diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/IR/Constants.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/IR/Constants.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/Constants.cpp | 342 |
1 files changed, 106 insertions, 236 deletions
diff --git a/contrib/llvm/lib/IR/Constants.cpp b/contrib/llvm/lib/IR/Constants.cpp index 0898bf6..d8d55b4 100644 --- a/contrib/llvm/lib/IR/Constants.cpp +++ b/contrib/llvm/lib/IR/Constants.cpp @@ -14,8 +14,6 @@ #include "llvm/IR/Constants.h" #include "ConstantFold.h" #include "LLVMContextImpl.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" @@ -26,7 +24,6 @@ #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" -#include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" @@ -42,6 +39,8 @@ using namespace llvm; void Constant::anchor() { } +void ConstantData::anchor() {} + bool Constant::isNegativeZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) @@ -192,7 +191,7 @@ bool Constant::isNotMinSignedValue() const { return false; } -// Constructor to create a '0' constant of arbitrary type... +/// Constructor to create a '0' constant of arbitrary type. Constant *Constant::getNullValue(Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: @@ -263,19 +262,9 @@ Constant *Constant::getAllOnesValue(Type *Ty) { getAllOnesValue(VTy->getElementType())); } -/// getAggregateElement - For aggregates (struct/array/vector) return the -/// constant that corresponds to the specified element if possible, or null if -/// not. This can return null if the element index is a ConstantExpr, or if -/// 'this' is a constant expr. Constant *Constant::getAggregateElement(unsigned Elt) const { - if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) - return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr; - - if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) - return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr; - - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr; + if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this)) + return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; @@ -369,8 +358,6 @@ static bool canTrapImpl(const Constant *C, } } -/// canTrap - Return true if evaluation of this constant could trap. This is -/// true for things like constant expressions that could divide by zero. bool Constant::canTrap() const { SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; return canTrapImpl(this, NonTrappingOps); @@ -401,7 +388,6 @@ ConstHasGlobalValuePredicate(const Constant *C, return false; } -/// Return true if the value can vary between threads. bool Constant::isThreadDependent() const { auto DLLImportPredicate = [](const GlobalValue *GV) { return GV->isThreadLocal(); @@ -416,8 +402,6 @@ bool Constant::isDLLImportDependent() const { return ConstHasGlobalValuePredicate(this, DLLImportPredicate); } -/// Return true if the constant has users other than constant exprs and other -/// dangling things. bool Constant::isConstantUsed() const { for (const User *U : users()) { const Constant *UC = dyn_cast<Constant>(U); @@ -461,9 +445,8 @@ bool Constant::needsRelocation() const { return Result; } -/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove -/// it. This involves recursively eliminating any dead users of the -/// constantexpr. +/// If the specified constantexpr is dead, remove it. This involves recursively +/// eliminating any dead users of the constantexpr. static bool removeDeadUsersOfConstant(const Constant *C) { if (isa<GlobalValue>(C)) return false; // Cannot remove this @@ -479,10 +462,6 @@ static bool removeDeadUsersOfConstant(const Constant *C) { } -/// removeDeadConstantUsers - If there are any dead constant users dangling -/// off of this constant, remove them. This method is useful for clients -/// that want to check to see if a global is unused, but don't want to deal -/// with potentially dead constants hanging off of the globals. void Constant::removeDeadConstantUsers() const { Value::const_user_iterator I = user_begin(), E = user_end(); Value::const_user_iterator LastNonDeadUser = E; @@ -521,8 +500,8 @@ void Constant::removeDeadConstantUsers() const { void ConstantInt::anchor() { } -ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) - : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) { +ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) + : ConstantData(Ty, ConstantIntVal), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } @@ -588,8 +567,7 @@ Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { return C; } -ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, - bool isSigned) { +ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } @@ -613,8 +591,7 @@ Constant *ConstantInt::get(Type *Ty, const APInt& V) { return C; } -ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, - uint8_t radix) { +ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } @@ -645,9 +622,6 @@ static const fltSemantics *TypeToFloatSemantics(Type *Ty) { void ConstantFP::anchor() { } -/// get() - This returns a constant fp for the specified value in the -/// specified type. This should only be used for simple constant values like -/// 2.0/1.0 etc, that are known-valid both as double and as the target format. Constant *ConstantFP::get(Type *Ty, double V) { LLVMContext &Context = Ty->getContext(); @@ -748,8 +722,8 @@ Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { return C; } -ConstantFP::ConstantFP(Type *Ty, const APFloat& V) - : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) { +ConstantFP::ConstantFP(Type *Ty, const APFloat &V) + : ConstantData(Ty, ConstantFPVal), Val(V) { assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && "FP type Mismatch"); } @@ -767,28 +741,20 @@ void ConstantFP::destroyConstantImpl() { // ConstantAggregateZero Implementation //===----------------------------------------------------------------------===// -/// getSequentialElement - If this CAZ has array or vector type, return a zero -/// with the right element type. Constant *ConstantAggregateZero::getSequentialElement() const { return Constant::getNullValue(getType()->getSequentialElementType()); } -/// getStructElement - If this CAZ has struct type, return a zero with the -/// right element type for the specified element. Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { return Constant::getNullValue(getType()->getStructElementType(Elt)); } -/// getElementValue - Return a zero of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). Constant *ConstantAggregateZero::getElementValue(Constant *C) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(cast<ConstantInt>(C)->getZExtValue()); } -/// getElementValue - Return a zero of the right value for the specified GEP -/// index. Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { if (isa<SequentialType>(getType())) return getSequentialElement(); @@ -808,28 +774,20 @@ unsigned ConstantAggregateZero::getNumElements() const { // UndefValue Implementation //===----------------------------------------------------------------------===// -/// getSequentialElement - If this undef has array or vector type, return an -/// undef with the right element type. UndefValue *UndefValue::getSequentialElement() const { return UndefValue::get(getType()->getSequentialElementType()); } -/// getStructElement - If this undef has struct type, return a zero with the -/// right element type for the specified element. UndefValue *UndefValue::getStructElement(unsigned Elt) const { return UndefValue::get(getType()->getStructElementType(Elt)); } -/// getElementValue - Return an undef of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). UndefValue *UndefValue::getElementValue(Constant *C) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(cast<ConstantInt>(C)->getZExtValue()); } -/// getElementValue - Return an undef of the right value for the specified GEP -/// index. UndefValue *UndefValue::getElementValue(unsigned Idx) const { if (isa<SequentialType>(getType())) return getSequentialElement(); @@ -910,16 +868,25 @@ static Constant *getSequenceIfElementsMatch(Constant *C, return nullptr; } +ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT, + ArrayRef<Constant *> V) + : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), + V.size()) { + std::copy(V.begin(), V.end(), op_begin()); + + // Check that types match, unless this is an opaque struct. + if (auto *ST = dyn_cast<StructType>(T)) + if (ST->isOpaque()) + return; + for (unsigned I = 0, E = V.size(); I != E; ++I) + assert(V[I]->getType() == T->getTypeAtIndex(I) && + "Initializer for composite element doesn't match!"); +} + ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantArrayVal, - OperandTraits<ConstantArray>::op_end(this) - V.size(), - V.size()) { + : ConstantAggregate(T, ConstantArrayVal, V) { assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant array"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert(V[i]->getType() == T->getElementType() && - "Initializer for array element doesn't match array element type!"); - std::copy(V.begin(), V.end(), op_begin()); + "Invalid initializer for constant array"); } Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { @@ -957,8 +924,6 @@ Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { return nullptr; } -/// getTypeForElements - Return an anonymous struct type to use for a constant -/// with the specified set of elements. The list must not be empty. StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, ArrayRef<Constant*> V, bool Packed) { @@ -978,17 +943,10 @@ StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, return getTypeForElements(V[0]->getContext(), V, Packed); } - ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantStructVal, - OperandTraits<ConstantStruct>::op_end(this) - V.size(), - V.size()) { - assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant structure"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && - "Initializer for struct element doesn't match struct element type!"); - std::copy(V.begin(), V.end(), op_begin()); + : ConstantAggregate(T, ConstantStructVal, V) { + assert((T->isOpaque() || V.size() == T->getNumElements()) && + "Invalid initializer for constant struct"); } // ConstantStruct accessors. @@ -1031,13 +989,9 @@ Constant *ConstantStruct::get(StructType *T, ...) { } ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantVectorVal, - OperandTraits<ConstantVector>::op_end(this) - V.size(), - V.size()) { - for (size_t i = 0, e = V.size(); i != e; i++) - assert(V[i]->getType() == T->getElementType() && - "Initializer for vector element doesn't match vector element type!"); - std::copy(V.begin(), V.end(), op_begin()); + : ConstantAggregate(T, ConstantVectorVal, V) { + assert(V.size() == T->getNumElements() && + "Invalid initializer for constant vector"); } // ConstantVector accessors. @@ -1157,8 +1111,6 @@ unsigned ConstantExpr::getPredicate() const { return cast<CompareConstantExpr>(this)->predicate; } -/// getWithOperandReplaced - Return a constant expression identical to this -/// one, but with the specified operand set to the specified value. Constant * ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { assert(Op->getType() == getOperand(OpNo)->getType() && @@ -1173,9 +1125,6 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { return getWithOperands(NewOps); } -/// getWithOperands - This returns the current constant expression with the -/// operands replaced with the specified values. The specified array must -/// have the same number of operands as our current one. Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, bool OnlyIfReduced, Type *SrcTy) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); @@ -1320,14 +1269,12 @@ ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { return Entry; } -/// destroyConstant - Remove the constant from the constant table. -/// +/// Remove the constant from the constant table. void ConstantAggregateZero::destroyConstantImpl() { getContext().pImpl->CAZConstants.erase(getType()); } -/// destroyConstant - Remove the constant from the constant table... -/// +/// Remove the constant from the constant table. void ConstantArray::destroyConstantImpl() { getType()->getContext().pImpl->ArrayConstants.remove(this); } @@ -1336,20 +1283,16 @@ void ConstantArray::destroyConstantImpl() { //---- ConstantStruct::get() implementation... // -// destroyConstant - Remove the constant from the constant table... -// +/// Remove the constant from the constant table. void ConstantStruct::destroyConstantImpl() { getType()->getContext().pImpl->StructConstants.remove(this); } -// destroyConstant - Remove the constant from the constant table... -// +/// Remove the constant from the constant table. void ConstantVector::destroyConstantImpl() { getType()->getContext().pImpl->VectorConstants.remove(this); } -/// getSplatValue - If this is a splat vector constant, meaning that all of -/// the elements have the same value, return that value. Otherwise return 0. Constant *Constant::getSplatValue() const { assert(this->getType()->isVectorTy() && "Only valid for vectors!"); if (isa<ConstantAggregateZero>(this)) @@ -1361,8 +1304,6 @@ Constant *Constant::getSplatValue() const { return nullptr; } -/// getSplatValue - If this is a splat constant, where all of the -/// elements have the same value, return that value. Otherwise return null. Constant *ConstantVector::getSplatValue() const { // Check out first element. Constant *Elt = getOperand(0); @@ -1373,8 +1314,6 @@ Constant *ConstantVector::getSplatValue() const { return Elt; } -/// If C is a constant integer then return its value, otherwise C must be a -/// vector of constant integers, all equal, and the common value is returned. const APInt &Constant::getUniqueInteger() const { if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) return CI->getValue(); @@ -1395,16 +1334,11 @@ ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { return Entry; } -// destroyConstant - Remove the constant from the constant table... -// +/// Remove the constant from the constant table. void ConstantPointerNull::destroyConstantImpl() { getContext().pImpl->CPNConstants.erase(getType()); } - -//---- UndefValue::get() implementation. -// - UndefValue *UndefValue::get(Type *Ty) { UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; if (!Entry) @@ -1413,16 +1347,12 @@ UndefValue *UndefValue::get(Type *Ty) { return Entry; } -// destroyConstant - Remove the constant from the constant table. -// +/// Remove the constant from the constant table. void UndefValue::destroyConstantImpl() { // Free the constant and any dangling references to it. getContext().pImpl->UVConstants.erase(getType()); } -//---- BlockAddress::get() implementation. -// - BlockAddress *BlockAddress::get(BasicBlock *BB) { assert(BB->getParent() && "Block must have a parent"); return get(BB->getParent(), BB); @@ -1458,24 +1388,25 @@ BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { return BA; } -// destroyConstant - Remove the constant from the constant table. -// +/// Remove the constant from the constant table. void BlockAddress::destroyConstantImpl() { getFunction()->getType()->getContext().pImpl ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); getBasicBlock()->AdjustBlockAddressRefCount(-1); } -Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) { +Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { // This could be replacing either the Basic Block or the Function. In either // case, we have to remove the map entry. Function *NewF = getFunction(); BasicBlock *NewBB = getBasicBlock(); - if (U == &Op<0>()) + if (From == NewF) NewF = cast<Function>(To->stripPointerCasts()); - else + else { + assert(From == NewBB && "From does not match any operand"); NewBB = cast<BasicBlock>(To); + } // See if the 'new' entry already exists, if not, just update this in place // and return early. @@ -1606,8 +1537,7 @@ Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, return getBitCast(S, Ty); } -Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, - bool isSigned) { +Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); @@ -1979,8 +1909,16 @@ Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, assert(DestTy && "GEP indices invalid!"); unsigned AS = C->getType()->getPointerAddressSpace(); Type *ReqTy = DestTy->getPointerTo(AS); - if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) - ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); + + unsigned NumVecElts = 0; + if (C->getType()->isVectorTy()) + NumVecElts = C->getType()->getVectorNumElements(); + else for (auto Idx : Idxs) + if (Idx->getType()->isVectorTy()) + NumVecElts = Idx->getType()->getVectorNumElements(); + + if (NumVecElts) + ReqTy = VectorType::get(ReqTy, NumVecElts); if (OnlyIfReducedTy == ReqTy) return nullptr; @@ -1990,13 +1928,14 @@ Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, ArgVec.reserve(1 + Idxs.size()); ArgVec.push_back(C); for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { - assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && - "getelementptr index type missmatch"); assert((!Idxs[i]->getType()->isVectorTy() || - ReqTy->getVectorNumElements() == - Idxs[i]->getType()->getVectorNumElements()) && + Idxs[i]->getType()->getVectorNumElements() == NumVecElts) && "getelementptr index type missmatch"); - ArgVec.push_back(cast<Constant>(Idxs[i])); + + Constant *Idx = cast<Constant>(Idxs[i]); + if (NumVecElts && !Idxs[i]->getType()->isVectorTy()) + Idx = ConstantVector::getSplat(NumVecElts, Idx); + ArgVec.push_back(Idx); } const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, InBounds ? GEPOperator::IsInBounds : 0, None, @@ -2278,9 +2217,6 @@ Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { isExact ? PossiblyExactOperator::IsExact : 0); } -/// getBinOpIdentity - Return the identity for the given binary operation, -/// i.e. a constant C such that X op C = X and C op X = X for every X. It -/// returns null if the operator doesn't have an identity. Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { switch (Opcode) { default: @@ -2300,10 +2236,6 @@ Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { } } -/// getBinOpAbsorber - Return the absorbing element for the given binary -/// operation, i.e. a constant C such that X op C = C and C op X = C for -/// every X. For example, this returns zero for integer multiplication. -/// It returns null if the operator doesn't have an absorbing element. Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { switch (Opcode) { default: @@ -2319,8 +2251,7 @@ Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { } } -// destroyConstant - Remove the constant from the constant table... -// +/// Remove the constant from the constant table. void ConstantExpr::destroyConstantImpl() { getType()->getContext().pImpl->ExprConstants.remove(this); } @@ -2335,7 +2266,8 @@ GetElementPtrConstantExpr::GetElementPtrConstantExpr( OperandTraits<GetElementPtrConstantExpr>::op_end(this) - (IdxList.size() + 1), IdxList.size() + 1), - SrcElementTy(SrcElementTy) { + SrcElementTy(SrcElementTy), + ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { Op<0>() = C; Use *OperandList = getOperandList(); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) @@ -2346,13 +2278,16 @@ Type *GetElementPtrConstantExpr::getSourceElementType() const { return SrcElementTy; } +Type *GetElementPtrConstantExpr::getResultElementType() const { + return ResElementTy; +} + //===----------------------------------------------------------------------===// // ConstantData* implementations void ConstantDataArray::anchor() {} void ConstantDataVector::anchor() {} -/// getElementType - Return the element type of the array/vector. Type *ConstantDataSequential::getElementType() const { return getType()->getElementType(); } @@ -2361,10 +2296,6 @@ StringRef ConstantDataSequential::getRawDataValues() const { return StringRef(DataElements, getNumElements()*getElementByteSize()); } -/// isElementTypeCompatible - Return true if a ConstantDataSequential can be -/// formed with a vector or array of the specified element type. -/// ConstantDataArray only works with normal float and int types that are -/// stored densely in memory, not with things like i42 or x86_f80. bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; if (auto *IT = dyn_cast<IntegerType>(Ty)) { @@ -2380,7 +2311,6 @@ bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { return false; } -/// getNumElements - Return the number of elements in the array or vector. unsigned ConstantDataSequential::getNumElements() const { if (ArrayType *AT = dyn_cast<ArrayType>(getType())) return AT->getNumElements(); @@ -2388,27 +2318,26 @@ unsigned ConstantDataSequential::getNumElements() const { } -/// getElementByteSize - Return the size in bytes of the elements in the data. uint64_t ConstantDataSequential::getElementByteSize() const { return getElementType()->getPrimitiveSizeInBits()/8; } -/// getElementPointer - Return the start of the specified element. +/// Return the start of the specified element. const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { assert(Elt < getNumElements() && "Invalid Elt"); return DataElements+Elt*getElementByteSize(); } -/// isAllZeros - return true if the array is empty or all zeros. +/// Return true if the array is empty or all zeros. static bool isAllZeros(StringRef Arr) { - for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) - if (*I != 0) + for (char I : Arr) + if (I != 0) return false; return true; } -/// getImpl - This is the underlying implementation of all of the +/// This is the underlying implementation of all of the /// ConstantDataSequential::get methods. They all thunk down to here, providing /// the correct element type. We take the bytes in as a StringRef because /// we *want* an underlying "char*" to avoid TBAA type punning violations. @@ -2539,11 +2468,6 @@ Constant *ConstantDataArray::getFP(LLVMContext &Context, return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); } -/// getString - This method constructs a CDS and initializes it with a text -/// string. The default behavior (AddNull==true) causes a null terminator to -/// be placed at the end of the array (increasing the length of the string by -/// one more than the StringRef would normally indicate. Pass AddNull=false -/// to disable this behavior. Constant *ConstantDataArray::getString(LLVMContext &Context, StringRef Str, bool AddNull) { if (!AddNull) { @@ -2658,8 +2582,6 @@ Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { } -/// getElementAsInteger - If this is a sequential container of integers (of -/// any size), return the specified element in the low bits of a uint64_t. uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { assert(isa<IntegerType>(getElementType()) && "Accessor can only be used when element is an integer"); @@ -2680,8 +2602,6 @@ uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { } } -/// getElementAsAPFloat - If this is a sequential container of floating point -/// type, return the specified element as an APFloat. APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { const char *EltPtr = getElementPointer(Elt); @@ -2703,8 +2623,6 @@ APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { } } -/// getElementAsFloat - If this is an sequential container of floats, return -/// the specified element as a float. float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { assert(getElementType()->isFloatTy() && "Accessor can only be used when element is a 'float'"); @@ -2712,8 +2630,6 @@ float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { return *const_cast<float *>(EltPtr); } -/// getElementAsDouble - If this is an sequential container of doubles, return -/// the specified element as a float. double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { assert(getElementType()->isDoubleTy() && "Accessor can only be used when element is a 'float'"); @@ -2722,9 +2638,6 @@ double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { return *const_cast<double *>(EltPtr); } -/// getElementAsConstant - Return a Constant for a specified index's element. -/// Note that this has to compute a new constant to return, so it isn't as -/// efficient as getElementAsInteger/Float/Double. Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { if (getElementType()->isHalfTy() || getElementType()->isFloatTy() || getElementType()->isDoubleTy()) @@ -2733,13 +2646,10 @@ Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); } -/// isString - This method returns true if this is an array of i8. bool ConstantDataSequential::isString() const { return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); } -/// isCString - This method returns true if the array "isString", ends with a -/// nul byte, and does not contains any other nul bytes. bool ConstantDataSequential::isCString() const { if (!isString()) return false; @@ -2753,8 +2663,6 @@ bool ConstantDataSequential::isCString() const { return Str.drop_back().find(0) == StringRef::npos; } -/// getSplatValue - If this is a splat constant, meaning that all of the -/// elements have the same value, return that value. Otherwise return nullptr. Constant *ConstantDataVector::getSplatValue() const { const char *Base = getRawDataValues().data(); @@ -2782,14 +2690,14 @@ Constant *ConstantDataVector::getSplatValue() const { /// work, but would be really slow because it would have to unique each updated /// array instance. /// -void Constant::handleOperandChange(Value *From, Value *To, Use *U) { +void Constant::handleOperandChange(Value *From, Value *To) { Value *Replacement = nullptr; switch (getValueID()) { default: llvm_unreachable("Not a constant!"); #define HANDLE_CONSTANT(Name) \ case Value::Name##Val: \ - Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U); \ + Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ break; #include "llvm/IR/Value.def" } @@ -2809,39 +2717,7 @@ void Constant::handleOperandChange(Value *From, Value *To, Use *U) { destroyConstant(); } -Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantTokenNone::handleOperandChangeImpl(Value *From, Value *To, - Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To, - Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To, - Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To, - Use *U) { - llvm_unreachable("Unsupported class for handleOperandChange()!"); -} - -Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) { +Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); @@ -2855,9 +2731,11 @@ Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) { // Keep track of whether all the values in the array are "ToC". bool AllSame = true; Use *OperandList = getOperandList(); + unsigned OperandNo = 0; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast<Constant>(O->get()); if (Val == From) { + OperandNo = (O - OperandList); Val = ToC; ++NumUpdated; } @@ -2877,65 +2755,57 @@ Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) { // Update to the new value. return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( - Values, this, From, ToC, NumUpdated, U - OperandList); + Values, this, From, ToC, NumUpdated, OperandNo); } -Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) { +Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); Use *OperandList = getOperandList(); - unsigned OperandToUpdate = U-OperandList; - assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); SmallVector<Constant*, 8> Values; Values.reserve(getNumOperands()); // Build replacement struct. // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. - bool isAllZeros = false; - bool isAllUndef = false; - if (ToC->isNullValue()) { - isAllZeros = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - Values.push_back(Val); - if (isAllZeros) isAllZeros = Val->isNullValue(); - } - } else if (isa<UndefValue>(ToC)) { - isAllUndef = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - Values.push_back(Val); - if (isAllUndef) isAllUndef = isa<UndefValue>(Val); + unsigned NumUpdated = 0; + bool AllSame = true; + unsigned OperandNo = 0; + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + if (Val == From) { + OperandNo = (O - OperandList); + Val = ToC; + ++NumUpdated; } - } else { - for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) - Values.push_back(cast<Constant>(O->get())); + Values.push_back(Val); + AllSame &= Val == ToC; } - Values[OperandToUpdate] = ToC; - if (isAllZeros) + if (AllSame && ToC->isNullValue()) return ConstantAggregateZero::get(getType()); - if (isAllUndef) + if (AllSame && isa<UndefValue>(ToC)) return UndefValue::get(getType()); // Update to the new value. return getContext().pImpl->StructConstants.replaceOperandsInPlace( - Values, this, From, ToC); + Values, this, From, ToC, NumUpdated, OperandNo); } -Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) { +Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); SmallVector<Constant*, 8> Values; Values.reserve(getNumOperands()); // Build replacement array... unsigned NumUpdated = 0; + unsigned OperandNo = 0; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) { + OperandNo = i; ++NumUpdated; Val = ToC; } @@ -2946,20 +2816,21 @@ Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) { return C; // Update to the new value. - Use *OperandList = getOperandList(); return getContext().pImpl->VectorConstants.replaceOperandsInPlace( - Values, this, From, ToC, NumUpdated, U - OperandList); + Values, this, From, ToC, NumUpdated, OperandNo); } -Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) { +Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast<Constant>(ToV); SmallVector<Constant*, 8> NewOps; unsigned NumUpdated = 0; + unsigned OperandNo = 0; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Op = getOperand(i); if (Op == From) { + OperandNo = i; ++NumUpdated; Op = To; } @@ -2971,9 +2842,8 @@ Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) { return C; // Update to the new value. - Use *OperandList = getOperandList(); return getContext().pImpl->ExprConstants.replaceOperandsInPlace( - NewOps, this, From, To, NumUpdated, U - OperandList); + NewOps, this, From, To, NumUpdated, OperandNo); } Instruction *ConstantExpr::getAsInstruction() { |