diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp | 1055 |
1 files changed, 0 insertions, 1055 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp b/contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp deleted file mode 100644 index 7b51574..0000000 --- a/contrib/llvm/lib/Transforms/IPO/LowerBitSets.cpp +++ /dev/null @@ -1,1055 +0,0 @@ -//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic. -// See http://llvm.org/docs/LangRef.html#bitsets for more information. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/IPO/LowerBitSets.h" -#include "llvm/Transforms/IPO.h" -#include "llvm/ADT/EquivalenceClasses.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/Triple.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalObject.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/Pass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" - -using namespace llvm; - -#define DEBUG_TYPE "lowerbitsets" - -STATISTIC(ByteArraySizeBits, "Byte array size in bits"); -STATISTIC(ByteArraySizeBytes, "Byte array size in bytes"); -STATISTIC(NumByteArraysCreated, "Number of byte arrays created"); -STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered"); -STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets"); - -static cl::opt<bool> AvoidReuse( - "lowerbitsets-avoid-reuse", - cl::desc("Try to avoid reuse of byte array addresses using aliases"), - cl::Hidden, cl::init(true)); - -bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const { - if (Offset < ByteOffset) - return false; - - if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0) - return false; - - uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2; - if (BitOffset >= BitSize) - return false; - - return Bits.count(BitOffset); -} - -bool BitSetInfo::containsValue( - const DataLayout &DL, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V, - uint64_t COffset) const { - if (auto GV = dyn_cast<GlobalObject>(V)) { - auto I = GlobalLayout.find(GV); - if (I == GlobalLayout.end()) - return false; - return containsGlobalOffset(I->second + COffset); - } - - if (auto GEP = dyn_cast<GEPOperator>(V)) { - APInt APOffset(DL.getPointerSizeInBits(0), 0); - bool Result = GEP->accumulateConstantOffset(DL, APOffset); - if (!Result) - return false; - COffset += APOffset.getZExtValue(); - return containsValue(DL, GlobalLayout, GEP->getPointerOperand(), - COffset); - } - - if (auto Op = dyn_cast<Operator>(V)) { - if (Op->getOpcode() == Instruction::BitCast) - return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset); - - if (Op->getOpcode() == Instruction::Select) - return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) && - containsValue(DL, GlobalLayout, Op->getOperand(2), COffset); - } - - return false; -} - -void BitSetInfo::print(raw_ostream &OS) const { - OS << "offset " << ByteOffset << " size " << BitSize << " align " - << (1 << AlignLog2); - - if (isAllOnes()) { - OS << " all-ones\n"; - return; - } - - OS << " { "; - for (uint64_t B : Bits) - OS << B << ' '; - OS << "}\n"; -} - -BitSetInfo BitSetBuilder::build() { - if (Min > Max) - Min = 0; - - // Normalize each offset against the minimum observed offset, and compute - // the bitwise OR of each of the offsets. The number of trailing zeros - // in the mask gives us the log2 of the alignment of all offsets, which - // allows us to compress the bitset by only storing one bit per aligned - // address. - uint64_t Mask = 0; - for (uint64_t &Offset : Offsets) { - Offset -= Min; - Mask |= Offset; - } - - BitSetInfo BSI; - BSI.ByteOffset = Min; - - BSI.AlignLog2 = 0; - if (Mask != 0) - BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined); - - // Build the compressed bitset while normalizing the offsets against the - // computed alignment. - BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1; - for (uint64_t Offset : Offsets) { - Offset >>= BSI.AlignLog2; - BSI.Bits.insert(Offset); - } - - return BSI; -} - -void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) { - // Create a new fragment to hold the layout for F. - Fragments.emplace_back(); - std::vector<uint64_t> &Fragment = Fragments.back(); - uint64_t FragmentIndex = Fragments.size() - 1; - - for (auto ObjIndex : F) { - uint64_t OldFragmentIndex = FragmentMap[ObjIndex]; - if (OldFragmentIndex == 0) { - // We haven't seen this object index before, so just add it to the current - // fragment. - Fragment.push_back(ObjIndex); - } else { - // This index belongs to an existing fragment. Copy the elements of the - // old fragment into this one and clear the old fragment. We don't update - // the fragment map just yet, this ensures that any further references to - // indices from the old fragment in this fragment do not insert any more - // indices. - std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex]; - Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end()); - OldFragment.clear(); - } - } - - // Update the fragment map to point our object indices to this fragment. - for (uint64_t ObjIndex : Fragment) - FragmentMap[ObjIndex] = FragmentIndex; -} - -void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits, - uint64_t BitSize, uint64_t &AllocByteOffset, - uint8_t &AllocMask) { - // Find the smallest current allocation. - unsigned Bit = 0; - for (unsigned I = 1; I != BitsPerByte; ++I) - if (BitAllocs[I] < BitAllocs[Bit]) - Bit = I; - - AllocByteOffset = BitAllocs[Bit]; - - // Add our size to it. - unsigned ReqSize = AllocByteOffset + BitSize; - BitAllocs[Bit] = ReqSize; - if (Bytes.size() < ReqSize) - Bytes.resize(ReqSize); - - // Set our bits. - AllocMask = 1 << Bit; - for (uint64_t B : Bits) - Bytes[AllocByteOffset + B] |= AllocMask; -} - -namespace { - -struct ByteArrayInfo { - std::set<uint64_t> Bits; - uint64_t BitSize; - GlobalVariable *ByteArray; - Constant *Mask; -}; - -struct LowerBitSets : public ModulePass { - static char ID; - LowerBitSets() : ModulePass(ID) { - initializeLowerBitSetsPass(*PassRegistry::getPassRegistry()); - } - - Module *M; - - bool LinkerSubsectionsViaSymbols; - Triple::ArchType Arch; - Triple::ObjectFormatType ObjectFormat; - IntegerType *Int1Ty; - IntegerType *Int8Ty; - IntegerType *Int32Ty; - Type *Int32PtrTy; - IntegerType *Int64Ty; - IntegerType *IntPtrTy; - - // The llvm.bitsets named metadata. - NamedMDNode *BitSetNM; - - // Mapping from bitset identifiers to the call sites that test them. - DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites; - - std::vector<ByteArrayInfo> ByteArrayInfos; - - BitSetInfo - buildBitSet(Metadata *BitSet, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout); - ByteArrayInfo *createByteArray(BitSetInfo &BSI); - void allocateByteArrays(); - Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI, - Value *BitOffset); - void lowerBitSetCalls(ArrayRef<Metadata *> BitSets, - Constant *CombinedGlobalAddr, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout); - Value * - lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI, - Constant *CombinedGlobal, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout); - void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets, - ArrayRef<GlobalVariable *> Globals); - unsigned getJumpTableEntrySize(); - Type *getJumpTableEntryType(); - Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest, - unsigned Distance); - void verifyBitSetMDNode(MDNode *Op); - void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets, - ArrayRef<Function *> Functions); - void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets, - ArrayRef<GlobalObject *> Globals); - bool buildBitSets(); - bool eraseBitSetMetadata(); - - bool doInitialization(Module &M) override; - bool runOnModule(Module &M) override; -}; - -} // anonymous namespace - -INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets", - "Lower bitset metadata", false, false) -INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets", - "Lower bitset metadata", false, false) -char LowerBitSets::ID = 0; - -ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; } - -bool LowerBitSets::doInitialization(Module &Mod) { - M = &Mod; - const DataLayout &DL = Mod.getDataLayout(); - - Triple TargetTriple(M->getTargetTriple()); - LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX(); - Arch = TargetTriple.getArch(); - ObjectFormat = TargetTriple.getObjectFormat(); - - Int1Ty = Type::getInt1Ty(M->getContext()); - Int8Ty = Type::getInt8Ty(M->getContext()); - Int32Ty = Type::getInt32Ty(M->getContext()); - Int32PtrTy = PointerType::getUnqual(Int32Ty); - Int64Ty = Type::getInt64Ty(M->getContext()); - IntPtrTy = DL.getIntPtrType(M->getContext(), 0); - - BitSetNM = M->getNamedMetadata("llvm.bitsets"); - - BitSetTestCallSites.clear(); - - return false; -} - -/// Build a bit set for BitSet using the object layouts in -/// GlobalLayout. -BitSetInfo LowerBitSets::buildBitSet( - Metadata *BitSet, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) { - BitSetBuilder BSB; - - // Compute the byte offset of each element of this bitset. - if (BitSetNM) { - for (MDNode *Op : BitSetNM->operands()) { - if (Op->getOperand(0) != BitSet || !Op->getOperand(1)) - continue; - Constant *OpConst = - cast<ConstantAsMetadata>(Op->getOperand(1))->getValue(); - if (auto GA = dyn_cast<GlobalAlias>(OpConst)) - OpConst = GA->getAliasee(); - auto OpGlobal = dyn_cast<GlobalObject>(OpConst); - if (!OpGlobal) - continue; - uint64_t Offset = - cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2)) - ->getValue())->getZExtValue(); - - Offset += GlobalLayout.find(OpGlobal)->second; - - BSB.addOffset(Offset); - } - } - - return BSB.build(); -} - -/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in -/// Bits. This pattern matches to the bt instruction on x86. -static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits, - Value *BitOffset) { - auto BitsType = cast<IntegerType>(Bits->getType()); - unsigned BitWidth = BitsType->getBitWidth(); - - BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType); - Value *BitIndex = - B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1)); - Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex); - Value *MaskedBits = B.CreateAnd(Bits, BitMask); - return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0)); -} - -ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) { - // Create globals to stand in for byte arrays and masks. These never actually - // get initialized, we RAUW and erase them later in allocateByteArrays() once - // we know the offset and mask to use. - auto ByteArrayGlobal = new GlobalVariable( - *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr); - auto MaskGlobal = new GlobalVariable( - *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr); - - ByteArrayInfos.emplace_back(); - ByteArrayInfo *BAI = &ByteArrayInfos.back(); - - BAI->Bits = BSI.Bits; - BAI->BitSize = BSI.BitSize; - BAI->ByteArray = ByteArrayGlobal; - BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty); - return BAI; -} - -void LowerBitSets::allocateByteArrays() { - std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(), - [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) { - return BAI1.BitSize > BAI2.BitSize; - }); - - std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size()); - - ByteArrayBuilder BAB; - for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) { - ByteArrayInfo *BAI = &ByteArrayInfos[I]; - - uint8_t Mask; - BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask); - - BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask)); - cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent(); - } - - Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes); - auto ByteArray = - new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true, - GlobalValue::PrivateLinkage, ByteArrayConst); - - for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) { - ByteArrayInfo *BAI = &ByteArrayInfos[I]; - - Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0), - ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])}; - Constant *GEP = ConstantExpr::getInBoundsGetElementPtr( - ByteArrayConst->getType(), ByteArray, Idxs); - - // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures - // that the pc-relative displacement is folded into the lea instead of the - // test instruction getting another displacement. - if (LinkerSubsectionsViaSymbols) { - BAI->ByteArray->replaceAllUsesWith(GEP); - } else { - GlobalAlias *Alias = GlobalAlias::create( - Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M); - BAI->ByteArray->replaceAllUsesWith(Alias); - } - BAI->ByteArray->eraseFromParent(); - } - - ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] + - BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] + - BAB.BitAllocs[6] + BAB.BitAllocs[7]; - ByteArraySizeBytes = BAB.Bytes.size(); -} - -/// Build a test that bit BitOffset is set in BSI, where -/// BitSetGlobal is a global containing the bits in BSI. -Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, - ByteArrayInfo *&BAI, Value *BitOffset) { - if (BSI.BitSize <= 64) { - // If the bit set is sufficiently small, we can avoid a load by bit testing - // a constant. - IntegerType *BitsTy; - if (BSI.BitSize <= 32) - BitsTy = Int32Ty; - else - BitsTy = Int64Ty; - - uint64_t Bits = 0; - for (auto Bit : BSI.Bits) - Bits |= uint64_t(1) << Bit; - Constant *BitsConst = ConstantInt::get(BitsTy, Bits); - return createMaskedBitTest(B, BitsConst, BitOffset); - } else { - if (!BAI) { - ++NumByteArraysCreated; - BAI = createByteArray(BSI); - } - - Constant *ByteArray = BAI->ByteArray; - Type *Ty = BAI->ByteArray->getValueType(); - if (!LinkerSubsectionsViaSymbols && AvoidReuse) { - // Each use of the byte array uses a different alias. This makes the - // backend less likely to reuse previously computed byte array addresses, - // improving the security of the CFI mechanism based on this pass. - ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0, - GlobalValue::PrivateLinkage, "bits_use", - ByteArray, M); - } - - Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset); - Value *Byte = B.CreateLoad(ByteAddr); - - Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask); - return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0)); - } -} - -/// Lower a llvm.bitset.test call to its implementation. Returns the value to -/// replace the call with. -Value *LowerBitSets::lowerBitSetCall( - CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI, - Constant *CombinedGlobalIntAddr, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) { - Value *Ptr = CI->getArgOperand(0); - const DataLayout &DL = M->getDataLayout(); - - if (BSI.containsValue(DL, GlobalLayout, Ptr)) - return ConstantInt::getTrue(M->getContext()); - - Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd( - CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)); - - BasicBlock *InitialBB = CI->getParent(); - - IRBuilder<> B(CI); - - Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy); - - if (BSI.isSingleOffset()) - return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt); - - Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt); - - Value *BitOffset; - if (BSI.AlignLog2 == 0) { - BitOffset = PtrOffset; - } else { - // We need to check that the offset both falls within our range and is - // suitably aligned. We can check both properties at the same time by - // performing a right rotate by log2(alignment) followed by an integer - // comparison against the bitset size. The rotate will move the lower - // order bits that need to be zero into the higher order bits of the - // result, causing the comparison to fail if they are nonzero. The rotate - // also conveniently gives us a bit offset to use during the load from - // the bitset. - Value *OffsetSHR = - B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2)); - Value *OffsetSHL = B.CreateShl( - PtrOffset, - ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2)); - BitOffset = B.CreateOr(OffsetSHR, OffsetSHL); - } - - Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize); - Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst); - - // If the bit set is all ones, testing against it is unnecessary. - if (BSI.isAllOnes()) - return OffsetInRange; - - TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false); - IRBuilder<> ThenB(Term); - - // Now that we know that the offset is in range and aligned, load the - // appropriate bit from the bitset. - Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset); - - // The value we want is 0 if we came directly from the initial block - // (having failed the range or alignment checks), or the loaded bit if - // we came from the block in which we loaded it. - B.SetInsertPoint(CI); - PHINode *P = B.CreatePHI(Int1Ty, 2); - P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB); - P->addIncoming(Bit, ThenB.GetInsertBlock()); - return P; -} - -/// Given a disjoint set of bitsets and globals, layout the globals, build the -/// bit sets and lower the llvm.bitset.test calls. -void LowerBitSets::buildBitSetsFromGlobalVariables( - ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) { - // Build a new global with the combined contents of the referenced globals. - // This global is a struct whose even-indexed elements contain the original - // contents of the referenced globals and whose odd-indexed elements contain - // any padding required to align the next element to the next power of 2. - std::vector<Constant *> GlobalInits; - const DataLayout &DL = M->getDataLayout(); - for (GlobalVariable *G : Globals) { - GlobalInits.push_back(G->getInitializer()); - uint64_t InitSize = DL.getTypeAllocSize(G->getValueType()); - - // Compute the amount of padding required. - uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize; - - // Cap at 128 was found experimentally to have a good data/instruction - // overhead tradeoff. - if (Padding > 128) - Padding = RoundUpToAlignment(InitSize, 128) - InitSize; - - GlobalInits.push_back( - ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding))); - } - if (!GlobalInits.empty()) - GlobalInits.pop_back(); - Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits); - auto *CombinedGlobal = - new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true, - GlobalValue::PrivateLinkage, NewInit); - - StructType *NewTy = cast<StructType>(NewInit->getType()); - const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy); - - // Compute the offsets of the original globals within the new global. - DenseMap<GlobalObject *, uint64_t> GlobalLayout; - for (unsigned I = 0; I != Globals.size(); ++I) - // Multiply by 2 to account for padding elements. - GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2); - - lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout); - - // Build aliases pointing to offsets into the combined global for each - // global from which we built the combined global, and replace references - // to the original globals with references to the aliases. - for (unsigned I = 0; I != Globals.size(); ++I) { - // Multiply by 2 to account for padding elements. - Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0), - ConstantInt::get(Int32Ty, I * 2)}; - Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr( - NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs); - if (LinkerSubsectionsViaSymbols) { - Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr); - } else { - assert(Globals[I]->getType()->getAddressSpace() == 0); - GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0, - Globals[I]->getLinkage(), "", - CombinedGlobalElemPtr, M); - GAlias->setVisibility(Globals[I]->getVisibility()); - GAlias->takeName(Globals[I]); - Globals[I]->replaceAllUsesWith(GAlias); - } - Globals[I]->eraseFromParent(); - } -} - -void LowerBitSets::lowerBitSetCalls( - ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr, - const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) { - Constant *CombinedGlobalIntAddr = - ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy); - - // For each bitset in this disjoint set... - for (Metadata *BS : BitSets) { - // Build the bitset. - BitSetInfo BSI = buildBitSet(BS, GlobalLayout); - DEBUG({ - if (auto BSS = dyn_cast<MDString>(BS)) - dbgs() << BSS->getString() << ": "; - else - dbgs() << "<unnamed>: "; - BSI.print(dbgs()); - }); - - ByteArrayInfo *BAI = nullptr; - - // Lower each call to llvm.bitset.test for this bitset. - for (CallInst *CI : BitSetTestCallSites[BS]) { - ++NumBitSetCallsLowered; - Value *Lowered = - lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout); - CI->replaceAllUsesWith(Lowered); - CI->eraseFromParent(); - } - } -} - -void LowerBitSets::verifyBitSetMDNode(MDNode *Op) { - if (Op->getNumOperands() != 3) - report_fatal_error( - "All operands of llvm.bitsets metadata must have 3 elements"); - if (!Op->getOperand(1)) - return; - - auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1)); - if (!OpConstMD) - report_fatal_error("Bit set element must be a constant"); - auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue()); - if (!OpGlobal) - return; - - if (OpGlobal->isThreadLocal()) - report_fatal_error("Bit set element may not be thread-local"); - if (OpGlobal->hasSection()) - report_fatal_error("Bit set element may not have an explicit section"); - - if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker()) - report_fatal_error("Bit set global var element must be a definition"); - - auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2)); - if (!OffsetConstMD) - report_fatal_error("Bit set element offset must be a constant"); - auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue()); - if (!OffsetInt) - report_fatal_error("Bit set element offset must be an integer constant"); -} - -static const unsigned kX86JumpTableEntrySize = 8; - -unsigned LowerBitSets::getJumpTableEntrySize() { - if (Arch != Triple::x86 && Arch != Triple::x86_64) - report_fatal_error("Unsupported architecture for jump tables"); - - return kX86JumpTableEntrySize; -} - -// Create a constant representing a jump table entry for the target. This -// consists of an instruction sequence containing a relative branch to Dest. The -// constant will be laid out at address Src+(Len*Distance) where Len is the -// target-specific jump table entry size. -Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest, - unsigned Distance) { - if (Arch != Triple::x86 && Arch != Triple::x86_64) - report_fatal_error("Unsupported architecture for jump tables"); - - const unsigned kJmpPCRel32Code = 0xe9; - const unsigned kInt3Code = 0xcc; - - ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code); - - // Build a constant representing the displacement between the constant's - // address and Dest. This will resolve to a PC32 relocation referring to Dest. - Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy); - Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy); - Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt); - ConstantInt *DispOffset = - ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5); - Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset); - OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty); - - ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code); - - Constant *Fields[] = { - Jmp, OffsetedDisp, Int3, Int3, Int3, - }; - return ConstantStruct::getAnon(Fields, /*Packed=*/true); -} - -Type *LowerBitSets::getJumpTableEntryType() { - if (Arch != Triple::x86 && Arch != Triple::x86_64) - report_fatal_error("Unsupported architecture for jump tables"); - - return StructType::get(M->getContext(), - {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty}, - /*Packed=*/true); -} - -/// Given a disjoint set of bitsets and functions, build a jump table for the -/// functions, build the bit sets and lower the llvm.bitset.test calls. -void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets, - ArrayRef<Function *> Functions) { - // Unlike the global bitset builder, the function bitset builder cannot - // re-arrange functions in a particular order and base its calculations on the - // layout of the functions' entry points, as we have no idea how large a - // particular function will end up being (the size could even depend on what - // this pass does!) Instead, we build a jump table, which is a block of code - // consisting of one branch instruction for each of the functions in the bit - // set that branches to the target function, and redirect any taken function - // addresses to the corresponding jump table entry. In the object file's - // symbol table, the symbols for the target functions also refer to the jump - // table entries, so that addresses taken outside the module will pass any - // verification done inside the module. - // - // In more concrete terms, suppose we have three functions f, g, h which are - // members of a single bitset, and a function foo that returns their - // addresses: - // - // f: - // mov 0, %eax - // ret - // - // g: - // mov 1, %eax - // ret - // - // h: - // mov 2, %eax - // ret - // - // foo: - // mov f, %eax - // mov g, %edx - // mov h, %ecx - // ret - // - // To create a jump table for these functions, we instruct the LLVM code - // generator to output a jump table in the .text section. This is done by - // representing the instructions in the jump table as an LLVM constant and - // placing them in a global variable in the .text section. The end result will - // (conceptually) look like this: - // - // f: - // jmp .Ltmp0 ; 5 bytes - // int3 ; 1 byte - // int3 ; 1 byte - // int3 ; 1 byte - // - // g: - // jmp .Ltmp1 ; 5 bytes - // int3 ; 1 byte - // int3 ; 1 byte - // int3 ; 1 byte - // - // h: - // jmp .Ltmp2 ; 5 bytes - // int3 ; 1 byte - // int3 ; 1 byte - // int3 ; 1 byte - // - // .Ltmp0: - // mov 0, %eax - // ret - // - // .Ltmp1: - // mov 1, %eax - // ret - // - // .Ltmp2: - // mov 2, %eax - // ret - // - // foo: - // mov f, %eax - // mov g, %edx - // mov h, %ecx - // ret - // - // Because the addresses of f, g, h are evenly spaced at a power of 2, in the - // normal case the check can be carried out using the same kind of simple - // arithmetic that we normally use for globals. - - assert(!Functions.empty()); - - // Build a simple layout based on the regular layout of jump tables. - DenseMap<GlobalObject *, uint64_t> GlobalLayout; - unsigned EntrySize = getJumpTableEntrySize(); - for (unsigned I = 0; I != Functions.size(); ++I) - GlobalLayout[Functions[I]] = I * EntrySize; - - // Create a constant to hold the jump table. - ArrayType *JumpTableType = - ArrayType::get(getJumpTableEntryType(), Functions.size()); - auto JumpTable = new GlobalVariable(*M, JumpTableType, - /*isConstant=*/true, - GlobalValue::PrivateLinkage, nullptr); - JumpTable->setSection(ObjectFormat == Triple::MachO - ? "__TEXT,__text,regular,pure_instructions" - : ".text"); - lowerBitSetCalls(BitSets, JumpTable, GlobalLayout); - - // Build aliases pointing to offsets into the jump table, and replace - // references to the original functions with references to the aliases. - for (unsigned I = 0; I != Functions.size(); ++I) { - Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast( - ConstantExpr::getGetElementPtr( - JumpTableType, JumpTable, - ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0), - ConstantInt::get(IntPtrTy, I)}), - Functions[I]->getType()); - if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) { - Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr); - } else { - assert(Functions[I]->getType()->getAddressSpace() == 0); - GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0, - Functions[I]->getLinkage(), "", - CombinedGlobalElemPtr, M); - GAlias->setVisibility(Functions[I]->getVisibility()); - GAlias->takeName(Functions[I]); - Functions[I]->replaceAllUsesWith(GAlias); - } - if (!Functions[I]->isDeclarationForLinker()) - Functions[I]->setLinkage(GlobalValue::PrivateLinkage); - } - - // Build and set the jump table's initializer. - std::vector<Constant *> JumpTableEntries; - for (unsigned I = 0; I != Functions.size(); ++I) - JumpTableEntries.push_back( - createJumpTableEntry(JumpTable, Functions[I], I)); - JumpTable->setInitializer( - ConstantArray::get(JumpTableType, JumpTableEntries)); -} - -void LowerBitSets::buildBitSetsFromDisjointSet( - ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) { - llvm::DenseMap<Metadata *, uint64_t> BitSetIndices; - llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices; - for (unsigned I = 0; I != BitSets.size(); ++I) - BitSetIndices[BitSets[I]] = I; - for (unsigned I = 0; I != Globals.size(); ++I) - GlobalIndices[Globals[I]] = I; - - // For each bitset, build a set of indices that refer to globals referenced by - // the bitset. - std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size()); - if (BitSetNM) { - for (MDNode *Op : BitSetNM->operands()) { - // Op = { bitset name, global, offset } - if (!Op->getOperand(1)) - continue; - auto I = BitSetIndices.find(Op->getOperand(0)); - if (I == BitSetIndices.end()) - continue; - - auto OpGlobal = dyn_cast<GlobalObject>( - cast<ConstantAsMetadata>(Op->getOperand(1))->getValue()); - if (!OpGlobal) - continue; - BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]); - } - } - - // Order the sets of indices by size. The GlobalLayoutBuilder works best - // when given small index sets first. - std::stable_sort( - BitSetMembers.begin(), BitSetMembers.end(), - [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) { - return O1.size() < O2.size(); - }); - - // Create a GlobalLayoutBuilder and provide it with index sets as layout - // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as - // close together as possible. - GlobalLayoutBuilder GLB(Globals.size()); - for (auto &&MemSet : BitSetMembers) - GLB.addFragment(MemSet); - - // Build the bitsets from this disjoint set. - if (Globals.empty() || isa<GlobalVariable>(Globals[0])) { - // Build a vector of global variables with the computed layout. - std::vector<GlobalVariable *> OrderedGVs(Globals.size()); - auto OGI = OrderedGVs.begin(); - for (auto &&F : GLB.Fragments) { - for (auto &&Offset : F) { - auto GV = dyn_cast<GlobalVariable>(Globals[Offset]); - if (!GV) - report_fatal_error( - "Bit set may not contain both global variables and functions"); - *OGI++ = GV; - } - } - - buildBitSetsFromGlobalVariables(BitSets, OrderedGVs); - } else { - // Build a vector of functions with the computed layout. - std::vector<Function *> OrderedFns(Globals.size()); - auto OFI = OrderedFns.begin(); - for (auto &&F : GLB.Fragments) { - for (auto &&Offset : F) { - auto Fn = dyn_cast<Function>(Globals[Offset]); - if (!Fn) - report_fatal_error( - "Bit set may not contain both global variables and functions"); - *OFI++ = Fn; - } - } - - buildBitSetsFromFunctions(BitSets, OrderedFns); - } -} - -/// Lower all bit sets in this module. -bool LowerBitSets::buildBitSets() { - Function *BitSetTestFunc = - M->getFunction(Intrinsic::getName(Intrinsic::bitset_test)); - if (!BitSetTestFunc) - return false; - - // Equivalence class set containing bitsets and the globals they reference. - // This is used to partition the set of bitsets in the module into disjoint - // sets. - typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>> - GlobalClassesTy; - GlobalClassesTy GlobalClasses; - - // Verify the bitset metadata and build a mapping from bitset identifiers to - // their last observed index in BitSetNM. This will used later to - // deterministically order the list of bitset identifiers. - llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices; - if (BitSetNM) { - for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) { - MDNode *Op = BitSetNM->getOperand(I); - verifyBitSetMDNode(Op); - BitSetIdIndices[Op->getOperand(0)] = I; - } - } - - for (const Use &U : BitSetTestFunc->uses()) { - auto CI = cast<CallInst>(U.getUser()); - - auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1)); - if (!BitSetMDVal) - report_fatal_error( - "Second argument of llvm.bitset.test must be metadata"); - auto BitSet = BitSetMDVal->getMetadata(); - - // Add the call site to the list of call sites for this bit set. We also use - // BitSetTestCallSites to keep track of whether we have seen this bit set - // before. If we have, we don't need to re-add the referenced globals to the - // equivalence class. - std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator, - bool> Ins = - BitSetTestCallSites.insert( - std::make_pair(BitSet, std::vector<CallInst *>())); - Ins.first->second.push_back(CI); - if (!Ins.second) - continue; - - // Add the bitset to the equivalence class. - GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet); - GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI); - - if (!BitSetNM) - continue; - - // Add the referenced globals to the bitset's equivalence class. - for (MDNode *Op : BitSetNM->operands()) { - if (Op->getOperand(0) != BitSet || !Op->getOperand(1)) - continue; - - auto OpGlobal = dyn_cast<GlobalObject>( - cast<ConstantAsMetadata>(Op->getOperand(1))->getValue()); - if (!OpGlobal) - continue; - - CurSet = GlobalClasses.unionSets( - CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal))); - } - } - - if (GlobalClasses.empty()) - return false; - - // Build a list of disjoint sets ordered by their maximum BitSetNM index - // for determinism. - std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets; - for (GlobalClassesTy::iterator I = GlobalClasses.begin(), - E = GlobalClasses.end(); - I != E; ++I) { - if (!I->isLeader()) continue; - ++NumBitSetDisjointSets; - - unsigned MaxIndex = 0; - for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I); - MI != GlobalClasses.member_end(); ++MI) { - if ((*MI).is<Metadata *>()) - MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]); - } - Sets.emplace_back(I, MaxIndex); - } - std::sort(Sets.begin(), Sets.end(), - [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1, - const std::pair<GlobalClassesTy::iterator, unsigned> &S2) { - return S1.second < S2.second; - }); - - // For each disjoint set we found... - for (const auto &S : Sets) { - // Build the list of bitsets in this disjoint set. - std::vector<Metadata *> BitSets; - std::vector<GlobalObject *> Globals; - for (GlobalClassesTy::member_iterator MI = - GlobalClasses.member_begin(S.first); - MI != GlobalClasses.member_end(); ++MI) { - if ((*MI).is<Metadata *>()) - BitSets.push_back(MI->get<Metadata *>()); - else - Globals.push_back(MI->get<GlobalObject *>()); - } - - // Order bitsets by BitSetNM index for determinism. This ordering is stable - // as there is a one-to-one mapping between metadata and indices. - std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) { - return BitSetIdIndices[M1] < BitSetIdIndices[M2]; - }); - - // Lower the bitsets in this disjoint set. - buildBitSetsFromDisjointSet(BitSets, Globals); - } - - allocateByteArrays(); - - return true; -} - -bool LowerBitSets::eraseBitSetMetadata() { - if (!BitSetNM) - return false; - - M->eraseNamedMetadata(BitSetNM); - return true; -} - -bool LowerBitSets::runOnModule(Module &M) { - bool Changed = buildBitSets(); - Changed |= eraseBitSetMetadata(); - return Changed; -} |