diff options
author | dim <dim@FreeBSD.org> | 2017-04-02 17:24:58 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2017-04-02 17:24:58 +0000 |
commit | 60b571e49a90d38697b3aca23020d9da42fc7d7f (patch) | |
tree | 99351324c24d6cb146b6285b6caffa4d26fce188 /contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp | |
parent | bea1b22c7a9bce1dfdd73e6e5b65bc4752215180 (diff) | |
download | FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.zip FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.tar.gz |
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release:
MFC r309142 (by emaste):
Add WITH_LLD_AS_LD build knob
If set it installs LLD as /usr/bin/ld. LLD (as of version 3.9) is not
capable of linking the world and kernel, but can self-host and link many
substantial applications. GNU ld continues to be used for the world and
kernel build, regardless of how this knob is set.
It is on by default for arm64, and off for all other CPU architectures.
Sponsored by: The FreeBSD Foundation
MFC r310840:
Reapply 310775, now it also builds correctly if lldb is disabled:
Move llvm-objdump from CLANG_EXTRAS to installed by default
We currently install three tools from binutils 2.17.50: as, ld, and
objdump. Work is underway to migrate to a permissively-licensed
tool-chain, with one goal being the retirement of binutils 2.17.50.
LLVM's llvm-objdump is intended to be compatible with GNU objdump
although it is currently missing some options and may have formatting
differences. Enable it by default for testing and further investigation.
It may later be changed to install as /usr/bin/objdump, it becomes a
fully viable replacement.
Reviewed by: emaste
Differential Revision: https://reviews.freebsd.org/D8879
MFC r312855 (by emaste):
Rename LLD_AS_LD to LLD_IS_LD, for consistency with CLANG_IS_CC
Reported by: Dan McGregor <dan.mcgregor usask.ca>
MFC r313559 | glebius | 2017-02-10 18:34:48 +0100 (Fri, 10 Feb 2017) | 5 lines
Don't check struct rtentry on FreeBSD, it is an internal kernel structure.
On other systems it may be API structure for SIOCADDRT/SIOCDELRT.
Reviewed by: emaste, dim
MFC r314152 (by jkim):
Remove an assembler flag, which is redundant since r309124. The upstream
took care of it by introducing a macro NO_EXEC_STACK_DIRECTIVE.
http://llvm.org/viewvc/llvm-project?rev=273500&view=rev
Reviewed by: dim
MFC r314564:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
4.0.0 (branches/release_40 296509). The release will follow soon.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Also note that as of 4.0.0, lld should be able to link the base system
on amd64 and aarch64. See the WITH_LLD_IS_LLD setting in src.conf(5).
Though please be aware that this is work in progress.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/4.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/4.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/4.0.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Jan Beich, Antoine Brodin and Eric Fiselier for
their help.
Relnotes: yes
Exp-run: antoine
PR: 215969, 216008
MFC r314708:
For now, revert r287232 from upstream llvm trunk (by Daniil Fukalov):
[SCEV] limit recursion depth of CompareSCEVComplexity
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled
loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further
estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
This commit is the cause of excessive compile times on skein_block.c
(and possibly other files) during kernel builds on amd64.
We never saw the problematic behavior described in this upstream commit,
so for now it is better to revert it. An upstream bug has been filed
here: https://bugs.llvm.org/show_bug.cgi?id=32142
Reported by: mjg
MFC r314795:
Reapply r287232 from upstream llvm trunk (by Daniil Fukalov):
[SCEV] limit recursion depth of CompareSCEVComplexity
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled
loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further
estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
Pull in r296992 from upstream llvm trunk (by Sanjoy Das):
[SCEV] Decrease the recursion threshold for CompareValueComplexity
Fixes PR32142.
r287232 accidentally increased the recursion threshold for
CompareValueComplexity from 2 to 32. This change reverses that
change by introducing a separate flag for CompareValueComplexity's
threshold.
The latter revision fixes the excessive compile times for skein_block.c.
MFC r314907 | mmel | 2017-03-08 12:40:27 +0100 (Wed, 08 Mar 2017) | 7 lines
Unbreak ARMv6 world.
The new compiler_rt library imported with clang 4.0.0 have several fatal
issues (non-functional __udivsi3 for example) with ARM specific instrict
functions. As temporary workaround, until upstream solve these problems,
disable all thumb[1][2] related feature.
MFC r315016:
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release.
We were already very close to the last release candidate, so this is a
pretty minor update.
Relnotes: yes
MFC r316005:
Revert r314907, and pull in r298713 from upstream compiler-rt trunk (by
Weiming Zhao):
builtins: Select correct code fragments when compiling for Thumb1/Thum2/ARM ISA.
Summary:
Value of __ARM_ARCH_ISA_THUMB isn't based on the actual compilation
mode (-mthumb, -marm), it reflect's capability of given CPU.
Due to this:
- use __tbumb__ and __thumb2__ insteand of __ARM_ARCH_ISA_THUMB
- use '.thumb' directive consistently in all affected files
- decorate all thumb functions using
DEFINE_COMPILERRT_THUMB_FUNCTION()
---------
Note: This patch doesn't fix broken Thumb1 variant of __udivsi3 !
Reviewers: weimingz, rengolin, compnerd
Subscribers: aemerson, dim
Differential Revision: https://reviews.llvm.org/D30938
Discussed with: mmel
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp | 715 |
1 files changed, 470 insertions, 245 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp b/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp index 273d6b7..fa272ea 100644 --- a/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp +++ b/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp @@ -10,15 +10,31 @@ // Target-independent, SSA-based data flow graph for register data flow (RDF). // #include "RDFGraph.h" - #include "llvm/ADT/SetVector.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominanceFrontier.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <utility> +#include <vector> using namespace llvm; using namespace rdf; @@ -28,6 +44,12 @@ using namespace rdf; namespace llvm { namespace rdf { +raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { + if (!P.Mask.all()) + OS << ':' << PrintLaneMask(P.Mask); + return OS; +} + template<> raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { auto &TRI = P.G.getTRI(); @@ -35,13 +57,7 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { OS << TRI.getName(P.Obj.Reg); else OS << '#' << P.Obj.Reg; - if (P.Obj.Sub > 0) { - OS << ':'; - if (P.Obj.Sub < TRI.getNumSubRegIndices()) - OS << TRI.getSubRegIndexName(P.Obj.Sub); - else - OS << '#' << P.Obj.Sub; - } + OS << PrintLaneMaskOpt(P.Obj.Mask); return OS; } @@ -62,6 +78,10 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { } break; case NodeAttrs::Ref: + if (Flags & NodeAttrs::Undef) + OS << '/'; + if (Flags & NodeAttrs::Dead) + OS << '\\'; if (Flags & NodeAttrs::Preserving) OS << '+'; if (Flags & NodeAttrs::Clobbering) @@ -83,14 +103,12 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { return OS; } -namespace { - void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, - const DataFlowGraph &G) { - OS << Print<NodeId>(RA.Id, G) << '<' - << Print<RegisterRef>(RA.Addr->getRegRef(), G) << '>'; - if (RA.Addr->getFlags() & NodeAttrs::Fixed) - OS << '!'; - } +static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, + const DataFlowGraph &G) { + OS << Print<NodeId>(RA.Id, G) << '<' + << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; + if (RA.Addr->getFlags() & NodeAttrs::Fixed) + OS << '!'; } template<> @@ -178,9 +196,11 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { } namespace { + template <typename T> struct PrintListV { PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} + typedef T Type; const NodeList &List; const DataFlowGraph &G; @@ -196,7 +216,8 @@ namespace { } return OS; } -} + +} // end anonymous namespace template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { @@ -208,9 +229,27 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<StmtNode*>> &P) { - unsigned Opc = P.Obj.Addr->getCode()->getOpcode(); - OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc) - << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; + const MachineInstr &MI = *P.Obj.Addr->getCode(); + unsigned Opc = MI.getOpcode(); + OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); + // Print the target for calls and branches (for readability). + if (MI.isCall() || MI.isBranch()) { + MachineInstr::const_mop_iterator T = + llvm::find_if(MI.operands(), + [] (const MachineOperand &Op) -> bool { + return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); + }); + if (T != MI.operands_end()) { + OS << ' '; + if (T->isMBB()) + OS << "BB#" << T->getMBB()->getNumber(); + else if (T->isGlobal()) + OS << T->getGlobal()->getName(); + else if (T->isSymbol()) + OS << T->getSymbolName(); + } + } + OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; return OS; } @@ -234,29 +273,29 @@ raw_ostream &operator<< (raw_ostream &OS, template<> raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<BlockNode*>> &P) { - auto *BB = P.Obj.Addr->getCode(); + MachineBasicBlock *BB = P.Obj.Addr->getCode(); unsigned NP = BB->pred_size(); std::vector<int> Ns; auto PrintBBs = [&OS,&P] (std::vector<int> Ns) -> void { unsigned N = Ns.size(); - for (auto I : Ns) { + for (int I : Ns) { OS << "BB#" << I; if (--N) OS << ", "; } }; - OS << Print<NodeId>(P.Obj.Id, P.G) << ": === BB#" << BB->getNumber() - << " === preds(" << NP << "): "; - for (auto I : BB->predecessors()) - Ns.push_back(I->getNumber()); + OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- BB#" << BB->getNumber() + << " --- preds(" << NP << "): "; + for (MachineBasicBlock *B : BB->predecessors()) + Ns.push_back(B->getNumber()); PrintBBs(Ns); unsigned NS = BB->succ_size(); OS << " succs(" << NS << "): "; Ns.clear(); - for (auto I : BB->successors()) - Ns.push_back(I->getNumber()); + for (MachineBasicBlock *B : BB->successors()) + Ns.push_back(B->getNumber()); PrintBBs(Ns); OS << '\n'; @@ -286,11 +325,17 @@ raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { } template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { + P.Obj.print(OS); + return OS; +} + +template<> raw_ostream &operator<< (raw_ostream &OS, const Print<DataFlowGraph::DefStack> &P) { for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { OS << Print<NodeId>(I->Id, P.G) - << '<' << Print<RegisterRef>(I->Addr->getRegRef(), P.G) << '>'; + << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; I.down(); if (I != E) OS << ' '; @@ -298,8 +343,8 @@ raw_ostream &operator<< (raw_ostream &OS, return OS; } -} // namespace rdf -} // namespace llvm +} // end namespace rdf +} // end namespace llvm // Node allocation functions. // @@ -361,7 +406,6 @@ void NodeAllocator::clear() { ActiveEnd = nullptr; } - // Insert node NA after "this" in the circular chain. void NodeBase::append(NodeAddr<NodeBase*> NA) { NodeId Nx = Next; @@ -372,31 +416,31 @@ void NodeBase::append(NodeAddr<NodeBase*> NA) { } } - // Fundamental node manipulator functions. // Obtain the register reference from a reference node. -RegisterRef RefNode::getRegRef() const { +RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) - return Ref.RR; + return G.unpack(Ref.PR); assert(Ref.Op != nullptr); - return { Ref.Op->getReg(), Ref.Op->getSubReg() }; + return G.makeRegRef(Ref.Op->getReg(), Ref.Op->getSubReg()); } // Set the register reference in the reference node directly (for references // in phi nodes). -void RefNode::setRegRef(RegisterRef RR) { +void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); - Ref.RR = RR; + Ref.PR = G.pack(RR); } // Set the register reference in the reference node based on a machine // operand (for references in statement nodes). -void RefNode::setRegRef(MachineOperand *Op) { +void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); + (void)G; Ref.Op = Op; } @@ -442,7 +486,7 @@ NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { // Add node NA at the end of the member list of the given code node. void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { - auto ML = getLastMember(G); + NodeAddr<NodeBase*> ML = getLastMember(G); if (ML.Id != 0) { ML.Addr->append(NA); } else { @@ -463,7 +507,7 @@ void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, // Remove member node NA from the given code node. void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { - auto MA = getFirstMember(G); + NodeAddr<NodeBase*> MA = getFirstMember(G); assert(MA.Id != 0); // Special handling if the member to remove is the first member. @@ -514,7 +558,7 @@ NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { // Add the phi node PA to the given block node. void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { - auto M = getFirstMember(G); + NodeAddr<NodeBase*> M = getFirstMember(G); if (M.Id == 0) { addMember(PA, G); return; @@ -560,115 +604,6 @@ NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { return findBlock(EntryB, G); } - -// Register aliasing information. -// -// In theory, the lane information could be used to determine register -// covering (and aliasing), but depending on the sub-register structure, -// the lane mask information may be missing. The covering information -// must be available for this framework to work, so relying solely on -// the lane data is not sufficient. - -// Determine whether RA covers RB. -bool RegisterAliasInfo::covers(RegisterRef RA, RegisterRef RB) const { - if (RA == RB) - return true; - if (TargetRegisterInfo::isVirtualRegister(RA.Reg)) { - assert(TargetRegisterInfo::isVirtualRegister(RB.Reg)); - if (RA.Reg != RB.Reg) - return false; - if (RA.Sub == 0) - return true; - return TRI.composeSubRegIndices(RA.Sub, RB.Sub) == RA.Sub; - } - - assert(TargetRegisterInfo::isPhysicalRegister(RA.Reg) && - TargetRegisterInfo::isPhysicalRegister(RB.Reg)); - unsigned A = RA.Sub != 0 ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; - unsigned B = RB.Sub != 0 ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; - return TRI.isSubRegister(A, B); -} - -// Determine whether RR is covered by the set of references RRs. -bool RegisterAliasInfo::covers(const RegisterSet &RRs, RegisterRef RR) const { - if (RRs.count(RR)) - return true; - - // For virtual registers, we cannot accurately determine covering based - // on subregisters. If RR itself is not present in RRs, but it has a sub- - // register reference, check for the super-register alone. Otherwise, - // assume non-covering. - if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { - if (RR.Sub != 0) - return RRs.count({RR.Reg, 0}); - return false; - } - - // If any super-register of RR is present, then RR is covered. - unsigned Reg = RR.Sub == 0 ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); - for (MCSuperRegIterator SR(Reg, &TRI); SR.isValid(); ++SR) - if (RRs.count({*SR, 0})) - return true; - - return false; -} - -// Get the list of references aliased to RR. -std::vector<RegisterRef> RegisterAliasInfo::getAliasSet(RegisterRef RR) const { - // Do not include RR in the alias set. For virtual registers return an - // empty set. - std::vector<RegisterRef> AS; - if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) - return AS; - assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); - unsigned R = RR.Reg; - if (RR.Sub) - R = TRI.getSubReg(RR.Reg, RR.Sub); - - for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) - AS.push_back(RegisterRef({*AI, 0})); - return AS; -} - -// Check whether RA and RB are aliased. -bool RegisterAliasInfo::alias(RegisterRef RA, RegisterRef RB) const { - bool VirtA = TargetRegisterInfo::isVirtualRegister(RA.Reg); - bool VirtB = TargetRegisterInfo::isVirtualRegister(RB.Reg); - bool PhysA = TargetRegisterInfo::isPhysicalRegister(RA.Reg); - bool PhysB = TargetRegisterInfo::isPhysicalRegister(RB.Reg); - - if (VirtA != VirtB) - return false; - - if (VirtA) { - if (RA.Reg != RB.Reg) - return false; - // RA and RB refer to the same register. If any of them refer to the - // whole register, they must be aliased. - if (RA.Sub == 0 || RB.Sub == 0) - return true; - unsigned SA = TRI.getSubRegIdxSize(RA.Sub); - unsigned OA = TRI.getSubRegIdxOffset(RA.Sub); - unsigned SB = TRI.getSubRegIdxSize(RB.Sub); - unsigned OB = TRI.getSubRegIdxOffset(RB.Sub); - if (OA <= OB && OA+SA > OB) - return true; - if (OB <= OA && OB+SB > OA) - return true; - return false; - } - - assert(PhysA && PhysB); - (void)PhysA, (void)PhysB; - unsigned A = RA.Sub ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; - unsigned B = RB.Sub ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; - for (MCRegAliasIterator I(A, &TRI, true); I.isValid(); ++I) - if (B == *I) - return true; - return false; -} - - // Target operand information. // @@ -695,7 +630,7 @@ bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) return true; // Check for a tail call. if (In.isBranch()) - for (auto &O : In.operands()) + for (const MachineOperand &O : In.operands()) if (O.isGlobal() || O.isSymbol()) return true; @@ -708,7 +643,7 @@ bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) // uses or defs, and those lists do not allow sub-registers. if (Op.getSubReg() != 0) return false; - unsigned Reg = Op.getReg(); + RegisterId Reg = Op.getReg(); const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() : D.getImplicitUses(); if (!ImpR) @@ -719,6 +654,108 @@ bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) return false; } +RegisterRef RegisterAggr::normalize(RegisterRef RR) const { + RegisterId SuperReg = RR.Reg; + while (true) { + MCSuperRegIterator SR(SuperReg, &TRI, false); + if (!SR.isValid()) + break; + SuperReg = *SR; + } + + const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg); + LaneBitmask Common = RR.Mask & RC.LaneMask; + uint32_t Sub = TRI.getSubRegIndex(SuperReg, RR.Reg); + LaneBitmask SuperMask = TRI.composeSubRegIndexLaneMask(Sub, Common); + return RegisterRef(SuperReg, SuperMask); +} + +bool RegisterAggr::hasAliasOf(RegisterRef RR) const { + RegisterRef NR = normalize(RR); + auto F = Masks.find(NR.Reg); + if (F != Masks.end()) { + if ((F->second & NR.Mask).any()) + return true; + } + if (CheckUnits) { + for (MCRegUnitIterator U(RR.Reg, &TRI); U.isValid(); ++U) + if (ExpAliasUnits.test(*U)) + return true; + } + return false; +} + +bool RegisterAggr::hasCoverOf(RegisterRef RR) const { + // Always have a cover for empty lane mask. + RegisterRef NR = normalize(RR); + if (NR.Mask.none()) + return true; + auto F = Masks.find(NR.Reg); + if (F == Masks.end()) + return false; + return (NR.Mask & F->second) == NR.Mask; +} + +RegisterAggr &RegisterAggr::insert(RegisterRef RR) { + RegisterRef NR = normalize(RR); + auto F = Masks.find(NR.Reg); + if (F == Masks.end()) + Masks.insert({NR.Reg, NR.Mask}); + else + F->second |= NR.Mask; + + // Visit all register units to see if there are any that were created + // by explicit aliases. Add those that were to the bit vector. + for (MCRegUnitIterator U(RR.Reg, &TRI); U.isValid(); ++U) { + MCRegUnitRootIterator R(*U, &TRI); + ++R; + if (!R.isValid()) + continue; + ExpAliasUnits.set(*U); + CheckUnits = true; + } + return *this; +} + +RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) { + for (std::pair<RegisterId,LaneBitmask> P : RG.Masks) + insert(RegisterRef(P.first, P.second)); + return *this; +} + +RegisterAggr &RegisterAggr::clear(RegisterRef RR) { + RegisterRef NR = normalize(RR); + auto F = Masks.find(NR.Reg); + if (F == Masks.end()) + return *this; + LaneBitmask NewM = F->second & ~NR.Mask; + if (NewM.none()) + Masks.erase(F); + else + F->second = NewM; + return *this; +} + +RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) { + for (std::pair<RegisterId,LaneBitmask> P : RG.Masks) + clear(RegisterRef(P.first, P.second)); + return *this; +} + +RegisterRef RegisterAggr::clearIn(RegisterRef RR) const { + RegisterAggr T(TRI); + T.insert(RR).clear(*this); + if (T.empty()) + return RegisterRef(); + return RegisterRef(T.begin()->first, T.begin()->second); +} + +void RegisterAggr::print(raw_ostream &OS) const { + OS << '{'; + for (auto I : Masks) + OS << ' ' << PrintReg(I.first, &TRI) << PrintLaneMaskOpt(I.second); + OS << " }"; +} // // The data flow graph construction. @@ -726,13 +763,10 @@ bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, - const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai, - const TargetOperandInfo &toi) - : TimeG("rdf"), MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), RAI(rai), - TOI(toi) { + const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) + : MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), TOI(toi) { } - // The implementation of the definition stack. // Each register reference has its own definition stack. In particular, // for a register references "Reg" and "Reg:subreg" will each have their @@ -821,6 +855,32 @@ unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { return P; } +// Register information. + +// Get the list of references aliased to RR. Lane masks are ignored. +RegisterSet DataFlowGraph::getAliasSet(RegisterId Reg) const { + // Do not include RR in the alias set. + RegisterSet AS; + assert(TargetRegisterInfo::isPhysicalRegister(Reg)); + + for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI) + AS.insert(RegisterRef(*AI)); + return AS; +} + +RegisterSet DataFlowGraph::getLandingPadLiveIns() const { + RegisterSet LR; + const Function &F = *MF.getFunction(); + const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() + : nullptr; + const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); + if (RegisterId R = TLI.getExceptionPointerRegister(PF)) + LR.insert(RegisterRef(R)); + if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) + LR.insert(RegisterRef(R)); + return LR; +} + // Node management functions. // Get the pointer to the node with the id N. @@ -864,13 +924,12 @@ NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { return NA; } - // Allocation routines for specific node types/kinds. NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, MachineOperand &Op, uint16_t Flags) { NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); - UA.Addr->setRegRef(&Op); + UA.Addr->setRegRef(&Op, *this); return UA; } @@ -878,7 +937,7 @@ NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); assert(Flags & NodeAttrs::PhiRef); - PUA.Addr->setRegRef(RR); + PUA.Addr->setRegRef(RR, *this); PUA.Addr->setPredecessor(PredB.Id); return PUA; } @@ -886,7 +945,7 @@ NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, MachineOperand &Op, uint16_t Flags) { NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); - DA.Addr->setRegRef(&Op); + DA.Addr->setRegRef(&Op, *this); return DA; } @@ -894,7 +953,7 @@ NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, RegisterRef RR, uint16_t Flags) { NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); assert(Flags & NodeAttrs::PhiRef); - DA.Addr->setRegRef(RR); + DA.Addr->setRegRef(RR, *this); return DA; } @@ -934,17 +993,20 @@ void DataFlowGraph::build(unsigned Options) { if (MF.empty()) return; - for (auto &B : MF) { - auto BA = newBlock(Func, &B); - for (auto &I : B) { + for (MachineBasicBlock &B : MF) { + NodeAddr<BlockNode*> BA = newBlock(Func, &B); + BlockNodes.insert(std::make_pair(&B, BA)); + for (MachineInstr &I : B) { if (I.isDebugValue()) continue; buildStmt(BA, I); } } - // Collect information about block references. NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); + NodeList Blocks = Func.Addr->members(*this); + + // Collect information about block references. BlockRefsMap RefM; buildBlockRefs(EA, RefM); @@ -952,16 +1014,48 @@ void DataFlowGraph::build(unsigned Options) { MachineRegisterInfo &MRI = MF.getRegInfo(); for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { NodeAddr<PhiNode*> PA = newPhi(EA); - RegisterRef RR = { I->first, 0 }; + RegisterRef RR = RegisterRef(I->first); uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); PA.Addr->addMember(DA, *this); } + // Add phis for landing pads. + // Landing pads, unlike usual backs blocks, are not entered through + // branches in the program, or fall-throughs from other blocks. They + // are entered from the exception handling runtime and target's ABI + // may define certain registers as defined on entry to such a block. + RegisterSet EHRegs = getLandingPadLiveIns(); + if (!EHRegs.empty()) { + for (NodeAddr<BlockNode*> BA : Blocks) { + const MachineBasicBlock &B = *BA.Addr->getCode(); + if (!B.isEHPad()) + continue; + + // Prepare a list of NodeIds of the block's predecessors. + NodeList Preds; + for (MachineBasicBlock *PB : B.predecessors()) + Preds.push_back(findBlock(PB)); + + // Build phi nodes for each live-in. + for (RegisterRef RR : EHRegs) { + NodeAddr<PhiNode*> PA = newPhi(BA); + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + // Add def: + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + // Add uses (no reaching defs for phi uses): + for (NodeAddr<BlockNode*> PBA : Preds) { + NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); + PA.Addr->addMember(PUA, *this); + } + } + } + } + // Build a map "PhiM" which will contain, for each block, the set // of references that will require phi definitions in that block. BlockRefsMap PhiM; - auto Blocks = Func.Addr->members(*this); for (NodeAddr<BlockNode*> BA : Blocks) recordDefsForDF(PhiM, RefM, BA); for (NodeAddr<BlockNode*> BA : Blocks) @@ -976,6 +1070,47 @@ void DataFlowGraph::build(unsigned Options) { removeUnusedPhis(); } +RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { + assert(TargetRegisterInfo::isPhysicalRegister(Reg)); + if (Sub != 0) + Reg = TRI.getSubReg(Reg, Sub); + return RegisterRef(Reg); +} + +RegisterRef DataFlowGraph::normalizeRef(RegisterRef RR) const { + // FIXME copied from RegisterAggr + RegisterId SuperReg = RR.Reg; + while (true) { + MCSuperRegIterator SR(SuperReg, &TRI, false); + if (!SR.isValid()) + break; + SuperReg = *SR; + } + + uint32_t Sub = TRI.getSubRegIndex(SuperReg, RR.Reg); + const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg); + LaneBitmask SuperMask = RR.Mask & + TRI.composeSubRegIndexLaneMask(Sub, RC.LaneMask); + return RegisterRef(SuperReg, SuperMask); +} + +RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { + if (AR.Reg == BR.Reg) { + LaneBitmask M = AR.Mask & BR.Mask; + return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); + } +#ifndef NDEBUG + RegisterRef NAR = normalizeRef(AR); + RegisterRef NBR = normalizeRef(BR); + assert(NAR.Reg != NBR.Reg); +#endif + // This isn't strictly correct, because the overlap may happen in the + // part masked out. + if (TRI.regsOverlap(AR.Reg, BR.Reg)) + return AR; + return RegisterRef(); +} + // For each stack in the map DefM, push the delimiter for block B on it. void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { // Push block delimiters. @@ -1024,28 +1159,31 @@ void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { for (NodeAddr<DefNode*> DA : Defs) { if (Visited.count(DA.Id)) continue; + NodeList Rel = getRelatedRefs(IA, DA); NodeAddr<DefNode*> PDA = Rel.front(); - // Push the definition on the stack for the register and all aliases. - RegisterRef RR = PDA.Addr->getRegRef(); + RegisterRef RR = PDA.Addr->getRegRef(*this); #ifndef NDEBUG // Assert if the register is defined in two or more unrelated defs. // This could happen if there are two or more def operands defining it. if (!Defined.insert(RR).second) { - auto *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); + MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); dbgs() << "Multiple definitions of register: " << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in BB#" << MI->getParent()->getNumber() << '\n'; llvm_unreachable(nullptr); } #endif - DefM[RR].push(DA); - for (auto A : RAI.getAliasSet(RR)) { + // Push the definition on the stack for the register and all aliases. + // The def stack traversal in linkNodeUp will check the exact aliasing. + DefM[RR.Reg].push(DA); + for (RegisterRef A : getAliasSet(RR.Reg /*FIXME? use RegisterRef*/)) { + // Check that we don't push the same def twice. assert(A != RR); - DefM[A].push(DA); + DefM[A.Reg].push(DA); } // Mark all the related defs as visited. - for (auto T : Rel) + for (NodeAddr<NodeBase*> T : Rel) Visited.insert(T.Id); } } @@ -1065,14 +1203,66 @@ NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, return Refs; } +// Return true if RA and RB overlap, false otherwise. +bool DataFlowGraph::alias(RegisterRef RA, RegisterRef RB) const { + assert(TargetRegisterInfo::isPhysicalRegister(RA.Reg)); + assert(TargetRegisterInfo::isPhysicalRegister(RB.Reg)); + + MCRegUnitMaskIterator UMA(RA.Reg, &TRI); + MCRegUnitMaskIterator UMB(RB.Reg, &TRI); + // Reg units are returned in the numerical order. + while (UMA.isValid() && UMB.isValid()) { + std::pair<uint32_t,LaneBitmask> PA = *UMA; + std::pair<uint32_t,LaneBitmask> PB = *UMB; + if (PA.first == PB.first) { + // Lane mask of 0 (given by the iterator) should be treated as "full". + // This can happen when the register has only one unit, or when the + // unit corresponds to explicit aliasing. In such cases, the lane mask + // from RegisterRef should be ignored. + if (PA.second.none() || PB.second.none()) + return true; + + // At this point the common unit corresponds to a subregister. The lane + // masks correspond to the lane mask of that unit within the original + // register, for example assuming register quadruple q0 = r3:0, and + // a register pair d1 = r3:2, the lane mask of r2 in q0 may be 0b0100, + // while the lane mask of r2 in d1 may be 0b0001. + LaneBitmask LA = PA.second & RA.Mask; + LaneBitmask LB = PB.second & RB.Mask; + if (LA.any() && LB.any()) { + unsigned Root = *MCRegUnitRootIterator(PA.first, &TRI); + // If register units were guaranteed to only have 1 bit in any lane + // mask, the code below would not be necessary. This is because LA + // and LB would have at most 1 bit set each, and that bit would be + // guaranteed to correspond to the given register unit. + uint32_t SubA = TRI.getSubRegIndex(RA.Reg, Root); + uint32_t SubB = TRI.getSubRegIndex(RB.Reg, Root); + const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(Root); + LaneBitmask MaskA = TRI.reverseComposeSubRegIndexLaneMask(SubA, LA); + LaneBitmask MaskB = TRI.reverseComposeSubRegIndexLaneMask(SubB, LB); + if ((MaskA & MaskB & RC.LaneMask).any()) + return true; + } + + ++UMA; + ++UMB; + continue; + } + if (PA.first < PB.first) + ++UMA; + else if (PB.first < PA.first) + ++UMB; + } + return false; +} // Clear all information in the graph. void DataFlowGraph::reset() { Memory.clear(); + BlockNodes.clear(); Func = NodeAddr<FuncNode*>(); } - // Return the next reference node in the instruction node IA that is related // to RA. Conceptually, two reference nodes are related if they refer to the // same instance of a register access, but differ in flags or other minor @@ -1083,10 +1273,10 @@ NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA) const { assert(IA.Id != 0 && RA.Id != 0); - auto Related = [RA](NodeAddr<RefNode*> TA) -> bool { + auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { if (TA.Addr->getKind() != RA.Addr->getKind()) return false; - if (TA.Addr->getRegRef() != RA.Addr->getRegRef()) + if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) return false; return true; }; @@ -1105,7 +1295,7 @@ NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); }; - RegisterRef RR = RA.Addr->getRegRef(); + RegisterRef RR = RA.Addr->getRegRef(*this); if (IA.Addr->getKind() == NodeAttrs::Stmt) return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); @@ -1174,31 +1364,45 @@ NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, // Create a new statement node in the block node BA that corresponds to // the machine instruction MI. void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { - auto SA = newStmt(BA, &In); + NodeAddr<StmtNode*> SA = newStmt(BA, &In); auto isCall = [] (const MachineInstr &In) -> bool { if (In.isCall()) return true; // Is tail call? if (In.isBranch()) - for (auto &Op : In.operands()) + for (const MachineOperand &Op : In.operands()) if (Op.isGlobal() || Op.isSymbol()) return true; return false; }; + auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { + // This instruction defines DR. Check if there is a use operand that + // would make DR live on entry to the instruction. + for (const MachineOperand &UseOp : In.operands()) { + if (!UseOp.isReg() || !UseOp.isUse() || UseOp.isUndef()) + continue; + RegisterRef UR = makeRegRef(UseOp.getReg(), UseOp.getSubReg()); + if (alias(DR, UR)) + return false; + } + return true; + }; + // Collect a set of registers that this instruction implicitly uses // or defines. Implicit operands from an instruction will be ignored // unless they are listed here. RegisterSet ImpUses, ImpDefs; if (const uint16_t *ImpD = In.getDesc().getImplicitDefs()) while (uint16_t R = *ImpD++) - ImpDefs.insert({R, 0}); + ImpDefs.insert(RegisterRef(R)); if (const uint16_t *ImpU = In.getDesc().getImplicitUses()) while (uint16_t R = *ImpU++) - ImpUses.insert({R, 0}); + ImpUses.insert(RegisterRef(R)); - bool NeedsImplicit = isCall(In) || In.isInlineAsm() || In.isReturn(); + bool IsCall = isCall(In); + bool NeedsImplicit = IsCall || In.isInlineAsm() || In.isReturn(); bool IsPredicated = TII.isPredicated(In); unsigned NumOps = In.getNumOperands(); @@ -1212,14 +1416,20 @@ void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) continue; - RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg()); uint16_t Flags = NodeAttrs::None; - if (TOI.isPreserving(In, OpN)) + if (TOI.isPreserving(In, OpN)) { Flags |= NodeAttrs::Preserving; + // If the def is preserving, check if it is also undefined. + if (isDefUndef(In, RR)) + Flags |= NodeAttrs::Undef; + } if (TOI.isClobbering(In, OpN)) Flags |= NodeAttrs::Clobbering; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; + if (IsCall && Op.isDead()) + Flags |= NodeAttrs::Dead; NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); SA.Addr->addMember(DA, *this); DoneDefs.insert(RR); @@ -1231,18 +1441,24 @@ void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) continue; - RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg()); if (!NeedsImplicit && !ImpDefs.count(RR)) continue; if (DoneDefs.count(RR)) continue; uint16_t Flags = NodeAttrs::None; - if (TOI.isPreserving(In, OpN)) + if (TOI.isPreserving(In, OpN)) { Flags |= NodeAttrs::Preserving; + // If the def is preserving, check if it is also undefined. + if (isDefUndef(In, RR)) + Flags |= NodeAttrs::Undef; + } if (TOI.isClobbering(In, OpN)) Flags |= NodeAttrs::Clobbering; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; + if (IsCall && Op.isDead()) + Flags |= NodeAttrs::Dead; NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); SA.Addr->addMember(DA, *this); DoneDefs.insert(RR); @@ -1252,7 +1468,7 @@ void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { MachineOperand &Op = In.getOperand(OpN); if (!Op.isReg() || !Op.isUse()) continue; - RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg()); // Add implicit uses on return and call instructions, and on predicated // instructions regardless of whether or not they appear in the instruction // descriptor's list. @@ -1261,6 +1477,8 @@ void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { if (Implicit && !TakeImplicit && !ImpUses.count(RR)) continue; uint16_t Flags = NodeAttrs::None; + if (Op.isUndef()) + Flags |= NodeAttrs::Undef; if (TOI.isFixedReg(In, OpN)) Flags |= NodeAttrs::Fixed; NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); @@ -1272,20 +1490,20 @@ void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { // that block, and from all blocks dominated by it. void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM) { - auto &Refs = RefM[BA.Id]; + RegisterSet &Refs = RefM[BA.Id]; MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); assert(N); for (auto I : *N) { MachineBasicBlock *SB = I->getBlock(); - auto SBA = Func.Addr->findBlock(SB, *this); + NodeAddr<BlockNode*> SBA = findBlock(SB); buildBlockRefs(SBA, RefM); - const auto &SRs = RefM[SBA.Id]; - Refs.insert(SRs.begin(), SRs.end()); + const RegisterSet &RefsS = RefM[SBA.Id]; + Refs.insert(RefsS.begin(), RefsS.end()); } for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) - Refs.insert(RA.Addr->getRegRef()); + Refs.insert(RA.Addr->getRegRef(*this)); } // Scan all defs in the block node BA and record in PhiM the locations of @@ -1307,17 +1525,11 @@ void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM, // This is done to make sure that each defined reference gets only one // phi node, even if it is defined multiple times. RegisterSet Defs; - for (auto I : BA.Addr->members(*this)) { - assert(I.Addr->getType() == NodeAttrs::Code); - assert(I.Addr->getKind() == NodeAttrs::Phi || - I.Addr->getKind() == NodeAttrs::Stmt); - NodeAddr<InstrNode*> IA = I; + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) - Defs.insert(RA.Addr->getRegRef()); - } + Defs.insert(RA.Addr->getRegRef(*this)); - // Finally, add the set of defs to each block in the iterated dominance - // frontier. + // Calculate the iterated dominance frontier of BB. const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); for (unsigned i = 0; i < IDF.size(); ++i) { @@ -1329,13 +1541,15 @@ void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM, // Get the register references that are reachable from this block. RegisterSet &Refs = RefM[BA.Id]; for (auto DB : IDF) { - auto DBA = Func.Addr->findBlock(DB, *this); - const auto &Rs = RefM[DBA.Id]; - Refs.insert(Rs.begin(), Rs.end()); + NodeAddr<BlockNode*> DBA = findBlock(DB); + const RegisterSet &RefsD = RefM[DBA.Id]; + Refs.insert(RefsD.begin(), RefsD.end()); } + // Finally, add the set of defs to each block in the iterated dominance + // frontier. for (auto DB : IDF) { - auto DBA = Func.Addr->findBlock(DB, *this); + NodeAddr<BlockNode*> DBA = findBlock(DB); PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); } } @@ -1355,19 +1569,19 @@ void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM, // are not covered by another ref (i.e. maximal with respect to covering). auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { - for (auto I : RRs) - if (I != RR && RAI.covers(I, RR)) + for (RegisterRef I : RRs) + if (I != RR && RegisterAggr::isCoverOf(I, RR, TRI)) RR = I; return RR; }; RegisterSet MaxDF; - for (auto I : HasDF->second) + for (RegisterRef I : HasDF->second) MaxDF.insert(MaxCoverIn(I, HasDF->second)); std::vector<RegisterRef> MaxRefs; - auto &RefB = RefM[BA.Id]; - for (auto I : MaxDF) + RegisterSet &RefB = RefM[BA.Id]; + for (RegisterRef I : MaxDF) MaxRefs.push_back(MaxCoverIn(I, RefB)); // Now, for each R in MaxRefs, get the alias closure of R. If the closure @@ -1382,19 +1596,17 @@ void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM, auto Aliased = [this,&MaxRefs](RegisterRef RR, std::vector<unsigned> &Closure) -> bool { - for (auto I : Closure) - if (RAI.alias(RR, MaxRefs[I])) + for (unsigned I : Closure) + if (alias(RR, MaxRefs[I])) return true; return false; }; // Prepare a list of NodeIds of the block's predecessors. - std::vector<NodeId> PredList; + NodeList Preds; const MachineBasicBlock *MBB = BA.Addr->getCode(); - for (auto PB : MBB->predecessors()) { - auto B = Func.Addr->findBlock(PB, *this); - PredList.push_back(B.Id); - } + for (MachineBasicBlock *PB : MBB->predecessors()) + Preds.push_back(findBlock(PB)); while (!MaxRefs.empty()) { // Put the first element in the closure, and then add all subsequent @@ -1418,8 +1630,7 @@ void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM, PA.Addr->addMember(DA, *this); } // Add phi uses. - for (auto P : PredList) { - auto PBA = addr<BlockNode*>(P); + for (NodeAddr<BlockNode*> PBA : Preds) { for (unsigned X = 0; X != CS; ++X) { RegisterRef RR = MaxRefs[ClosureIdx[X]]; NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); @@ -1449,7 +1660,7 @@ void DataFlowGraph::removeUnusedPhis() { } static auto HasUsedDef = [](NodeList &Ms) -> bool { - for (auto M : Ms) { + for (NodeAddr<NodeBase*> M : Ms) { if (M.Addr->getKind() != NodeAttrs::Def) continue; NodeAddr<DefNode*> DA = M; @@ -1493,25 +1704,25 @@ void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, DefStack &DS) { if (DS.empty()) return; - RegisterRef RR = TA.Addr->getRegRef(); + RegisterRef RR = TA.Addr->getRegRef(*this); NodeAddr<T> TAP; // References from the def stack that have been examined so far. - RegisterSet Defs; + RegisterAggr Defs(TRI); for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { - RegisterRef QR = I->Addr->getRegRef(); - auto AliasQR = [QR,this] (RegisterRef RR) -> bool { - return RAI.alias(QR, RR); - }; - bool PrecUp = RAI.covers(QR, RR); + RegisterRef QR = I->Addr->getRegRef(*this); + // Skip all defs that are aliased to any of the defs that we have already - // seen. If we encounter a covering def, stop the stack traversal early. - if (std::any_of(Defs.begin(), Defs.end(), AliasQR)) { - if (PrecUp) + // seen. If this completes a cover of RR, stop the stack traversal. + bool Alias = Defs.hasAliasOf(QR); + bool Cover = Defs.insert(QR).hasCoverOf(RR); + if (Alias) { + if (Cover) break; continue; } + // The reaching def. NodeAddr<DefNode*> RDA = *I; @@ -1527,27 +1738,29 @@ void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, // Create the link. TAP.Addr->linkToDef(TAP.Id, RDA); - if (PrecUp) + if (Cover) break; - Defs.insert(QR); } } // Create data-flow links for all reference nodes in the statement node SA. void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA) { +#ifndef NDEBUG RegisterSet Defs; +#endif // Link all nodes (upwards in the data-flow) with their reaching defs. for (NodeAddr<RefNode*> RA : SA.Addr->members(*this)) { uint16_t Kind = RA.Addr->getKind(); assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); - RegisterRef RR = RA.Addr->getRegRef(); - // Do not process multiple defs of the same reference. - if (Kind == NodeAttrs::Def && Defs.count(RR)) - continue; + RegisterRef RR = RA.Addr->getRegRef(*this); +#ifndef NDEBUG + // Do not expect multiple defs of the same reference. + assert(Kind != NodeAttrs::Def || !Defs.count(RR)); Defs.insert(RR); +#endif - auto F = DefM.find(RR); + auto F = DefM.find(RR.Reg); if (F == DefM.end()) continue; DefStack &DS = F->second; @@ -1584,7 +1797,7 @@ void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); for (auto I : *N) { MachineBasicBlock *SB = I->getBlock(); - auto SBA = Func.Addr->findBlock(SB, *this); + NodeAddr<BlockNode*> SBA = findBlock(SB); linkBlockRefs(DefM, SBA); } @@ -1596,15 +1809,27 @@ void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { NodeAddr<PhiUseNode*> PUA = NA; return PUA.Addr->getPredecessor() == BA.Id; }; + + RegisterSet EHLiveIns = getLandingPadLiveIns(); MachineBasicBlock *MBB = BA.Addr->getCode(); - for (auto SB : MBB->successors()) { - auto SBA = Func.Addr->findBlock(SB, *this); + + for (MachineBasicBlock *SB : MBB->successors()) { + bool IsEHPad = SB->isEHPad(); + NodeAddr<BlockNode*> SBA = findBlock(SB); for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { + // Do not link phi uses for landing pad live-ins. + if (IsEHPad) { + // Find what register this phi is for. + NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); + assert(RA.Id != 0); + if (EHLiveIns.count(RA.Addr->getRegRef(*this))) + continue; + } // Go over each phi use associated with MBB, and link it. for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { NodeAddr<PhiUseNode*> PUA = U; - RegisterRef RR = PUA.Addr->getRegRef(); - linkRefUp<UseNode*>(IA, PUA, DefM[RR]); + RegisterRef RR = PUA.Addr->getRegRef(*this); + linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); } } } |