diff options
author | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
---|---|---|
committer | Luiz Souza <luiz@netgate.com> | 2018-02-21 15:12:19 -0300 |
commit | 1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch) | |
tree | 4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp | |
parent | f45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff) | |
download | FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz |
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste):
Correct lld llvm-tblgen dependency file name
MFC r309169:
Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump
and llvm-lto. The mergeinfo confuses Subversion enormously, and these
directories will just use the mergeinfo for llvm itself.
MFC r312765:
Pull in r276136 from upstream llvm trunk (by Wei Mi):
Use ValueOffsetPair to enhance value reuse during SCEV expansion.
In D12090, the ExprValueMap was added to reuse existing value during
SCEV expansion. However, const folding and sext/zext distribution can
make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in
ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to
expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is
helpful when S2 is a complex SCEV expr and S2 has no entry in
ExprValueMap, which is usually caused by the fact that S3 is
generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV
to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a}
into the ExprValueMap when we create SCEV for V1. When S3 is
expanded, it will first expand S2 to V1 - C_a because of S2->{V1,
C_a} in the map, then expand S3 to V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
This should fix assertion failures when building OpenCV >= 3.1.
PR: 215649
MFC r312831:
Revert r312765 for now, since it causes assertions when building
lang/spidermonkey24.
Reported by: antoine
PR: 215649
MFC r316511 (by jhb):
Add an implementation of __ffssi2() derived from __ffsdi2().
Newer versions of GCC include an __ffssi2() symbol in libgcc and the
compiler can emit calls to it in generated code. This is true for at
least GCC 6.2 when compiling world for mips and mips64.
Reviewed by: jmallett, dim
Sponsored by: DARPA / AFRL
Differential Revision: https://reviews.freebsd.org/D10086
MFC r318601 (by adrian):
[libcompiler-rt] add bswapdi2/bswapsi2
This is required for mips gcc 6.3 userland to build/run.
Reviewed by: emaste, dim
Approved by: emaste
Differential Revision: https://reviews.freebsd.org/D10838
MFC r318884 (by emaste):
lldb: map TRAP_CAP to a trace trap
In the absense of a more specific handler for TRAP_CAP (generated by
ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace
trap.
Example usage (testing the bug in PR219173):
% proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls
...
(lldb) run
Process 12980 launching
Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64)
Process 12980 stopped
* thread #1, stop reason = trace
frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10
...
In the future we should have LLDB control the trapcap procctl itself
(as it does with ASLR), as well as report a specific stop reason.
This change eliminates an assertion failure from LLDB for now.
MFC r319796:
Remove a few unneeded files from libllvm, libclang and liblldb.
MFC r319885 (by emaste):
lld: ELF: Fix ICF crash on absolute symbol relocations.
If two sections contained relocations to absolute symbols with the same
value we would crash when trying to access their sections. Add a check that
both symbols point to sections before accessing their sections, and treat
absolute symbols as equal if their values are equal.
Obtained from: LLD commit r292578
MFC r319918:
Revert r319796 for now, it can cause undefined references when linking
in some circumstances.
Reported by: Shawn Webb <shawn.webb@hardenedbsd.org>
MFC r319957 (by emaste):
lld: Add armelf emulation mode
Obtained from: LLD r305375
MFC r321369:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release,
which should be in about a month. Please report bugs and regressions,
so we can get them into the release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
MFC r321420:
Add a few more object files to liblldb, which should solve errors when
linking the lldb executable in some cases. In particular, when the
-ffunction-sections -fdata-sections options are turned off, or
ineffective.
Reported by: Shawn Webb, Mark Millard
MFC r321433:
Cleanup stale Options.inc files from the previous libllvm build for
clang 4.0.0. Otherwise, these can get included before the two newly
generated ones (which are different) for clang 5.0.0.
Reported by: Mark Millard
MFC r321439 (by bdrewery):
Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm.
The files are only ever generated to .OBJDIR, not to WORLDTMP (as a
sysroot) and are only ever included from a compilation. So using
a beforebuild target here removes the file before the compilation
tries to include it.
MFC r321664:
Pull in r308891 from upstream llvm trunk (by Benjamin Kramer):
[CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses.
This avoids excessive compile time. The case I'm looking at is
Function.cpp from an old version of LLVM that still had the giant
memcmp string matcher in it. Before r308322 this compiled in about 2
minutes, after it, clang takes infinite* time to compile it. With
this patch we're at 5 min, which is still bad but this is a
pathological case.
The cut off at 20 uses was chosen by looking at other cut-offs in LLVM
for user scanning. It's probably too high, but does the job and is
very unlikely to regress anything.
Fixes PR33900.
* I'm impatient and aborted after 15 minutes, on the bug report it was
killed after 2h.
Pull in r308986 from upstream llvm trunk (by Simon Pilgrim):
[X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914)
D35067/rL308322 attempted to support up to 4 load pairs for memcmp
inlining which resulted in regressions for some optimized libc memcmp
implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the
memcmp expansion to a maximum of 2 load pairs (which matches what we
do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
These fix a hang (or extremely long compile time) when building older
LLVM ports.
Reported by: antoine
PR: 219139
MFC r321719:
Pull in r309503 from upstream clang trunk (by Richard Smith):
PR33902: Invalidate line number cache when adding more text to
existing buffer.
This led to crashes as the line number cache would report a bogus
line number for a line of code, and we'd try to find a nonexistent
column within the line when printing diagnostics.
This fixes an assertion when building the graphics/champlain port.
Reported by: antoine, kwm
PR: 219139
MFC r321723:
Upgrade our copies of clang, llvm, lld and lldb to r309439 from the
upstream release_50 branch. This is just after upstream's 5.0.0-rc1.
MFC r322320:
Upgrade our copies of clang, llvm and libc++ to r310316 from the
upstream release_50 branch.
MFC r322326 (by emaste):
lldb: Make i386-*-freebsd expression work on JIT path
* Enable i386 ABI creation for freebsd
* Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap
syscall
* Unlike linux, the last argument of mmap is actually 64-bit(off_t).
This requires us to push an additional word for the higher order bits.
* Prior to this change, ktrace dump will show mmap failures due to
invalid argument coming from the 6th mmap argument.
Submitted by: Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D34776
MFC r322360 (by emaste):
lldb: Report inferior signals as signals, not exceptions, on FreeBSD
This is the FreeBSD equivalent of LLVM r238549.
This serves 2 purposes:
* LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/
SIGFPE the way it is suppose to be handled. Prior to this fix these
signals will neither create a coredump, nor exit from the debugger
or work for signal handling scenario.
* eInvalidCrashReason need not report "unknown crash reason" if we have
a valid si_signo
llvm.org/pr23699
Patch by Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D35223
Submitted by: Karnajit Wangkhem
Obtained from: LLVM r310591
MFC r322474 (by emaste):
lld: Add `-z muldefs` option.
Obtained from: LLVM r310757
MFC r322740:
Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the
upstream release_50 branch.
MFC r322855:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from
the upstream release_50 branch.
As of this version, lib/msun's trig test should also work correctly
again (see bug 220989 for more information).
PR: 220989
MFC r323112:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from
the upstream release_50 branch. This corresponds to 5.0.0 rc4.
As of this version, the cad/stepcode port should now compile in a more
reasonable time on i386 (see bug 221836 for more information).
PR: 221836
MFC r323245:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 release (upstream r312559).
Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
(cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp | 266 |
1 files changed, 245 insertions, 21 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp index b8833e5..a76f080 100644 --- a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp +++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp @@ -9,8 +9,8 @@ #include "AArch64TargetTransformInfo.h" #include "MCTargetDesc/AArch64AddressingModes.h" -#include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" @@ -20,6 +20,23 @@ using namespace llvm; #define DEBUG_TYPE "aarch64tti" +static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", + cl::init(true), cl::Hidden); + +bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, + const Function *Callee) const { + const TargetMachine &TM = getTLI()->getTargetMachine(); + + const FeatureBitset &CallerBits = + TM.getSubtargetImpl(*Caller)->getFeatureBits(); + const FeatureBitset &CalleeBits = + TM.getSubtargetImpl(*Callee)->getFeatureBits(); + + // Inline a callee if its target-features are a subset of the callers + // target-features. + return (CallerBits & CalleeBits) == CalleeBits; +} + /// \brief Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. @@ -176,10 +193,95 @@ AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { return TTI::PSK_Software; } -int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { +bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, + ArrayRef<const Value *> Args) { + + // A helper that returns a vector type from the given type. The number of + // elements in type Ty determine the vector width. + auto toVectorTy = [&](Type *ArgTy) { + return VectorType::get(ArgTy->getScalarType(), + DstTy->getVectorNumElements()); + }; + + // Exit early if DstTy is not a vector type whose elements are at least + // 16-bits wide. + if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) + return false; + + // Determine if the operation has a widening variant. We consider both the + // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the + // instructions. + // + // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we + // verify that their extending operands are eliminated during code + // generation. + switch (Opcode) { + case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). + case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). + break; + default: + return false; + } + + // To be a widening instruction (either the "wide" or "long" versions), the + // second operand must be a sign- or zero extend having a single user. We + // only consider extends having a single user because they may otherwise not + // be eliminated. + if (Args.size() != 2 || + (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || + !Args[1]->hasOneUse()) + return false; + auto *Extend = cast<CastInst>(Args[1]); + + // Legalize the destination type and ensure it can be used in a widening + // operation. + auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); + unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); + if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) + return false; + + // Legalize the source type and ensure it can be used in a widening + // operation. + Type *SrcTy = toVectorTy(Extend->getSrcTy()); + auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); + unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); + if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) + return false; + + // Get the total number of vector elements in the legalized types. + unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); + unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); + + // Return true if the legalized types have the same number of vector elements + // and the destination element type size is twice that of the source type. + return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; +} + +int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, + const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); + // If the cast is observable, and it is used by a widening instruction (e.g., + // uaddl, saddw, etc.), it may be free. + if (I && I->hasOneUse()) { + auto *SingleUser = cast<Instruction>(*I->user_begin()); + SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); + if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { + // If the cast is the second operand, it is free. We will generate either + // a "wide" or "long" version of the widening instruction. + if (I == SingleUser->getOperand(1)) + return 0; + // If the cast is not the second operand, it will be free if it looks the + // same as the second operand. In this case, we will generate a "long" + // version of the widening instruction. + if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) + if (I->getOpcode() == Cast->getOpcode() && + cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) + return 0; + } + } + EVT SrcTy = TLI->getValueType(DL, Src); EVT DstTy = TLI->getValueType(DL, Dst); @@ -378,6 +480,16 @@ int AArch64TTIImpl::getArithmeticInstrCost( // Legalize the type. std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), + // add in the widening overhead specified by the sub-target. Since the + // extends feeding widening instructions are performed automatically, they + // aren't present in the generated code and have a zero cost. By adding a + // widening overhead here, we attach the total cost of the combined operation + // to the widening instruction. + int Cost = 0; + if (isWideningInstruction(Ty, Opcode, Args)) + Cost += ST->getWideningBaseCost(); + int ISD = TLI->InstructionOpcodeToISD(Opcode); if (ISD == ISD::SDIV && @@ -387,9 +499,9 @@ int AArch64TTIImpl::getArithmeticInstrCost( // normally expanded to the sequence ADD + CMP + SELECT + SRA. // The OperandValue properties many not be same as that of previous // operation; conservatively assume OP_None. - int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info, - TargetTransformInfo::OP_None, - TargetTransformInfo::OP_None); + Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info, + TargetTransformInfo::OP_None, + TargetTransformInfo::OP_None); Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info, TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); @@ -404,8 +516,8 @@ int AArch64TTIImpl::getArithmeticInstrCost( switch (ISD) { default: - return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, - Opd1PropInfo, Opd2PropInfo); + return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, + Opd1PropInfo, Opd2PropInfo); case ISD::ADD: case ISD::MUL: case ISD::XOR: @@ -413,7 +525,7 @@ int AArch64TTIImpl::getArithmeticInstrCost( case ISD::AND: // These nodes are marked as 'custom' for combining purposes only. // We know that they are legal. See LowerAdd in ISelLowering. - return 1 * LT.first; + return (Cost + 1) * LT.first; } } @@ -436,7 +548,7 @@ int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, } int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, - Type *CondTy) { + Type *CondTy, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); // We don't lower some vector selects well that are wider than the register @@ -463,11 +575,12 @@ int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, return Entry->Cost; } } - return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); + return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); } int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, - unsigned Alignment, unsigned AddressSpace) { + unsigned Alignment, unsigned AddressSpace, + const Instruction *I) { auto LT = TLI->getTypeLegalizationCost(DL, Ty); if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && @@ -505,12 +618,14 @@ int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, if (Factor <= TLI->getMaxSupportedInterleaveFactor()) { unsigned NumElts = VecTy->getVectorNumElements(); - Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); - unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); + auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); // ldN/stN only support legal vector types of size 64 or 128 in bits. - if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128)) - return Factor; + // Accesses having vector types that are a multiple of 128 bits can be + // matched to more than one ldN/stN instruction. + if (NumElts % Factor == 0 && + TLI->isLegalInterleavedAccessType(SubVecTy, DL)) + return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); } return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, @@ -533,10 +648,62 @@ unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { return ST->getMaxInterleaveFactor(); } -void AArch64TTIImpl::getUnrollingPreferences(Loop *L, +// For Falkor, we want to avoid having too many strided loads in a loop since +// that can exhaust the HW prefetcher resources. We adjust the unroller +// MaxCount preference below to attempt to ensure unrolling doesn't create too +// many strided loads. +static void +getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TargetTransformInfo::UnrollingPreferences &UP) { + enum { MaxStridedLoads = 7 }; + auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { + int StridedLoads = 0; + // FIXME? We could make this more precise by looking at the CFG and + // e.g. not counting loads in each side of an if-then-else diamond. + for (const auto BB : L->blocks()) { + for (auto &I : *BB) { + LoadInst *LMemI = dyn_cast<LoadInst>(&I); + if (!LMemI) + continue; + + Value *PtrValue = LMemI->getPointerOperand(); + if (L->isLoopInvariant(PtrValue)) + continue; + + const SCEV *LSCEV = SE.getSCEV(PtrValue); + const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); + if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) + continue; + + // FIXME? We could take pairing of unrolled load copies into account + // by looking at the AddRec, but we would probably have to limit this + // to loops with no stores or other memory optimization barriers. + ++StridedLoads; + // We've seen enough strided loads that seeing more won't make a + // difference. + if (StridedLoads > MaxStridedLoads / 2) + return StridedLoads; + } + } + return StridedLoads; + }; + + int StridedLoads = countStridedLoads(L, SE); + DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads + << " strided loads\n"); + // Pick the largest power of 2 unroll count that won't result in too many + // strided loads. + if (StridedLoads) { + UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); + DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " << UP.MaxCount + << '\n'); + } +} + +void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { // Enable partial unrolling and runtime unrolling. - BaseT::getUnrollingPreferences(L, UP); + BaseT::getUnrollingPreferences(L, SE, UP); // For inner loop, it is more likely to be a hot one, and the runtime check // can be promoted out from LICM pass, so the overhead is less, let's try @@ -546,6 +713,10 @@ void AArch64TTIImpl::getUnrollingPreferences(Loop *L, // Disable partial & runtime unrolling on -Os. UP.PartialOptSizeThreshold = 0; + + if (ST->getProcFamily() == AArch64Subtarget::Falkor && + EnableFalkorHWPFUnrollFix) + getFalkorUnrollingPreferences(L, SE, UP); } Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, @@ -594,8 +765,6 @@ bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, case Intrinsic::aarch64_neon_ld4: Info.ReadMem = true; Info.WriteMem = false; - Info.IsSimple = true; - Info.NumMemRefs = 1; Info.PtrVal = Inst->getArgOperand(0); break; case Intrinsic::aarch64_neon_st2: @@ -603,8 +772,6 @@ bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, case Intrinsic::aarch64_neon_st4: Info.ReadMem = false; Info.WriteMem = true; - Info.IsSimple = true; - Info.NumMemRefs = 1; Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); break; } @@ -628,6 +795,38 @@ bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, return true; } +/// See if \p I should be considered for address type promotion. We check if \p +/// I is a sext with right type and used in memory accesses. If it used in a +/// "complex" getelementptr, we allow it to be promoted without finding other +/// sext instructions that sign extended the same initial value. A getelementptr +/// is considered as "complex" if it has more than 2 operands. +bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( + const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { + bool Considerable = false; + AllowPromotionWithoutCommonHeader = false; + if (!isa<SExtInst>(&I)) + return false; + Type *ConsideredSExtType = + Type::getInt64Ty(I.getParent()->getParent()->getContext()); + if (I.getType() != ConsideredSExtType) + return false; + // See if the sext is the one with the right type and used in at least one + // GetElementPtrInst. + for (const User *U : I.users()) { + if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { + Considerable = true; + // A getelementptr is considered as "complex" if it has more than 2 + // operands. We will promote a SExt used in such complex GEP as we + // expect some computation to be merged if they are done on 64 bits. + if (GEPInst->getNumOperands() > 2) { + AllowPromotionWithoutCommonHeader = true; + break; + } + } + } + return Considerable; +} + unsigned AArch64TTIImpl::getCacheLineSize() { return ST->getCacheLineSize(); } @@ -643,3 +842,28 @@ unsigned AArch64TTIImpl::getMinPrefetchStride() { unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() { return ST->getMaxPrefetchIterationsAhead(); } + +bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, + TTI::ReductionFlags Flags) const { + assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); + unsigned ScalarBits = Ty->getScalarSizeInBits(); + switch (Opcode) { + case Instruction::FAdd: + case Instruction::FMul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Mul: + return false; + case Instruction::Add: + return ScalarBits * Ty->getVectorNumElements() >= 128; + case Instruction::ICmp: + return (ScalarBits < 64) && + (ScalarBits * Ty->getVectorNumElements() >= 128); + case Instruction::FCmp: + return Flags.NoNaN; + default: + llvm_unreachable("Unhandled reduction opcode"); + } + return false; +} |