diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp | 108 |
1 files changed, 86 insertions, 22 deletions
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp index ce8fcf1..008dead 100644 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp +++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp @@ -10,14 +10,74 @@ // This file is part of the X86 Disassembler. // It contains code to translate the data produced by the decoder into // MCInsts. -// Documentation for the disassembler can be found in X86Disassembler.h. +// +// +// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and +// 64-bit X86 instruction sets. The main decode sequence for an assembly +// instruction in this disassembler is: +// +// 1. Read the prefix bytes and determine the attributes of the instruction. +// These attributes, recorded in enum attributeBits +// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM +// provides a mapping from bitmasks to contexts, which are represented by +// enum InstructionContext (ibid.). +// +// 2. Read the opcode, and determine what kind of opcode it is. The +// disassembler distinguishes four kinds of opcodes, which are enumerated in +// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte +// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a +// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. +// +// 3. Depending on the opcode type, look in one of four ClassDecision structures +// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which +// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get +// a ModRMDecision (ibid.). +// +// 4. Some instructions, such as escape opcodes or extended opcodes, or even +// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the +// ModR/M byte to complete decode. The ModRMDecision's type is an entry from +// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the +// ModR/M byte is required and how to interpret it. +// +// 5. After resolving the ModRMDecision, the disassembler has a unique ID +// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in +// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and +// meanings of its operands. +// +// 6. For each operand, its encoding is an entry from OperandEncoding +// (X86DisassemblerDecoderCommon.h) and its type is an entry from +// OperandType (ibid.). The encoding indicates how to read it from the +// instruction; the type indicates how to interpret the value once it has +// been read. For example, a register operand could be stored in the R/M +// field of the ModR/M byte, the REG field of the ModR/M byte, or added to +// the main opcode. This is orthogonal from its meaning (an GPR or an XMM +// register, for instance). Given this information, the operands can be +// extracted and interpreted. +// +// 7. As the last step, the disassembler translates the instruction information +// and operands into a format understandable by the client - in this case, an +// MCInst for use by the MC infrastructure. +// +// The disassembler is broken broadly into two parts: the table emitter that +// emits the instruction decode tables discussed above during compilation, and +// the disassembler itself. The table emitter is documented in more detail in +// utils/TableGen/X86DisassemblerEmitter.h. +// +// X86Disassembler.cpp contains the code responsible for step 7, and for +// invoking the decoder to execute steps 1-6. +// X86DisassemblerDecoderCommon.h contains the definitions needed by both the +// table emitter and the disassembler. +// X86DisassemblerDecoder.h contains the public interface of the decoder, +// factored out into C for possible use by other projects. +// X86DisassemblerDecoder.c contains the source code of the decoder, which is +// responsible for steps 1-6. // //===----------------------------------------------------------------------===// -#include "X86Disassembler.h" #include "X86DisassemblerDecoder.h" +#include "MCTargetDesc/X86MCTargetDesc.h" #include "llvm/MC/MCContext.h" -#include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" @@ -31,13 +91,6 @@ using namespace llvm::X86Disassembler; #define DEBUG_TYPE "x86-disassembler" -#define GET_REGINFO_ENUM -#include "X86GenRegisterInfo.inc" -#define GET_INSTRINFO_ENUM -#include "X86GenInstrInfo.inc" -#define GET_SUBTARGETINFO_ENUM -#include "X86GenSubtargetInfo.inc" - void llvm::X86Disassembler::Debug(const char *file, unsigned line, const char *s) { dbgs() << file << ":" << line << ": " << s; @@ -67,14 +120,34 @@ namespace X86 { }; } -extern Target TheX86_32Target, TheX86_64Target; - } static bool translateInstruction(MCInst &target, InternalInstruction &source, const MCDisassembler *Dis); +namespace { + +/// Generic disassembler for all X86 platforms. All each platform class should +/// have to do is subclass the constructor, and provide a different +/// disassemblerMode value. +class X86GenericDisassembler : public MCDisassembler { + std::unique_ptr<const MCInstrInfo> MII; +public: + X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, + std::unique_ptr<const MCInstrInfo> MII); +public: + DecodeStatus getInstruction(MCInst &instr, uint64_t &size, + ArrayRef<uint8_t> Bytes, uint64_t Address, + raw_ostream &vStream, + raw_ostream &cStream) const override; + +private: + DisassemblerMode fMode; +}; + +} + X86GenericDisassembler::X86GenericDisassembler( const MCSubtargetInfo &STI, MCContext &Ctx, @@ -826,7 +899,6 @@ static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, case TYPE_R64: case TYPE_Rv: case TYPE_MM64: - case TYPE_XMM: case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: @@ -911,14 +983,6 @@ static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, return translateMaskRegister(mcInst, insn.writemask); CASE_ENCODING_RM: return translateRM(mcInst, operand, insn, Dis); - case ENCODING_CB: - case ENCODING_CW: - case ENCODING_CD: - case ENCODING_CP: - case ENCODING_CO: - case ENCODING_CT: - debug("Translation of code offsets isn't supported."); - return true; case ENCODING_IB: case ENCODING_IW: case ENCODING_ID: @@ -997,7 +1061,7 @@ static MCDisassembler *createX86Disassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); - return new X86Disassembler::X86GenericDisassembler(STI, Ctx, std::move(MII)); + return new X86GenericDisassembler(STI, Ctx, std::move(MII)); } extern "C" void LLVMInitializeX86Disassembler() { |