- if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
- return Builder->CreateICmpULE(Val, LHSCst);
+ if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
+ ConstantInt *AddC;
+ if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
+ if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
+ return Builder.CreateICmpULE(LHS0, LHSC);
}
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return nullptr;
+ if (LHS0 != RHS0)
+ return nullptr;
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+ // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
+ if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
+ PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
+ PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
+ PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
return nullptr;
// We can't fold (ugt x, C) | (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
+ if (!PredicatesFoldable(PredL, PredR))
return nullptr;
// Ensure that the larger constant is on the RHS.
bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+ if (CmpInst::isSigned(PredL) ||
+ (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
+ ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+ ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
if (ShouldSwap) {
std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
+ std::swap(LHSC, RHSC);
+ std::swap(PredL, PredR);
}
// At this point, we know we have two icmp instructions
@@ -1834,127 +1787,45 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
// ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
// icmp folding check above), that the two constants are not
// equal.
- assert(LHSCst != RHSCst && "Compares not folded above?");
+ assert(LHSC != RHSC && "Compares not folded above?");
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
+ switch (PredL) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
- if (LHS->getOperand(0) == RHS->getOperand(0)) {
- // if LHSCst and RHSCst differ only by one bit:
- // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
- assert(LHSCst->getValue().ule(LHSCst->getValue()));
-
- APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
- if (Xor.isPowerOf2()) {
- Value *Cst = Builder->getInt(Xor);
- Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
- return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
- }
- }
-
- if (LHSCst == SubOne(RHSCst)) {
- // (X == 13 | X == 14) -> X-13 <u 2
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
- return Builder->CreateICmpULT(Add, AddCST);
- }
-
- break; // (X == 13 | X == 15) -> no change
- case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
- case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
+ // Potential folds for this case should already be handled.
+ break;
+ case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
+ case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
break;
- case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
- case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
- return RHS;
}
break;
- case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
- case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
- case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
- return LHS;
- case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
- case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return Builder->getTrue();
- }
case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
break;
- case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(false))
- return LHS;
- return insertRangeTest(Val, LHSCst->getValue(), RHSCst->getValue() + 1,
+ case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
+ assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
false, false);
- case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
- return RHS;
- case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
- break;
}
break;
case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
- break;
- case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(true))
- return LHS;
- return insertRangeTest(Val, LHSCst->getValue(), RHSCst->getValue() + 1,
- true, false);
- case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
- return RHS;
- case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
- case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
- return LHS;
- case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return Builder->getTrue();
- case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
- case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
- return LHS;
- case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
- case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return Builder->getTrue();
- case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
break;
+ case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
+ assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
+ false);
}
break;
}
@@ -1963,7 +1834,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
/// Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of instcombine, this returns
/// a Value which should already be inserted into the function.
-Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
+Value *InstCombiner::foldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
@@ -1993,18 +1864,18 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// If either of the constants are nans, then the whole thing returns
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return Builder->getTrue();
+ return Builder.getTrue();
// Otherwise, no need to compare the two constants, compare the
// rest.
- return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
+ return Builder.CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
}
// Handle vector zeros. This occurs because the canonical form of
// "fcmp uno x,x" is "fcmp uno x, 0".
if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
+ return Builder.CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
return nullptr;
}
@@ -2021,8 +1892,9 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
/// (A & C1) | B
///
/// when the XOR of the two constants is "all ones" (-1).
-Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C) {
+static Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
+ Value *A, Value *B, Value *C,
+ InstCombiner::BuilderTy &Builder) {
ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
if (!CI1) return nullptr;
@@ -2034,7 +1906,7 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
if (!Xor.isAllOnesValue()) return nullptr;
if (V1 == A || V1 == B) {
- Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
+ Value *NewOp = Builder.CreateAnd((V1 == A) ? B : A, CI1);
return BinaryOperator::CreateOr(NewOp, V1);
}
@@ -2043,15 +1915,16 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
/// \brief This helper function folds:
///
-/// ((A | B) & C1) ^ (B & C2)
+/// ((A ^ B) & C1) | (B & C2)
///
/// into:
///
/// (A & C1) ^ B
///
/// when the XOR of the two constants is "all ones" (-1).
-Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C) {
+static Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op,
+ Value *A, Value *B, Value *C,
+ InstCombiner::BuilderTy &Builder) {
ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
if (!CI1)
return nullptr;
@@ -2066,7 +1939,7 @@ Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
return nullptr;
if (V1 == A || V1 == B) {
- Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
+ Value *NewOp = Builder.CreateAnd(V1 == A ? B : A, CI1);
return BinaryOperator::CreateXor(NewOp, V1);
}
@@ -2083,11 +1956,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyOrInst(Op0, Op1, DL, &TLI, &DT, &AC))
- return replaceInstUsesWith(I, V);
-
- // (A&B)|(A&C) -> A&(B|C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
+ if (Value *V = SimplifyOrInst(Op0, Op1, SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// See if we can simplify any instructions used by the instruction whose sole
@@ -2095,92 +1964,58 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
- if (Value *V = SimplifyBSwap(I))
- return replaceInstUsesWith(I, V);
+ // Do this before using distributive laws to catch simple and/or/not patterns.
+ if (Instruction *Xor = foldOrToXor(I, Builder))
+ return Xor;
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- ConstantInt *C1 = nullptr; Value *X = nullptr;
- // (X & C1) | C2 --> (X | C2) & (C1|C2)
- // iff (C1 & C2) == 0.
- if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
- (RHS->getValue() & C1->getValue()) != 0 &&
- Op0->hasOneUse()) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
- Builder->getInt(RHS->getValue() | C1->getValue()));
- }
+ // (A&B)|(A&C) -> A&(B|C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
- // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
- Op0->hasOneUse()) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateXor(Or,
- Builder->getInt(C1->getValue() & ~RHS->getValue()));
- }
+ if (Value *V = SimplifyBSwap(I, Builder))
+ return replaceInstUsesWith(I, V);
+ if (isa<Constant>(Op1))
if (Instruction *FoldedLogic = foldOpWithConstantIntoOperand(I))
return FoldedLogic;
- }
// Given an OR instruction, check to see if this is a bswap.
if (Instruction *BSwap = MatchBSwap(I))
return BSwap;
- Value *A = nullptr, *B = nullptr;
- ConstantInt *C1 = nullptr, *C2 = nullptr;
-
- // (X^C)|Y -> (X|Y)^C iff Y&C == 0
- if (Op0->hasOneUse() &&
- match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
- Value *NOr = Builder->CreateOr(A, Op1);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
- }
+ {
+ Value *A;
+ const APInt *C;
+ // (X^C)|Y -> (X|Y)^C iff Y&C == 0
+ if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
+ MaskedValueIsZero(Op1, *C, 0, &I)) {
+ Value *NOr = Builder.CreateOr(A, Op1);
+ NOr->takeName(Op0);
+ return BinaryOperator::CreateXor(NOr,
+ ConstantInt::get(NOr->getType(), *C));
+ }
- // Y|(X^C) -> (X|Y)^C iff Y&C == 0
- if (Op1->hasOneUse() &&
- match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
- Value *NOr = Builder->CreateOr(A, Op0);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
+ // Y|(X^C) -> (X|Y)^C iff Y&C == 0
+ if (match(Op1, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
+ MaskedValueIsZero(Op0, *C, 0, &I)) {
+ Value *NOr = Builder.CreateOr(A, Op0);
+ NOr->takeName(Op0);
+ return BinaryOperator::CreateXor(NOr,
+ ConstantInt::get(NOr->getType(), *C));
+ }
}
- // ((~A & B) | A) -> (A | B)
- if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_Specific(A)))
- return BinaryOperator::CreateOr(A, B);
-
- // ((A & B) | ~A) -> (~A | B)
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_Specific(A))))
- return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
-
- // (A & ~B) | (A ^ B) -> (A ^ B)
- // (~B & A) | (A ^ B) -> (A ^ B)
- if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
-
- // Commute the 'or' operands.
- // (A ^ B) | (A & ~B) -> (A ^ B)
- // (A ^ B) | (~B & A) -> (A ^ B)
- if (match(Op1, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op0, m_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
+ Value *A, *B;
// (A & C)|(B & D)
Value *C = nullptr, *D = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
match(Op1, m_And(m_Value(B), m_Value(D)))) {
Value *V1 = nullptr, *V2 = nullptr;
- C1 = dyn_cast<ConstantInt>(C);
- C2 = dyn_cast<ConstantInt>(D);
+ ConstantInt *C1 = dyn_cast<ConstantInt>(C);
+ ConstantInt *C2 = dyn_cast<ConstantInt>(D);
if (C1 && C2) { // (A & C1)|(B & C2)
- if ((C1->getValue() & C2->getValue()) == 0) {
+ if ((C1->getValue() & C2->getValue()).isNullValue()) {
// ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
// iff (C1&C2) == 0 and (N&~C1) == 0
if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
@@ -2189,7 +2024,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
(V2 == B &&
MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
return BinaryOperator::CreateAnd(A,
- Builder->getInt(C1->getValue()|C2->getValue()));
+ Builder.getInt(C1->getValue()|C2->getValue()));
// Or commutes, try both ways.
if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
((V1 == A &&
@@ -2197,18 +2032,18 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
(V2 == A &&
MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
return BinaryOperator::CreateAnd(B,
- Builder->getInt(C1->getValue()|C2->getValue()));
+ Builder.getInt(C1->getValue()|C2->getValue()));
// ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
// iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
ConstantInt *C3 = nullptr, *C4 = nullptr;
if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
- (C3->getValue() & ~C1->getValue()) == 0 &&
+ (C3->getValue() & ~C1->getValue()).isNullValue() &&
match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
- (C4->getValue() & ~C2->getValue()) == 0) {
- V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
+ (C4->getValue() & ~C2->getValue()).isNullValue()) {
+ V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
return BinaryOperator::CreateAnd(V2,
- Builder->getInt(C1->getValue()|C2->getValue()));
+ Builder.getInt(C1->getValue()|C2->getValue()));
}
}
}
@@ -2218,82 +2053,59 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// 'or' that it is replacing.
if (Op0->hasOneUse() || Op1->hasOneUse()) {
// (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
- if (Value *V = matchSelectFromAndOr(A, C, B, D, *Builder))
+ if (Value *V = matchSelectFromAndOr(A, C, B, D, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(A, C, D, B, *Builder))
+ if (Value *V = matchSelectFromAndOr(A, C, D, B, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(C, A, B, D, *Builder))
+ if (Value *V = matchSelectFromAndOr(C, A, B, D, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(C, A, D, B, *Builder))
+ if (Value *V = matchSelectFromAndOr(C, A, D, B, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(B, D, A, C, *Builder))
+ if (Value *V = matchSelectFromAndOr(B, D, A, C, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(B, D, C, A, *Builder))
+ if (Value *V = matchSelectFromAndOr(B, D, C, A, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(D, B, A, C, *Builder))
+ if (Value *V = matchSelectFromAndOr(D, B, A, C, Builder))
return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(D, B, C, A, *Builder))
+ if (Value *V = matchSelectFromAndOr(D, B, C, A, Builder))
return replaceInstUsesWith(I, V);
}
- // ((A&~B)|(~A&B)) -> A^B
- if ((match(C, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, D);
- // ((~B&A)|(~A&B)) -> A^B
- if ((match(A, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, D);
- // ((A&~B)|(B&~A)) -> A^B
- if ((match(C, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, B);
- // ((~B&A)|(B&~A)) -> A^B
- if ((match(A, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, B);
-
// ((A|B)&1)|(B&-2) -> (A&1) | B
- if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
- match(A, m_Or(m_Specific(B), m_Value(V1)))) {
- Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
- if (Ret) return Ret;
+ if (match(A, m_c_Or(m_Value(V1), m_Specific(B)))) {
+ if (Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C, Builder))
+ return Ret;
}
// (B&-2)|((A|B)&1) -> (A&1) | B
- if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
- match(B, m_Or(m_Value(V1), m_Specific(A)))) {
- Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
- if (Ret) return Ret;
+ if (match(B, m_c_Or(m_Specific(A), m_Value(V1)))) {
+ if (Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D, Builder))
+ return Ret;
}
// ((A^B)&1)|(B&-2) -> (A&1) ^ B
- if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
- match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
- Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
- if (Ret) return Ret;
+ if (match(A, m_c_Xor(m_Value(V1), m_Specific(B)))) {
+ if (Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C, Builder))
+ return Ret;
}
// (B&-2)|((A^B)&1) -> (A&1) ^ B
- if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
- match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
- Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
- if (Ret) return Ret;
+ if (match(B, m_c_Xor(m_Specific(A), m_Value(V1)))) {
+ if (Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D, Builder))
+ return Ret;
}
}
// (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
- return BinaryOperator::CreateOr(Op0, C);
+ return BinaryOperator::CreateOr(Op0, C);
// ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
- return BinaryOperator::CreateOr(Op1, C);
+ return BinaryOperator::CreateOr(Op1, C);
// ((B | C) & A) | B -> B | (A & C)
if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
- return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
+ return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
return DeMorgan;
@@ -2317,11 +2129,11 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return BinaryOperator::CreateOr(A, B);
if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder->CreateNot(B, B->getName()+".not");
+ Value *Not = Builder.CreateNot(B, B->getName() + ".not");
return BinaryOperator::CreateOr(Not, Op0);
}
if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder->CreateNot(A, A->getName()+".not");
+ Value *Not = Builder.CreateNot(A, A->getName() + ".not");
return BinaryOperator::CreateOr(Not, Op0);
}
}
@@ -2335,21 +2147,10 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
B->getOpcode() == Instruction::Xor)) {
Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
B->getOperand(0);
- Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
+ Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
return BinaryOperator::CreateOr(Not, Op0);
}
- // (A & B) | (~A ^ B) -> (~A ^ B)
- // (A & B) | (B ^ ~A) -> (~A ^ B)
- // (B & A) | (~A ^ B) -> (~A ^ B)
- // (B & A) | (B ^ ~A) -> (~A ^ B)
- // The match order is important: match the xor first because the 'not'
- // operation defines 'A'. We do not need to match the xor as Op0 because the
- // xor was canonicalized to Op1 above.
- if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op0, m_c_And(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
-
if (SwappedForXor)
std::swap(Op0, Op1);
@@ -2357,7 +2158,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
if (LHS && RHS)
- if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
+ if (Value *Res = foldOrOfICmps(LHS, RHS, I))
return replaceInstUsesWith(I, Res);
// TODO: Make this recursive; it's a little tricky because an arbitrary
@@ -2365,26 +2166,26 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *X, *Y;
if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
- return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
+ if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
- return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
+ if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
}
if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
- return replaceInstUsesWith(I, Builder->CreateOr(Res, Y));
+ if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
- return replaceInstUsesWith(I, Builder->CreateOr(Res, X));
+ if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
}
}
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = FoldOrOfFCmps(LHS, RHS))
+ if (Value *Res = foldOrOfFCmps(LHS, RHS))
return replaceInstUsesWith(I, Res);
if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
@@ -2392,10 +2193,10 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->getScalarType()->isIntegerTy(1))
+ A->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->getScalarType()->isIntegerTy(1))
+ A->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
// Note: If we've gotten to the point of visiting the outer OR, then the
@@ -2403,9 +2204,10 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// be simplified by a later pass either, so we try swapping the inner/outer
// ORs in the hopes that we'll be able to simplify it this way.
// (X|C) | V --> (X|V) | C
+ ConstantInt *C1;
if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
- Value *Inner = Builder->CreateOr(A, Op1);
+ Value *Inner = Builder.CreateOr(A, Op1);
Inner->takeName(Op0);
return BinaryOperator::CreateOr(Inner, C1);
}
@@ -2418,8 +2220,8 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Op0->hasOneUse() && Op1->hasOneUse() &&
match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
- Value *orTrue = Builder->CreateOr(A, C);
- Value *orFalse = Builder->CreateOr(B, D);
+ Value *orTrue = Builder.CreateOr(A, C);
+ Value *orFalse = Builder.CreateOr(B, D);
return SelectInst::Create(X, orTrue, orFalse);
}
}
@@ -2427,6 +2229,116 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
return Changed ? &I : nullptr;
}
+/// A ^ B can be specified using other logic ops in a variety of patterns. We
+/// can fold these early and efficiently by morphing an existing instruction.
+static Instruction *foldXorToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::Xor);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // There are 4 commuted variants for each of the basic patterns.
+
+ // (A & B) ^ (A | B) -> A ^ B
+ // (A & B) ^ (B | A) -> A ^ B
+ // (A | B) ^ (A & B) -> A ^ B
+ // (A | B) ^ (B & A) -> A ^ B
+ if ((match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) ||
+ (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_And(m_Specific(A), m_Specific(B))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // (A | ~B) ^ (~A | B) -> A ^ B
+ // (~B | A) ^ (~A | B) -> A ^ B
+ // (~A | B) ^ (A | ~B) -> A ^ B
+ // (B | ~A) ^ (A | ~B) -> A ^ B
+ if ((match(Op0, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_c_Or(m_Not(m_Specific(A)), m_Specific(B)))) ||
+ (match(Op0, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_c_Or(m_Specific(A), m_Not(m_Specific(B)))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // (A & ~B) ^ (~A & B) -> A ^ B
+ // (~B & A) ^ (~A & B) -> A ^ B
+ // (~A & B) ^ (A & ~B) -> A ^ B
+ // (B & ~A) ^ (A & ~B) -> A ^ B
+ if ((match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) ||
+ (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // For the remaining cases we need to get rid of one of the operands.
+ if (!Op0->hasOneUse() && !Op1->hasOneUse())
+ return nullptr;
+
+ // (A | B) ^ ~(A & B) -> ~(A ^ B)
+ // (A | B) ^ ~(B & A) -> ~(A ^ B)
+ // (A & B) ^ ~(A | B) -> ~(A ^ B)
+ // (A & B) ^ ~(B | A) -> ~(A ^ B)
+ // Complexity sorting ensures the not will be on the right side.
+ if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
+ (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ return nullptr;
+}
+
+Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
+ if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
+ bool isSigned = LHS->isSigned() || RHS->isSigned();
+ return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
+ }
+ }
+
+ // Instead of trying to imitate the folds for and/or, decompose this 'xor'
+ // into those logic ops. That is, try to turn this into an and-of-icmps
+ // because we have many folds for that pattern.
+ //
+ // This is based on a truth table definition of xor:
+ // X ^ Y --> (X | Y) & !(X & Y)
+ if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
+ // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
+ // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
+ if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
+ // TODO: Independently handle cases where the 'and' side is a constant.
+ if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) {
+ // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
+ RHS->setPredicate(RHS->getInversePredicate());
+ return Builder.CreateAnd(LHS, RHS);
+ }
+ if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) {
+ // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
+ LHS->setPredicate(LHS->getInversePredicate());
+ return Builder.CreateAnd(LHS, RHS);
+ }
+ }
+ }
+
+ return nullptr;
+}
+
// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
// here. We should standardize that construct where it is needed or choose some
// other way to ensure that commutated variants of patterns are not missed.
@@ -2437,9 +2349,12 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyVectorOp(I))
return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyXorInst(Op0, Op1, DL, &TLI, &DT, &AC))
+ if (Value *V = SimplifyXorInst(Op0, Op1, SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
+ if (Instruction *NewXor = foldXorToXor(I, Builder))
+ return NewXor;
+
// (A&B)^(A&C) -> A&(B^C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
@@ -2449,68 +2364,85 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
- if (Value *V = SimplifyBSwap(I))
+ if (Value *V = SimplifyBSwap(I, Builder))
return replaceInstUsesWith(I, V);
- // Is this a ~ operation?
- if (Value *NotOp = dyn_castNotVal(&I)) {
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
- Op0I->getOpcode() == Instruction::Or) {
- // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
- // ~(~X | Y) === (X & ~Y) - De Morgan's Law
- if (dyn_castNotVal(Op0I->getOperand(1)))
- Op0I->swapOperands();
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1),
- Op0I->getOperand(1)->getName()+".not");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(Op0NotVal, NotY);
- return BinaryOperator::CreateAnd(Op0NotVal, NotY);
- }
+ // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
+ Value *X, *Y;
+
+ // We must eliminate the and/or (one-use) for these transforms to not increase
+ // the instruction count.
+ // ~(~X & Y) --> (X | ~Y)
+ // ~(Y & ~X) --> (X | ~Y)
+ if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
+ Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
+ return BinaryOperator::CreateOr(X, NotY);
+ }
+ // ~(~X | Y) --> (X & ~Y)
+ // ~(Y | ~X) --> (X & ~Y)
+ if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
+ Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
+ return BinaryOperator::CreateAnd(X, NotY);
+ }
+
+ // Is this a 'not' (~) fed by a binary operator?
+ BinaryOperator *NotVal;
+ if (match(&I, m_Not(m_BinOp(NotVal)))) {
+ if (NotVal->getOpcode() == Instruction::And ||
+ NotVal->getOpcode() == Instruction::Or) {
+ // Apply DeMorgan's Law when inverts are free:
+ // ~(X & Y) --> (~X | ~Y)
+ // ~(X | Y) --> (~X & ~Y)
+ if (IsFreeToInvert(NotVal->getOperand(0),
+ NotVal->getOperand(0)->hasOneUse()) &&
+ IsFreeToInvert(NotVal->getOperand(1),
+ NotVal->getOperand(1)->hasOneUse())) {
+ Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
+ Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
+ if (NotVal->getOpcode() == Instruction::And)
+ return BinaryOperator::CreateOr(NotX, NotY);
+ return BinaryOperator::CreateAnd(NotX, NotY);
+ }
+ }
- // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
- // ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (IsFreeToInvert(Op0I->getOperand(0),
- Op0I->getOperand(0)->hasOneUse()) &&
- IsFreeToInvert(Op0I->getOperand(1),
- Op0I->getOperand(1)->hasOneUse())) {
- Value *NotX =
- Builder->CreateNot(Op0I->getOperand(0), "notlhs");
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1), "notrhs");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(NotX, NotY);
- return BinaryOperator::CreateAnd(NotX, NotY);
- }
+ // ~(~X >>s Y) --> (X >>s Y)
+ if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
+ return BinaryOperator::CreateAShr(X, Y);
- } else if (Op0I->getOpcode() == Instruction::AShr) {
- // ~(~X >>s Y) --> (X >>s Y)
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
- return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
- }
+ // If we are inverting a right-shifted constant, we may be able to eliminate
+ // the 'not' by inverting the constant and using the opposite shift type.
+ // Canonicalization rules ensure that only a negative constant uses 'ashr',
+ // but we must check that in case that transform has not fired yet.
+ const APInt *C;
+ if (match(NotVal, m_AShr(m_APInt(C), m_Value(Y))) && C->isNegative()) {
+ // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
+ Constant *NotC = ConstantInt::get(I.getType(), ~(*C));
+ return BinaryOperator::CreateLShr(NotC, Y);
+ }
+
+ if (match(NotVal, m_LShr(m_APInt(C), m_Value(Y))) && C->isNonNegative()) {
+ // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
+ Constant *NotC = ConstantInt::get(I.getType(), ~(*C));
+ return BinaryOperator::CreateAShr(NotC, Y);
}
}
- if (Constant *RHS = dyn_cast<Constant>(Op1)) {
- if (RHS->isAllOnesValue() && Op0->hasOneUse())
- // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
- if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
- return CmpInst::Create(CI->getOpcode(),
- CI->getInversePredicate(),
- CI->getOperand(0), CI->getOperand(1));
+ // not (cmp A, B) = !cmp A, B
+ CmpInst::Predicate Pred;
+ if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
+ cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
+ return replaceInstUsesWith(I, Op0);
}
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
// fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
- Op0C->getDestTy()))) {
+ (RHSC == ConstantExpr::getCast(Opcode, Builder.getTrue(),
+ Op0C->getDestTy()))) {
CI->setPredicate(CI->getInversePredicate());
return CastInst::Create(Opcode, CI, Op0C->getType());
}
@@ -2520,26 +2452,23 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
// ~(c-X) == X-c-1 == X+(-c-1)
- if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
+ if (Op0I->getOpcode() == Instruction::Sub && RHSC->isMinusOne())
if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
- Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
- ConstantInt::get(I.getType(), 1));
- return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
+ return BinaryOperator::CreateAdd(Op0I->getOperand(1),
+ SubOne(NegOp0I0C));
}
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
- if (RHS->isAllOnesValue()) {
+ if (RHSC->isMinusOne()) {
Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
- return BinaryOperator::CreateSub(
- ConstantExpr::getSub(NegOp0CI,
- ConstantInt::get(I.getType(), 1)),
- Op0I->getOperand(0));
- } else if (RHS->getValue().isSignBit()) {
- // (X + C) ^ signbit -> (X + C + signbit)
- Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
+ return BinaryOperator::CreateSub(SubOne(NegOp0CI),
+ Op0I->getOperand(0));
+ } else if (RHSC->getValue().isSignMask()) {
+ // (X + C) ^ signmask -> (X + C + signmask)
+ Constant *C = Builder.getInt(RHSC->getValue() + Op0CI->getValue());
return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
}
@@ -2547,10 +2476,10 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
0, &I)) {
- Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
+ Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHSC);
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
- Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
+ Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHSC);
NewRHS = ConstantExpr::getAnd(NewRHS,
ConstantExpr::getNot(CommonBits));
Worklist.Add(Op0I);
@@ -2568,11 +2497,11 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
E1->getOpcode() == Instruction::Xor &&
(C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
// fold (C1 >> C2) ^ C3
- ConstantInt *C2 = Op0CI, *C3 = RHS;
+ ConstantInt *C2 = Op0CI, *C3 = RHSC;
APInt FoldConst = C1->getValue().lshr(C2->getValue());
FoldConst ^= C3->getValue();
// Prepare the two operands.
- Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
+ Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
Opnd0->takeName(Op0I);
cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
@@ -2582,27 +2511,26 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
}
+ }
+ if (isa<Constant>(Op1))
if (Instruction *FoldedLogic = foldOpWithConstantIntoOperand(I))
return FoldedLogic;
- }
- BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
- if (Op1I) {
+ {
Value *A, *B;
- if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
- if (A == Op0) { // B^(B|A) == (A|B)^B
- Op1I->swapOperands();
- I.swapOperands();
- std::swap(Op0, Op1);
- } else if (B == Op0) { // B^(A|B) == (A|B)^B
+ if (match(Op1, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
+ if (A == Op0) { // A^(A|B) == A^(B|A)
+ cast<BinaryOperator>(Op1)->swapOperands();
+ std::swap(A, B);
+ }
+ if (B == Op0) { // A^(B|A) == (B|A)^A
I.swapOperands(); // Simplified below.
std::swap(Op0, Op1);
}
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
- Op1I->hasOneUse()){
+ } else if (match(Op1, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
if (A == Op0) { // A^(A&B) -> A^(B&A)
- Op1I->swapOperands();
+ cast<BinaryOperator>(Op1)->swapOperands();
std::swap(A, B);
}
if (B == Op0) { // A^(B&A) -> (B&A)^A
@@ -2612,89 +2540,53 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
}
- BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
- if (Op0I) {
+ {
Value *A, *B;
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()) {
+ if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
if (A == Op1) // (B|A)^B == (A|B)^B
std::swap(A, B);
if (B == Op1) // (A|B)^B == A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()){
+ return BinaryOperator::CreateAnd(A, Builder.CreateNot(Op1));
+ } else if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
+ const APInt *C;
if (B == Op1 && // (B&A)^A == ~B & A
- !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
- return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
+ !match(Op1, m_APInt(C))) { // Canonical form is (B&C)^C
+ return BinaryOperator::CreateAnd(Builder.CreateNot(A), Op1);
}
}
}
- if (Op0I && Op1I) {
+ {
Value *A, *B, *C, *D;
- // (A & B)^(A | B) -> A ^ B
- if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
- // (A | B)^(A & B) -> A ^ B
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
- // (A | ~B) ^ (~A | B) -> A ^ B
- // (~B | A) ^ (~A | B) -> A ^ B
- if (match(Op0I, m_c_Or(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
-
- // (~A | B) ^ (A | ~B) -> A ^ B
- if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
- return BinaryOperator::CreateXor(A, B);
- }
- // (A & ~B) ^ (~A & B) -> A ^ B
- // (~B & A) ^ (~A & B) -> A ^ B
- if (match(Op0I, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
-
- // (~A & B) ^ (A & ~B) -> A ^ B
- if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
- return BinaryOperator::CreateXor(A, B);
- }
// (A ^ C)^(A | B) -> ((~A) & B) ^ C
- if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
- match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
+ if (match(Op0, m_Xor(m_Value(D), m_Value(C))) &&
+ match(Op1, m_Or(m_Value(A), m_Value(B)))) {
if (D == A)
return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(A), B), C);
+ Builder.CreateAnd(Builder.CreateNot(A), B), C);
if (D == B)
return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(B), A), C);
+ Builder.CreateAnd(Builder.CreateNot(B), A), C);
}
// (A | B)^(A ^ C) -> ((~A) & B) ^ C
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
+ if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Xor(m_Value(D), m_Value(C)))) {
if (D == A)
return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(A), B), C);
+ Builder.CreateAnd(Builder.CreateNot(A), B), C);
if (D == B)
return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(B), A), C);
+ Builder.CreateAnd(Builder.CreateNot(B), A), C);
}
// (A & B) ^ (A ^ B) -> (A | B)
- if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateOr(A, B);
// (A ^ B) ^ (A & B) -> (A | B)
- if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Specific(A), m_Specific(B))))
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateOr(A, B);
}
@@ -2703,25 +2595,12 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Value *A, *B;
if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
match(Op1, m_Not(m_Specific(A))))
- return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
-
- // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
- bool isSigned = LHS->isSigned() || RHS->isSigned();
- return replaceInstUsesWith(I,
- getNewICmpValue(isSigned, Code, Op0, Op1,
- Builder));
- }
- }
+ return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
+
+ if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+ if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+ if (Value *V = foldXorOfICmps(LHS, RHS))
+ return replaceInstUsesWith(I, V);
if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
return CastedXor;
OpenPOWER on IntegriCloud