diff options
author | dim <dim@FreeBSD.org> | 2014-11-24 17:02:24 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2014-11-24 17:02:24 +0000 |
commit | 2c8643c6396b0a3db33430cf9380e70bbb9efce0 (patch) | |
tree | 4df130b28021d86e13bf4565ef58c1c5a5e093b4 /contrib/llvm/lib/ExecutionEngine | |
parent | 678318cd20f7db4e6c6b85d83fe00fa327b04fca (diff) | |
parent | e27feadae0885aa074df58ebfda2e7a7f7a7d590 (diff) | |
download | FreeBSD-src-2c8643c6396b0a3db33430cf9380e70bbb9efce0.zip FreeBSD-src-2c8643c6396b0a3db33430cf9380e70bbb9efce0.tar.gz |
Merge llvm 3.5.0 release from ^/vendor/llvm/dist, resolve conflicts, and
preserve our customizations, where necessary.
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine')
33 files changed, 3594 insertions, 1785 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h index 314db8b..66645d7 100644 --- a/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h +++ b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h @@ -15,10 +15,10 @@ #define EVENT_LISTENER_COMMON_H #include "llvm/ADT/DenseMap.h" -#include "llvm/DebugInfo.h" +#include "llvm/IR/DebugInfo.h" #include "llvm/IR/Metadata.h" +#include "llvm/IR/ValueHandle.h" #include "llvm/Support/Path.h" -#include "llvm/Support/ValueHandle.h" namespace llvm { diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp index 2a610d5..b0e985d 100644 --- a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp +++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp @@ -12,31 +12,33 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "jit" #include "llvm/ExecutionEngine/ExecutionEngine.h" -#include "llvm/ExecutionEngine/JITMemoryManager.h" -#include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/MutexGuard.h" #include "llvm/Support/TargetRegistry.h" -#include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include <cmath> #include <cstring> using namespace llvm; +#define DEBUG_TYPE "jit" + STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); @@ -50,22 +52,31 @@ ExecutionEngine *(*ExecutionEngine::JITCtor)( std::string *ErrorStr, JITMemoryManager *JMM, bool GVsWithCode, - TargetMachine *TM) = 0; + TargetMachine *TM) = nullptr; ExecutionEngine *(*ExecutionEngine::MCJITCtor)( Module *M, std::string *ErrorStr, RTDyldMemoryManager *MCJMM, bool GVsWithCode, - TargetMachine *TM) = 0; + TargetMachine *TM) = nullptr; ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, - std::string *ErrorStr) = 0; + std::string *ErrorStr) =nullptr; ExecutionEngine::ExecutionEngine(Module *M) : EEState(*this), - LazyFunctionCreator(0) { + LazyFunctionCreator(nullptr) { CompilingLazily = false; GVCompilationDisabled = false; SymbolSearchingDisabled = false; + + // IR module verification is enabled by default in debug builds, and disabled + // by default in release builds. +#ifndef NDEBUG + VerifyModules = true; +#else + VerifyModules = false; +#endif + Modules.push_back(M); assert(M && "Module is null?"); } @@ -97,7 +108,7 @@ public: return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); } - virtual void deleted() { + void deleted() override { // We allocated with operator new and with some extra memory hanging off the // end, so don't just delete this. I'm not sure if this is actually // required. @@ -111,6 +122,10 @@ char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { return GVMemoryBlock::Create(GV, *getDataLayout()); } +void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { + llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); +} + bool ExecutionEngine::removeModule(Module *M) { for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), E = Modules.end(); I != E; ++I) { @@ -129,19 +144,18 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { if (Function *F = Modules[i]->getFunction(FnName)) return F; } - return 0; + return nullptr; } -void *ExecutionEngineState::RemoveMapping(const MutexGuard &, - const GlobalValue *ToUnmap) { +void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); void *OldVal; // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the // GlobalAddressMap. if (I == GlobalAddressMap.end()) - OldVal = 0; + OldVal = nullptr; else { OldVal = I->second; GlobalAddressMap.erase(I); @@ -156,15 +170,15 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { DEBUG(dbgs() << "JIT: Map \'" << GV->getName() << "\' to [" << Addr << "]\n";); - void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; - assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); + void *&CurVal = EEState.getGlobalAddressMap()[GV]; + assert((!CurVal || !Addr) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too. - if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + if (!EEState.getGlobalAddressReverseMap().empty()) { AssertingVH<const GlobalValue> &V = - EEState.getGlobalAddressReverseMap(locked)[Addr]; - assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + EEState.getGlobalAddressReverseMap()[Addr]; + assert((!V || !GV) && "GlobalMapping already established!"); V = GV; } } @@ -172,42 +186,42 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); - EEState.getGlobalAddressMap(locked).clear(); - EEState.getGlobalAddressReverseMap(locked).clear(); + EEState.getGlobalAddressMap().clear(); + EEState.getGlobalAddressReverseMap().clear(); } void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { MutexGuard locked(lock); for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) - EEState.RemoveMapping(locked, FI); + EEState.RemoveMapping(FI); for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); GI != GE; ++GI) - EEState.RemoveMapping(locked, GI); + EEState.RemoveMapping(GI); } void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); ExecutionEngineState::GlobalAddressMapTy &Map = - EEState.getGlobalAddressMap(locked); + EEState.getGlobalAddressMap(); // Deleting from the mapping? - if (Addr == 0) - return EEState.RemoveMapping(locked, GV); + if (!Addr) + return EEState.RemoveMapping(GV); void *&CurVal = Map[GV]; void *OldVal = CurVal; - if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) - EEState.getGlobalAddressReverseMap(locked).erase(CurVal); + if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) + EEState.getGlobalAddressReverseMap().erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too. - if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + if (!EEState.getGlobalAddressReverseMap().empty()) { AssertingVH<const GlobalValue> &V = - EEState.getGlobalAddressReverseMap(locked)[Addr]; - assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + EEState.getGlobalAddressReverseMap()[Addr]; + assert((!V || !GV) && "GlobalMapping already established!"); V = GV; } return OldVal; @@ -217,25 +231,25 @@ void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); ExecutionEngineState::GlobalAddressMapTy::iterator I = - EEState.getGlobalAddressMap(locked).find(GV); - return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; + EEState.getGlobalAddressMap().find(GV); + return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; } const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. - if (EEState.getGlobalAddressReverseMap(locked).empty()) { + if (EEState.getGlobalAddressReverseMap().empty()) { for (ExecutionEngineState::GlobalAddressMapTy::iterator - I = EEState.getGlobalAddressMap(locked).begin(), - E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) - EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( + I = EEState.getGlobalAddressMap().begin(), + E = EEState.getGlobalAddressMap().end(); I != E; ++I) + EEState.getGlobalAddressReverseMap().insert(std::make_pair( I->second, I->first)); } std::map<void *, AssertingVH<const GlobalValue> >::iterator I = - EEState.getGlobalAddressReverseMap(locked).find(Addr); - return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; + EEState.getGlobalAddressReverseMap().find(Addr); + return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; } namespace { @@ -243,11 +257,11 @@ class ArgvArray { char *Array; std::vector<char*> Values; public: - ArgvArray() : Array(NULL) {} + ArgvArray() : Array(nullptr) {} ~ArgvArray() { clear(); } void clear() { delete[] Array; - Array = NULL; + Array = nullptr; for (size_t I = 0, E = Values.size(); I != E; ++I) { delete[] Values[I]; } @@ -283,7 +297,7 @@ void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, } // Null terminate it - EE->StoreValueToMemory(PTOGV(0), + EE->StoreValueToMemory(PTOGV(nullptr), (GenericValue*)(Array+InputArgv.size()*PtrSize), SBytePtr); return Array; @@ -303,11 +317,11 @@ void ExecutionEngine::runStaticConstructorsDestructors(Module *module, // Should be an array of '{ i32, void ()* }' structs. The first value is // the init priority, which we ignore. ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); - if (InitList == 0) + if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); - if (CS == 0) continue; + if (!CS) continue; Constant *FP = CS->getOperand(1); if (FP->isNullValue()) @@ -397,13 +411,14 @@ ExecutionEngine *ExecutionEngine::create(Module *M, std::string *ErrorStr, CodeGenOpt::Level OptLevel, bool GVsWithCode) { - EngineBuilder EB = EngineBuilder(M) - .setEngineKind(ForceInterpreter - ? EngineKind::Interpreter - : EngineKind::JIT) - .setErrorStr(ErrorStr) - .setOptLevel(OptLevel) - .setAllocateGVsWithCode(GVsWithCode); + + EngineBuilder EB = + EngineBuilder(M) + .setEngineKind(ForceInterpreter ? EngineKind::Interpreter + : EngineKind::Either) + .setErrorStr(ErrorStr) + .setOptLevel(OptLevel) + .setAllocateGVsWithCode(GVsWithCode); return EB.create(); } @@ -418,10 +433,10 @@ ExecutionEngine *ExecutionEngine::createJIT(Module *M, bool GVsWithCode, Reloc::Model RM, CodeModel::Model CMM) { - if (ExecutionEngine::JITCtor == 0) { + if (!ExecutionEngine::JITCtor) { if (ErrorStr) *ErrorStr = "JIT has not been linked in."; - return 0; + return nullptr; } // Use the defaults for extra parameters. Users can use EngineBuilder to @@ -437,18 +452,39 @@ ExecutionEngine *ExecutionEngine::createJIT(Module *M, // TODO: permit custom TargetOptions here TargetMachine *TM = EB.selectTarget(); - if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; + if (!TM || (ErrorStr && ErrorStr->length() > 0)) return nullptr; return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); } +void EngineBuilder::InitEngine() { + WhichEngine = EngineKind::Either; + ErrorStr = nullptr; + OptLevel = CodeGenOpt::Default; + MCJMM = nullptr; + JMM = nullptr; + Options = TargetOptions(); + AllocateGVsWithCode = false; + RelocModel = Reloc::Default; + CMModel = CodeModel::JITDefault; + UseMCJIT = false; + +// IR module verification is enabled by default in debug builds, and disabled +// by default in release builds. +#ifndef NDEBUG + VerifyModules = true; +#else + VerifyModules = false; +#endif +} + ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { - OwningPtr<TargetMachine> TheTM(TM); // Take ownership. + std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. - if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) - return 0; + if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) + return nullptr; assert(!(JMM && MCJMM)); @@ -461,7 +497,7 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { else { if (ErrorStr) *ErrorStr = "Cannot create an interpreter with a memory manager."; - return 0; + return nullptr; } } @@ -470,7 +506,7 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { *ErrorStr = "Cannot create a legacy JIT with a runtime dyld memory " "manager."; - return 0; + return nullptr; } // Unless the interpreter was explicitly selected or the JIT is not linked, @@ -483,16 +519,17 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { << " a different -march switch.\n"; } - if (UseMCJIT && ExecutionEngine::MCJITCtor) { - ExecutionEngine *EE = - ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, - AllocateGVsWithCode, TheTM.take()); - if (EE) return EE; - } else if (ExecutionEngine::JITCtor) { - ExecutionEngine *EE = - ExecutionEngine::JITCtor(M, ErrorStr, JMM, - AllocateGVsWithCode, TheTM.take()); - if (EE) return EE; + ExecutionEngine *EE = nullptr; + if (UseMCJIT && ExecutionEngine::MCJITCtor) + EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, + AllocateGVsWithCode, TheTM.release()); + else if (ExecutionEngine::JITCtor) + EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, + AllocateGVsWithCode, TheTM.release()); + + if (EE) { + EE->setVerifyModules(VerifyModules); + return EE; } } @@ -503,16 +540,16 @@ ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { return ExecutionEngine::InterpCtor(M, ErrorStr); if (ErrorStr) *ErrorStr = "Interpreter has not been linked in."; - return 0; + return nullptr; } - if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 && - ExecutionEngine::MCJITCtor == 0) { + if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && + !ExecutionEngine::MCJITCtor) { if (ErrorStr) *ErrorStr = "JIT has not been linked in."; } - return 0; + return nullptr; } void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { @@ -520,7 +557,7 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { return getPointerToFunction(F); MutexGuard locked(lock); - if (void *P = EEState.getGlobalAddressMap(locked)[GV]) + if (void *P = EEState.getGlobalAddressMap()[GV]) return P; // Global variable might have been added since interpreter started. @@ -530,7 +567,7 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { else llvm_unreachable("Global hasn't had an address allocated yet!"); - return EEState.getGlobalAddressMap(locked)[GV]; + return EEState.getGlobalAddressMap()[GV]; } /// \brief Converts a Constant* into a GenericValue, including handling of @@ -590,8 +627,8 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { case Instruction::GetElementPtr: { // Compute the index GenericValue Result = getConstantValue(Op0); - APInt Offset(TD->getPointerSizeInBits(), 0); - cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset); + APInt Offset(DL->getPointerSizeInBits(), 0); + cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); char* tmp = (char*) Result.PointerVal; Result = PTOGV(tmp + Offset.getSExtValue()); @@ -678,16 +715,16 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { } case Instruction::PtrToInt: { GenericValue GV = getConstantValue(Op0); - uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType()); + uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); assert(PtrWidth <= 64 && "Bad pointer width"); GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); - uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType()); + uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); return GV; } case Instruction::IntToPtr: { GenericValue GV = getConstantValue(Op0); - uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType()); + uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); @@ -848,7 +885,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { break; case Type::PointerTyID: if (isa<ConstantPointerNull>(C)) - Result.PointerVal = 0; + Result.PointerVal = nullptr; else if (const Function *F = dyn_cast<Function>(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) @@ -1193,33 +1230,29 @@ void ExecutionEngine::emitGlobals() { if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]; - for (Module::const_global_iterator I = M.global_begin(), - E = M.global_end(); I != E; ++I) { - const GlobalValue *GV = I; - if (GV->hasLocalLinkage() || GV->isDeclaration() || - GV->hasAppendingLinkage() || !GV->hasName()) + for (const auto &GV : M.globals()) { + if (GV.hasLocalLinkage() || GV.isDeclaration() || + GV.hasAppendingLinkage() || !GV.hasName()) continue;// Ignore external globals and globals with internal linkage. const GlobalValue *&GVEntry = - LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; // If this is the first time we've seen this global, it is the canonical // version. if (!GVEntry) { - GVEntry = GV; + GVEntry = &GV; continue; } // If the existing global is strong, never replace it. - if (GVEntry->hasExternalLinkage() || - GVEntry->hasDLLImportLinkage() || - GVEntry->hasDLLExportLinkage()) + if (GVEntry->hasExternalLinkage()) continue; // Otherwise, we know it's linkonce/weak, replace it if this is a strong // symbol. FIXME is this right for common? - if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) - GVEntry = GV; + if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) + GVEntry = &GV; } } } @@ -1227,31 +1260,30 @@ void ExecutionEngine::emitGlobals() { std::vector<const GlobalValue*> NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]; - for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { + for (const auto &GV : M.globals()) { // In the multi-module case, see what this global maps to. if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = - LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { + LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { // If something else is the canonical global, ignore this one. - if (GVEntry != &*I) { - NonCanonicalGlobals.push_back(I); + if (GVEntry != &GV) { + NonCanonicalGlobals.push_back(&GV); continue; } } } - if (!I->isDeclaration()) { - addGlobalMapping(I, getMemoryForGV(I)); + if (!GV.isDeclaration()) { + addGlobalMapping(&GV, getMemoryForGV(&GV)); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = - sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) - addGlobalMapping(I, SymAddr); + sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) + addGlobalMapping(&GV, SymAddr); else { report_fatal_error("Could not resolve external global address: " - +I->getName()); + +GV.getName()); } } } @@ -1271,16 +1303,15 @@ void ExecutionEngine::emitGlobals() { // Now that all of the globals are set up in memory, loop through them all // and initialize their contents. - for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { - if (!I->isDeclaration()) { + for (const auto &GV : M.globals()) { + if (!GV.isDeclaration()) { if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = - LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) - if (GVEntry != &*I) // Not the canonical variable. + LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) + if (GVEntry != &GV) // Not the canonical variable. continue; } - EmitGlobalVariable(I); + EmitGlobalVariable(&GV); } } } @@ -1292,12 +1323,12 @@ void ExecutionEngine::emitGlobals() { void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); - if (GA == 0) { + if (!GA) { // If it's not already specified, allocate memory for the global. GA = getMemoryForGV(GV); // If we failed to allocate memory for this global, return. - if (GA == 0) return; + if (!GA) return; addGlobalMapping(GV, GA); } diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp index 2d34eea..6ff1e7a 100644 --- a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp +++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp @@ -11,7 +11,6 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "jit" #include "llvm-c/ExecutionEngine.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" @@ -23,17 +22,11 @@ using namespace llvm; +#define DEBUG_TYPE "jit" + // Wrapping the C bindings types. DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef) -inline DataLayout *unwrap(LLVMTargetDataRef P) { - return reinterpret_cast<DataLayout*>(P); -} - -inline LLVMTargetDataRef wrap(const DataLayout *P) { - return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P)); -} - inline TargetLibraryInfo *unwrap(LLVMTargetLibraryInfoRef P) { return reinterpret_cast<TargetLibraryInfo*>(P); } @@ -43,6 +36,11 @@ inline LLVMTargetLibraryInfoRef wrap(const TargetLibraryInfo *P) { return reinterpret_cast<LLVMTargetLibraryInfoRef>(X); } +inline LLVMTargetMachineRef wrap(const TargetMachine *P) { + return + reinterpret_cast<LLVMTargetMachineRef>(const_cast<TargetMachine*>(P)); +} + /*===-- Operations on generic values --------------------------------------===*/ LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty, @@ -323,6 +321,11 @@ LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) { return wrap(unwrap(EE)->getDataLayout()); } +LLVMTargetMachineRef +LLVMGetExecutionEngineTargetMachine(LLVMExecutionEngineRef EE) { + return wrap(unwrap(EE)->getTargetMachine()); +} + void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global, void* Addr) { unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr); @@ -350,17 +353,17 @@ public: SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions, void *Opaque); virtual ~SimpleBindingMemoryManager(); - - virtual uint8_t *allocateCodeSection( - uintptr_t Size, unsigned Alignment, unsigned SectionID, - StringRef SectionName); - virtual uint8_t *allocateDataSection( - uintptr_t Size, unsigned Alignment, unsigned SectionID, - StringRef SectionName, bool isReadOnly); + uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, + unsigned SectionID, + StringRef SectionName) override; + + uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, + unsigned SectionID, StringRef SectionName, + bool isReadOnly) override; + + bool finalizeMemory(std::string *ErrMsg) override; - virtual bool finalizeMemory(std::string *ErrMsg); - private: SimpleBindingMMFunctions Functions; void *Opaque; @@ -400,7 +403,7 @@ uint8_t *SimpleBindingMemoryManager::allocateDataSection( } bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) { - char *errMsgCString = 0; + char *errMsgCString = nullptr; bool result = Functions.FinalizeMemory(Opaque, &errMsgCString); assert((result || !errMsgCString) && "Did not expect an error message if FinalizeMemory succeeded"); @@ -423,7 +426,7 @@ LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager( if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory || !Destroy) - return NULL; + return nullptr; SimpleBindingMMFunctions functions; functions.AllocateCodeSection = AllocateCodeSection; diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp index 7dc295f..4e22a8b 100644 --- a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp +++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp @@ -15,12 +15,10 @@ #include "llvm/Config/config.h" #include "llvm/ExecutionEngine/JITEventListener.h" -#define DEBUG_TYPE "amplifier-jit-event-listener" -#include "llvm/DebugInfo.h" +#include "llvm/IR/DebugInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/Metadata.h" #include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/OwningPtr.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/ExecutionEngine/ObjectImage.h" @@ -28,19 +26,21 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Errno.h" -#include "llvm/Support/ValueHandle.h" +#include "llvm/IR/ValueHandle.h" #include "EventListenerCommon.h" #include "IntelJITEventsWrapper.h" using namespace llvm; using namespace llvm::jitprofiling; +#define DEBUG_TYPE "amplifier-jit-event-listener" + namespace { class IntelJITEventListener : public JITEventListener { typedef DenseMap<void*, unsigned int> MethodIDMap; - OwningPtr<IntelJITEventsWrapper> Wrapper; + std::unique_ptr<IntelJITEventsWrapper> Wrapper; MethodIDMap MethodIDs; FilenameCache Filenames; @@ -86,7 +86,7 @@ static LineNumberInfo DILineInfoToIntelJITFormat(uintptr_t StartAddress, LineNumberInfo Result; Result.Offset = Address - StartAddress; - Result.LineNumber = Line.getLine(); + Result.LineNumber = Line.Line; return Result; } @@ -194,11 +194,10 @@ void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) { MethodAddressVector Functions; // Use symbol info to iterate functions in the object. - error_code ec; for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); - I != E && !ec; - I.increment(ec)) { + I != E; + ++I) { std::vector<LineNumberInfo> LineInfo; std::string SourceFileName; @@ -234,8 +233,8 @@ void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) { FunctionMessage.line_number_size = 0; FunctionMessage.line_number_table = 0; } else { - SourceFileName = Lines.front().second.getFileName(); - FunctionMessage.source_file_name = (char *)SourceFileName.c_str(); + SourceFileName = Lines.front().second.FileName; + FunctionMessage.source_file_name = const_cast<char *>(SourceFileName.c_str()); FunctionMessage.line_number_size = LineInfo.size(); FunctionMessage.line_number_table = &*LineInfo.begin(); } diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h index f08e287..8d16ee8 100644 --- a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h +++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h @@ -164,10 +164,10 @@ typedef struct _iJIT_Method_NIDS typedef struct _LineNumberInfo { - /* x86 Offset from the begining of the method*/ - unsigned int Offset; - - /* source line number from the begining of the source file */ + /* x86 Offset from the beginning of the method*/ + unsigned int Offset; + + /* source line number from the beginning of the source file */ unsigned int LineNumber; } *pLineNumberInfo, LineNumberInfo; @@ -191,9 +191,9 @@ typedef struct _iJIT_Method_Load unsigned int method_size; /* Line Table size in number of entries - Zero if none */ - unsigned int line_number_size; - - /* Pointer to the begining of the line numbers info array */ + unsigned int line_number_size; + + /* Pointer to the beginning of the line numbers info array */ pLineNumberInfo line_number_table; /* unique class ID */ diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp index 5de0659..93bb2d1 100644 --- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -11,23 +11,24 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "interpreter" #include "Interpreter.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cmath> using namespace llvm; +#define DEBUG_TYPE "interpreter" + STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, @@ -57,7 +58,7 @@ static void executeFAddInst(GenericValue &Dest, GenericValue Src1, IMPLEMENT_BINARY_OPERATOR(+, Double); default: dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -68,7 +69,7 @@ static void executeFSubInst(GenericValue &Dest, GenericValue Src1, IMPLEMENT_BINARY_OPERATOR(-, Double); default: dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -79,7 +80,7 @@ static void executeFMulInst(GenericValue &Dest, GenericValue Src1, IMPLEMENT_BINARY_OPERATOR(*, Double); default: dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -90,7 +91,7 @@ static void executeFDivInst(GenericValue &Dest, GenericValue Src1, IMPLEMENT_BINARY_OPERATOR(/, Double); default: dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -105,7 +106,7 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1, break; default: dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -142,7 +143,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(==); default: dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -156,7 +157,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(!=); default: dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -170,7 +171,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -184,7 +185,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -198,7 +199,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -212,7 +213,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -226,7 +227,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -240,7 +241,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -254,7 +255,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -268,7 +269,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -293,7 +294,7 @@ void Interpreter::visitICmpInst(ICmpInst &I) { case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; default: dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; - llvm_unreachable(0); + llvm_unreachable(nullptr); } SetValue(&I, R, SF); @@ -329,7 +330,7 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(==); default: dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -385,7 +386,7 @@ static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(!=); default: dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } // in vector case mask out NaN elements if (Ty->isVectorTy()) @@ -405,7 +406,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(<=); default: dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -419,7 +420,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(>=); default: dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -433,7 +434,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(<); default: dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -447,7 +448,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, IMPLEMENT_VECTOR_FCMP(>); default: dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } return Dest; } @@ -615,7 +616,7 @@ void Interpreter::visitFCmpInst(FCmpInst &I) { switch (I.getPredicate()) { default: dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; - llvm_unreachable(0); + llvm_unreachable(nullptr); break; case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); break; @@ -672,7 +673,7 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true); default: dbgs() << "Unhandled Cmp predicate\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } @@ -726,7 +727,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { switch(I.getOpcode()){ default: dbgs() << "Don't know how to handle this binary operator!\n-->" << I; - llvm_unreachable(0); + llvm_unreachable(nullptr); break; case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; @@ -754,7 +755,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); else { dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } } break; @@ -763,7 +764,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { switch (I.getOpcode()) { default: dbgs() << "Don't know how to handle this binary operator!\n-->" << I; - llvm_unreachable(0); + llvm_unreachable(nullptr); break; case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; @@ -896,7 +897,7 @@ void Interpreter::visitSwitchInst(SwitchInst &I) { GenericValue CondVal = getOperandValue(Cond, SF); // Check to see if any of the cases match... - BasicBlock *Dest = 0; + BasicBlock *Dest = nullptr; for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) { GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF); if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { @@ -979,7 +980,7 @@ void Interpreter::visitAllocaInst(AllocaInst &I) { << uintptr_t(Memory) << '\n'); GenericValue Result = PTOGV(Memory); - assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); + assert(Result.PointerVal && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) @@ -1120,7 +1121,7 @@ void Interpreter::visitCallSite(CallSite CS) { callFunction((Function*)GVTOP(SRC), ArgVals); } -// auxilary function for shift operations +// auxiliary function for shift operations static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift) { unsigned valueWidth = valueToShift.getBitWidth(); @@ -1732,7 +1733,7 @@ void Interpreter::visitVAArgInst(VAArgInst &I) { IMPLEMENT_VAARG(Double); default: dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); } // Set the Value of this Instruction. @@ -1756,7 +1757,7 @@ void Interpreter::visitExtractElementInst(ExtractElementInst &I) { default: dbgs() << "Unhandled destination type for extractelement instruction: " << *Ty << "\n"; - llvm_unreachable(0); + llvm_unreachable(nullptr); break; case Type::IntegerTyID: Dest.IntVal = Src1.AggregateVal[indx].IntVal; @@ -2073,7 +2074,7 @@ GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { // void Interpreter::callFunction(Function *F, const std::vector<GenericValue> &ArgVals) { - assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || + assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || ECStack.back().Caller.arg_size() == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp index a03c7f5..671bbee 100644 --- a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp @@ -98,13 +98,13 @@ static ExFunc lookupFunction(const Function *F) { sys::ScopedLock Writer(*FunctionsLock); ExFunc FnPtr = FuncNames[ExtName]; - if (FnPtr == 0) + if (!FnPtr) FnPtr = FuncNames["lle_X_" + F->getName().str()]; - if (FnPtr == 0) // Try calling a generic function... if it exists... + if (!FnPtr) // Try calling a generic function... if it exists... FnPtr = (ExFunc)(intptr_t) sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" + F->getName().str()); - if (FnPtr != 0) + if (FnPtr) ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp index 9ee9d94..814efcc 100644 --- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp @@ -34,9 +34,12 @@ extern "C" void LLVMLinkInInterpreter() { } /// ExecutionEngine *Interpreter::create(Module *M, std::string* ErrStr) { // Tell this Module to materialize everything and release the GVMaterializer. - if (M->MaterializeAllPermanently(ErrStr)) + if (std::error_code EC = M->materializeAllPermanently()) { + if (ErrStr) + *ErrStr = EC.message(); // We got an error, just return 0 - return 0; + return nullptr; + } return new Interpreter(M); } diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h index 98269ef..2145cde 100644 --- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h @@ -16,10 +16,10 @@ #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" -#include "llvm/InstVisitor.h" -#include "llvm/Support/CallSite.h" +#include "llvm/IR/InstVisitor.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" @@ -108,29 +108,29 @@ public: /// create - Create an interpreter ExecutionEngine. This can never fail. /// - static ExecutionEngine *create(Module *M, std::string *ErrorStr = 0); + static ExecutionEngine *create(Module *M, std::string *ErrorStr = nullptr); /// run - Start execution with the specified function and arguments. /// - virtual GenericValue runFunction(Function *F, - const std::vector<GenericValue> &ArgValues); + GenericValue runFunction(Function *F, + const std::vector<GenericValue> &ArgValues) override; - virtual void *getPointerToNamedFunction(const std::string &Name, - bool AbortOnFailure = true) { + void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) override { // FIXME: not implemented. - return 0; + return nullptr; } /// recompileAndRelinkFunction - For the interpreter, functions are always /// up-to-date. /// - virtual void *recompileAndRelinkFunction(Function *F) { + void *recompileAndRelinkFunction(Function *F) override { return getPointerToFunction(F); } /// freeMachineCodeForFunction - The interpreter does not generate any code. /// - void freeMachineCodeForFunction(Function *F) { } + void freeMachineCodeForFunction(Function *F) override { } // Methods used to execute code: // Place a call on the stack @@ -212,8 +212,8 @@ private: // Helper functions // void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF); - void *getPointerToFunction(Function *F) { return (void*)F; } - void *getPointerToBasicBlock(BasicBlock *BB) { return (void*)BB; } + void *getPointerToFunction(Function *F) override { return (void*)F; } + void *getPointerToBasicBlock(BasicBlock *BB) override { return (void*)BB; } void initializeExecutionEngine() { } void initializeExternalFunctions(); diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp index 246a675..83ec978 100644 --- a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp @@ -26,6 +26,7 @@ #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" @@ -78,7 +79,7 @@ ExecutionEngine *JIT::createJIT(Module *M, // Try to register the program as a source of symbols to resolve against. // // FIXME: Don't do this here. - sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); + sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr); // If the target supports JIT code generation, create the JIT. if (TargetJITInfo *TJ = TM->getJITInfo()) { @@ -86,7 +87,7 @@ ExecutionEngine *JIT::createJIT(Module *M, } else { if (ErrorStr) *ErrorStr = "target does not support JIT code generation"; - return 0; + return nullptr; } } @@ -150,12 +151,13 @@ JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji, // Add target data MutexGuard locked(lock); - FunctionPassManager &PM = jitstate->getPM(locked); - PM.add(new DataLayout(*TM.getDataLayout())); + FunctionPassManager &PM = jitstate->getPM(); + M->setDataLayout(TM.getDataLayout()); + PM.add(new DataLayoutPass(M)); // Turn the machine code intermediate representation into bytes in memory that // may be executed. - if (TM.addPassesToEmitMachineCode(PM, *JCE)) { + if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) { report_fatal_error("Target does not support machine code emission!"); } @@ -182,12 +184,13 @@ void JIT::addModule(Module *M) { jitstate = new JITState(M); - FunctionPassManager &PM = jitstate->getPM(locked); - PM.add(new DataLayout(*TM.getDataLayout())); + FunctionPassManager &PM = jitstate->getPM(); + M->setDataLayout(TM.getDataLayout()); + PM.add(new DataLayoutPass(M)); // Turn the machine code intermediate representation into bytes in memory // that may be executed. - if (TM.addPassesToEmitMachineCode(PM, *JCE)) { + if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) { report_fatal_error("Target does not support machine code emission!"); } @@ -207,18 +210,19 @@ bool JIT::removeModule(Module *M) { if (jitstate && jitstate->getModule() == M) { delete jitstate; - jitstate = 0; + jitstate = nullptr; } if (!jitstate && !Modules.empty()) { jitstate = new JITState(Modules[0]); - FunctionPassManager &PM = jitstate->getPM(locked); - PM.add(new DataLayout(*TM.getDataLayout())); + FunctionPassManager &PM = jitstate->getPM(); + M->setDataLayout(TM.getDataLayout()); + PM.add(new DataLayoutPass(M)); // Turn the machine code intermediate representation into bytes in memory // that may be executed. - if (TM.addPassesToEmitMachineCode(PM, *JCE)) { + if (TM.addPassesToEmitMachineCode(PM, *JCE, !getVerifyModules())) { report_fatal_error("Target does not support machine code emission!"); } @@ -349,7 +353,7 @@ GenericValue JIT::runFunction(Function *F, // currently don't support varargs. SmallVector<Value*, 8> Args; for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { - Constant *C = 0; + Constant *C = nullptr; Type *ArgTy = FTy->getParamType(i); const GenericValue &AV = ArgValues[i]; switch (ArgTy->getTypeID()) { @@ -402,13 +406,13 @@ GenericValue JIT::runFunction(Function *F, } void JIT::RegisterJITEventListener(JITEventListener *L) { - if (L == NULL) + if (!L) return; MutexGuard locked(lock); EventListeners.push_back(L); } void JIT::UnregisterJITEventListener(JITEventListener *L) { - if (L == NULL) + if (!L) return; MutexGuard locked(lock); std::vector<JITEventListener*>::reverse_iterator I= @@ -446,9 +450,8 @@ void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { MachineCodeInfo *const MCI; public: MCIListener(MachineCodeInfo *mci) : MCI(mci) {} - virtual void NotifyFunctionEmitted(const Function &, - void *Code, size_t Size, - const EmittedFunctionDetails &) { + void NotifyFunctionEmitted(const Function &, void *Code, size_t Size, + const EmittedFunctionDetails &) override { MCI->setAddress(Code); MCI->setSize(Size); } @@ -457,41 +460,41 @@ void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { if (MCI) RegisterJITEventListener(&MCIL); - runJITOnFunctionUnlocked(F, locked); + runJITOnFunctionUnlocked(F); if (MCI) UnregisterJITEventListener(&MCIL); } -void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { +void JIT::runJITOnFunctionUnlocked(Function *F) { assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); - jitTheFunction(F, locked); + jitTheFunctionUnlocked(F); // If the function referred to another function that had not yet been // read from bitcode, and we are jitting non-lazily, emit it now. - while (!jitstate->getPendingFunctions(locked).empty()) { - Function *PF = jitstate->getPendingFunctions(locked).back(); - jitstate->getPendingFunctions(locked).pop_back(); + while (!jitstate->getPendingFunctions().empty()) { + Function *PF = jitstate->getPendingFunctions().back(); + jitstate->getPendingFunctions().pop_back(); assert(!PF->hasAvailableExternallyLinkage() && "Externally-defined function should not be in pending list."); - jitTheFunction(PF, locked); + jitTheFunctionUnlocked(PF); // Now that the function has been jitted, ask the JITEmitter to rewrite // the stub with real address of the function. - updateFunctionStub(PF); + updateFunctionStubUnlocked(PF); } } -void JIT::jitTheFunction(Function *F, const MutexGuard &locked) { +void JIT::jitTheFunctionUnlocked(Function *F) { isAlreadyCodeGenerating = true; - jitstate->getPM(locked).run(*F); + jitstate->getPM().run(*F); isAlreadyCodeGenerating = false; // clear basic block addresses after this function is done - getBasicBlockAddressMap(locked).clear(); + getBasicBlockAddressMap().clear(); } /// getPointerToFunction - This method is used to get the address of the @@ -523,7 +526,7 @@ void *JIT::getPointerToFunction(Function *F) { return Addr; } - runJITOnFunctionUnlocked(F, locked); + runJITOnFunctionUnlocked(F); void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); @@ -534,9 +537,9 @@ void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) { MutexGuard locked(lock); BasicBlockAddressMapTy::iterator I = - getBasicBlockAddressMap(locked).find(BB); - if (I == getBasicBlockAddressMap(locked).end()) { - getBasicBlockAddressMap(locked)[BB] = Addr; + getBasicBlockAddressMap().find(BB); + if (I == getBasicBlockAddressMap().end()) { + getBasicBlockAddressMap()[BB] = Addr; } else { // ignore repeats: some BBs can be split into few MBBs? } @@ -544,7 +547,7 @@ void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) { void JIT::clearPointerToBasicBlock(const BasicBlock *BB) { MutexGuard locked(lock); - getBasicBlockAddressMap(locked).erase(BB); + getBasicBlockAddressMap().erase(BB); } void *JIT::getPointerToBasicBlock(BasicBlock *BB) { @@ -555,8 +558,8 @@ void *JIT::getPointerToBasicBlock(BasicBlock *BB) { MutexGuard locked(lock); BasicBlockAddressMapTy::iterator I = - getBasicBlockAddressMap(locked).find(BB); - if (I != getBasicBlockAddressMap(locked).end()) { + getBasicBlockAddressMap().find(BB); + if (I != getBasicBlockAddressMap().end()) { return I->second; } else { llvm_unreachable("JIT does not have BB address for address-of-label, was" @@ -581,7 +584,7 @@ void *JIT::getPointerToNamedFunction(const std::string &Name, report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } - return 0; + return nullptr; } @@ -601,7 +604,7 @@ void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { return (void*)&__dso_handle; #endif Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName()); - if (Ptr == 0) { + if (!Ptr) { report_fatal_error("Could not resolve external global address: " +GV->getName()); } @@ -626,10 +629,10 @@ void *JIT::recompileAndRelinkFunction(Function *F) { void *OldAddr = getPointerToGlobalIfAvailable(F); // If it's not already compiled there is no reason to patch it up. - if (OldAddr == 0) { return getPointerToFunction(F); } + if (!OldAddr) return getPointerToFunction(F); // Delete the old function mapping. - addGlobalMapping(F, 0); + addGlobalMapping(F, nullptr); // Recodegen the function runJITOnFunction(F); @@ -685,7 +688,7 @@ char* JIT::getMemoryForGV(const GlobalVariable* GV) { void JIT::addPendingFunction(Function *F) { MutexGuard locked(lock); - jitstate->getPendingFunctions(locked).push_back(F); + jitstate->getPendingFunctions().push_back(F); } diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h index 2ae155b..69a7c36 100644 --- a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h @@ -15,8 +15,8 @@ #define JIT_H #include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/IR/ValueHandle.h" #include "llvm/PassManager.h" -#include "llvm/Support/ValueHandle.h" namespace llvm { @@ -39,12 +39,12 @@ private: public: explicit JITState(Module *M) : PM(M), M(M) {} - FunctionPassManager &getPM(const MutexGuard &L) { + FunctionPassManager &getPM() { return PM; } Module *getModule() const { return M; } - std::vector<AssertingVH<Function> > &getPendingFunctions(const MutexGuard &L){ + std::vector<AssertingVH<Function> > &getPendingFunctions() { return PendingFunctions; } }; @@ -106,16 +106,16 @@ public: RM, CMM); } - virtual void addModule(Module *M); + void addModule(Module *M) override; /// removeModule - Remove a Module from the list of modules. Returns true if /// M is found. - virtual bool removeModule(Module *M); + bool removeModule(Module *M) override; /// runFunction - Start execution with the specified function and arguments. /// - virtual GenericValue runFunction(Function *F, - const std::vector<GenericValue> &ArgValues); + GenericValue runFunction(Function *F, + const std::vector<GenericValue> &ArgValues) override; /// getPointerToNamedFunction - This method returns the address of the /// specified function by using the MemoryManager. As such it is only @@ -125,8 +125,8 @@ public: /// found, this function silently returns a null pointer. Otherwise, /// it prints a message to stderr and aborts. /// - virtual void *getPointerToNamedFunction(const std::string &Name, - bool AbortOnFailure = true); + void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) override; // CompilationCallback - Invoked the first time that a call site is found, // which causes lazy compilation of the target function. @@ -136,7 +136,7 @@ public: /// getPointerToFunction - This returns the address of the specified function, /// compiling it if necessary. /// - void *getPointerToFunction(Function *F); + void *getPointerToFunction(Function *F) override; /// addPointerToBasicBlock - Adds address of the specific basic block. void addPointerToBasicBlock(const BasicBlock *BB, void *Addr); @@ -146,18 +146,18 @@ public: /// getPointerToBasicBlock - This returns the address of the specified basic /// block, assuming function is compiled. - void *getPointerToBasicBlock(BasicBlock *BB); + void *getPointerToBasicBlock(BasicBlock *BB) override; /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. - void *getOrEmitGlobalVariable(const GlobalVariable *GV); + void *getOrEmitGlobalVariable(const GlobalVariable *GV) override; /// getPointerToFunctionOrStub - If the specified function has been /// code-gen'd, return a pointer to the function. If not, compile it, or use /// a stub to implement lazy compilation if available. /// - void *getPointerToFunctionOrStub(Function *F); + void *getPointerToFunctionOrStub(Function *F) override; /// recompileAndRelinkFunction - This method is used to force a function /// which has already been compiled, to be compiled again, possibly @@ -165,12 +165,12 @@ public: /// with a branch to the new copy. If there was no old copy, this acts /// just like JIT::getPointerToFunction(). /// - void *recompileAndRelinkFunction(Function *F); + void *recompileAndRelinkFunction(Function *F) override; /// freeMachineCodeForFunction - deallocate memory used to code-generate this /// Function. /// - void freeMachineCodeForFunction(Function *F); + void freeMachineCodeForFunction(Function *F) override; /// addPendingFunction - while jitting non-lazily, a called but non-codegen'd /// function was encountered. Add it to a pending list to be processed after @@ -189,10 +189,13 @@ public: TargetMachine *TM); // Run the JIT on F and return information about the generated code - void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0); + void runJITOnFunction(Function *F, MachineCodeInfo *MCI = nullptr) override; + + void RegisterJITEventListener(JITEventListener *L) override; + void UnregisterJITEventListener(JITEventListener *L) override; + + TargetMachine *getTargetMachine() override { return &TM; } - virtual void RegisterJITEventListener(JITEventListener *L); - virtual void UnregisterJITEventListener(JITEventListener *L); /// These functions correspond to the methods on JITEventListener. They /// iterate over the registered listeners and call the corresponding method on /// each. @@ -202,7 +205,7 @@ public: void NotifyFreeingMachineCode(void *OldPtr); BasicBlockAddressMapTy & - getBasicBlockAddressMap(const MutexGuard &) { + getBasicBlockAddressMap() { return BasicBlockAddressMap; } @@ -210,14 +213,14 @@ public: private: static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM, TargetMachine &tm); - void runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked); - void updateFunctionStub(Function *F); - void jitTheFunction(Function *F, const MutexGuard &locked); + void runJITOnFunctionUnlocked(Function *F); + void updateFunctionStubUnlocked(Function *F); + void jitTheFunctionUnlocked(Function *F); protected: /// getMemoryforGV - Allocate memory for a global variable. - virtual char* getMemoryForGV(const GlobalVariable* GV); + char* getMemoryForGV(const GlobalVariable* GV) override; }; diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp index acbbfa1..2ba1f86 100644 --- a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp @@ -12,14 +12,11 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "jit" #include "JIT.h" #include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/ValueMap.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineCodeInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" @@ -27,21 +24,22 @@ #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRelocation.h" -#include "llvm/DebugInfo.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" #include "llvm/Support/Debug.h" -#include "llvm/Support/Disassembler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MutexGuard.h" -#include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetJITInfo.h" @@ -53,6 +51,8 @@ #endif using namespace llvm; +#define DEBUG_TYPE "jit" + STATISTIC(NumBytes, "Number of bytes of machine code compiled"); STATISTIC(NumRelos, "Number of relocations applied"); STATISTIC(NumRetries, "Number of retries with more memory"); @@ -120,21 +120,16 @@ namespace { #endif } - FunctionToLazyStubMapTy& getFunctionToLazyStubMap( - const MutexGuard& locked) { - assert(locked.holds(TheJIT->lock)); + FunctionToLazyStubMapTy& getFunctionToLazyStubMap() { return FunctionToLazyStubMap; } - GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { - assert(lck.holds(TheJIT->lock)); + GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap() { return GlobalToIndirectSymMap; } std::pair<void *, Function *> LookupFunctionFromCallSite( - const MutexGuard &locked, void *CallSite) const { - assert(locked.holds(TheJIT->lock)); - + void *CallSite) const { // The address given to us for the stub may not be exactly right, it // might be a little bit after the stub. As such, use upper_bound to // find it. @@ -146,9 +141,7 @@ namespace { return *I; } - void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { - assert(locked.holds(TheJIT->lock)); - + void AddCallSite(void *CallSite, Function *F) { bool Inserted = CallSiteToFunctionMap.insert( std::make_pair(CallSite, F)).second; (void)Inserted; @@ -344,7 +337,8 @@ namespace { void *FunctionBody; // Beginning of the function's allocation. void *Code; // The address the function's code actually starts at. void *ExceptionTable; - EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} + EmittedCode() : FunctionBody(nullptr), Code(nullptr), + ExceptionTable(nullptr) {} }; struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { typedef JITEmitter *ExtraData; @@ -361,7 +355,7 @@ namespace { public: JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) - : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), + : SizeEstimate(0), Resolver(jit, *this), MMI(nullptr), CurFn(nullptr), EmittedFunctions(this), TheJIT(&jit) { MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); if (jit.getJITInfo().needsGOT()) { @@ -376,8 +370,8 @@ namespace { JITResolver &getJITResolver() { return Resolver; } - virtual void startFunction(MachineFunction &F); - virtual bool finishFunction(MachineFunction &F); + void startFunction(MachineFunction &F) override; + bool finishFunction(MachineFunction &F) override; void emitConstantPool(MachineConstantPool *MCP); void initJumpTableInfo(MachineJumpTableInfo *MJTI); @@ -387,24 +381,23 @@ namespace { unsigned StubSize, unsigned Alignment = 1); void startGVStub(void *Buffer, unsigned StubSize); void finishGVStub(); - virtual void *allocIndirectGV(const GlobalValue *GV, - const uint8_t *Buffer, size_t Size, - unsigned Alignment); + void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer, + size_t Size, unsigned Alignment) override; /// allocateSpace - Reserves space in the current block if any, or /// allocate a new one of the given size. - virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); + void *allocateSpace(uintptr_t Size, unsigned Alignment) override; /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, /// this method does not allocate memory in the current output buffer, /// because a global may live longer than the current function. - virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); + void *allocateGlobal(uintptr_t Size, unsigned Alignment) override; - virtual void addRelocation(const MachineRelocation &MR) { + void addRelocation(const MachineRelocation &MR) override { Relocations.push_back(MR); } - virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { + void StartMachineBasicBlock(MachineBasicBlock *MBB) override { if (MBBLocations.size() <= (unsigned)MBB->getNumber()) MBBLocations.resize((MBB->getNumber()+1)*2); MBBLocations[MBB->getNumber()] = getCurrentPCValue(); @@ -415,10 +408,11 @@ namespace { << (void*) getCurrentPCValue() << "]\n"); } - virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; - virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; + uintptr_t getConstantPoolEntryAddress(unsigned Entry) const override; + uintptr_t getJumpTableEntryAddress(unsigned Entry) const override; - virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ + uintptr_t + getMachineBasicBlockAddress(MachineBasicBlock *MBB) const override { assert(MBBLocations.size() > (unsigned)MBB->getNumber() && MBBLocations[MBB->getNumber()] && "MBB not emitted!"); return MBBLocations[MBB->getNumber()]; @@ -433,22 +427,22 @@ namespace { /// function body. void deallocateMemForFunction(const Function *F); - virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); + void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) override; - virtual void emitLabel(MCSymbol *Label) { + void emitLabel(MCSymbol *Label) override { LabelLocations[Label] = getCurrentPCValue(); } - virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { + DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() override { return &LabelLocations; } - virtual uintptr_t getLabelAddress(MCSymbol *Label) const { + uintptr_t getLabelAddress(MCSymbol *Label) const override { assert(LabelLocations.count(Label) && "Label not emitted!"); return LabelLocations.find(Label)->second; } - virtual void setModuleInfo(MachineModuleInfo* Info) { + void setModuleInfo(MachineModuleInfo* Info) override { MMI = Info; } @@ -502,7 +496,7 @@ void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this function, recycle it. - return state.getFunctionToLazyStubMap(locked).lookup(F); + return state.getFunctionToLazyStubMap().lookup(F); } /// getFunctionStub - This returns a pointer to a function stub, creating @@ -511,13 +505,13 @@ void *JITResolver::getLazyFunctionStub(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a lazy stub for this function, recycle it. - void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; + void *&Stub = state.getFunctionToLazyStubMap()[F]; if (Stub) return Stub; // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we // must resolve the symbol now. void *Actual = TheJIT->isCompilingLazily() - ? (void *)(intptr_t)LazyResolverFn : (void *)0; + ? (void *)(intptr_t)LazyResolverFn : (void *)nullptr; // If this is an external declaration, attempt to resolve the address now // to place in the stub. @@ -526,7 +520,7 @@ void *JITResolver::getLazyFunctionStub(Function *F) { // If we resolved the symbol to a null address (eg. a weak external) // don't emit a stub. Return a null pointer to the application. - if (!Actual) return 0; + if (!Actual) return nullptr; } TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); @@ -553,7 +547,7 @@ void *JITResolver::getLazyFunctionStub(Function *F) { // Finally, keep track of the stub-to-Function mapping so that the // JITCompilerFn knows which function to compile! - state.AddCallSite(locked, Stub, F); + state.AddCallSite(Stub, F); } else if (!Actual) { // If we are JIT'ing non-lazily but need to call a function that does not // exist yet, add it to the JIT's work list so that we can fill in the @@ -572,7 +566,7 @@ void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this global variable, recycle it. - void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; + void *&IndirectSym = state.getGlobalToIndirectSymMap()[GV]; if (IndirectSym) return IndirectSym; // Otherwise, codegen a new indirect symbol. @@ -593,8 +587,8 @@ void *JITResolver::getExternalFunctionStub(void *FnAddr) { if (Stub) return Stub; TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); - JE.startGVStub(0, SL.Size, SL.Alignment); - Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); + JE.startGVStub(nullptr, SL.Size, SL.Alignment); + Stub = TheJIT->getJITInfo().emitFunctionStub(nullptr, FnAddr, JE); JE.finishGVStub(); DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub @@ -620,8 +614,8 @@ void *JITResolver::JITCompilerFn(void *Stub) { JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); assert(JR && "Unable to find the corresponding JITResolver to the call site"); - Function* F = 0; - void* ActualPtr = 0; + Function* F = nullptr; + void* ActualPtr = nullptr; { // Only lock for getting the Function. The call getPointerToFunction made @@ -632,7 +626,7 @@ void *JITResolver::JITCompilerFn(void *Stub) { // The address given to us for the stub may not be exactly right, it might // be a little bit after the stub. As such, use upper_bound to find it. std::pair<void*, Function*> I = - JR->state.LookupFunctionFromCallSite(locked, Stub); + JR->state.LookupFunctionFromCallSite(Stub); F = I.second; ActualPtr = I.first; } @@ -683,13 +677,23 @@ void *JITResolver::JITCompilerFn(void *Stub) { //===----------------------------------------------------------------------===// // JITEmitter code. // + +static GlobalObject *getSimpleAliasee(Constant *C) { + C = C->stripPointerCasts(); + return dyn_cast<GlobalObject>(C); +} + void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, bool MayNeedFarStub) { if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) return TheJIT->getOrEmitGlobalVariable(GV); - if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) - return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); + if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + // We can only handle simple cases. + if (GlobalValue *GV = getSimpleAliasee(GA->getAliasee())) + return TheJIT->getPointerToGlobal(GV); + return nullptr; + } // If we have already compiled the function, return a pointer to its body. Function *F = cast<Function>(V); @@ -736,7 +740,7 @@ void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); - if (DL.getScope(Context) != 0 && PrevDL != DL) { + if (DL.getScope(Context) != nullptr && PrevDL != DL) { JITEvent_EmittedFunctionDetails::LineStart NextLine; NextLine.Address = getCurrentPCValue(); NextLine.Loc = DL; @@ -825,7 +829,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) { // Resolve the relocations to concrete pointers. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; - void *ResultPtr = 0; + void *ResultPtr = nullptr; if (!MR.letTargetResolve()) { if (MR.isExternalSymbol()) { ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), @@ -871,7 +875,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) { } } - CurFn = 0; + CurFn = nullptr; TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], Relocations.size(), MemMgr->getGOTBase()); } @@ -900,7 +904,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) { SizeEstimate = 0; } - BufferBegin = CurBufferPtr = 0; + BufferBegin = CurBufferPtr = nullptr; NumBytes += FnEnd-FnStart; // Invalidate the icache if necessary. @@ -924,11 +928,6 @@ bool JITEmitter::finishFunction(MachineFunction &F) { MemMgr->setMemoryExecutable(); DEBUG({ - if (sys::hasDisassembler()) { - dbgs() << "JIT: Disassembled code:\n"; - dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, - (uintptr_t)FnStart); - } else { dbgs() << "JIT: Binary code:\n"; uint8_t* q = FnStart; for (int i = 0; q < FnEnd; q += 4, ++i) { @@ -950,7 +949,6 @@ bool JITEmitter::finishFunction(MachineFunction &F) { dbgs() << '\n'; } dbgs()<< '\n'; - } }); if (MMI) @@ -1018,7 +1016,7 @@ void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { ConstantPoolBase = allocateSpace(Size, Align); ConstantPool = MCP; - if (ConstantPoolBase == 0) return; // Buffer overflow. + if (!ConstantPoolBase) return; // Buffer overflow. DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase << "] (size: " << Size << ", alignment: " << Align << ")\n"); @@ -1074,7 +1072,7 @@ void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { return; const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); - if (JT.empty() || JumpTableBase == 0) return; + if (JT.empty() || !JumpTableBase) return; switch (MJTI->getEntryKind()) { @@ -1224,7 +1222,7 @@ void *JIT::getPointerToFunctionOrStub(Function *F) { return JE->getJITResolver().getLazyFunctionStub(F); } -void JIT::updateFunctionStub(Function *F) { +void JIT::updateFunctionStubUnlocked(Function *F) { // Get the empty stub we generated earlier. JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); void *Stub = JE->getJITResolver().getLazyFunctionStub(F); @@ -1244,7 +1242,7 @@ void JIT::updateFunctionStub(Function *F) { void JIT::freeMachineCodeForFunction(Function *F) { // Delete translation for this from the ExecutionEngine, so it will get // retranslated next time it is used. - updateGlobalMapping(F, 0); + updateGlobalMapping(F, nullptr); // Free the actual memory for the function body and related stuff. static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F); diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp index f58d31b..584b93f 100644 --- a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp @@ -11,7 +11,6 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "jit" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" @@ -40,6 +39,8 @@ using namespace llvm; +#define DEBUG_TYPE "jit" + STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); JITMemoryManager::~JITMemoryManager() {} @@ -80,7 +81,7 @@ namespace { /// getFreeBlockBefore - If the block before this one is free, return it, /// otherwise return null. FreeRangeHeader *getFreeBlockBefore() const { - if (PrevAllocated) return 0; + if (PrevAllocated) return nullptr; intptr_t PrevSize = reinterpret_cast<intptr_t *>( const_cast<MemoryRangeHeader *>(this))[-1]; return reinterpret_cast<FreeRangeHeader *>( @@ -174,7 +175,7 @@ FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { // coalesce with it, update our notion of what the free list is. if (&FollowingFreeBlock == FreeList) { FreeList = FollowingFreeBlock.Next; - FreeListToReturn = 0; + FreeListToReturn = nullptr; assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); } FollowingFreeBlock.RemoveFromFreeList(); @@ -269,13 +270,12 @@ namespace { class DefaultJITMemoryManager; - class JITSlabAllocator : public SlabAllocator { + class JITAllocator { DefaultJITMemoryManager &JMM; public: - JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } - virtual ~JITSlabAllocator() { } - virtual MemSlab *Allocate(size_t Size); - virtual void Deallocate(MemSlab *Slab); + JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } + void *Allocate(size_t Size, size_t /*Alignment*/); + void Deallocate(void *Slab, size_t Size); }; /// DefaultJITMemoryManager - Manage memory for the JIT code generation. @@ -285,7 +285,21 @@ namespace { /// middle of emitting a function, and we don't know how large the function we /// are emitting is. class DefaultJITMemoryManager : public JITMemoryManager { + public: + /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at + /// least this much unless more is requested. Currently, in 512k slabs. + static const size_t DefaultCodeSlabSize = 512 * 1024; + + /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably + /// 16 pages) unless we get an allocation above SizeThreshold. + static const size_t DefaultSlabSize = 64 * 1024; + + /// DefaultSizeThreshold - For any allocation larger than 16K (probably + /// 4 pages), we should allocate a separate slab to avoid wasted space at + /// the end of a normal slab. + static const size_t DefaultSizeThreshold = 16 * 1024; + private: // Whether to poison freed memory. bool PoisonMemory; @@ -299,9 +313,10 @@ namespace { // Memory slabs allocated by the JIT. We refer to them as slabs so we don't // confuse them with the blocks of memory described above. std::vector<sys::MemoryBlock> CodeSlabs; - JITSlabAllocator BumpSlabAllocator; - BumpPtrAllocator StubAllocator; - BumpPtrAllocator DataAllocator; + BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, + DefaultSizeThreshold> StubAllocator; + BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, + DefaultSizeThreshold> DataAllocator; // Circular list of free blocks. FreeRangeHeader *FreeMemoryList; @@ -318,37 +333,26 @@ namespace { /// last slab it allocated, so that subsequent allocations follow it. sys::MemoryBlock allocateNewSlab(size_t size); - /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at - /// least this much unless more is requested. - static const size_t DefaultCodeSlabSize; - - /// DefaultSlabSize - Allocate data into slabs of this size unless we get - /// an allocation above SizeThreshold. - static const size_t DefaultSlabSize; - - /// DefaultSizeThreshold - For any allocation larger than this threshold, we - /// should allocate a separate slab. - static const size_t DefaultSizeThreshold; - /// getPointerToNamedFunction - This method returns the address of the /// specified function by using the dlsym function call. - virtual void *getPointerToNamedFunction(const std::string &Name, - bool AbortOnFailure = true); + void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) override; - void AllocateGOT(); + void AllocateGOT() override; // Testing methods. - virtual bool CheckInvariants(std::string &ErrorStr); - size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; } - size_t GetDefaultDataSlabSize() { return DefaultSlabSize; } - size_t GetDefaultStubSlabSize() { return DefaultSlabSize; } - unsigned GetNumCodeSlabs() { return CodeSlabs.size(); } - unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); } - unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); } + bool CheckInvariants(std::string &ErrorStr) override; + size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; } + size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; } + size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; } + unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); } + unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); } + unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); } /// startFunctionBody - When a function starts, allocate a block of free /// executable memory, returning a pointer to it and its actual size. - uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { + uint8_t *startFunctionBody(const Function *F, + uintptr_t &ActualSize) override { FreeRangeHeader* candidateBlock = FreeMemoryList; FreeRangeHeader* head = FreeMemoryList; @@ -422,7 +426,7 @@ namespace { /// endFunctionBody - The function F is now allocated, and takes the memory /// in the range [FunctionStart,FunctionEnd). void endFunctionBody(const Function *F, uint8_t *FunctionStart, - uint8_t *FunctionEnd) { + uint8_t *FunctionEnd) override { assert(FunctionEnd > FunctionStart); assert(FunctionStart == (uint8_t *)(CurBlock+1) && "Mismatched function start/end!"); @@ -435,7 +439,7 @@ namespace { /// allocateSpace - Allocate a memory block of the given size. This method /// cannot be called between calls to startFunctionBody and endFunctionBody. - uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { + uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override { CurBlock = FreeMemoryList; FreeMemoryList = FreeMemoryList->AllocateBlock(); @@ -453,18 +457,19 @@ namespace { /// allocateStub - Allocate memory for a function stub. uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, - unsigned Alignment) { + unsigned Alignment) override { return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); } /// allocateGlobal - Allocate memory for a global. - uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { + uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override { return (uint8_t*)DataAllocator.Allocate(Size, Alignment); } /// allocateCodeSection - Allocate memory for a code section. uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, - unsigned SectionID, StringRef SectionName) { + unsigned SectionID, + StringRef SectionName) override { // Grow the required block size to account for the block header Size += sizeof(*CurBlock); @@ -511,15 +516,15 @@ namespace { /// allocateDataSection - Allocate memory for a data section. uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, - bool IsReadOnly) { + bool IsReadOnly) override { return (uint8_t*)DataAllocator.Allocate(Size, Alignment); } - bool finalizeMemory(std::string *ErrMsg) { + bool finalizeMemory(std::string *ErrMsg) override { return false; } - uint8_t *getGOTBase() const { + uint8_t *getGOTBase() const override { return GOTBase; } @@ -539,57 +544,49 @@ namespace { /// deallocateFunctionBody - Deallocate all memory for the specified /// function body. - void deallocateFunctionBody(void *Body) { + void deallocateFunctionBody(void *Body) override { if (Body) deallocateBlock(Body); } /// setMemoryWritable - When code generation is in progress, /// the code pages may need permissions changed. - void setMemoryWritable() - { + void setMemoryWritable() override { for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) sys::Memory::setWritable(CodeSlabs[i]); } /// setMemoryExecutable - When code generation is done and we're ready to /// start execution, the code pages may need permissions changed. - void setMemoryExecutable() - { + void setMemoryExecutable() override { for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) sys::Memory::setExecutable(CodeSlabs[i]); } /// setPoisonMemory - Controls whether we write garbage over freed memory. /// - void setPoisonMemory(bool poison) { + void setPoisonMemory(bool poison) override { PoisonMemory = poison; } }; } -MemSlab *JITSlabAllocator::Allocate(size_t Size) { +void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) { sys::MemoryBlock B = JMM.allocateNewSlab(Size); - MemSlab *Slab = (MemSlab*)B.base(); - Slab->Size = B.size(); - Slab->NextPtr = 0; - return Slab; + return B.base(); } -void JITSlabAllocator::Deallocate(MemSlab *Slab) { - sys::MemoryBlock B(Slab, Slab->Size); +void JITAllocator::Deallocate(void *Slab, size_t Size) { + sys::MemoryBlock B(Slab, Size); sys::Memory::ReleaseRWX(B); } DefaultJITMemoryManager::DefaultJITMemoryManager() - : + : #ifdef NDEBUG - PoisonMemory(false), + PoisonMemory(false), #else - PoisonMemory(true), + PoisonMemory(true), #endif - LastSlab(0, 0), - BumpSlabAllocator(*this), - StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator), - DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) { + LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) { // Allocate space for code. sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); @@ -642,11 +639,11 @@ DefaultJITMemoryManager::DefaultJITMemoryManager() // Start out with the freelist pointing to Mem0. FreeMemoryList = Mem0; - GOTBase = NULL; + GOTBase = nullptr; } void DefaultJITMemoryManager::AllocateGOT() { - assert(GOTBase == 0 && "Cannot allocate the got multiple times"); + assert(!GOTBase && "Cannot allocate the got multiple times"); GOTBase = new uint8_t[sizeof(void*) * 8192]; HasGOT = true; } @@ -661,9 +658,9 @@ DefaultJITMemoryManager::~DefaultJITMemoryManager() { sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { // Allocate a new block close to the last one. std::string ErrMsg; - sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0; + sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr; sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); - if (B.base() == 0) { + if (!B.base()) { report_fatal_error("Allocation failed when allocating new memory in the" " JIT\n" + Twine(ErrMsg)); } @@ -724,7 +721,7 @@ bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { char *End = Start + I->size(); // Check each memory range. - for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL; + for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr; Start <= (char*)Hdr && (char*)Hdr < End; Hdr = &Hdr->getBlockAfter()) { if (Hdr->ThisAllocated == 0) { @@ -893,7 +890,7 @@ void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } - return 0; + return nullptr; } @@ -902,11 +899,6 @@ JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { return new DefaultJITMemoryManager(); } -// Allocate memory for code in 512K slabs. -const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024; - -// Allocate globals and stubs in slabs of 64K. (probably 16 pages) -const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024; - -// Waste at most 16K at the end of each bump slab. (probably 4 pages) -const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024; +const size_t DefaultJITMemoryManager::DefaultCodeSlabSize; +const size_t DefaultJITMemoryManager::DefaultSlabSize; +const size_t DefaultJITMemoryManager::DefaultSizeThreshold; diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp index 195c458..e9ba96a 100644 --- a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp +++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp @@ -14,17 +14,20 @@ #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectBuffer.h" #include "llvm/ExecutionEngine/ObjectImage.h" -#include "llvm/PassManager.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" +#include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" +#include "llvm/Object/Archive.h" +#include "llvm/PassManager.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MutexGuard.h" +#include "llvm/Target/TargetLowering.h" using namespace llvm; @@ -47,7 +50,7 @@ ExecutionEngine *MCJIT::createJIT(Module *M, // Try to register the program as a source of symbols to resolve against. // // FIXME: Don't do this here. - sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); + sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr); return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(), GVsWithCode); @@ -55,8 +58,8 @@ ExecutionEngine *MCJIT::createJIT(Module *M, MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM, bool AllocateGVsWithCode) - : ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(this, MM), Dyld(&MemMgr), - ObjCache(0) { + : ExecutionEngine(m), TM(tm), Ctx(nullptr), MemMgr(this, MM), Dyld(&MemMgr), + ObjCache(nullptr) { OwnedModules.addModule(m); setDataLayout(TM->getDataLayout()); @@ -77,15 +80,24 @@ MCJIT::~MCJIT() { Modules.clear(); Dyld.deregisterEHFrames(); - LoadedObjectMap::iterator it, end = LoadedObjects.end(); - for (it = LoadedObjects.begin(); it != end; ++it) { - ObjectImage *Obj = it->second; + LoadedObjectList::iterator it, end; + for (it = LoadedObjects.begin(), end = LoadedObjects.end(); it != end; ++it) { + ObjectImage *Obj = *it; if (Obj) { NotifyFreeingObject(*Obj); delete Obj; } } LoadedObjects.clear(); + + + SmallVector<object::Archive *, 2>::iterator ArIt, ArEnd; + for (ArIt = Archives.begin(), ArEnd = Archives.end(); ArIt != ArEnd; ++ArIt) { + object::Archive *A = *ArIt; + delete A; + } + Archives.clear(); + delete TM; } @@ -101,6 +113,21 @@ bool MCJIT::removeModule(Module *M) { +void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) { + ObjectImage *LoadedObject = Dyld.loadObject(std::move(Obj)); + if (!LoadedObject || Dyld.hasError()) + report_fatal_error(Dyld.getErrorString()); + + LoadedObjects.push_back(LoadedObject); + + NotifyObjectEmitted(*LoadedObject); +} + +void MCJIT::addArchive(object::Archive *A) { + Archives.push_back(A); +} + + void MCJIT::setObjectCache(ObjectCache* NewCache) { MutexGuard locked(lock); ObjCache = NewCache; @@ -115,14 +142,16 @@ ObjectBufferStream* MCJIT::emitObject(Module *M) { PassManager PM; - PM.add(new DataLayout(*TM->getDataLayout())); + M->setDataLayout(TM->getDataLayout()); + PM.add(new DataLayoutPass(M)); // The RuntimeDyld will take ownership of this shortly - OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream()); + std::unique_ptr<ObjectBufferStream> CompiledObject(new ObjectBufferStream()); // Turn the machine code intermediate representation into bytes in memory // that may be executed. - if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) { + if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), + !getVerifyModules())) { report_fatal_error("Target does not support MC emission!"); } @@ -136,11 +165,11 @@ ObjectBufferStream* MCJIT::emitObject(Module *M) { if (ObjCache) { // MemoryBuffer is a thin wrapper around the actual memory, so it's OK // to create a temporary object here and delete it after the call. - OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer()); + std::unique_ptr<MemoryBuffer> MB(CompiledObject->getMemBuffer()); ObjCache->notifyObjectCompiled(M, MB.get()); } - return CompiledObject.take(); + return CompiledObject.release(); } void MCJIT::generateCodeForModule(Module *M) { @@ -155,12 +184,12 @@ void MCJIT::generateCodeForModule(Module *M) { if (OwnedModules.hasModuleBeenLoaded(M)) return; - OwningPtr<ObjectBuffer> ObjectToLoad; + std::unique_ptr<ObjectBuffer> ObjectToLoad; // Try to load the pre-compiled object from cache if possible - if (0 != ObjCache) { - OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M)); - if (0 != PreCompiledObject.get()) - ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take())); + if (ObjCache) { + std::unique_ptr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M)); + if (PreCompiledObject.get()) + ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.release())); } // If the cache did not contain a suitable object, compile the object @@ -170,9 +199,9 @@ void MCJIT::generateCodeForModule(Module *M) { } // Load the object into the dynamic linker. - // MCJIT now owns the ObjectImage pointer (via its LoadedObjects map). - ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take()); - LoadedObjects[M] = LoadedObject; + // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list). + ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.release()); + LoadedObjects.push_back(LoadedObject); if (!LoadedObject) report_fatal_error(Dyld.getErrorString()); @@ -231,11 +260,10 @@ void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) { } uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) { - // Check with the RuntimeDyld to see if we already have this symbol. - if (Name[0] == '\1') - return Dyld.getSymbolLoadAddress(Name.substr(1)); - return Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix() - + Name)); + Mangler Mang(TM->getDataLayout()); + SmallString<128> FullName; + Mang.getNameWithPrefix(FullName, Name); + return Dyld.getSymbolLoadAddress(FullName); } Module *MCJIT::findModuleForSymbol(const std::string &Name, @@ -258,7 +286,7 @@ Module *MCJIT::findModuleForSymbol(const std::string &Name, } } // We didn't find the symbol in any of our modules. - return NULL; + return nullptr; } uint64_t MCJIT::getSymbolAddress(const std::string &Name, @@ -271,6 +299,31 @@ uint64_t MCJIT::getSymbolAddress(const std::string &Name, if (Addr) return Addr; + SmallVector<object::Archive*, 2>::iterator I, E; + for (I = Archives.begin(), E = Archives.end(); I != E; ++I) { + object::Archive *A = *I; + // Look for our symbols in each Archive + object::Archive::child_iterator ChildIt = A->findSym(Name); + if (ChildIt != A->child_end()) { + // FIXME: Support nested archives? + ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr = + ChildIt->getAsBinary(); + if (ChildBinOrErr.getError()) + continue; + std::unique_ptr<object::Binary> ChildBin = std::move(ChildBinOrErr.get()); + if (ChildBin->isObject()) { + std::unique_ptr<object::ObjectFile> OF( + static_cast<object::ObjectFile *>(ChildBin.release())); + // This causes the object file to be loaded. + addObjectFile(std::move(OF)); + // The address should be here now. + Addr = getExistingSymbolAddress(Name); + if (Addr) + return Addr; + } + } + } + // If it hasn't already been generated, see if it's in one of our modules. Module *M = findModuleForSymbol(Name, CheckFunctionsOnly); if (!M) @@ -317,18 +370,16 @@ void *MCJIT::getPointerToFunction(Function *F) { generateCodeForModule(M); else if (!OwnedModules.hasModuleBeenLoaded(M)) // If this function doesn't belong to one of our modules, we're done. - return NULL; + return nullptr; // FIXME: Should the Dyld be retaining module information? Probably not. - // FIXME: Should we be using the mangler for this? Probably. // // This is the accessor for the target address, so make sure to check the // load address of the symbol, not the local address. - StringRef BaseName = F->getName(); - if (BaseName[0] == '\1') - return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1)); - return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix() - + BaseName).str()); + Mangler Mang(TM->getDataLayout()); + SmallString<128> Name; + TM->getNameWithPrefix(Name, F, Mang); + return (void*)Dyld.getSymbolLoadAddress(Name); } void *MCJIT::recompileAndRelinkFunction(Function *F) { @@ -363,7 +414,7 @@ Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName, if (Function *F = (*I)->getFunction(FnName)) return F; } - return 0; + return nullptr; } Function *MCJIT::FindFunctionNamed(const char *FnName) { @@ -495,17 +546,17 @@ void *MCJIT::getPointerToNamedFunction(const std::string &Name, report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } - return 0; + return nullptr; } void MCJIT::RegisterJITEventListener(JITEventListener *L) { - if (L == NULL) + if (!L) return; MutexGuard locked(lock); EventListeners.push_back(L); } void MCJIT::UnregisterJITEventListener(JITEventListener *L) { - if (L == NULL) + if (!L) return; MutexGuard locked(lock); SmallVector<JITEventListener*, 2>::reverse_iterator I= diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h index 86b478b..100e9a2 100644 --- a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h +++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h @@ -31,43 +31,53 @@ public: LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM) : ParentEngine(Parent), ClientMM(MM) {} - virtual uint64_t getSymbolAddress(const std::string &Name); + uint64_t getSymbolAddress(const std::string &Name) override; // Functions deferred to client memory manager - virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, - unsigned SectionID, StringRef SectionName) { + uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, + unsigned SectionID, + StringRef SectionName) override { return ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName); } - virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, - unsigned SectionID, StringRef SectionName, - bool IsReadOnly) { + uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, + unsigned SectionID, StringRef SectionName, + bool IsReadOnly) override { return ClientMM->allocateDataSection(Size, Alignment, SectionID, SectionName, IsReadOnly); } - virtual void notifyObjectLoaded(ExecutionEngine *EE, - const ObjectImage *Obj) { + void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO, + uintptr_t DataSizeRW) override { + return ClientMM->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); + } + + bool needsToReserveAllocationSpace() override { + return ClientMM->needsToReserveAllocationSpace(); + } + + void notifyObjectLoaded(ExecutionEngine *EE, + const ObjectImage *Obj) override { ClientMM->notifyObjectLoaded(EE, Obj); } - virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) { + void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, + size_t Size) override { ClientMM->registerEHFrames(Addr, LoadAddr, Size); } - virtual void deregisterEHFrames(uint8_t *Addr, - uint64_t LoadAddr, - size_t Size) { + void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, + size_t Size) override { ClientMM->deregisterEHFrames(Addr, LoadAddr, Size); } - virtual bool finalizeMemory(std::string *ErrMsg = 0) { + bool finalizeMemory(std::string *ErrMsg = nullptr) override { return ClientMM->finalizeMemory(ErrMsg); } private: MCJIT *ParentEngine; - OwningPtr<RTDyldMemoryManager> ClientMM; + std::unique_ptr<RTDyldMemoryManager> ClientMM; }; // About Module states: added->loaded->finalized. @@ -206,8 +216,10 @@ class MCJIT : public ExecutionEngine { OwningModuleContainer OwnedModules; - typedef DenseMap<Module *, ObjectImage *> LoadedObjectMap; - LoadedObjectMap LoadedObjects; + SmallVector<object::Archive*, 2> Archives; + + typedef SmallVector<ObjectImage *, 2> LoadedObjectList; + LoadedObjectList LoadedObjects; // An optional ObjectCache to be notified of compiled objects and used to // perform lookup of pre-compiled code to avoid re-compilation. @@ -226,18 +238,24 @@ public: /// @name ExecutionEngine interface implementation /// @{ - virtual void addModule(Module *M); - virtual bool removeModule(Module *M); + void addModule(Module *M) override; + void addObjectFile(std::unique_ptr<object::ObjectFile> O) override; + void addArchive(object::Archive *O) override; + bool removeModule(Module *M) override; /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. - virtual Function *FindFunctionNamed(const char *FnName); + Function *FindFunctionNamed(const char *FnName) override; /// Sets the object manager that MCJIT should use to avoid compilation. - virtual void setObjectCache(ObjectCache *manager); + void setObjectCache(ObjectCache *manager) override; + + void setProcessAllSections(bool ProcessAllSections) override { + Dyld.setProcessAllSections(ProcessAllSections); + } - virtual void generateCodeForModule(Module *M); + void generateCodeForModule(Module *M) override; /// finalizeObject - ensure the module is fully processed and is usable. /// @@ -248,7 +266,7 @@ public: /// object. /// Is it OK to finalize a set of modules, add modules and finalize again. // FIXME: Do we really need both of these? - virtual void finalizeObject(); + void finalizeObject() override; virtual void finalizeModule(Module *); void finalizeLoadedModules(); @@ -256,18 +274,18 @@ public: /// the static constructors or destructors for a program. /// /// \param isDtors - Run the destructors instead of constructors. - void runStaticConstructorsDestructors(bool isDtors); + void runStaticConstructorsDestructors(bool isDtors) override; - virtual void *getPointerToBasicBlock(BasicBlock *BB); + void *getPointerToBasicBlock(BasicBlock *BB) override; - virtual void *getPointerToFunction(Function *F); + void *getPointerToFunction(Function *F) override; - virtual void *recompileAndRelinkFunction(Function *F); + void *recompileAndRelinkFunction(Function *F) override; - virtual void freeMachineCodeForFunction(Function *F); + void freeMachineCodeForFunction(Function *F) override; - virtual GenericValue runFunction(Function *F, - const std::vector<GenericValue> &ArgValues); + GenericValue runFunction(Function *F, + const std::vector<GenericValue> &ArgValues) override; /// getPointerToNamedFunction - This method returns the address of the /// specified function by using the dlsym function call. As such it is only @@ -277,25 +295,27 @@ public: /// found, this function silently returns a null pointer. Otherwise, /// it prints a message to stderr and aborts. /// - virtual void *getPointerToNamedFunction(const std::string &Name, - bool AbortOnFailure = true); + void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true) override; /// mapSectionAddress - map a section to its target address space value. /// Map the address of a JIT section as returned from the memory manager /// to the address in the target process as the running code will see it. /// This is the address which will be used for relocation resolution. - virtual void mapSectionAddress(const void *LocalAddress, - uint64_t TargetAddress) { + void mapSectionAddress(const void *LocalAddress, + uint64_t TargetAddress) override { Dyld.mapSectionAddress(LocalAddress, TargetAddress); } - virtual void RegisterJITEventListener(JITEventListener *L); - virtual void UnregisterJITEventListener(JITEventListener *L); + void RegisterJITEventListener(JITEventListener *L) override; + void UnregisterJITEventListener(JITEventListener *L) override; // If successful, these function will implicitly finalize all loaded objects. // To get a function address within MCJIT without causing a finalize, use // getSymbolAddress. - virtual uint64_t getGlobalValueAddress(const std::string &Name); - virtual uint64_t getFunctionAddress(const std::string &Name); + uint64_t getGlobalValueAddress(const std::string &Name) override; + uint64_t getFunctionAddress(const std::string &Name) override; + + TargetMachine *getTargetMachine() override { return TM; } /// @} /// @name (Private) Registration Interfaces @@ -322,7 +342,7 @@ protected: /// emitObject -- Generate a JITed object in memory from the specified module /// Currently, MCJIT only supports a single module and the module passed to /// this function call is expected to be the contained module. The module - /// is passed as a parameter here to prepare for multiple module support in + /// is passed as a parameter here to prepare for multiple module support in /// the future. ObjectBufferStream* emitObject(Module *M); diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp index cf90e77..5986084 100644 --- a/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp +++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp @@ -71,15 +71,15 @@ uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup, // // FIXME: Initialize the Near member for each memory group to avoid // interleaving. - error_code ec; + std::error_code ec; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize, &MemGroup.Near, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { - // FIXME: Add error propogation to the interface. - return NULL; + // FIXME: Add error propagation to the interface. + return nullptr; } // Save this address as the basis for our next request @@ -105,7 +105,7 @@ uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup, bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) { // FIXME: Should in-progress permissions be reverted if an error occurs? - error_code ec; + std::error_code ec; // Don't allow free memory blocks to be used after setting protection flags. CodeMem.FreeMem.clear(); @@ -143,19 +143,20 @@ bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) return false; } -error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, - unsigned Permissions) { +std::error_code +SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, + unsigned Permissions) { for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) { - error_code ec; - ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i], - Permissions); - if (ec) { - return ec; - } + std::error_code ec; + ec = + sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i], Permissions); + if (ec) { + return ec; + } } - return error_code::success(); + return std::error_code(); } void SectionMemoryManager::invalidateInstructionCache() { diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp index f11df82..fd37a13 100644 --- a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp +++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp @@ -15,10 +15,8 @@ #include "llvm/Config/config.h" #include "llvm/ExecutionEngine/JITEventListener.h" -#define DEBUG_TYPE "oprofile-jit-event-listener" -#include "llvm/DebugInfo.h" +#include "llvm/IR/DebugInfo.h" #include "llvm/IR/Function.h" -#include "llvm/ADT/OwningPtr.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/ExecutionEngine/OProfileWrapper.h" @@ -34,6 +32,8 @@ using namespace llvm; using namespace llvm::jitprofiling; +#define DEBUG_TYPE "oprofile-jit-event-listener" + namespace { class OProfileJITEventListener : public JITEventListener { @@ -171,11 +171,8 @@ void OProfileJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) { } // Use symbol info to iterate functions in the object. - error_code ec; - for (object::symbol_iterator I = Obj.begin_symbols(), - E = Obj.end_symbols(); - I != E && !ec; - I.increment(ec)) { + for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); + I != E; ++I) { object::SymbolRef::Type SymType; if (I->getType(SymType)) continue; if (SymType == object::SymbolRef::ST_Function) { @@ -204,11 +201,8 @@ void OProfileJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) { } // Use symbol info to iterate functions in the object. - error_code ec; - for (object::symbol_iterator I = Obj.begin_symbols(), - E = Obj.end_symbols(); - I != E && !ec; - I.increment(ec)) { + for (object::symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); + I != E; ++I) { object::SymbolRef::Type SymType; if (I->getType(SymType)) continue; if (SymType == object::SymbolRef::ST_Function) { @@ -229,7 +223,8 @@ void OProfileJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) { namespace llvm { JITEventListener *JITEventListener::createOProfileJITEventListener() { - static OwningPtr<OProfileWrapper> JITProfilingWrapper(new OProfileWrapper); + static std::unique_ptr<OProfileWrapper> JITProfilingWrapper( + new OProfileWrapper); return new OProfileJITEventListener(*JITProfilingWrapper); } diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp index 61d8dc2..04edbd2 100644 --- a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp +++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp @@ -13,14 +13,13 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "oprofile-wrapper" #include "llvm/ExecutionEngine/OProfileWrapper.h" +#include "llvm/ADT/SmallString.h" #include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/MutexGuard.h" -#include "llvm/ADT/SmallString.h" +#include "llvm/Support/raw_ostream.h" #include <cstring> #include <dirent.h> #include <fcntl.h> @@ -29,6 +28,8 @@ #include <sys/stat.h> #include <unistd.h> +#define DEBUG_TYPE "oprofile-wrapper" + namespace { // Global mutex to ensure a single thread initializes oprofile agent. diff --git a/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp index 26e1fdd..1646937 100644 --- a/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RTDyldMemoryManager.cpp @@ -15,7 +15,6 @@ #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" - #include <cstdlib> #ifdef __linux__ diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp index 603c526..8546571 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp @@ -13,6 +13,7 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/MutexGuard.h" +#include "llvm/Support/ManagedStatic.h" using namespace llvm; @@ -44,10 +45,16 @@ extern "C" { // We put information about the JITed function in this global, which the // debugger reads. Make sure to specify the version statically, because the // debugger checks the version before we can set it during runtime. - struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; + struct jit_descriptor __jit_debug_descriptor = { 1, 0, nullptr, nullptr }; // Debuggers puts a breakpoint in this function. - LLVM_ATTRIBUTE_NOINLINE void __jit_debug_register_code() { } + LLVM_ATTRIBUTE_NOINLINE void __jit_debug_register_code() { + // The noinline and the asm prevent calls to this function from being + // optimized out. +#if !defined(_MSC_VER) + asm volatile("":::"memory"); +#endif + } } @@ -78,12 +85,12 @@ public: /// Creates an entry in the JIT registry for the buffer @p Object, /// which must contain an object file in executable memory with any /// debug information for the debugger. - void registerObject(const ObjectBuffer &Object); + void registerObject(const ObjectBuffer &Object) override; /// Removes the internal registration of @p Object, and /// frees associated resources. /// Returns true if @p Object was found in ObjectBufferMap. - bool deregisterObject(const ObjectBuffer &Object); + bool deregisterObject(const ObjectBuffer &Object) override; private: /// Deregister the debug info for the given object file from the debugger @@ -96,16 +103,15 @@ private: /// modify global variables. llvm::sys::Mutex JITDebugLock; -/// Acquire the lock and do the registration. +/// Do the registration. void NotifyDebugger(jit_code_entry* JITCodeEntry) { - llvm::MutexGuard locked(JITDebugLock); __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; // Insert this entry at the head of the list. - JITCodeEntry->prev_entry = NULL; + JITCodeEntry->prev_entry = nullptr; jit_code_entry* NextEntry = __jit_debug_descriptor.first_entry; JITCodeEntry->next_entry = NextEntry; - if (NextEntry != NULL) { + if (NextEntry) { NextEntry->prev_entry = JITCodeEntry; } __jit_debug_descriptor.first_entry = JITCodeEntry; @@ -115,7 +121,8 @@ void NotifyDebugger(jit_code_entry* JITCodeEntry) { GDBJITRegistrar::~GDBJITRegistrar() { // Free all registered object files. - for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(), E = ObjectBufferMap.end(); + llvm::MutexGuard locked(JITDebugLock); + for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(), E = ObjectBufferMap.end(); I != E; ++I) { // Call the private method that doesn't update the map so our iterator // doesn't break. @@ -130,15 +137,15 @@ void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) { size_t Size = Object.getBufferSize(); assert(Buffer && "Attempt to register a null object with a debugger."); + llvm::MutexGuard locked(JITDebugLock); assert(ObjectBufferMap.find(Buffer) == ObjectBufferMap.end() && "Second attempt to perform debug registration."); jit_code_entry* JITCodeEntry = new jit_code_entry(); - if (JITCodeEntry == 0) { + if (!JITCodeEntry) { llvm::report_fatal_error( "Allocation failed when registering a JIT entry!\n"); - } - else { + } else { JITCodeEntry->symfile_addr = Buffer; JITCodeEntry->symfile_size = Size; @@ -149,6 +156,7 @@ void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) { bool GDBJITRegistrar::deregisterObject(const ObjectBuffer& Object) { const char *Buffer = Object.getBufferStart(); + llvm::MutexGuard locked(JITDebugLock); RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Buffer); if (I != ObjectBufferMap.end()) { @@ -164,9 +172,8 @@ void GDBJITRegistrar::deregisterObjectInternal( jit_code_entry*& JITCodeEntry = I->second.second; - // Acquire the lock and do the unregistration. + // Do the unregistration. { - llvm::MutexGuard locked(JITDebugLock); __jit_debug_descriptor.action_flag = JIT_UNREGISTER_FN; // Remove the jit_code_entry from the linked list. @@ -190,25 +197,17 @@ void GDBJITRegistrar::deregisterObjectInternal( } delete JITCodeEntry; - JITCodeEntry = NULL; + JITCodeEntry = nullptr; } +llvm::ManagedStatic<GDBJITRegistrar> TheRegistrar; + } // end namespace namespace llvm { JITRegistrar& JITRegistrar::getGDBRegistrar() { - static GDBJITRegistrar* sRegistrar = NULL; - if (sRegistrar == NULL) { - // The mutex is here so that it won't slow down access once the registrar - // is instantiated - llvm::MutexGuard locked(JITDebugLock); - // Check again to be sure another thread didn't create this while we waited - if (sRegistrar == NULL) { - sRegistrar = new GDBJITRegistrar; - } - } - return *sRegistrar; + return *TheRegistrar; } } // namespace llvm diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h index 9cbde5d..c3a2182 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h @@ -1,6 +1,6 @@ //===-- ObjectImageCommon.h - Format independent executuable object image -===// // -// The LLVM Compiler Infrastructure +// The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. @@ -18,21 +18,27 @@ #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/Object/ObjectFile.h" +#include <memory> + namespace llvm { +namespace object { + class ObjectFile; +} + class ObjectImageCommon : public ObjectImage { ObjectImageCommon(); // = delete ObjectImageCommon(const ObjectImageCommon &other); // = delete - virtual void anchor(); + void anchor() override; protected: - object::ObjectFile *ObjFile; + std::unique_ptr<object::ObjectFile> ObjFile; // This form of the constructor allows subclasses to use // format-specific subclasses of ObjectFile directly - ObjectImageCommon(ObjectBuffer *Input, object::ObjectFile *Obj) + ObjectImageCommon(ObjectBuffer *Input, std::unique_ptr<object::ObjectFile> Obj) : ObjectImage(Input), // saves Input as Buffer and takes ownership - ObjFile(Obj) + ObjFile(std::move(Obj)) { } @@ -40,40 +46,44 @@ public: ObjectImageCommon(ObjectBuffer* Input) : ObjectImage(Input) // saves Input as Buffer and takes ownership { - ObjFile = object::ObjectFile::createObjectFile(Buffer->getMemBuffer()); + // FIXME: error checking? createObjectFile returns an ErrorOr<ObjectFile*> + // and should probably be checked for failure. + std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer()); + ObjFile.reset(object::ObjectFile::createObjectFile(Buf).get()); } - virtual ~ObjectImageCommon() { delete ObjFile; } + ObjectImageCommon(std::unique_ptr<object::ObjectFile> Input) + : ObjectImage(nullptr), ObjFile(std::move(Input)) {} + virtual ~ObjectImageCommon() { } - virtual object::symbol_iterator begin_symbols() const - { return ObjFile->begin_symbols(); } - virtual object::symbol_iterator end_symbols() const - { return ObjFile->end_symbols(); } + object::symbol_iterator begin_symbols() const override + { return ObjFile->symbol_begin(); } + object::symbol_iterator end_symbols() const override + { return ObjFile->symbol_end(); } - virtual object::section_iterator begin_sections() const - { return ObjFile->begin_sections(); } - virtual object::section_iterator end_sections() const - { return ObjFile->end_sections(); } + object::section_iterator begin_sections() const override + { return ObjFile->section_begin(); } + object::section_iterator end_sections() const override + { return ObjFile->section_end(); } - virtual /* Triple::ArchType */ unsigned getArch() const - { return ObjFile->getArch(); } + /* Triple::ArchType */ unsigned getArch() const override + { return ObjFile->getArch(); } - virtual StringRef getData() const { return ObjFile->getData(); } + StringRef getData() const override { return ObjFile->getData(); } - virtual object::ObjectFile* getObjectFile() const { return ObjFile; } + object::ObjectFile* getObjectFile() const override { return ObjFile.get(); } // Subclasses can override these methods to update the image with loaded // addresses for sections and common symbols - virtual void updateSectionAddress(const object::SectionRef &Sec, - uint64_t Addr) {} - virtual void updateSymbolAddress(const object::SymbolRef &Sym, uint64_t Addr) - {} + void updateSectionAddress(const object::SectionRef &Sec, + uint64_t Addr) override {} + void updateSymbolAddress(const object::SymbolRef &Sym, + uint64_t Addr) override {} // Subclasses can override these methods to provide JIT debugging support - virtual void registerWithDebugger() {} - virtual void deregisterWithDebugger() {} + void registerWithDebugger() override {} + void deregisterWithDebugger() override {} }; } // end namespace llvm #endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H - diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp index 161135a..d86a751 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp @@ -11,21 +11,21 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "dyld" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "JITRegistrar.h" #include "ObjectImageCommon.h" #include "RuntimeDyldELF.h" #include "RuntimeDyldImpl.h" #include "RuntimeDyldMachO.h" -#include "llvm/Support/FileSystem.h" +#include "llvm/Object/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MutexGuard.h" -#include "llvm/Object/ELF.h" using namespace llvm; using namespace llvm::object; +#define DEBUG_TYPE "dyld" + // Empty out-of-line virtual destructor as the key function. RuntimeDyldImpl::~RuntimeDyldImpl() {} @@ -36,11 +36,9 @@ void ObjectImageCommon::anchor() {} namespace llvm { -void RuntimeDyldImpl::registerEHFrames() { -} +void RuntimeDyldImpl::registerEHFrames() {} -void RuntimeDyldImpl::deregisterEHFrames() { -} +void RuntimeDyldImpl::deregisterEHFrames() {} // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { @@ -56,9 +54,8 @@ void RuntimeDyldImpl::resolveRelocations() { // symbol for the relocation is located. The SectionID in the relocation // entry provides the section to which the relocation will be applied. uint64_t Addr = Sections[i].LoadAddress; - DEBUG(dbgs() << "Resolving relocations Section #" << i - << "\t" << format("%p", (uint8_t *)Addr) - << "\n"); + DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" + << format("%p", (uint8_t *)Addr) << "\n"); resolveRelocationList(Relocations[i], Addr); Relocations.erase(i); } @@ -76,22 +73,52 @@ void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, llvm_unreachable("Attempting to remap address of unknown section!"); } -// Subclasses can implement this method to create specialized image instances. -// The caller owns the pointer that is returned. -ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) { - return new ObjectImageCommon(InputBuffer); +static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) { + uint64_t Address; + if (std::error_code EC = Sym.getAddress(Address)) + return EC; + + if (Address == UnknownAddressOrSize) { + Result = UnknownAddressOrSize; + return object_error::success; + } + + const ObjectFile *Obj = Sym.getObject(); + section_iterator SecI(Obj->section_begin()); + if (std::error_code EC = Sym.getSection(SecI)) + return EC; + + if (SecI == Obj->section_end()) { + Result = UnknownAddressOrSize; + return object_error::success; + } + + uint64_t SectionAddress; + if (std::error_code EC = SecI->getAddress(SectionAddress)) + return EC; + + Result = Address - SectionAddress; + return object_error::success; } -ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) { +ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) { MutexGuard locked(lock); - OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer)); - if (!obj) - report_fatal_error("Unable to create object image from memory buffer!"); + std::unique_ptr<ObjectImage> Obj(InputObject); + if (!Obj) + return nullptr; // Save information about our target - Arch = (Triple::ArchType)obj->getArch(); - IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian(); + Arch = (Triple::ArchType)Obj->getArch(); + IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian(); + + // Compute the memory size required to load all sections to be loaded + // and pass this information to the memory manager + if (MemMgr->needsToReserveAllocationSpace()) { + uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0; + computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW); + MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW); + } // Symbols found in this object StringMap<SymbolLoc> LocalSymbols; @@ -103,52 +130,47 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) { // Maximum required total memory to allocate all common symbols uint64_t CommonSize = 0; - error_code err; // Parse symbols DEBUG(dbgs() << "Parse symbols:\n"); - for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols(); - i != e; i.increment(err)) { - Check(err); + for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E; + ++I) { object::SymbolRef::Type SymType; StringRef Name; - Check(i->getType(SymType)); - Check(i->getName(Name)); + Check(I->getType(SymType)); + Check(I->getName(Name)); - uint32_t flags; - Check(i->getFlags(flags)); + uint32_t Flags = I->getFlags(); - bool isCommon = flags & SymbolRef::SF_Common; - if (isCommon) { + bool IsCommon = Flags & SymbolRef::SF_Common; + if (IsCommon) { // Add the common symbols to a list. We'll allocate them all below. - uint32_t Align; - Check(i->getAlignment(Align)); - uint64_t Size = 0; - Check(i->getSize(Size)); - CommonSize += Size + Align; - CommonSymbols[*i] = CommonSymbolInfo(Size, Align); + if (!GlobalSymbolTable.count(Name)) { + uint32_t Align; + Check(I->getAlignment(Align)); + uint64_t Size = 0; + Check(I->getSize(Size)); + CommonSize += Size + Align; + CommonSymbols[*I] = CommonSymbolInfo(Size, Align); + } } else { if (SymType == object::SymbolRef::ST_Function || SymType == object::SymbolRef::ST_Data || SymType == object::SymbolRef::ST_Unknown) { - uint64_t FileOffset; + uint64_t SectOffset; StringRef SectionData; bool IsCode; - section_iterator si = obj->end_sections(); - Check(i->getFileOffset(FileOffset)); - Check(i->getSection(si)); - if (si == obj->end_sections()) continue; - Check(si->getContents(SectionData)); - Check(si->isText(IsCode)); - const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() + - (uintptr_t)FileOffset; - uintptr_t SectOffset = (uintptr_t)(SymPtr - - (const uint8_t*)SectionData.begin()); - unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections); + section_iterator SI = Obj->end_sections(); + Check(getOffset(*I, SectOffset)); + Check(I->getSection(SI)); + if (SI == Obj->end_sections()) + continue; + Check(SI->getContents(SectionData)); + Check(SI->isText(IsCode)); + unsigned SectionID = + findOrEmitSection(*Obj, *SI, IsCode, LocalSections); LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); - DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset) - << " flags: " << flags - << " SID: " << SectionID - << " Offset: " << format("%p", SectOffset)); + DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset) + << " flags: " << Flags << " SID: " << SectionID); GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); } } @@ -157,39 +179,179 @@ ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) { // Allocate common symbols if (CommonSize != 0) - emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols); + emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable); // Parse and process relocations DEBUG(dbgs() << "Parse relocations:\n"); - for (section_iterator si = obj->begin_sections(), - se = obj->end_sections(); si != se; si.increment(err)) { - Check(err); - bool isFirstRelocation = true; + for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections(); + SI != SE; ++SI) { unsigned SectionID = 0; StubMap Stubs; - section_iterator RelocatedSection = si->getRelocatedSection(); - - for (relocation_iterator i = si->begin_relocations(), - e = si->end_relocations(); i != e; i.increment(err)) { - Check(err); - - // If it's the first relocation in this section, find its SectionID - if (isFirstRelocation) { - SectionID = - findOrEmitSection(*obj, *RelocatedSection, true, LocalSections); - DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); - isFirstRelocation = false; + section_iterator RelocatedSection = SI->getRelocatedSection(); + + relocation_iterator I = SI->relocation_begin(); + relocation_iterator E = SI->relocation_end(); + + if (I == E && !ProcessAllSections) + continue; + + bool IsCode = false; + Check(RelocatedSection->isText(IsCode)); + SectionID = + findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections); + DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); + + for (; I != E;) + I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols, + Stubs); + } + + // Give the subclasses a chance to tie-up any loose ends. + finalizeLoad(*Obj, LocalSections); + + return Obj.release(); +} + +// A helper method for computeTotalAllocSize. +// Computes the memory size required to allocate sections with the given sizes, +// assuming that all sections are allocated with the given alignment +static uint64_t +computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, + uint64_t Alignment) { + uint64_t TotalSize = 0; + for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { + uint64_t AlignedSize = + (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; + TotalSize += AlignedSize; + } + return TotalSize; +} + +// Compute an upper bound of the memory size that is required to load all +// sections +void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj, + uint64_t &CodeSize, + uint64_t &DataSizeRO, + uint64_t &DataSizeRW) { + // Compute the size of all sections required for execution + std::vector<uint64_t> CodeSectionSizes; + std::vector<uint64_t> ROSectionSizes; + std::vector<uint64_t> RWSectionSizes; + uint64_t MaxAlignment = sizeof(void *); + + // Collect sizes of all sections to be loaded; + // also determine the max alignment of all sections + for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); + SI != SE; ++SI) { + const SectionRef &Section = *SI; + + bool IsRequired; + Check(Section.isRequiredForExecution(IsRequired)); + + // Consider only the sections that are required to be loaded for execution + if (IsRequired) { + uint64_t DataSize = 0; + uint64_t Alignment64 = 0; + bool IsCode = false; + bool IsReadOnly = false; + StringRef Name; + Check(Section.getSize(DataSize)); + Check(Section.getAlignment(Alignment64)); + Check(Section.isText(IsCode)); + Check(Section.isReadOnlyData(IsReadOnly)); + Check(Section.getName(Name)); + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + + uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); + uint64_t SectionSize = DataSize + StubBufSize; + + // The .eh_frame section (at least on Linux) needs an extra four bytes + // padded + // with zeroes added at the end. For MachO objects, this section has a + // slightly different name, so this won't have any effect for MachO + // objects. + if (Name == ".eh_frame") + SectionSize += 4; + + if (SectionSize > 0) { + // save the total size of the section + if (IsCode) { + CodeSectionSizes.push_back(SectionSize); + } else if (IsReadOnly) { + ROSectionSizes.push_back(SectionSize); + } else { + RWSectionSizes.push_back(SectionSize); + } + // update the max alignment + if (Alignment > MaxAlignment) { + MaxAlignment = Alignment; + } } + } + } - processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols, - Stubs); + // Compute the size of all common symbols + uint64_t CommonSize = 0; + for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E; + ++I) { + uint32_t Flags = I->getFlags(); + if (Flags & SymbolRef::SF_Common) { + // Add the common symbols to a list. We'll allocate them all below. + uint64_t Size = 0; + Check(I->getSize(Size)); + CommonSize += Size; } } + if (CommonSize != 0) { + RWSectionSizes.push_back(CommonSize); + } - // Give the subclasses a chance to tie-up any loose ends. - finalizeLoad(LocalSections); + // Compute the required allocation space for each different type of sections + // (code, read-only data, read-write data) assuming that all sections are + // allocated with the max alignment. Note that we cannot compute with the + // individual alignments of the sections, because then the required size + // depends on the order, in which the sections are allocated. + CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment); + DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment); + DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment); +} - return obj.take(); +// compute stub buffer size for the given section +unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj, + const SectionRef &Section) { + unsigned StubSize = getMaxStubSize(); + if (StubSize == 0) { + return 0; + } + // FIXME: this is an inefficient way to handle this. We should computed the + // necessary section allocation size in loadObject by walking all the sections + // once. + unsigned StubBufSize = 0; + for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections(); + SI != SE; ++SI) { + section_iterator RelSecI = SI->getRelocatedSection(); + if (!(RelSecI == Section)) + continue; + + for (const RelocationRef &Reloc : SI->relocations()) { + (void)Reloc; + StubBufSize += StubSize; + } + } + + // Get section data size and alignment + uint64_t Alignment64; + uint64_t DataSize; + Check(Section.getSize(DataSize)); + Check(Section.getAlignment(Alignment64)); + + // Add stubbuf size alignment + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + unsigned StubAlignment = getStubAlignment(); + unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); + if (StubAlignment > EndAlignment) + StubBufSize += StubAlignment - EndAlignment; + return StubBufSize; } void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, @@ -198,22 +360,20 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, SymbolTableMap &SymbolTable) { // Allocate memory for the section unsigned SectionID = Sections.size(); - uint8_t *Addr = MemMgr->allocateDataSection( - TotalSize, sizeof(void*), SectionID, StringRef(), false); + uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *), + SectionID, StringRef(), false); if (!Addr) report_fatal_error("Unable to allocate memory for common symbols!"); uint64_t Offset = 0; Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0)); memset(Addr, 0, TotalSize); - DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID - << " new addr: " << format("%p", Addr) - << " DataSize: " << TotalSize - << "\n"); + DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " + << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); // Assign the address of each symbol for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), - itEnd = CommonSymbols.end(); it != itEnd; it++) { + itEnd = CommonSymbols.end(); it != itEnd; ++it) { uint64_t Size = it->second.first; uint64_t Align = it->second.second; StringRef Name; @@ -223,8 +383,8 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); Addr += AlignOffset; Offset += AlignOffset; - DEBUG(dbgs() << "Allocating common symbol " << Name << " address " << - format("%p\n", Addr)); + DEBUG(dbgs() << "Allocating common symbol " << Name << " address " + << format("%p\n", Addr)); } Obj.updateSymbolAddress(it->first, (uint64_t)Addr); SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); @@ -234,30 +394,7 @@ void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, } unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, - const SectionRef &Section, - bool IsCode) { - - unsigned StubBufSize = 0, - StubSize = getMaxStubSize(); - error_code err; - const ObjectFile *ObjFile = Obj.getObjectFile(); - // FIXME: this is an inefficient way to handle this. We should computed the - // necessary section allocation size in loadObject by walking all the sections - // once. - if (StubSize > 0) { - for (section_iterator SI = ObjFile->begin_sections(), - SE = ObjFile->end_sections(); - SI != SE; SI.increment(err), Check(err)) { - section_iterator RelSecI = SI->getRelocatedSection(); - if (!(RelSecI == Section)) - continue; - - for (relocation_iterator I = SI->begin_relocations(), - E = SI->end_relocations(); I != E; I.increment(err), Check(err)) { - StubBufSize += StubSize; - } - } - } + const SectionRef &Section, bool IsCode) { StringRef data; uint64_t Alignment64; @@ -271,6 +408,7 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, bool IsReadOnly; uint64_t DataSize; unsigned PaddingSize = 0; + unsigned StubBufSize = 0; StringRef Name; Check(Section.isRequiredForExecution(IsRequired)); Check(Section.isVirtual(IsVirtual)); @@ -278,12 +416,8 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, Check(Section.isReadOnlyData(IsReadOnly)); Check(Section.getSize(DataSize)); Check(Section.getName(Name)); - if (StubSize > 0) { - unsigned StubAlignment = getStubAlignment(); - unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); - if (StubAlignment > EndAlignment) - StubBufSize += StubAlignment - EndAlignment; - } + + StubBufSize = computeSectionStubBufSize(Obj, Section); // The .eh_frame section (at least on Linux) needs an extra four bytes padded // with zeroes added at the end. For MachO objects, this section has a @@ -291,19 +425,19 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, if (Name == ".eh_frame") PaddingSize = 4; - unsigned Allocate; + uintptr_t Allocate; unsigned SectionID = Sections.size(); uint8_t *Addr; - const char *pData = 0; + const char *pData = nullptr; // Some sections, such as debug info, don't need to be loaded for execution. // Leave those where they are. if (IsRequired) { Allocate = DataSize + PaddingSize + StubBufSize; - Addr = IsCode - ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name) - : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name, - IsReadOnly); + Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, + Name) + : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, + Name, IsReadOnly); if (!Addr) report_fatal_error("Unable to allocate section memory!"); @@ -324,30 +458,22 @@ unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, DataSize += PaddingSize; } - DEBUG(dbgs() << "emitSection SectionID: " << SectionID - << " Name: " << Name + DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", pData) << " new addr: " << format("%p", Addr) - << " DataSize: " << DataSize - << " StubBufSize: " << StubBufSize - << " Allocate: " << Allocate - << "\n"); + << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate << "\n"); Obj.updateSectionAddress(Section, (uint64_t)Addr); - } - else { + } else { // Even if we didn't load the section, we need to record an entry for it // to handle later processing (and by 'handle' I mean don't do anything // with these sections). Allocate = 0; - Addr = 0; - DEBUG(dbgs() << "emitSection SectionID: " << SectionID - << " Name: " << Name - << " obj addr: " << format("%p", data.data()) - << " new addr: 0" - << " DataSize: " << DataSize - << " StubBufSize: " << StubBufSize - << " Allocate: " << Allocate - << "\n"); + Addr = nullptr; + DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name + << " obj addr: " << format("%p", data.data()) << " new addr: 0" + << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate << "\n"); } Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); @@ -380,8 +506,7 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, // Relocation by symbol. If the symbol is found in the global symbol table, // create an appropriate section relocation. Otherwise, add it to // ExternalSymbolRelocations. - SymbolTableMap::const_iterator Loc = - GlobalSymbolTable.find(SymbolName); + SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); if (Loc == GlobalSymbolTable.end()) { ExternalSymbolRelocations[SymbolName].push_back(RE); } else { @@ -392,12 +517,14 @@ void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, } } -uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { - if (Arch == Triple::aarch64) { +uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, + unsigned AbiVariant) { + if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || + Arch == Triple::arm64 || Arch == Triple::arm64_be) { // This stub has to be able to access the full address space, // since symbol lookup won't necessarily find a handy, in-range, // PLT stub for functions which could be anywhere. - uint32_t *StubAddr = (uint32_t*)Addr; + uint32_t *StubAddr = (uint32_t *)Addr; // Stub can use ip0 (== x16) to calculate address *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr> @@ -411,14 +538,14 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { *StubAddr = 0xd61f0200; // br ip0 return Addr; - } else if (Arch == Triple::arm) { + } else if (Arch == Triple::arm || Arch == Triple::armeb) { // TODO: There is only ARM far stub now. We should add the Thumb stub, // and stubs for branches Thumb - ARM and ARM - Thumb. - uint32_t *StubAddr = (uint32_t*)Addr; + uint32_t *StubAddr = (uint32_t *)Addr; *StubAddr = 0xe51ff004; // ldr pc,<label> - return (uint8_t*)++StubAddr; + return (uint8_t *)++StubAddr; } else if (Arch == Triple::mipsel || Arch == Triple::mips) { - uint32_t *StubAddr = (uint32_t*)Addr; + uint32_t *StubAddr = (uint32_t *)Addr; // 0: 3c190000 lui t9,%hi(addr). // 4: 27390000 addiu t9,t9,%lo(addr). // 8: 03200008 jr t9. @@ -435,22 +562,31 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { *StubAddr = NopInstr; return Addr; } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { - // PowerPC64 stub: the address points to a function descriptor - // instead of the function itself. Load the function address - // on r11 and sets it to control register. Also loads the function - // TOC in r2 and environment pointer to r11. + // Depending on which version of the ELF ABI is in use, we need to + // generate one of two variants of the stub. They both start with + // the same sequence to load the target address into r12. writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) - writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) - writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) - writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) - writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 - writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) - writeInt32BE(Addr+40, 0x4E800420); // bctr - + if (AbiVariant == 2) { + // PowerPC64 stub ELFv2 ABI: The address points to the function itself. + // The address is already in r12 as required by the ABI. Branch to it. + writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) + writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 + writeInt32BE(Addr+28, 0x4E800420); // bctr + } else { + // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. + // Load the function address on r11 and sets it to control register. Also + // loads the function TOC in r2 and environment pointer to r11. + writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) + writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) + writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) + writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 + writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) + writeInt32BE(Addr+40, 0x4E800420); // bctr + } return Addr; } else if (Arch == Triple::systemz) { writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 @@ -463,6 +599,8 @@ uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { *Addr = 0xFF; // jmp *(Addr+1) = 0x25; // rip // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 + } else if (Arch == Triple::x86) { + *Addr = 0xE9; // 32-bit pc-relative jump. } return Addr; } @@ -489,36 +627,37 @@ void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { const RelocationEntry &RE = Relocs[i]; // Ignore relocations for sections that were not loaded - if (Sections[RE.SectionID].Address == 0) + if (Sections[RE.SectionID].Address == nullptr) continue; resolveRelocation(RE, Value); } } void RuntimeDyldImpl::resolveExternalSymbols() { - while(!ExternalSymbolRelocations.empty()) { + while (!ExternalSymbolRelocations.empty()) { StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); StringRef Name = i->first(); if (Name.size() == 0) { // This is an absolute symbol, use an address of zero. - DEBUG(dbgs() << "Resolving absolute relocations." << "\n"); + DEBUG(dbgs() << "Resolving absolute relocations." + << "\n"); RelocationList &Relocs = i->second; resolveRelocationList(Relocs, 0); } else { uint64_t Addr = 0; SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name); if (Loc == GlobalSymbolTable.end()) { - // This is an external symbol, try to get its address from - // MemoryManager. - Addr = MemMgr->getSymbolAddress(Name.data()); - // The call to getSymbolAddress may have caused additional modules to - // be loaded, which may have added new entries to the - // ExternalSymbolRelocations map. Consquently, we need to update our - // iterator. This is also why retrieval of the relocation list - // associated with this symbol is deferred until below this point. - // New entries may have been added to the relocation list. - i = ExternalSymbolRelocations.find(Name); + // This is an external symbol, try to get its address from + // MemoryManager. + Addr = MemMgr->getSymbolAddress(Name.data()); + // The call to getSymbolAddress may have caused additional modules to + // be loaded, which may have added new entries to the + // ExternalSymbolRelocations map. Consquently, we need to update our + // iterator. This is also why retrieval of the relocation list + // associated with this symbol is deferred until below this point. + // New entries may have been added to the relocation list. + i = ExternalSymbolRelocations.find(Name); } else { // We found the symbol in our global table. It was probably in a // Module that we loaded previously. @@ -529,12 +668,11 @@ void RuntimeDyldImpl::resolveExternalSymbols() { // FIXME: Implement error handling that doesn't kill the host program! if (!Addr) report_fatal_error("Program used external function '" + Name + - "' which could not be resolved!"); + "' which could not be resolved!"); updateGOTEntries(Name, Addr); - DEBUG(dbgs() << "Resolving relocations Name: " << Name - << "\t" << format("0x%lx", Addr) - << "\n"); + DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" + << format("0x%lx", Addr) << "\n"); // This list may have been updated when we called getSymbolAddress, so // don't change this code to get the list earlier. RelocationList &Relocs = i->second; @@ -545,7 +683,6 @@ void RuntimeDyldImpl::resolveExternalSymbols() { } } - //===----------------------------------------------------------------------===// // RuntimeDyld class implementation RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { @@ -555,58 +692,103 @@ RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { // though the public class spawns a new 'impl' instance for each load, // they share a single memory manager. This can become a problem when page // permissions are applied. - Dyld = 0; + Dyld = nullptr; MM = mm; + ProcessAllSections = false; +} + +RuntimeDyld::~RuntimeDyld() { delete Dyld; } + +static std::unique_ptr<RuntimeDyldELF> +createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) { + std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM)); + Dyld->setProcessAllSections(ProcessAllSections); + return Dyld; } -RuntimeDyld::~RuntimeDyld() { - delete Dyld; +static std::unique_ptr<RuntimeDyldMachO> +createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM, + bool ProcessAllSections) { + std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM)); + Dyld->setProcessAllSections(ProcessAllSections); + return Dyld; +} + +ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) { + std::unique_ptr<ObjectImage> InputImage; + + ObjectFile &Obj = *InputObject; + + if (InputObject->isELF()) { + InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject))); + if (!Dyld) + Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); + } else if (InputObject->isMachO()) { + InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject))); + if (!Dyld) + Dyld = createRuntimeDyldMachO( + static_cast<Triple::ArchType>(InputImage->getArch()), + MM, ProcessAllSections).release(); + } else + report_fatal_error("Incompatible object format!"); + + if (!Dyld->isCompatibleFile(&Obj)) + report_fatal_error("Incompatible object format!"); + + Dyld->loadObject(InputImage.get()); + return InputImage.release(); } ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) { - if (!Dyld) { - sys::fs::file_magic Type = - sys::fs::identify_magic(InputBuffer->getBuffer()); - switch (Type) { - case sys::fs::file_magic::elf_relocatable: - case sys::fs::file_magic::elf_executable: - case sys::fs::file_magic::elf_shared_object: - case sys::fs::file_magic::elf_core: - Dyld = new RuntimeDyldELF(MM); - break; - case sys::fs::file_magic::macho_object: - case sys::fs::file_magic::macho_executable: - case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: - case sys::fs::file_magic::macho_core: - case sys::fs::file_magic::macho_preload_executable: - case sys::fs::file_magic::macho_dynamically_linked_shared_lib: - case sys::fs::file_magic::macho_dynamic_linker: - case sys::fs::file_magic::macho_bundle: - case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: - case sys::fs::file_magic::macho_dsym_companion: - Dyld = new RuntimeDyldMachO(MM); - break; - case sys::fs::file_magic::unknown: - case sys::fs::file_magic::bitcode: - case sys::fs::file_magic::archive: - case sys::fs::file_magic::coff_object: - case sys::fs::file_magic::coff_import_library: - case sys::fs::file_magic::pecoff_executable: - case sys::fs::file_magic::macho_universal_binary: - case sys::fs::file_magic::windows_resource: - report_fatal_error("Incompatible object format!"); - } - } else { - if (!Dyld->isCompatibleFormat(InputBuffer)) - report_fatal_error("Incompatible object format!"); + std::unique_ptr<ObjectImage> InputImage; + sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer()); + + switch (Type) { + case sys::fs::file_magic::elf_relocatable: + case sys::fs::file_magic::elf_executable: + case sys::fs::file_magic::elf_shared_object: + case sys::fs::file_magic::elf_core: + InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer)); + if (!Dyld) + Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release(); + break; + case sys::fs::file_magic::macho_object: + case sys::fs::file_magic::macho_executable: + case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib: + case sys::fs::file_magic::macho_core: + case sys::fs::file_magic::macho_preload_executable: + case sys::fs::file_magic::macho_dynamically_linked_shared_lib: + case sys::fs::file_magic::macho_dynamic_linker: + case sys::fs::file_magic::macho_bundle: + case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub: + case sys::fs::file_magic::macho_dsym_companion: + InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer)); + if (!Dyld) + Dyld = createRuntimeDyldMachO( + static_cast<Triple::ArchType>(InputImage->getArch()), + MM, ProcessAllSections).release(); + break; + case sys::fs::file_magic::unknown: + case sys::fs::file_magic::bitcode: + case sys::fs::file_magic::archive: + case sys::fs::file_magic::coff_object: + case sys::fs::file_magic::coff_import_library: + case sys::fs::file_magic::pecoff_executable: + case sys::fs::file_magic::macho_universal_binary: + case sys::fs::file_magic::windows_resource: + report_fatal_error("Incompatible object format!"); } - return Dyld->loadObject(InputBuffer); + if (!Dyld->isCompatibleFormat(InputBuffer)) + report_fatal_error("Incompatible object format!"); + + Dyld->loadObject(InputImage.get()); + return InputImage.release(); } void *RuntimeDyld::getSymbolAddress(StringRef Name) { if (!Dyld) - return NULL; + return nullptr; return Dyld->getSymbolAddress(Name); } @@ -616,12 +798,9 @@ uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) { return Dyld->getSymbolLoadAddress(Name); } -void RuntimeDyld::resolveRelocations() { - Dyld->resolveRelocations(); -} +void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } -void RuntimeDyld::reassignSectionAddress(unsigned SectionID, - uint64_t Addr) { +void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { Dyld->reassignSectionAddress(SectionID, Addr); } @@ -630,9 +809,9 @@ void RuntimeDyld::mapSectionAddress(const void *LocalAddress, Dyld->mapSectionAddress(LocalAddress, TargetAddress); } -StringRef RuntimeDyld::getErrorString() { - return Dyld->getErrorString(); -} +bool RuntimeDyld::hasError() { return Dyld->hasError(); } + +StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } void RuntimeDyld::registerEHFrames() { if (Dyld) diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp new file mode 100644 index 0000000..1e63d92 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp @@ -0,0 +1,656 @@ +//===--- RuntimeDyldChecker.cpp - RuntimeDyld tester framework --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ExecutionEngine/RuntimeDyldChecker.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/StringRefMemoryObject.h" +#include "RuntimeDyldImpl.h" +#include <cctype> +#include <memory> + +#define DEBUG_TYPE "rtdyld" + +using namespace llvm; + +namespace llvm { + + // Helper class that implements the language evaluated by RuntimeDyldChecker. + class RuntimeDyldCheckerExprEval { + public: + + RuntimeDyldCheckerExprEval(const RuntimeDyldChecker &Checker, + llvm::raw_ostream &ErrStream) + : Checker(Checker), ErrStream(ErrStream) {} + + bool evaluate(StringRef Expr) const { + // Expect equality expression of the form 'LHS = RHS'. + Expr = Expr.trim(); + size_t EQIdx = Expr.find('='); + + // Evaluate LHS. + StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim(); + StringRef RemainingExpr; + EvalResult LHSResult; + std::tie(LHSResult, RemainingExpr) = + evalComplexExpr(evalSimpleExpr(LHSExpr)); + if (LHSResult.hasError()) + return handleError(Expr, LHSResult); + if (RemainingExpr != "") + return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, "")); + + // Evaluate RHS. + StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim(); + EvalResult RHSResult; + std::tie(RHSResult, RemainingExpr) = + evalComplexExpr(evalSimpleExpr(RHSExpr)); + if (RHSResult.hasError()) + return handleError(Expr, RHSResult); + if (RemainingExpr != "") + return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, "")); + + if (LHSResult.getValue() != RHSResult.getValue()) { + ErrStream << "Expression '" << Expr << "' is false: " + << format("0x%lx", LHSResult.getValue()) << " != " + << format("0x%lx", RHSResult.getValue()) << "\n"; + return false; + } + return true; + } + + private: + const RuntimeDyldChecker &Checker; + llvm::raw_ostream &ErrStream; + + enum class BinOpToken : unsigned { Invalid, Add, Sub, BitwiseAnd, + BitwiseOr, ShiftLeft, ShiftRight }; + + class EvalResult { + public: + EvalResult() + : Value(0), ErrorMsg("") {} + EvalResult(uint64_t Value) + : Value(Value), ErrorMsg("") {} + EvalResult(std::string ErrorMsg) + : Value(0), ErrorMsg(ErrorMsg) {} + uint64_t getValue() const { return Value; } + bool hasError() const { return ErrorMsg != ""; } + const std::string& getErrorMsg() const { return ErrorMsg; } + private: + uint64_t Value; + std::string ErrorMsg; + }; + + StringRef getTokenForError(StringRef Expr) const { + if (Expr.empty()) + return ""; + + StringRef Token, Remaining; + if (isalpha(Expr[0])) + std::tie(Token, Remaining) = parseSymbol(Expr); + else if (isdigit(Expr[0])) + std::tie(Token, Remaining) = parseNumberString(Expr); + else { + unsigned TokLen = 1; + if (Expr.startswith("<<") || Expr.startswith(">>")) + TokLen = 2; + Token = Expr.substr(0, TokLen); + } + return Token; + } + + EvalResult unexpectedToken(StringRef TokenStart, + StringRef SubExpr, + StringRef ErrText) const { + std::string ErrorMsg("Encountered unexpected token '"); + ErrorMsg += getTokenForError(TokenStart); + if (SubExpr != "") { + ErrorMsg += "' while parsing subexpression '"; + ErrorMsg += SubExpr; + } + ErrorMsg += "'"; + if (ErrText != "") { + ErrorMsg += " "; + ErrorMsg += ErrText; + } + return EvalResult(std::move(ErrorMsg)); + } + + bool handleError(StringRef Expr, const EvalResult &R) const { + assert(R.hasError() && "Not an error result."); + ErrStream << "Error evaluating expression '" << Expr << "': " + << R.getErrorMsg() << "\n"; + return false; + } + + std::pair<BinOpToken, StringRef> parseBinOpToken(StringRef Expr) const { + if (Expr.empty()) + return std::make_pair(BinOpToken::Invalid, ""); + + // Handle the two 2-character tokens. + if (Expr.startswith("<<")) + return std::make_pair(BinOpToken::ShiftLeft, + Expr.substr(2).ltrim()); + if (Expr.startswith(">>")) + return std::make_pair(BinOpToken::ShiftRight, + Expr.substr(2).ltrim()); + + // Handle one-character tokens. + BinOpToken Op; + switch (Expr[0]) { + default: return std::make_pair(BinOpToken::Invalid, Expr); + case '+': Op = BinOpToken::Add; break; + case '-': Op = BinOpToken::Sub; break; + case '&': Op = BinOpToken::BitwiseAnd; break; + case '|': Op = BinOpToken::BitwiseOr; break; + } + + return std::make_pair(Op, Expr.substr(1).ltrim()); + } + + EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult, + const EvalResult &RHSResult) const { + switch (Op) { + default: llvm_unreachable("Tried to evaluate unrecognized operation."); + case BinOpToken::Add: + return EvalResult(LHSResult.getValue() + RHSResult.getValue()); + case BinOpToken::Sub: + return EvalResult(LHSResult.getValue() - RHSResult.getValue()); + case BinOpToken::BitwiseAnd: + return EvalResult(LHSResult.getValue() & RHSResult.getValue()); + case BinOpToken::BitwiseOr: + return EvalResult(LHSResult.getValue() | RHSResult.getValue()); + case BinOpToken::ShiftLeft: + return EvalResult(LHSResult.getValue() << RHSResult.getValue()); + case BinOpToken::ShiftRight: + return EvalResult(LHSResult.getValue() >> RHSResult.getValue()); + } + } + + // Parse a symbol and return a (string, string) pair representing the symbol + // name and expression remaining to be parsed. + std::pair<StringRef, StringRef> parseSymbol(StringRef Expr) const { + size_t FirstNonSymbol = + Expr.find_first_not_of("0123456789" + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + ":_"); + return std::make_pair(Expr.substr(0, FirstNonSymbol), + Expr.substr(FirstNonSymbol).ltrim()); + } + + // Evaluate a call to decode_operand. Decode the instruction operand at the + // given symbol and get the value of the requested operand. + // Returns an error if the instruction cannot be decoded, or the requested + // operand is not an immediate. + // On success, retuns a pair containing the value of the operand, plus + // the expression remaining to be evaluated. + std::pair<EvalResult, StringRef> evalDecodeOperand(StringRef Expr) const { + if (!Expr.startswith("(")) + return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); + StringRef RemainingExpr = Expr.substr(1).ltrim(); + StringRef Symbol; + std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); + + if (!Checker.isSymbolValid(Symbol)) + return std::make_pair(EvalResult(("Cannot decode unknown symbol '" + + Symbol + "'").str()), + ""); + + if (!RemainingExpr.startswith(",")) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected ','"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + EvalResult OpIdxExpr; + std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); + if (OpIdxExpr.hasError()) + return std::make_pair(OpIdxExpr, ""); + + if (!RemainingExpr.startswith(")")) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected ')'"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + MCInst Inst; + uint64_t Size; + if (!decodeInst(Symbol, Inst, Size)) + return std::make_pair(EvalResult(("Couldn't decode instruction at '" + + Symbol + "'").str()), + ""); + + unsigned OpIdx = OpIdxExpr.getValue(); + if (OpIdx >= Inst.getNumOperands()) { + std::string ErrMsg; + raw_string_ostream ErrMsgStream(ErrMsg); + ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx) + << "' for instruction '" << Symbol + << "'. Instruction has only " + << format("%i", Inst.getNumOperands()) + << " operands.\nInstruction is:\n "; + Inst.dump_pretty(ErrMsgStream, + Checker.Disassembler->getContext().getAsmInfo(), + Checker.InstPrinter); + return std::make_pair(EvalResult(ErrMsgStream.str()), ""); + } + + const MCOperand &Op = Inst.getOperand(OpIdx); + if (!Op.isImm()) { + std::string ErrMsg; + raw_string_ostream ErrMsgStream(ErrMsg); + ErrMsgStream << "Operand '" << format("%i", OpIdx) + << "' of instruction '" << Symbol + << "' is not an immediate.\nInstruction is:\n "; + Inst.dump_pretty(ErrMsgStream, + Checker.Disassembler->getContext().getAsmInfo(), + Checker.InstPrinter); + + return std::make_pair(EvalResult(ErrMsgStream.str()), ""); + } + + return std::make_pair(EvalResult(Op.getImm()), RemainingExpr); + } + + // Evaluate a call to next_pc. Decode the instruction at the given + // symbol and return the following program counter.. + // Returns an error if the instruction cannot be decoded. + // On success, returns a pair containing the next PC, plus the length of the + // expression remaining to be evaluated. + std::pair<EvalResult, StringRef> evalNextPC(StringRef Expr) const { + if (!Expr.startswith("(")) + return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), ""); + StringRef RemainingExpr = Expr.substr(1).ltrim(); + StringRef Symbol; + std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); + + if (!Checker.isSymbolValid(Symbol)) + return std::make_pair(EvalResult(("Cannot decode unknown symbol '" + + Symbol + "'").str()), + ""); + + if (!RemainingExpr.startswith(")")) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected ')'"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + MCInst Inst; + uint64_t Size; + if (!decodeInst(Symbol, Inst, Size)) + return std::make_pair(EvalResult(("Couldn't decode instruction at '" + + Symbol + "'").str()), + ""); + uint64_t NextPC = Checker.getSymbolAddress(Symbol) + Size; + + return std::make_pair(EvalResult(NextPC), RemainingExpr); + } + + // Evaluate an identiefer expr, which may be a symbol, or a call to + // one of the builtin functions: get_insn_opcode or get_insn_length. + // Return the result, plus the expression remaining to be parsed. + std::pair<EvalResult, StringRef> evalIdentifierExpr(StringRef Expr) const { + StringRef Symbol; + StringRef RemainingExpr; + std::tie(Symbol, RemainingExpr) = parseSymbol(Expr); + + // Check for builtin function calls. + if (Symbol == "decode_operand") + return evalDecodeOperand(RemainingExpr); + else if (Symbol == "next_pc") + return evalNextPC(RemainingExpr); + + if (!Checker.isSymbolValid(Symbol)) { + std::string ErrMsg("No known address for symbol '"); + ErrMsg += Symbol; + ErrMsg += "'"; + if (Symbol.startswith("L")) + ErrMsg += " (this appears to be an assembler local label - " + " perhaps drop the 'L'?)"; + + return std::make_pair(EvalResult(ErrMsg), ""); + } + + // Looks like a plain symbol reference. + return std::make_pair(EvalResult(Checker.getSymbolAddress(Symbol)), + RemainingExpr); + } + + // Parse a number (hexadecimal or decimal) and return a (string, string) + // pair representing the number and the expression remaining to be parsed. + std::pair<StringRef, StringRef> parseNumberString(StringRef Expr) const { + size_t FirstNonDigit = StringRef::npos; + if (Expr.startswith("0x")) { + FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2); + if (FirstNonDigit == StringRef::npos) + FirstNonDigit = Expr.size(); + } else { + FirstNonDigit = Expr.find_first_not_of("0123456789"); + if (FirstNonDigit == StringRef::npos) + FirstNonDigit = Expr.size(); + } + return std::make_pair(Expr.substr(0, FirstNonDigit), + Expr.substr(FirstNonDigit)); + } + + // Evaluate a constant numeric expression (hexidecimal or decimal) and + // return a pair containing the result, and the expression remaining to be + // evaluated. + std::pair<EvalResult, StringRef> evalNumberExpr(StringRef Expr) const { + StringRef ValueStr; + StringRef RemainingExpr; + std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr); + + if (ValueStr.empty() || !isdigit(ValueStr[0])) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected number"), + ""); + uint64_t Value; + ValueStr.getAsInteger(0, Value); + return std::make_pair(EvalResult(Value), RemainingExpr); + } + + // Evaluate an expression of the form "(<expr>)" and return a pair + // containing the result of evaluating <expr>, plus the expression + // remaining to be parsed. + std::pair<EvalResult, StringRef> evalParensExpr(StringRef Expr) const { + assert(Expr.startswith("(") && "Not a parenthesized expression"); + EvalResult SubExprResult; + StringRef RemainingExpr; + std::tie(SubExprResult, RemainingExpr) = + evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim())); + if (SubExprResult.hasError()) + return std::make_pair(SubExprResult, ""); + if (!RemainingExpr.startswith(")")) + return std::make_pair(unexpectedToken(RemainingExpr, Expr, + "expected ')'"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + return std::make_pair(SubExprResult, RemainingExpr); + } + + // Evaluate an expression in one of the following forms: + // *{<number>}<symbol> + // *{<number>}(<symbol> + <number>) + // *{<number>}(<symbol> - <number>) + // Return a pair containing the result, plus the expression remaining to be + // parsed. + std::pair<EvalResult, StringRef> evalLoadExpr(StringRef Expr) const { + assert(Expr.startswith("*") && "Not a load expression"); + StringRef RemainingExpr = Expr.substr(1).ltrim(); + // Parse read size. + if (!RemainingExpr.startswith("{")) + return std::make_pair(EvalResult("Expected '{' following '*'."), ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + EvalResult ReadSizeExpr; + std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); + if (ReadSizeExpr.hasError()) + return std::make_pair(ReadSizeExpr, RemainingExpr); + uint64_t ReadSize = ReadSizeExpr.getValue(); + if (ReadSize < 1 || ReadSize > 8) + return std::make_pair(EvalResult("Invalid size for dereference."), ""); + if (!RemainingExpr.startswith("}")) + return std::make_pair(EvalResult("Missing '}' for dereference."), ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + // Check for '(symbol +/- constant)' form. + bool SymbolPlusConstant = false; + if (RemainingExpr.startswith("(")) { + SymbolPlusConstant = true; + RemainingExpr = RemainingExpr.substr(1).ltrim(); + } + + // Read symbol. + StringRef Symbol; + std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr); + + if (!Checker.isSymbolValid(Symbol)) + return std::make_pair(EvalResult(("Cannot dereference unknown symbol '" + + Symbol + "'").str()), + ""); + + // Set up defaut offset. + int64_t Offset = 0; + + // Handle "+/- constant)" portion if necessary. + if (SymbolPlusConstant) { + char OpChar = RemainingExpr[0]; + if (OpChar != '+' && OpChar != '-') + return std::make_pair(EvalResult("Invalid operator in load address."), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + EvalResult OffsetExpr; + std::tie(OffsetExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); + + Offset = (OpChar == '+') ? + OffsetExpr.getValue() : -1 * OffsetExpr.getValue(); + + if (!RemainingExpr.startswith(")")) + return std::make_pair(EvalResult("Missing ')' in load address."), + ""); + + RemainingExpr = RemainingExpr.substr(1).ltrim(); + } + + return std::make_pair( + EvalResult(Checker.readMemoryAtSymbol(Symbol, Offset, ReadSize)), + RemainingExpr); + } + + // Evaluate a "simple" expression. This is any expression that _isn't_ an + // un-parenthesized binary expression. + // + // "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr. + // + // Returns a pair containing the result of the evaluation, plus the + // expression remaining to be parsed. + std::pair<EvalResult, StringRef> evalSimpleExpr(StringRef Expr) const { + EvalResult SubExprResult; + StringRef RemainingExpr; + + if (Expr.empty()) + return std::make_pair(EvalResult("Unexpected end of expression"), ""); + + if (Expr[0] == '(') + std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr); + else if (Expr[0] == '*') + std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr); + else if (isalpha(Expr[0])) + std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr); + else if (isdigit(Expr[0])) + std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr); + + if (SubExprResult.hasError()) + return std::make_pair(SubExprResult, RemainingExpr); + + // Evaluate bit-slice if present. + if (RemainingExpr.startswith("[")) + std::tie(SubExprResult, RemainingExpr) = + evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr)); + + return std::make_pair(SubExprResult, RemainingExpr); + } + + // Evaluate a bit-slice of an expression. + // A bit-slice has the form "<expr>[high:low]". The result of evaluating a + // slice is the bits between high and low (inclusive) in the original + // expression, right shifted so that the "low" bit is in position 0 in the + // result. + // Returns a pair containing the result of the slice operation, plus the + // expression remaining to be parsed. + std::pair<EvalResult, StringRef> evalSliceExpr( + std::pair<EvalResult, StringRef> Ctx) const{ + EvalResult SubExprResult; + StringRef RemainingExpr; + std::tie(SubExprResult, RemainingExpr) = Ctx; + + assert(RemainingExpr.startswith("[") && "Not a slice expr."); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + EvalResult HighBitExpr; + std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); + + if (HighBitExpr.hasError()) + return std::make_pair(HighBitExpr, RemainingExpr); + + if (!RemainingExpr.startswith(":")) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected ':'"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + EvalResult LowBitExpr; + std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr); + + if (LowBitExpr.hasError()) + return std::make_pair(LowBitExpr, RemainingExpr); + + if (!RemainingExpr.startswith("]")) + return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr, + "expected ']'"), + ""); + RemainingExpr = RemainingExpr.substr(1).ltrim(); + + unsigned HighBit = HighBitExpr.getValue(); + unsigned LowBit = LowBitExpr.getValue(); + uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1; + uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask; + return std::make_pair(EvalResult(SlicedValue), RemainingExpr); + } + + // Evaluate a "complex" expression. + // Takes an already evaluated subexpression and checks for the presence of a + // binary operator, computing the result of the binary operation if one is + // found. Used to make arithmetic expressions left-associative. + // Returns a pair containing the ultimate result of evaluating the + // expression, plus the expression remaining to be evaluated. + std::pair<EvalResult, StringRef> evalComplexExpr( + std::pair<EvalResult, StringRef> Ctx) const { + EvalResult LHSResult; + StringRef RemainingExpr; + std::tie(LHSResult, RemainingExpr) = Ctx; + + // If there was an error, or there's nothing left to evaluate, return the + // result. + if (LHSResult.hasError() || RemainingExpr == "") + return std::make_pair(LHSResult, RemainingExpr); + + // Otherwise check if this is a binary expressioan. + BinOpToken BinOp; + std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr); + + // If this isn't a recognized expression just return. + if (BinOp == BinOpToken::Invalid) + return std::make_pair(LHSResult, RemainingExpr); + + // This is a recognized bin-op. Evaluate the RHS, then evaluate the binop. + EvalResult RHSResult; + std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr); + + // If there was an error evaluating the RHS, return it. + if (RHSResult.hasError()) + return std::make_pair(RHSResult, RemainingExpr); + + // This is a binary expression - evaluate and try to continue as a + // complex expr. + EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult)); + + return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr)); + } + + bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const { + MCDisassembler *Dis = Checker.Disassembler; + StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol); + StringRefMemoryObject SectionBytes(SectionMem, 0); + + MCDisassembler::DecodeStatus S = + Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls()); + + return (S == MCDisassembler::Success); + } + + }; + +} + +bool RuntimeDyldChecker::check(StringRef CheckExpr) const { + CheckExpr = CheckExpr.trim(); + DEBUG(llvm::dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr + << "'...\n"); + RuntimeDyldCheckerExprEval P(*this, ErrStream); + bool Result = P.evaluate(CheckExpr); + (void)Result; + DEBUG(llvm::dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' " + << (Result ? "passed" : "FAILED") << ".\n"); + return Result; +} + +bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix, + MemoryBuffer* MemBuf) const { + bool DidAllTestsPass = true; + unsigned NumRules = 0; + + const char *LineStart = MemBuf->getBufferStart(); + + // Eat whitespace. + while (LineStart != MemBuf->getBufferEnd() && + std::isspace(*LineStart)) + ++LineStart; + + while (LineStart != MemBuf->getBufferEnd() && *LineStart != '\0') { + const char *LineEnd = LineStart; + while (LineEnd != MemBuf->getBufferEnd() && + *LineEnd != '\r' && *LineEnd != '\n') + ++LineEnd; + + StringRef Line(LineStart, LineEnd - LineStart); + if (Line.startswith(RulePrefix)) { + DidAllTestsPass &= check(Line.substr(RulePrefix.size())); + ++NumRules; + } + + // Eat whitespace. + LineStart = LineEnd; + while (LineStart != MemBuf->getBufferEnd() && + std::isspace(*LineStart)) + ++LineStart; + } + return DidAllTestsPass && (NumRules != 0); +} + +bool RuntimeDyldChecker::isSymbolValid(StringRef Symbol) const { + return RTDyld.getSymbolAddress(Symbol) != nullptr; +} + +uint64_t RuntimeDyldChecker::getSymbolAddress(StringRef Symbol) const { + return RTDyld.getAnySymbolRemoteAddress(Symbol); +} + +uint64_t RuntimeDyldChecker::readMemoryAtSymbol(StringRef Symbol, + int64_t Offset, + unsigned Size) const { + uint8_t *Src = RTDyld.getSymbolAddress(Symbol); + uint64_t Result = 0; + memcpy(&Result, Src + Offset, Size); + return Result; +} + +StringRef RuntimeDyldChecker::getSubsectionStartingAt(StringRef Name) const { + RuntimeDyldImpl::SymbolTableMap::const_iterator pos = + RTDyld.GlobalSymbolTable.find(Name); + if (pos == RTDyld.GlobalSymbolTable.end()) + return StringRef(); + RuntimeDyldImpl::SymbolLoc Loc = pos->second; + uint8_t *SectionAddr = RTDyld.getSectionAddress(Loc.first); + return StringRef(reinterpret_cast<const char*>(SectionAddr) + Loc.second, + RTDyld.Sections[Loc.first].Size - Loc.second); +} diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp index f2c69fc..728138e 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp @@ -11,12 +11,10 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "dyld" #include "RuntimeDyldELF.h" #include "JITRegistrar.h" #include "ObjectImageCommon.h" #include "llvm/ADT/IntervalMap.h" -#include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" @@ -25,122 +23,125 @@ #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/ELF.h" +#include "llvm/Support/MemoryBuffer.h" + using namespace llvm; using namespace llvm::object; +#define DEBUG_TYPE "dyld" + namespace { -static inline -error_code check(error_code Err) { +static inline std::error_code check(std::error_code Err) { if (Err) { report_fatal_error(Err.message()); } return Err; } -template<class ELFT> -class DyldELFObject - : public ELFObjectFile<ELFT> { +template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; typedef Elf_Sym_Impl<ELFT> Elf_Sym; - typedef - Elf_Rel_Impl<ELFT, false> Elf_Rel; - typedef - Elf_Rel_Impl<ELFT, true> Elf_Rela; + typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; + typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; - typedef typename ELFDataTypeTypedefHelper< - ELFT>::value_type addr_type; + typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type; + + std::unique_ptr<ObjectFile> UnderlyingFile; public: - DyldELFObject(MemoryBuffer *Wrapper, error_code &ec); + DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile, + std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec); + + DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec); void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr); // Methods for type inquiry through isa, cast and dyn_cast static inline bool classof(const Binary *v) { - return (isa<ELFObjectFile<ELFT> >(v) - && classof(cast<ELFObjectFile - <ELFT> >(v))); + return (isa<ELFObjectFile<ELFT>>(v) && + classof(cast<ELFObjectFile<ELFT>>(v))); } - static inline bool classof( - const ELFObjectFile<ELFT> *v) { + static inline bool classof(const ELFObjectFile<ELFT> *v) { return v->isDyldType(); } }; -template<class ELFT> -class ELFObjectImage : public ObjectImageCommon { - protected: - DyldELFObject<ELFT> *DyldObj; - bool Registered; - - public: - ELFObjectImage(ObjectBuffer *Input, - DyldELFObject<ELFT> *Obj) - : ObjectImageCommon(Input, Obj), - DyldObj(Obj), - Registered(false) {} - - virtual ~ELFObjectImage() { - if (Registered) - deregisterWithDebugger(); - } +template <class ELFT> class ELFObjectImage : public ObjectImageCommon { + bool Registered; - // Subclasses can override these methods to update the image with loaded - // addresses for sections and common symbols - virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) - { - DyldObj->updateSectionAddress(Sec, Addr); - } +public: + ELFObjectImage(ObjectBuffer *Input, std::unique_ptr<DyldELFObject<ELFT>> Obj) + : ObjectImageCommon(Input, std::move(Obj)), Registered(false) {} - virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) - { - DyldObj->updateSymbolAddress(Sym, Addr); - } + virtual ~ELFObjectImage() { + if (Registered) + deregisterWithDebugger(); + } - virtual void registerWithDebugger() - { - JITRegistrar::getGDBRegistrar().registerObject(*Buffer); - Registered = true; - } - virtual void deregisterWithDebugger() - { - JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer); - } + // Subclasses can override these methods to update the image with loaded + // addresses for sections and common symbols + void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override { + static_cast<DyldELFObject<ELFT>*>(getObjectFile()) + ->updateSectionAddress(Sec, Addr); + } + + void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override { + static_cast<DyldELFObject<ELFT>*>(getObjectFile()) + ->updateSymbolAddress(Sym, Addr); + } + + void registerWithDebugger() override { + JITRegistrar::getGDBRegistrar().registerObject(*Buffer); + Registered = true; + } + void deregisterWithDebugger() override { + JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer); + } }; // The MemoryBuffer passed into this constructor is just a wrapper around the // actual memory. Ultimately, the Binary parent class will take ownership of // this MemoryBuffer object but not the underlying memory. -template<class ELFT> -DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec) - : ELFObjectFile<ELFT>(Wrapper, ec) { +template <class ELFT> +DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper, + std::error_code &EC) + : ELFObjectFile<ELFT>(std::move(Wrapper), EC) { + this->isDyldELFObject = true; +} + +template <class ELFT> +DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile, + std::unique_ptr<MemoryBuffer> Wrapper, + std::error_code &EC) + : ELFObjectFile<ELFT>(std::move(Wrapper), EC), + UnderlyingFile(std::move(UnderlyingFile)) { this->isDyldELFObject = true; } -template<class ELFT> +template <class ELFT> void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, uint64_t Addr) { DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); - Elf_Shdr *shdr = const_cast<Elf_Shdr*>( - reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); + Elf_Shdr *shdr = + const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. shdr->sh_addr = static_cast<addr_type>(Addr); } -template<class ELFT> +template <class ELFT> void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr) { - Elf_Sym *sym = const_cast<Elf_Sym*>( - ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); + Elf_Sym *sym = const_cast<Elf_Sym *>( + ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. @@ -178,60 +179,94 @@ void RuntimeDyldELF::deregisterEHFrames() { RegisteredEHFrameSections.clear(); } +ObjectImage * +RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) { + if (!ObjFile) + return nullptr; + + std::error_code ec; + std::unique_ptr<MemoryBuffer> Buffer( + MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false)); + + if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) { + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>( + std::move(ObjFile), std::move(Buffer), ec); + return new ELFObjectImage<ELFType<support::little, 2, false>>( + nullptr, std::move(Obj)); + } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) { + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>( + std::move(ObjFile), std::move(Buffer), ec); + return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj)); + } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) { + auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>( + std::move(ObjFile), std::move(Buffer), ec); + return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr, + std::move(Obj)); + } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) { + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>( + std::move(ObjFile), std::move(Buffer), ec); + return new ELFObjectImage<ELFType<support::little, 2, true>>( + nullptr, std::move(Obj)); + } else + llvm_unreachable("Unexpected ELF format"); +} + ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) { if (Buffer->getBufferSize() < ELF::EI_NIDENT) llvm_unreachable("Unexpected ELF object size"); - std::pair<unsigned char, unsigned char> Ident = std::make_pair( - (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS], - (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]); - error_code ec; + std::pair<unsigned char, unsigned char> Ident = + std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS], + (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]); + std::error_code ec; + + std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer()); if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) { - DyldELFObject<ELFType<support::little, 4, false> > *Obj = - new DyldELFObject<ELFType<support::little, 4, false> >( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj); - } - else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) { - DyldELFObject<ELFType<support::big, 4, false> > *Obj = - new DyldELFObject<ELFType<support::big, 4, false> >( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj); - } - else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) { - DyldELFObject<ELFType<support::big, 8, true> > *Obj = - new DyldELFObject<ELFType<support::big, 8, true> >( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj); - } - else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) { - DyldELFObject<ELFType<support::little, 8, true> > *Obj = - new DyldELFObject<ELFType<support::little, 8, true> >( - Buffer->getMemBuffer(), ec); - return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj); - } - else + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>( + std::move(Buf), ec); + return new ELFObjectImage<ELFType<support::little, 4, false>>( + Buffer, std::move(Obj)); + } else if (Ident.first == ELF::ELFCLASS32 && + Ident.second == ELF::ELFDATA2MSB) { + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>( + std::move(Buf), ec); + return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer, + std::move(Obj)); + } else if (Ident.first == ELF::ELFCLASS64 && + Ident.second == ELF::ELFDATA2MSB) { + auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>( + std::move(Buf), ec); + return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, std::move(Obj)); + } else if (Ident.first == ELF::ELFCLASS64 && + Ident.second == ELF::ELFDATA2LSB) { + auto Obj = + llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>( + std::move(Buf), ec); + return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, std::move(Obj)); + } else llvm_unreachable("Unexpected ELF format"); } -RuntimeDyldELF::~RuntimeDyldELF() { -} +RuntimeDyldELF::~RuntimeDyldELF() {} void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, + uint64_t Offset, uint64_t Value, + uint32_t Type, int64_t Addend, uint64_t SymOffset) { switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); - break; + break; case ELF::R_X86_64_64: { - uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset); + uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset); *Target = Value + Addend; - DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) - << " at " << format("%p\n",Target)); + DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " + << format("%p\n", Target)); break; } case ELF::R_X86_64_32: @@ -239,20 +274,20 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, Value += Addend; assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && - ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); + ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); - uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset); + uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset); *Target = TruncatedAddr; - DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) - << " at " << format("%p\n",Target)); + DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " + << format("%p\n", Target)); break; } case ELF::R_X86_64_GOTPCREL: { // findGOTEntry returns the 'G + GOT' part of the relocation calculation // based on the load/target address of the GOT (not the current/local addr). uint64_t GOTAddr = findGOTEntry(Value, SymOffset); - uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset); - uint64_t FinalAddress = Section.LoadAddress + Offset; + uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset); + uint64_t FinalAddress = Section.LoadAddress + Offset; // The processRelocationRef method combines the symbol offset and the addend // and in most cases that's what we want. For this relocation type, we need // the raw addend, so we subtract the symbol offset to get it. @@ -265,10 +300,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, case ELF::R_X86_64_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress - + Offset); - uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset); - uint64_t FinalAddress = Section.LoadAddress + Offset; + uint32_t *Placeholder = + reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); + uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset); + uint64_t FinalAddress = Section.LoadAddress + Offset; int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress; assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); @@ -278,10 +313,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, case ELF::R_X86_64_PC64: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress - + Offset); - uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset); - uint64_t FinalAddress = Section.LoadAddress + Offset; + uint64_t *Placeholder = + reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset); + uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset); + uint64_t FinalAddress = Section.LoadAddress + Offset; *Target = *Placeholder + Value + Addend - FinalAddress; break; } @@ -289,53 +324,48 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, } void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend) { + uint64_t Offset, uint32_t Value, + uint32_t Type, int32_t Addend) { switch (Type) { case ELF::R_386_32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress - + Offset); - uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset); + uint32_t *Placeholder = + reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); + uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset); *Target = *Placeholder + Value + Addend; break; } case ELF::R_386_PC32: { // Get the placeholder value from the generated object since // a previous relocation attempt may have overwritten the loaded version - uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress - + Offset); - uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset); - uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); + uint32_t *Placeholder = + reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); + uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset); + uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress; *Target = RealOffset; break; - } - default: - // There are other relocation types, but it appears these are the - // only ones currently used by the LLVM ELF object writer - llvm_unreachable("Relocation type not implemented yet!"); - break; + } + default: + // There are other relocation types, but it appears these are the + // only ones currently used by the LLVM ELF object writer + llvm_unreachable("Relocation type not implemented yet!"); + break; } } void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend) { - uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset); + uint64_t Offset, uint64_t Value, + uint32_t Type, int64_t Addend) { + uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset); uint64_t FinalAddress = Section.LoadAddress + Offset; DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" << format("%llx", Section.Address + Offset) - << " FinalAddress: 0x" << format("%llx",FinalAddress) - << " Value: 0x" << format("%llx",Value) - << " Type: 0x" << format("%x",Type) - << " Addend: 0x" << format("%llx",Addend) + << " FinalAddress: 0x" << format("%llx", FinalAddress) + << " Value: 0x" << format("%llx", Value) << " Type: 0x" + << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) << "\n"); switch (Type) { @@ -343,7 +373,8 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, llvm_unreachable("Relocation type not implemented yet!"); break; case ELF::R_AARCH64_ABS64: { - uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset); + uint64_t *TargetPtr = + reinterpret_cast<uint64_t *>(Section.Address + Offset); *TargetPtr = Value + Addend; break; } @@ -419,35 +450,77 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation"); break; } + case ELF::R_AARCH64_ADR_PREL_PG_HI21: { + // Operation: Page(S+A) - Page(P) + uint64_t Result = + ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); + + // Check that -2^32 <= X < 2^32 + assert(static_cast<int64_t>(Result) >= (-1LL << 32) && + static_cast<int64_t>(Result) < (1LL << 32) && + "overflow check failed for relocation"); + + // AArch64 code is emitted with .rela relocations. The data already in any + // bits affected by the relocation on entry is garbage. + *TargetPtr &= 0x9f00001fU; + // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken + // from bits 32:12 of X. + *TargetPtr |= ((Result & 0x3000U) << (29 - 12)); + *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5)); + break; + } + case ELF::R_AARCH64_LDST32_ABS_LO12_NC: { + // Operation: S + A + uint64_t Result = Value + Addend; + + // AArch64 code is emitted with .rela relocations. The data already in any + // bits affected by the relocation on entry is garbage. + *TargetPtr &= 0xffc003ffU; + // Immediate goes in bits 21:10 of LD/ST instruction, taken + // from bits 11:2 of X + *TargetPtr |= ((Result & 0xffc) << (10 - 2)); + break; + } + case ELF::R_AARCH64_LDST64_ABS_LO12_NC: { + // Operation: S + A + uint64_t Result = Value + Addend; + + // AArch64 code is emitted with .rela relocations. The data already in any + // bits affected by the relocation on entry is garbage. + *TargetPtr &= 0xffc003ffU; + // Immediate goes in bits 21:10 of LD/ST instruction, taken + // from bits 11:3 of X + *TargetPtr |= ((Result & 0xff8) << (10 - 3)); + break; + } } } void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend) { + uint64_t Offset, uint32_t Value, + uint32_t Type, int32_t Addend) { // TODO: Add Thumb relocations. - uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress + - Offset); - uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset); + uint32_t *Placeholder = + reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); + uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); Value += Addend; DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << Section.Address + Offset - << " FinalAddress: " << format("%p",FinalAddress) - << " Value: " << format("%x",Value) - << " Type: " << format("%x",Type) - << " Addend: " << format("%x",Addend) - << "\n"); + << " FinalAddress: " << format("%p", FinalAddress) << " Value: " + << format("%x", Value) << " Type: " << format("%x", Type) + << " Addend: " << format("%x", Addend) << "\n"); - switch(Type) { + switch (Type) { default: llvm_unreachable("Not implemented relocation type!"); + case ELF::R_ARM_NONE: + break; // Write a 32bit value to relocation address, taking into account the // implicit addend encoded in the target. + case ELF::R_ARM_PREL31: case ELF::R_ARM_TARGET1: case ELF::R_ARM_ABS32: *TargetPtr = *Placeholder + Value; @@ -475,8 +548,8 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, *TargetPtr |= ((Value >> 12) & 0xF) << 16; break; // Write 24 bit relative value to the branch instruction. - case ELF::R_ARM_PC24 : // Fall through. - case ELF::R_ARM_CALL : // Fall through. + case ELF::R_ARM_PC24: // Fall through. + case ELF::R_ARM_CALL: // Fall through. case ELF::R_ARM_JUMP24: { int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); RelValue = (RelValue & 0x03FFFFFC) >> 2; @@ -496,25 +569,20 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, } void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend) { - uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress + - Offset); - uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset); + uint64_t Offset, uint32_t Value, + uint32_t Type, int32_t Addend) { + uint32_t *Placeholder = + reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); + uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); Value += Addend; DEBUG(dbgs() << "resolveMipselocation, LocalAddress: " - << Section.Address + Offset - << " FinalAddress: " - << format("%p",Section.LoadAddress + Offset) - << " Value: " << format("%x",Value) - << " Type: " << format("%x",Type) - << " Addend: " << format("%x",Addend) - << "\n"); + << Section.Address + Offset << " FinalAddress: " + << format("%p", Section.LoadAddress + Offset) << " Value: " + << format("%x", Value) << " Type: " << format("%x", Type) + << " Addend: " << format("%x", Addend) << "\n"); - switch(Type) { + switch (Type) { default: llvm_unreachable("Not implemented relocation type!"); break; @@ -522,13 +590,13 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, *TargetPtr = Value + (*Placeholder); break; case ELF::R_MIPS_26: - *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2); + *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2); break; case ELF::R_MIPS_HI16: // Get the higher 16-bits. Also add 1 if bit 15 is 1. Value += ((*Placeholder) & 0x0000ffff) << 16; - *TargetPtr = ((*Placeholder) & 0xffff0000) | - (((Value + 0x8000) >> 16) & 0xffff); + *TargetPtr = + ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); break; case ELF::R_MIPS_LO16: Value += ((*Placeholder) & 0x0000ffff); @@ -539,41 +607,47 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, // are used for internal JIT purpose. These relocations are similar to // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into // account. - *TargetPtr = ((*TargetPtr) & 0xffff0000) | - (((Value + 0x8000) >> 16) & 0xffff); + *TargetPtr = + ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); break; case ELF::R_MIPS_UNUSED2: *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff); break; - } + } } -// Return the .TOC. section address to R_PPC64_TOC relocations. -uint64_t RuntimeDyldELF::findPPC64TOC() const { +// Return the .TOC. section and offset. +void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj, + ObjSectionToIDMap &LocalSections, + RelocationValueRef &Rel) { + // Set a default SectionID in case we do not find a TOC section below. + // This may happen for references to TOC base base (sym@toc, .odp + // relocation) without a .toc directive. In this case just use the + // first section (which is usually the .odp) since the code won't + // reference the .toc base directly. + Rel.SymbolName = NULL; + Rel.SectionID = 0; + // The TOC consists of sections .got, .toc, .tocbss, .plt in that // order. The TOC starts where the first of these sections starts. - SectionList::const_iterator it = Sections.begin(); - SectionList::const_iterator ite = Sections.end(); - for (; it != ite; ++it) { - if (it->Name == ".got" || - it->Name == ".toc" || - it->Name == ".tocbss" || - it->Name == ".plt") + for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections(); + si != se; ++si) { + + StringRef SectionName; + check(si->getName(SectionName)); + + if (SectionName == ".got" + || SectionName == ".toc" + || SectionName == ".tocbss" + || SectionName == ".plt") { + Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections); break; + } } - if (it == ite) { - // This may happen for - // * references to TOC base base (sym@toc, .odp relocation) without - // a .toc directive. - // In this case just use the first section (which is usually - // the .odp) since the code won't reference the .toc base - // directly. - it = Sections.begin(); - } - assert (it != ite); + // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. - return it->LoadAddress + 0x8000; + Rel.Addend = 0x8000; } // Returns the sections and offset associated with the ODP entry referenced @@ -583,10 +657,8 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, RelocationValueRef &Rel) { // Get the ELF symbol value (st_value) to compare with Relocation offset in // .opd entries - - error_code err; - for (section_iterator si = Obj.begin_sections(), - se = Obj.end_sections(); si != se; si.increment(err)) { + for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections(); + si != se; ++si) { section_iterator RelSecI = si->getRelocatedSection(); if (RelSecI == Obj.end_sections()) continue; @@ -596,16 +668,15 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, if (RelSectionName != ".opd") continue; - for (relocation_iterator i = si->begin_relocations(), - e = si->end_relocations(); i != e;) { - check(err); - + for (relocation_iterator i = si->relocation_begin(), + e = si->relocation_end(); + i != e;) { // The R_PPC64_ADDR64 relocation indicates the first field // of a .opd entry uint64_t TypeFunc; check(i->getType(TypeFunc)); if (TypeFunc != ELF::R_PPC64_ADDR64) { - i.increment(err); + ++i; continue; } @@ -615,10 +686,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, int64_t Addend; check(getELFRelocationAddend(*i, Addend)); - i = i.increment(err); + ++i; if (i == e) break; - check(err); // Just check if following relocation is a R_PPC64_TOC uint64_t TypeTOC; @@ -634,7 +704,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, section_iterator tsi(Obj.end_sections()); check(TargetSymbol->getSection(tsi)); - Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections); + bool IsCode = false; + tsi->isText(IsCode); + Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections); Rel.Addend = (intptr_t)Addend; return; } @@ -642,69 +714,103 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj, llvm_unreachable("Attempting to get address of ODP entry!"); } -// Relocation masks following the #lo(value), #hi(value), #higher(value), -// and #highest(value) macros defined in section 4.5.1. Relocation Types -// in PPC-elf64abi document. -// -static inline -uint16_t applyPPClo (uint64_t value) -{ - return value & 0xffff; -} +// Relocation masks following the #lo(value), #hi(value), #ha(value), +// #higher(value), #highera(value), #highest(value), and #highesta(value) +// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi +// document. -static inline -uint16_t applyPPChi (uint64_t value) -{ +static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } + +static inline uint16_t applyPPChi(uint64_t value) { return (value >> 16) & 0xffff; } -static inline -uint16_t applyPPChigher (uint64_t value) -{ +static inline uint16_t applyPPCha (uint64_t value) { + return ((value + 0x8000) >> 16) & 0xffff; +} + +static inline uint16_t applyPPChigher(uint64_t value) { return (value >> 32) & 0xffff; } -static inline -uint16_t applyPPChighest (uint64_t value) -{ +static inline uint16_t applyPPChighera (uint64_t value) { + return ((value + 0x8000) >> 32) & 0xffff; +} + +static inline uint16_t applyPPChighest(uint64_t value) { return (value >> 48) & 0xffff; } +static inline uint16_t applyPPChighesta (uint64_t value) { + return ((value + 0x8000) >> 48) & 0xffff; +} + void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend) { - uint8_t* LocalAddress = Section.Address + Offset; + uint64_t Offset, uint64_t Value, + uint32_t Type, int64_t Addend) { + uint8_t *LocalAddress = Section.Address + Offset; switch (Type) { default: llvm_unreachable("Relocation type not implemented yet!"); - break; - case ELF::R_PPC64_ADDR16_LO : - writeInt16BE(LocalAddress, applyPPClo (Value + Addend)); break; - case ELF::R_PPC64_ADDR16_HI : - writeInt16BE(LocalAddress, applyPPChi (Value + Addend)); + case ELF::R_PPC64_ADDR16: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; - case ELF::R_PPC64_ADDR16_HIGHER : - writeInt16BE(LocalAddress, applyPPChigher (Value + Addend)); + case ELF::R_PPC64_ADDR16_DS: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); break; - case ELF::R_PPC64_ADDR16_HIGHEST : - writeInt16BE(LocalAddress, applyPPChighest (Value + Addend)); + case ELF::R_PPC64_ADDR16_LO: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; - case ELF::R_PPC64_ADDR14 : { + case ELF::R_PPC64_ADDR16_LO_DS: + writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); + break; + case ELF::R_PPC64_ADDR16_HI: + writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_HA: + writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_HIGHER: + writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_HIGHERA: + writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_HIGHEST: + writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); + break; + case ELF::R_PPC64_ADDR16_HIGHESTA: + writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); + break; + case ELF::R_PPC64_ADDR14: { assert(((Value + Addend) & 3) == 0); // Preserve the AA/LK bits in the branch instruction - uint8_t aalk = *(LocalAddress+3); + uint8_t aalk = *(LocalAddress + 3); writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); } break; - case ELF::R_PPC64_ADDR32 : { + case ELF::R_PPC64_REL16_LO: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPClo(Delta)); + } break; + case ELF::R_PPC64_REL16_HI: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPChi(Delta)); + } break; + case ELF::R_PPC64_REL16_HA: { + uint64_t FinalAddress = (Section.LoadAddress + Offset); + uint64_t Delta = Value - FinalAddress + Addend; + writeInt16BE(LocalAddress, applyPPCha(Delta)); + } break; + case ELF::R_PPC64_ADDR32: { int32_t Result = static_cast<int32_t>(Value + Addend); if (SignExtend32<32>(Result) != Result) llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); writeInt32BE(LocalAddress, Result); } break; - case ELF::R_PPC64_REL24 : { + case ELF::R_PPC64_REL24: { uint64_t FinalAddress = (Section.LoadAddress + Offset); int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); if (SignExtend32<24>(delta) != delta) @@ -712,7 +818,7 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, // Generates a 'bl <address>' instruction writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC)); } break; - case ELF::R_PPC64_REL32 : { + case ELF::R_PPC64_REL32: { uint64_t FinalAddress = (Section.LoadAddress + Offset); int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); if (SignExtend32<32>(delta) != delta) @@ -724,30 +830,15 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, uint64_t Delta = Value - FinalAddress + Addend; writeInt64BE(LocalAddress, Delta); } break; - case ELF::R_PPC64_ADDR64 : + case ELF::R_PPC64_ADDR64: writeInt64BE(LocalAddress, Value + Addend); break; - case ELF::R_PPC64_TOC : - writeInt64BE(LocalAddress, findPPC64TOC()); - break; - case ELF::R_PPC64_TOC16 : { - uint64_t TOCStart = findPPC64TOC(); - Value = applyPPClo((Value + Addend) - TOCStart); - writeInt16BE(LocalAddress, applyPPClo(Value)); - } break; - case ELF::R_PPC64_TOC16_DS : { - uint64_t TOCStart = findPPC64TOC(); - Value = ((Value + Addend) - TOCStart); - writeInt16BE(LocalAddress, applyPPClo(Value)); - } break; } } void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend) { + uint64_t Offset, uint64_t Value, + uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.Address + Offset; switch (Type) { default: @@ -807,66 +898,63 @@ void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, } void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, + uint64_t Offset, uint64_t Value, + uint32_t Type, int64_t Addend, uint64_t SymOffset) { switch (Arch) { case Triple::x86_64: resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); break; case Triple::x86: - resolveX86Relocation(Section, Offset, - (uint32_t)(Value & 0xffffffffL), Type, + resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::aarch64: + case Triple::aarch64_be: + case Triple::arm64: + case Triple::arm64_be: resolveAArch64Relocation(Section, Offset, Value, Type, Addend); break; - case Triple::arm: // Fall through. + case Triple::arm: // Fall through. + case Triple::armeb: case Triple::thumb: - resolveARMRelocation(Section, Offset, - (uint32_t)(Value & 0xffffffffL), Type, + case Triple::thumbeb: + resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; - case Triple::mips: // Fall through. + case Triple::mips: // Fall through. case Triple::mipsel: - resolveMIPSRelocation(Section, Offset, - (uint32_t)(Value & 0xffffffffL), Type, - (uint32_t)(Addend & 0xffffffffL)); + resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), + Type, (uint32_t)(Addend & 0xffffffffL)); break; - case Triple::ppc64: // Fall through. + case Triple::ppc64: // Fall through. case Triple::ppc64le: resolvePPC64Relocation(Section, Offset, Value, Type, Addend); break; case Triple::systemz: resolveSystemZRelocation(Section, Offset, Value, Type, Addend); break; - default: llvm_unreachable("Unsupported CPU type!"); + default: + llvm_unreachable("Unsupported CPU type!"); } } -void RuntimeDyldELF::processRelocationRef(unsigned SectionID, - RelocationRef RelI, - ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, - const SymbolTableMap &Symbols, - StubMap &Stubs) { +relocation_iterator RuntimeDyldELF::processRelocationRef( + unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj, + ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, + StubMap &Stubs) { uint64_t RelType; - Check(RelI.getType(RelType)); + Check(RelI->getType(RelType)); int64_t Addend; - Check(getELFRelocationAddend(RelI, Addend)); - symbol_iterator Symbol = RelI.getSymbol(); + Check(getELFRelocationAddend(*RelI, Addend)); + symbol_iterator Symbol = RelI->getSymbol(); // Obtain the symbol name which is referenced in the relocation StringRef TargetName; if (Symbol != Obj.end_symbols()) Symbol->getName(TargetName); - DEBUG(dbgs() << "\t\tRelType: " << RelType - << " Addend: " << Addend - << " TargetName: " << TargetName - << "\n"); + DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend + << " TargetName: " << TargetName << "\n"); RelocationValueRef Value; // First search for the symbol in the local symbol table SymbolTableMap::const_iterator lsi = Symbols.end(); @@ -890,53 +978,49 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, Value.Addend = gsi->second.second + Addend; } else { switch (SymType) { - case SymbolRef::ST_Debug: { - // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously - // and can be changed by another developers. Maybe best way is add - // a new symbol type ST_Section to SymbolRef and use it. - section_iterator si(Obj.end_sections()); - Symbol->getSection(si); - if (si == Obj.end_sections()) - llvm_unreachable("Symbol section not found, bad object file format!"); - DEBUG(dbgs() << "\t\tThis is section symbol\n"); - // Default to 'true' in case isText fails (though it never does). - bool isCode = true; - si->isText(isCode); - Value.SectionID = findOrEmitSection(Obj, - (*si), - isCode, - ObjSectionToID); - Value.Addend = Addend; - break; - } - case SymbolRef::ST_Data: - case SymbolRef::ST_Unknown: { - Value.SymbolName = TargetName.data(); - Value.Addend = Addend; - - // Absolute relocations will have a zero symbol ID (STN_UNDEF), which - // will manifest here as a NULL symbol name. - // We can set this as a valid (but empty) symbol name, and rely - // on addRelocationForSymbol to handle this. - if (!Value.SymbolName) - Value.SymbolName = ""; - break; - } - default: - llvm_unreachable("Unresolved symbol type!"); - break; + case SymbolRef::ST_Debug: { + // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously + // and can be changed by another developers. Maybe best way is add + // a new symbol type ST_Section to SymbolRef and use it. + section_iterator si(Obj.end_sections()); + Symbol->getSection(si); + if (si == Obj.end_sections()) + llvm_unreachable("Symbol section not found, bad object file format!"); + DEBUG(dbgs() << "\t\tThis is section symbol\n"); + // Default to 'true' in case isText fails (though it never does). + bool isCode = true; + si->isText(isCode); + Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); + Value.Addend = Addend; + break; + } + case SymbolRef::ST_Data: + case SymbolRef::ST_Unknown: { + Value.SymbolName = TargetName.data(); + Value.Addend = Addend; + + // Absolute relocations will have a zero symbol ID (STN_UNDEF), which + // will manifest here as a NULL symbol name. + // We can set this as a valid (but empty) symbol name, and rely + // on addRelocationForSymbol to handle this. + if (!Value.SymbolName) + Value.SymbolName = ""; + break; + } + default: + llvm_unreachable("Unresolved symbol type!"); + break; } } } uint64_t Offset; - Check(RelI.getOffset(Offset)); + Check(RelI->getOffset(Offset)); - DEBUG(dbgs() << "\t\tSectionID: " << SectionID - << " Offset: " << Offset + DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset << "\n"); - if (Arch == Triple::aarch64 && - (RelType == ELF::R_AARCH64_CALL26 || - RelType == ELF::R_AARCH64_JUMP26)) { + if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be || + Arch == Triple::arm64 || Arch == Triple::arm64_be) && + (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) { // This is an AArch64 branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); SectionEntry &Section = Sections[SectionID]; @@ -944,24 +1028,21 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { - resolveRelocation(Section, Offset, - (uint64_t)Section.Address + i->second, RelType, 0); + resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, + RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; - uint8_t *StubTargetAddr = createStubFunction(Section.Address + - Section.StubOffset); + uint8_t *StubTargetAddr = + createStubFunction(Section.Address + Section.StubOffset); - RelocationEntry REmovz_g3(SectionID, - StubTargetAddr - Section.Address, + RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address, ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); - RelocationEntry REmovk_g2(SectionID, - StubTargetAddr - Section.Address + 4, + RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4, ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); - RelocationEntry REmovk_g1(SectionID, - StubTargetAddr - Section.Address + 8, + RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8, ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); RelocationEntry REmovk_g0(SectionID, StubTargetAddr - Section.Address + 12, @@ -979,14 +1060,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, addRelocationForSection(REmovk_g0, Value.SectionID); } resolveRelocation(Section, Offset, - (uint64_t)Section.Address + Section.StubOffset, - RelType, 0); + (uint64_t)Section.Address + Section.StubOffset, RelType, + 0); Section.StubOffset += getMaxStubSize(); } } else if (Arch == Triple::arm && - (RelType == ELF::R_ARM_PC24 || - RelType == ELF::R_ARM_CALL || - RelType == ELF::R_ARM_JUMP24)) { + (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || + RelType == ELF::R_ARM_JUMP24)) { // This is an ARM branch relocation, need to use a stub function. DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); SectionEntry &Section = Sections[SectionID]; @@ -994,15 +1074,15 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { - resolveRelocation(Section, Offset, - (uint64_t)Section.Address + i->second, RelType, 0); + resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, + RelType, 0); DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; - uint8_t *StubTargetAddr = createStubFunction(Section.Address + - Section.StubOffset); + uint8_t *StubTargetAddr = + createStubFunction(Section.Address + Section.StubOffset); RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, ELF::R_ARM_PRIVATE_0, Value.Addend); if (Value.SymbolName) @@ -1011,8 +1091,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, addRelocationForSection(RE, Value.SectionID); resolveRelocation(Section, Offset, - (uint64_t)Section.Address + Section.StubOffset, - RelType, 0); + (uint64_t)Section.Address + Section.StubOffset, RelType, + 0); Section.StubOffset += getMaxStubSize(); } } else if ((Arch == Triple::mipsel || Arch == Triple::mips) && @@ -1038,15 +1118,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; - uint8_t *StubTargetAddr = createStubFunction(Section.Address + - Section.StubOffset); + uint8_t *StubTargetAddr = + createStubFunction(Section.Address + Section.StubOffset); // Creating Hi and Lo relocations for the filled stub instructions. - RelocationEntry REHi(SectionID, - StubTargetAddr - Section.Address, + RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address, ELF::R_MIPS_UNUSED1, Value.Addend); - RelocationEntry RELo(SectionID, - StubTargetAddr - Section.Address + 4, + RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4, ELF::R_MIPS_UNUSED2, Value.Addend); if (Value.SymbolName) { @@ -1063,6 +1141,10 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, } } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { if (RelType == ELF::R_PPC64_REL24) { + // Determine ABI variant in use for this object. + unsigned AbiVariant; + Obj.getObjectFile()->getPlatformFlags(AbiVariant); + AbiVariant &= ELF::EF_PPC64_ABI; // A PPC branch relocation will need a stub function if the target is // an external symbol (Symbol::ST_Unknown) or if the target address // is not within the signed 24-bits branch address. @@ -1070,9 +1152,18 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, uint8_t *Target = Section.Address + Offset; bool RangeOverflow = false; if (SymType != SymbolRef::ST_Unknown) { - // A function call may points to the .opd entry, so the final symbol value - // in calculated based in the relocation values in .opd section. - findOPDEntrySection(Obj, ObjSectionToID, Value); + if (AbiVariant != 2) { + // In the ELFv1 ABI, a function call may point to the .opd entry, + // so the final symbol value is calculated based on the relocation + // values in the .opd section. + findOPDEntrySection(Obj, ObjSectionToID, Value); + } else { + // In the ELFv2 ABI, a function symbol may provide a local entry + // point, which must be used for direct calls. + uint8_t SymOther; + Symbol->getOther(SymOther); + Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); + } uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend; int32_t delta = static_cast<int32_t>(Target - RelocTarget); // If it is within 24-bits branch range, just set the branch target @@ -1099,53 +1190,100 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, // Create a new stub function. DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.StubOffset; - uint8_t *StubTargetAddr = createStubFunction(Section.Address + - Section.StubOffset); + uint8_t *StubTargetAddr = + createStubFunction(Section.Address + Section.StubOffset, + AbiVariant); RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, ELF::R_PPC64_ADDR64, Value.Addend); // Generates the 64-bits address loads as exemplified in section - // 4.5.1 in PPC64 ELF ABI. - RelocationEntry REhst(SectionID, - StubTargetAddr - Section.Address + 2, + // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to + // apply to the low part of the instructions, so we have to update + // the offset according to the target endianness. + uint64_t StubRelocOffset = StubTargetAddr - Section.Address; + if (!IsTargetLittleEndian) + StubRelocOffset += 2; + + RelocationEntry REhst(SectionID, StubRelocOffset + 0, ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); - RelocationEntry REhr(SectionID, - StubTargetAddr - Section.Address + 6, + RelocationEntry REhr(SectionID, StubRelocOffset + 4, ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); - RelocationEntry REh(SectionID, - StubTargetAddr - Section.Address + 14, + RelocationEntry REh(SectionID, StubRelocOffset + 12, ELF::R_PPC64_ADDR16_HI, Value.Addend); - RelocationEntry REl(SectionID, - StubTargetAddr - Section.Address + 18, + RelocationEntry REl(SectionID, StubRelocOffset + 16, ELF::R_PPC64_ADDR16_LO, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REhst, Value.SymbolName); - addRelocationForSymbol(REhr, Value.SymbolName); - addRelocationForSymbol(REh, Value.SymbolName); - addRelocationForSymbol(REl, Value.SymbolName); + addRelocationForSymbol(REhr, Value.SymbolName); + addRelocationForSymbol(REh, Value.SymbolName); + addRelocationForSymbol(REl, Value.SymbolName); } else { addRelocationForSection(REhst, Value.SectionID); - addRelocationForSection(REhr, Value.SectionID); - addRelocationForSection(REh, Value.SectionID); - addRelocationForSection(REl, Value.SectionID); + addRelocationForSection(REhr, Value.SectionID); + addRelocationForSection(REh, Value.SectionID); + addRelocationForSection(REl, Value.SectionID); } resolveRelocation(Section, Offset, (uint64_t)Section.Address + Section.StubOffset, RelType, 0); - if (SymType == SymbolRef::ST_Unknown) - // Restore the TOC for external calls - writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1) Section.StubOffset += getMaxStubSize(); } + if (SymType == SymbolRef::ST_Unknown) { + // Restore the TOC for external calls + if (AbiVariant == 2) + writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) + else + writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) + } } + } else if (RelType == ELF::R_PPC64_TOC16 || + RelType == ELF::R_PPC64_TOC16_DS || + RelType == ELF::R_PPC64_TOC16_LO || + RelType == ELF::R_PPC64_TOC16_LO_DS || + RelType == ELF::R_PPC64_TOC16_HI || + RelType == ELF::R_PPC64_TOC16_HA) { + // These relocations are supposed to subtract the TOC address from + // the final value. This does not fit cleanly into the RuntimeDyld + // scheme, since there may be *two* sections involved in determining + // the relocation value (the section of the symbol refered to by the + // relocation, and the TOC section associated with the current module). + // + // Fortunately, these relocations are currently only ever generated + // refering to symbols that themselves reside in the TOC, which means + // that the two sections are actually the same. Thus they cancel out + // and we can immediately resolve the relocation right now. + switch (RelType) { + case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; + case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; + case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; + case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; + case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; + case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; + default: llvm_unreachable("Wrong relocation type."); + } + + RelocationValueRef TOCValue; + findPPC64TOCSection(Obj, ObjSectionToID, TOCValue); + if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) + llvm_unreachable("Unsupported TOC relocation."); + Value.Addend -= TOCValue.Addend; + resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); } else { + // There are two ways to refer to the TOC address directly: either + // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are + // ignored), or via any relocation that refers to the magic ".TOC." + // symbols (in which case the addend is respected). + if (RelType == ELF::R_PPC64_TOC) { + RelType = ELF::R_PPC64_ADDR64; + findPPC64TOCSection(Obj, ObjSectionToID, Value); + } else if (TargetName == ".TOC.") { + findPPC64TOCSection(Obj, ObjSectionToID, Value); + Value.Addend += Addend; + } + RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); - // Extra check to avoid relocation againt empty symbols (usually - // the R_PPC64_TOC). - if (SymType != SymbolRef::ST_Unknown && TargetName.empty()) - Value.SymbolName = NULL; if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); @@ -1153,8 +1291,7 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, addRelocationForSection(RE, Value.SectionID); } } else if (Arch == Triple::systemz && - (RelType == ELF::R_390_PLT32DBL || - RelType == ELF::R_390_GOTENT)) { + (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { // Create function stubs for both PLT and GOT references, regardless of // whether the GOT reference is to data or code. The stub contains the // full address of the symbol, as needed by GOT references, and the @@ -1179,14 +1316,14 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, uintptr_t BaseAddress = uintptr_t(Section.Address); uintptr_t StubAlignment = getStubAlignment(); - StubAddress = (BaseAddress + Section.StubOffset + - StubAlignment - 1) & -StubAlignment; + StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & + -StubAlignment; unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); - RelocationEntry RE(SectionID, StubOffset + 8, - ELF::R_390_64, Value.Addend - Addend); + RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, + Value.Addend - Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else @@ -1195,15 +1332,17 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, } if (RelType == ELF::R_390_GOTENT) - resolveRelocation(Section, Offset, StubAddress + 8, - ELF::R_390_PC32DBL, Addend); + resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, + Addend); else resolveRelocation(Section, Offset, StubAddress, RelType, Addend); } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) { - // The way the PLT relocations normally work is that the linker allocates the + // The way the PLT relocations normally work is that the linker allocates + // the // PLT and this relocation makes a PC-relative call into the PLT. The PLT - // entry will then jump to an address provided by the GOT. On first call, the - // GOT address will point back into PLT code that resolves the symbol. After + // entry will then jump to an address provided by the GOT. On first call, + // the + // GOT address will point back into PLT code that resolves the symbol. After // the first call, the GOT entry points to the actual function. // // For local functions we're ignoring all of that here and just replacing @@ -1229,8 +1368,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, uintptr_t BaseAddress = uintptr_t(Section.Address); uintptr_t StubAlignment = getStubAlignment(); - StubAddress = (BaseAddress + Section.StubOffset + - StubAlignment - 1) & -StubAlignment; + StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & + -StubAlignment; unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); @@ -1239,8 +1378,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, GOTEntries.push_back(Value); // Make our stub function a relative call to the GOT entry. - RelocationEntry RE(SectionID, StubOffset + 2, - ELF::R_X86_64_GOTPCREL, -4); + RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL, + -4); addRelocationForSymbol(RE, Value.SymbolName); // Bump our stub offset counter @@ -1248,8 +1387,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, } // Make the target call a call into the stub table. - resolveRelocation(Section, Offset, StubAddress, - ELF::R_X86_64_PC32, Addend); + resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, + Addend); } else { RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, Value.Offset); @@ -1265,17 +1404,19 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID, else addRelocationForSection(RE, Value.SectionID); } + return ++RelI; } void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) { - SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator it; - SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator end = GOTs.end(); + SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it; + SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end(); for (it = GOTs.begin(); it != end; ++it) { GOTRelocations &GOTEntries = it->second; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { - if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) { + if (GOTEntries[i].SymbolName != nullptr && + GOTEntries[i].SymbolName == Name) { GOTEntries[i].Offset = Addr; } } @@ -1289,6 +1430,9 @@ size_t RuntimeDyldELF::getGOTEntrySize() { switch (Arch) { case Triple::x86_64: case Triple::aarch64: + case Triple::aarch64_be: + case Triple::arm64: + case Triple::arm64_be: case Triple::ppc64: case Triple::ppc64le: case Triple::systemz: @@ -1301,18 +1445,19 @@ size_t RuntimeDyldELF::getGOTEntrySize() { case Triple::mipsel: Result = sizeof(uint32_t); break; - default: llvm_unreachable("Unsupported CPU type!"); + default: + llvm_unreachable("Unsupported CPU type!"); } return Result; } -uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, - uint64_t Offset) { +uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) { const size_t GOTEntrySize = getGOTEntrySize(); - SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator it; - SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end(); + SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it; + SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end = + GOTs.end(); int GOTIndex = -1; for (it = GOTs.begin(); it != end; ++it) { @@ -1322,7 +1467,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, // Find the matching entry in our vector. uint64_t SymbolOffset = 0; for (int i = 0, e = GOTEntries.size(); i != e; ++i) { - if (GOTEntries[i].SymbolName == 0) { + if (!GOTEntries[i].SymbolName) { if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress && GOTEntries[i].Offset == Offset) { GOTIndex = i; @@ -1342,11 +1487,11 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, if (GOTIndex != -1) { if (GOTEntrySize == sizeof(uint64_t)) { - uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID); + uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID); // Fill in this entry with the address of the symbol being referenced. LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset; } else { - uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID); + uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID); // Fill in this entry with the address of the symbol being referenced. LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset); } @@ -1360,7 +1505,8 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, return 0; } -void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) { +void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg, + ObjSectionToIDMap &SectionMap) { // If necessary, allocate the global offset table if (MemMgr) { // Allocate the GOT if necessary @@ -1380,8 +1526,7 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) { // needed when GOT-based relocations are applied. memset(Addr, 0, TotalSize); } - } - else { + } else { report_fatal_error("Unable to allocate memory for GOT!"); } @@ -1401,6 +1546,12 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) { bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const { if (Buffer->getBufferSize() < strlen(ELF::ElfMagic)) return false; - return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; + return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, + strlen(ELF::ElfMagic))) == 0; +} + +bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const { + return Obj->isELF(); } + } // namespace llvm diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h index 3adf827..59fdfbe 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h @@ -20,70 +20,46 @@ using namespace llvm; namespace llvm { - namespace { - // Helper for extensive error checking in debug builds. - error_code Check(error_code Err) { - if (Err) { - report_fatal_error(Err.message()); - } - return Err; +// Helper for extensive error checking in debug builds. +std::error_code Check(std::error_code Err) { + if (Err) { + report_fatal_error(Err.message()); } + return Err; +} } // end anonymous namespace class RuntimeDyldELF : public RuntimeDyldImpl { - void resolveRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, - uint64_t SymOffset=0); - - void resolveX86_64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, + void resolveRelocation(const SectionEntry &Section, uint64_t Offset, + uint64_t Value, uint32_t Type, int64_t Addend, + uint64_t SymOffset = 0); + + void resolveX86_64Relocation(const SectionEntry &Section, uint64_t Offset, + uint64_t Value, uint32_t Type, int64_t Addend, uint64_t SymOffset); - void resolveX86Relocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend); - - void resolveAArch64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend); - - void resolveARMRelocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend); - - void resolveMIPSRelocation(const SectionEntry &Section, - uint64_t Offset, - uint32_t Value, - uint32_t Type, - int32_t Addend); - - void resolvePPC64Relocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend); - - void resolveSystemZRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend); - - unsigned getMaxStubSize() { - if (Arch == Triple::aarch64) + void resolveX86Relocation(const SectionEntry &Section, uint64_t Offset, + uint32_t Value, uint32_t Type, int32_t Addend); + + void resolveAArch64Relocation(const SectionEntry &Section, uint64_t Offset, + uint64_t Value, uint32_t Type, int64_t Addend); + + void resolveARMRelocation(const SectionEntry &Section, uint64_t Offset, + uint32_t Value, uint32_t Type, int32_t Addend); + + void resolveMIPSRelocation(const SectionEntry &Section, uint64_t Offset, + uint32_t Value, uint32_t Type, int32_t Addend); + + void resolvePPC64Relocation(const SectionEntry &Section, uint64_t Offset, + uint64_t Value, uint32_t Type, int64_t Addend); + + void resolveSystemZRelocation(const SectionEntry &Section, uint64_t Offset, + uint64_t Value, uint32_t Type, int64_t Addend); + + unsigned getMaxStubSize() override { + if (Arch == Triple::aarch64 || Arch == Triple::arm64 || + Arch == Triple::aarch64_be || Arch == Triple::arm64_be) return 20; // movz; movk; movk; movk; br if (Arch == Triple::arm || Arch == Triple::thumb) return 8; // 32-bit instruction and 32-bit address @@ -99,24 +75,24 @@ class RuntimeDyldELF : public RuntimeDyldImpl { return 0; } - unsigned getStubAlignment() { + unsigned getStubAlignment() override { if (Arch == Triple::systemz) return 8; else return 1; } - uint64_t findPPC64TOC() const; - void findOPDEntrySection(ObjectImage &Obj, - ObjSectionToIDMap &LocalSections, + void findPPC64TOCSection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections, + RelocationValueRef &Rel); + void findOPDEntrySection(ObjectImage &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel); uint64_t findGOTEntry(uint64_t LoadAddr, uint64_t Offset); size_t getGOTEntrySize(); - virtual void updateGOTEntries(StringRef Name, uint64_t Addr); + void updateGOTEntries(StringRef Name, uint64_t Addr) override; - // Relocation entries for symbols whose position-independant offset is + // Relocation entries for symbols whose position-independent offset is // updated in a global offset table. typedef SmallVector<RelocationValueRef, 2> GOTRelocations; GOTRelocations GOTEntries; // List of entries requiring finalization. @@ -129,22 +105,23 @@ class RuntimeDyldELF : public RuntimeDyldImpl { SmallVector<SID, 2> RegisteredEHFrameSections; public: - RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) - {} - - virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value); - virtual void processRelocationRef(unsigned SectionID, - RelocationRef RelI, - ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, - const SymbolTableMap &Symbols, - StubMap &Stubs); - virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const; - virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer); - virtual void registerEHFrames(); - virtual void deregisterEHFrames(); - virtual void finalizeLoad(ObjSectionToIDMap &SectionMap); + RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} + + void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override; + relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) override; + bool isCompatibleFormat(const ObjectBuffer *Buffer) const override; + bool isCompatibleFile(const object::ObjectFile *Buffer) const override; + void registerEHFrames() override; + void deregisterEHFrames() override; + void finalizeLoad(ObjectImage &ObjImg, + ObjSectionToIDMap &SectionMap) override; virtual ~RuntimeDyldELF(); + + static ObjectImage *createObjectImage(ObjectBuffer *InputBuffer); + static ObjectImage *createObjectImageFromFile(std::unique_ptr<object::ObjectFile> Obj); }; } // end namespace llvm diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h index 3014b30..0211d2b 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h @@ -20,6 +20,7 @@ #include "llvm/ADT/Triple.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" +#include "llvm/ExecutionEngine/RuntimeDyldChecker.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" @@ -28,8 +29,8 @@ #include "llvm/Support/Mutex.h" #include "llvm/Support/SwapByteOrder.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/Support/system_error.h" #include <map> +#include <system_error> using namespace llvm; using namespace llvm::object; @@ -39,7 +40,6 @@ namespace llvm { class ObjectBuffer; class Twine; - /// SectionEntry - represents a section emitted into memory by the dynamic /// linker. class SectionEntry { @@ -69,8 +69,9 @@ public: SectionEntry(StringRef name, uint8_t *address, size_t size, uintptr_t objAddress) - : Name(name), Address(address), Size(size), LoadAddress((uintptr_t)address), - StubOffset(size), ObjAddress(objAddress) {} + : Name(name), Address(address), Size(size), + LoadAddress((uintptr_t)address), StubOffset(size), + ObjAddress(objAddress) {} }; /// RelocationEntry - used to represent relocations internally in the dynamic @@ -90,9 +91,17 @@ public: /// used to make a relocation section relative instead of symbol relative. int64_t Addend; + struct SectionPair { + uint32_t SectionA; + uint32_t SectionB; + }; + /// SymOffset - Section offset of the relocation entry's symbol (used for GOT /// lookup). - uint64_t SymOffset; + union { + uint64_t SymOffset; + SectionPair Sections; + }; /// True if this is a PCRel relocation (MachO specific). bool IsPCRel; @@ -101,33 +110,44 @@ public: unsigned Size; RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend) - : SectionID(id), Offset(offset), RelType(type), Addend(addend), - SymOffset(0), IsPCRel(false), Size(0) {} + : SectionID(id), Offset(offset), RelType(type), Addend(addend), + SymOffset(0), IsPCRel(false), Size(0) {} RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, uint64_t symoffset) - : SectionID(id), Offset(offset), RelType(type), Addend(addend), - SymOffset(symoffset), IsPCRel(false), Size(0) {} + : SectionID(id), Offset(offset), RelType(type), Addend(addend), + SymOffset(symoffset), IsPCRel(false), Size(0) {} RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, bool IsPCRel, unsigned Size) - : SectionID(id), Offset(offset), RelType(type), Addend(addend), - SymOffset(0), IsPCRel(IsPCRel), Size(Size) {} + : SectionID(id), Offset(offset), RelType(type), Addend(addend), + SymOffset(0), IsPCRel(IsPCRel), Size(Size) {} + + RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, + unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB, + uint64_t SectionBOffset, bool IsPCRel, unsigned Size) + : SectionID(id), Offset(offset), RelType(type), + Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel), + Size(Size) { + Sections.SectionA = SectionA; + Sections.SectionB = SectionB; + } }; class RelocationValueRef { public: - unsigned SectionID; - uint64_t Offset; - int64_t Addend; + unsigned SectionID; + uint64_t Offset; + int64_t Addend; const char *SymbolName; - RelocationValueRef(): SectionID(0), Offset(0), Addend(0), SymbolName(0) {} + RelocationValueRef() : SectionID(0), Offset(0), Addend(0), + SymbolName(nullptr) {} inline bool operator==(const RelocationValueRef &Other) const { return SectionID == Other.SectionID && Offset == Other.Offset && Addend == Other.Addend && SymbolName == Other.SymbolName; } - inline bool operator <(const RelocationValueRef &Other) const { + inline bool operator<(const RelocationValueRef &Other) const { if (SectionID != Other.SectionID) return SectionID < Other.SectionID; if (Offset != Other.Offset) @@ -139,6 +159,15 @@ public: }; class RuntimeDyldImpl { + friend class RuntimeDyldChecker; +private: + + uint64_t getAnySymbolRemoteAddress(StringRef Symbol) { + if (uint64_t InternalSymbolAddr = getSymbolLoadAddress(Symbol)) + return InternalSymbolAddr; + return MemMgr->getSymbolAddress(Symbol); + } + protected: // The MemoryManager to load objects into. RTDyldMemoryManager *MemMgr; @@ -149,7 +178,7 @@ protected: SectionList Sections; typedef unsigned SID; // Type for SectionIDs - #define RTDYLD_INVALID_SECTION_ID ((SID)(-1)) +#define RTDYLD_INVALID_SECTION_ID ((SID)(-1)) // Keep a map of sections from object file to the SectionID which // references it. @@ -187,6 +216,10 @@ protected: Triple::ArchType Arch; bool IsTargetLittleEndian; + // True if all sections should be passed to the memory manager, false if only + // sections containing relocations should be. Defaults to 'false'. + bool ProcessAllSections; + // This mutex prevents simultaneously loading objects from two different // threads. This keeps us from having to protect individual data structures // and guarantees that section allocation requests to the memory manager @@ -217,52 +250,49 @@ protected: } uint8_t *getSectionAddress(unsigned SectionID) { - return (uint8_t*)Sections[SectionID].Address; + return (uint8_t *)Sections[SectionID].Address; } void writeInt16BE(uint8_t *Addr, uint16_t Value) { if (IsTargetLittleEndian) - Value = sys::SwapByteOrder(Value); - *Addr = (Value >> 8) & 0xFF; - *(Addr+1) = Value & 0xFF; + sys::swapByteOrder(Value); + *Addr = (Value >> 8) & 0xFF; + *(Addr + 1) = Value & 0xFF; } void writeInt32BE(uint8_t *Addr, uint32_t Value) { if (IsTargetLittleEndian) - Value = sys::SwapByteOrder(Value); - *Addr = (Value >> 24) & 0xFF; - *(Addr+1) = (Value >> 16) & 0xFF; - *(Addr+2) = (Value >> 8) & 0xFF; - *(Addr+3) = Value & 0xFF; + sys::swapByteOrder(Value); + *Addr = (Value >> 24) & 0xFF; + *(Addr + 1) = (Value >> 16) & 0xFF; + *(Addr + 2) = (Value >> 8) & 0xFF; + *(Addr + 3) = Value & 0xFF; } void writeInt64BE(uint8_t *Addr, uint64_t Value) { if (IsTargetLittleEndian) - Value = sys::SwapByteOrder(Value); - *Addr = (Value >> 56) & 0xFF; - *(Addr+1) = (Value >> 48) & 0xFF; - *(Addr+2) = (Value >> 40) & 0xFF; - *(Addr+3) = (Value >> 32) & 0xFF; - *(Addr+4) = (Value >> 24) & 0xFF; - *(Addr+5) = (Value >> 16) & 0xFF; - *(Addr+6) = (Value >> 8) & 0xFF; - *(Addr+7) = Value & 0xFF; + sys::swapByteOrder(Value); + *Addr = (Value >> 56) & 0xFF; + *(Addr + 1) = (Value >> 48) & 0xFF; + *(Addr + 2) = (Value >> 40) & 0xFF; + *(Addr + 3) = (Value >> 32) & 0xFF; + *(Addr + 4) = (Value >> 24) & 0xFF; + *(Addr + 5) = (Value >> 16) & 0xFF; + *(Addr + 6) = (Value >> 8) & 0xFF; + *(Addr + 7) = Value & 0xFF; } /// \brief Given the common symbols discovered in the object file, emit a /// new section for them and update the symbol mappings in the object and /// symbol table. - void emitCommonSymbols(ObjectImage &Obj, - const CommonSymbolMap &CommonSymbols, - uint64_t TotalSize, - SymbolTableMap &SymbolTable); + void emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols, + uint64_t TotalSize, SymbolTableMap &SymbolTable); /// \brief Emits section data from the object file to the MemoryManager. /// \param IsCode if it's true then allocateCodeSection() will be /// used for emits, else allocateDataSection() will be used. /// \return SectionID. - unsigned emitSection(ObjectImage &Obj, - const SectionRef &Section, + unsigned emitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode); /// \brief Find Section in LocalSections. If the secton is not found - emit @@ -270,10 +300,8 @@ protected: /// \param IsCode if it's true then allocateCodeSection() will be /// used for emmits, else allocateDataSection() will be used. /// \return SectionID. - unsigned findOrEmitSection(ObjectImage &Obj, - const SectionRef &Section, - bool IsCode, - ObjSectionToIDMap &LocalSections); + unsigned findOrEmitSection(ObjectImage &Obj, const SectionRef &Section, + bool IsCode, ObjSectionToIDMap &LocalSections); // \brief Add a relocation entry that uses the given section. void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID); @@ -284,7 +312,7 @@ protected: /// \brief Emits long jump instruction to Addr. /// \return Pointer to the memory area for emitting target address. - uint8_t* createStubFunction(uint8_t *Addr); + uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0); /// \brief Resolves relocations from Relocs list with address from Value. void resolveRelocationList(const RelocationList &Relocs, uint64_t Value); @@ -294,14 +322,14 @@ protected: /// \param Value Target symbol address to apply the relocation action virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0; - /// \brief Parses the object file relocation and stores it to Relocations - /// or SymbolRelocations (this depends on the object file type). - virtual void processRelocationRef(unsigned SectionID, - RelocationRef RelI, - ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, - const SymbolTableMap &Symbols, - StubMap &Stubs) = 0; + /// \brief Parses one or more object file relocations (some object files use + /// relocation pairs) and stores it to Relocations or SymbolRelocations + /// (this depends on the object file type). + /// \return Iterator to the next relocation that needs to be parsed. + virtual relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) = 0; /// \brief Resolve relocations to external symbols. void resolveExternalSymbols(); @@ -310,20 +338,34 @@ protected: // The base class does nothing. ELF overrides this. virtual void updateGOTEntries(StringRef Name, uint64_t Addr) {} - virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer); + // \brief Compute an upper bound of the memory that is required to load all + // sections + void computeTotalAllocSize(ObjectImage &Obj, uint64_t &CodeSize, + uint64_t &DataSizeRO, uint64_t &DataSizeRW); + + // \brief Compute the stub buffer size required for a section + unsigned computeSectionStubBufSize(ObjectImage &Obj, + const SectionRef &Section); + public: - RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {} + RuntimeDyldImpl(RTDyldMemoryManager *mm) + : MemMgr(mm), ProcessAllSections(false), HasError(false) { + } virtual ~RuntimeDyldImpl(); - ObjectImage *loadObject(ObjectBuffer *InputBuffer); + void setProcessAllSections(bool ProcessAllSections) { + this->ProcessAllSections = ProcessAllSections; + } + + ObjectImage *loadObject(ObjectImage *InputObject); - void *getSymbolAddress(StringRef Name) { + uint8_t* getSymbolAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. SymbolTableMap::const_iterator pos = GlobalSymbolTable.find(Name); if (pos == GlobalSymbolTable.end()) - return 0; + return nullptr; SymbolLoc Loc = pos->second; return getSectionAddress(Loc.first) + Loc.second; } @@ -354,15 +396,15 @@ public: StringRef getErrorString() { return ErrorStr; } virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0; + virtual bool isCompatibleFile(const ObjectFile *Obj) const = 0; virtual void registerEHFrames(); virtual void deregisterEHFrames(); - virtual void finalizeLoad(ObjSectionToIDMap &SectionMap) {} + virtual void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) {} }; } // end namespace llvm - #endif diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp index 5b92867..58fb515 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp @@ -11,28 +11,148 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "dyld" #include "RuntimeDyldMachO.h" -#include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" + +#include "Targets/RuntimeDyldMachOARM.h" +#include "Targets/RuntimeDyldMachOAArch64.h" +#include "Targets/RuntimeDyldMachOI386.h" +#include "Targets/RuntimeDyldMachOX86_64.h" + using namespace llvm; using namespace llvm::object; +#define DEBUG_TYPE "dyld" + namespace llvm { -static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText, intptr_t DeltaForEH) { - uint32_t Length = *((uint32_t*)P); +uint64_t RuntimeDyldMachO::decodeAddend(uint8_t *LocalAddress, unsigned NumBytes, + uint32_t RelType) const { + uint64_t Addend = 0; + memcpy(&Addend, LocalAddress, NumBytes); + return Addend; +} + +RelocationValueRef RuntimeDyldMachO::getRelocationValueRef( + ObjectImage &ObjImg, const relocation_iterator &RI, + const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols) { + + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RI->getRawDataRefImpl()); + RelocationValueRef Value; + + bool IsExternal = Obj.getPlainRelocationExternal(RelInfo); + if (IsExternal) { + symbol_iterator Symbol = RI->getSymbol(); + StringRef TargetName; + Symbol->getName(TargetName); + SymbolTableMap::const_iterator SI = Symbols.find(TargetName.data()); + if (SI != Symbols.end()) { + Value.SectionID = SI->second.first; + Value.Addend = SI->second.second + RE.Addend; + } else { + SI = GlobalSymbolTable.find(TargetName.data()); + if (SI != GlobalSymbolTable.end()) { + Value.SectionID = SI->second.first; + Value.Addend = SI->second.second + RE.Addend; + } else { + Value.SymbolName = TargetName.data(); + Value.Addend = RE.Addend; + } + } + } else { + SectionRef Sec = Obj.getRelocationSection(RelInfo); + bool IsCode = false; + Sec.isText(IsCode); + Value.SectionID = findOrEmitSection(ObjImg, Sec, IsCode, ObjSectionToID); + uint64_t Addr; + Sec.getAddress(Addr); + Value.Addend = RE.Addend - Addr; + } + + return Value; +} + +void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value, + ObjectImage &ObjImg, + const relocation_iterator &RI) { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RI->getRawDataRefImpl()); + + bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo); + if (IsPCRel) { + uint64_t RelocAddr = 0; + RI->getAddress(RelocAddr); + unsigned RelocSize = Obj.getAnyRelocationLength(RelInfo); + Value.Addend += RelocAddr + (1ULL << RelocSize); + } +} + +void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE, + uint64_t Value) const { + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + + dbgs() << "resolveRelocation Section: " << RE.SectionID + << " LocalAddress: " << format("%p", LocalAddress) + << " FinalAddress: " << format("%p", FinalAddress) + << " Value: " << format("%p", Value) << " Addend: " << RE.Addend + << " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType + << " Size: " << (1 << RE.Size) << "\n"; +} + +bool RuntimeDyldMachO::writeBytesUnaligned(uint8_t *Addr, uint64_t Value, + unsigned Size) { + for (unsigned i = 0; i < Size; ++i) { + *Addr++ = (uint8_t)Value; + Value >>= 8; + } + + return false; +} + +bool +RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const { + if (InputBuffer->getBufferSize() < 4) + return false; + StringRef Magic(InputBuffer->getBufferStart(), 4); + if (Magic == "\xFE\xED\xFA\xCE") + return true; + if (Magic == "\xCE\xFA\xED\xFE") + return true; + if (Magic == "\xFE\xED\xFA\xCF") + return true; + if (Magic == "\xCF\xFA\xED\xFE") + return true; + return false; +} + +bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const { + return Obj->isMachO(); +} + +static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText, + intptr_t DeltaForEH) { + DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText + << ", Delta for EH: " << DeltaForEH << "\n"); + uint32_t Length = *((uint32_t *)P); P += 4; unsigned char *Ret = P + Length; - uint32_t Offset = *((uint32_t*)P); + uint32_t Offset = *((uint32_t *)P); if (Offset == 0) // is a CIE return Ret; P += 4; - intptr_t FDELocation = *((intptr_t*)P); + intptr_t FDELocation = *((intptr_t *)P); intptr_t NewLocation = FDELocation - DeltaForText; - *((intptr_t*)P) = NewLocation; + *((intptr_t *)P) = NewLocation; P += sizeof(intptr_t); // Skip the FDE address range @@ -41,16 +161,16 @@ static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText, intptr uint8_t Augmentationsize = *P; P += 1; if (Augmentationsize != 0) { - intptr_t LSDA = *((intptr_t*)P); + intptr_t LSDA = *((intptr_t *)P); intptr_t NewLSDA = LSDA - DeltaForEH; - *((intptr_t*)P) = NewLSDA; + *((intptr_t *)P) = NewLSDA; } return Ret; } static intptr_t computeDelta(SectionEntry *A, SectionEntry *B) { - intptr_t ObjDistance = A->ObjAddress - B->ObjAddress; + intptr_t ObjDistance = A->ObjAddress - B->ObjAddress; intptr_t MemDistance = A->LoadAddress - B->LoadAddress; return ObjDistance - MemDistance; } @@ -66,7 +186,7 @@ void RuntimeDyldMachO::registerEHFrames() { continue; SectionEntry *Text = &Sections[SectionInfo.TextSID]; SectionEntry *EHFrame = &Sections[SectionInfo.EHFrameSID]; - SectionEntry *ExceptTab = NULL; + SectionEntry *ExceptTab = nullptr; if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID) ExceptTab = &Sections[SectionInfo.ExceptTabSID]; @@ -77,382 +197,27 @@ void RuntimeDyldMachO::registerEHFrames() { unsigned char *P = EHFrame->Address; unsigned char *End = P + EHFrame->Size; - do { + do { P = processFDE(P, DeltaForText, DeltaForEH); - } while(P != End); + } while (P != End); - MemMgr->registerEHFrames(EHFrame->Address, - EHFrame->LoadAddress, + MemMgr->registerEHFrames(EHFrame->Address, EHFrame->LoadAddress, EHFrame->Size); } UnregisteredEHFrameSections.clear(); } -void RuntimeDyldMachO::finalizeLoad(ObjSectionToIDMap &SectionMap) { - unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID; - unsigned TextSID = RTDYLD_INVALID_SECTION_ID; - unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID; - ObjSectionToIDMap::iterator i, e; - for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { - const SectionRef &Section = i->first; - StringRef Name; - Section.getName(Name); - if (Name == "__eh_frame") - EHFrameSID = i->second; - else if (Name == "__text") - TextSID = i->second; - else if (Name == "__gcc_except_tab") - ExceptTabSID = i->second; - } - UnregisteredEHFrameSections.push_back(EHFrameRelatedSections(EHFrameSID, - TextSID, - ExceptTabSID)); -} - -// The target location for the relocation is described by RE.SectionID and -// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each -// SectionEntry has three members describing its location. -// SectionEntry::Address is the address at which the section has been loaded -// into memory in the current (host) process. SectionEntry::LoadAddress is the -// address that the section will have in the target process. -// SectionEntry::ObjAddress is the address of the bits for this section in the -// original emitted object image (also in the current address space). -// -// Relocations will be applied as if the section were loaded at -// SectionEntry::LoadAddress, but they will be applied at an address based -// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to -// Target memory contents if they are required for value calculations. -// -// The Value parameter here is the load address of the symbol for the -// relocation to be applied. For relocations which refer to symbols in the -// current object Value will be the LoadAddress of the section in which -// the symbol resides (RE.Addend provides additional information about the -// symbol location). For external symbols, Value will be the address of the -// symbol in the target address space. -void RuntimeDyldMachO::resolveRelocation(const RelocationEntry &RE, - uint64_t Value) { - const SectionEntry &Section = Sections[RE.SectionID]; - return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, - RE.IsPCRel, RE.Size); -} - -void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, - bool isPCRel, - unsigned LogSize) { - uint8_t *LocalAddress = Section.Address + Offset; - uint64_t FinalAddress = Section.LoadAddress + Offset; - unsigned MachoType = Type; - unsigned Size = 1 << LogSize; - - DEBUG(dbgs() << "resolveRelocation LocalAddress: " - << format("%p", LocalAddress) - << " FinalAddress: " << format("%p", FinalAddress) - << " Value: " << format("%p", Value) - << " Addend: " << Addend - << " isPCRel: " << isPCRel - << " MachoType: " << MachoType - << " Size: " << Size - << "\n"); - - // This just dispatches to the proper target specific routine. +std::unique_ptr<RuntimeDyldMachO> +llvm::RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) { switch (Arch) { - default: llvm_unreachable("Unsupported CPU type!"); - case Triple::x86_64: - resolveX86_64Relocation(LocalAddress, - FinalAddress, - (uintptr_t)Value, - isPCRel, - MachoType, - Size, - Addend); - break; - case Triple::x86: - resolveI386Relocation(LocalAddress, - FinalAddress, - (uintptr_t)Value, - isPCRel, - MachoType, - Size, - Addend); - break; - case Triple::arm: // Fall through. - case Triple::thumb: - resolveARMRelocation(LocalAddress, - FinalAddress, - (uintptr_t)Value, - isPCRel, - MachoType, - Size, - Addend); - break; - } -} - -bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend) { - if (isPCRel) - Value -= FinalAddress + 4; // see resolveX86_64Relocation - - switch (Type) { - default: - llvm_unreachable("Invalid relocation type!"); - case MachO::GENERIC_RELOC_VANILLA: { - uint8_t *p = LocalAddress; - uint64_t ValueToWrite = Value + Addend; - for (unsigned i = 0; i < Size; ++i) { - *p++ = (uint8_t)(ValueToWrite & 0xff); - ValueToWrite >>= 8; - } - return false; - } - case MachO::GENERIC_RELOC_SECTDIFF: - case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: - case MachO::GENERIC_RELOC_PB_LA_PTR: - return Error("Relocation type not implemented yet!"); - } -} - -bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend) { - // If the relocation is PC-relative, the value to be encoded is the - // pointer difference. - if (isPCRel) - // FIXME: It seems this value needs to be adjusted by 4 for an effective PC - // address. Is that expected? Only for branches, perhaps? - Value -= FinalAddress + 4; - - switch(Type) { - default: - llvm_unreachable("Invalid relocation type!"); - case MachO::X86_64_RELOC_SIGNED_1: - case MachO::X86_64_RELOC_SIGNED_2: - case MachO::X86_64_RELOC_SIGNED_4: - case MachO::X86_64_RELOC_SIGNED: - case MachO::X86_64_RELOC_UNSIGNED: - case MachO::X86_64_RELOC_BRANCH: { - Value += Addend; - // Mask in the target value a byte at a time (we don't have an alignment - // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)LocalAddress; - for (unsigned i = 0; i < Size; ++i) { - *p++ = (uint8_t)Value; - Value >>= 8; - } - return false; - } - case MachO::X86_64_RELOC_GOT_LOAD: - case MachO::X86_64_RELOC_GOT: - case MachO::X86_64_RELOC_SUBTRACTOR: - case MachO::X86_64_RELOC_TLV: - return Error("Relocation type not implemented yet!"); - } -} - -bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend) { - // If the relocation is PC-relative, the value to be encoded is the - // pointer difference. - if (isPCRel) { - Value -= FinalAddress; - // ARM PCRel relocations have an effective-PC offset of two instructions - // (four bytes in Thumb mode, 8 bytes in ARM mode). - // FIXME: For now, assume ARM mode. - Value -= 8; - } - - switch(Type) { default: - llvm_unreachable("Invalid relocation type!"); - case MachO::ARM_RELOC_VANILLA: { - // Mask in the target value a byte at a time (we don't have an alignment - // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)LocalAddress; - for (unsigned i = 0; i < Size; ++i) { - *p++ = (uint8_t)Value; - Value >>= 8; - } + llvm_unreachable("Unsupported target for RuntimeDyldMachO."); break; + case Triple::arm: return make_unique<RuntimeDyldMachOARM>(MM); + case Triple::arm64: return make_unique<RuntimeDyldMachOAArch64>(MM); + case Triple::x86: return make_unique<RuntimeDyldMachOI386>(MM); + case Triple::x86_64: return make_unique<RuntimeDyldMachOX86_64>(MM); } - case MachO::ARM_RELOC_BR24: { - // Mask the value into the target address. We know instructions are - // 32-bit aligned, so we can do it all at once. - uint32_t *p = (uint32_t*)LocalAddress; - // The low two bits of the value are not encoded. - Value >>= 2; - // Mask the value to 24 bits. - Value &= 0xffffff; - // FIXME: If the destination is a Thumb function (and the instruction - // is a non-predicated BL instruction), we need to change it to a BLX - // instruction instead. - - // Insert the value into the instruction. - *p = (*p & ~0xffffff) | Value; - break; - } - case MachO::ARM_THUMB_RELOC_BR22: - case MachO::ARM_THUMB_32BIT_BRANCH: - case MachO::ARM_RELOC_HALF: - case MachO::ARM_RELOC_HALF_SECTDIFF: - case MachO::ARM_RELOC_PAIR: - case MachO::ARM_RELOC_SECTDIFF: - case MachO::ARM_RELOC_LOCAL_SECTDIFF: - case MachO::ARM_RELOC_PB_LA_PTR: - return Error("Relocation type not implemented yet!"); - } - return false; -} - -void RuntimeDyldMachO::processRelocationRef(unsigned SectionID, - RelocationRef RelI, - ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, - const SymbolTableMap &Symbols, - StubMap &Stubs) { - const ObjectFile *OF = Obj.getObjectFile(); - const MachOObjectFile *MachO = static_cast<const MachOObjectFile*>(OF); - MachO::any_relocation_info RE= MachO->getRelocation(RelI.getRawDataRefImpl()); - - uint32_t RelType = MachO->getAnyRelocationType(RE); - - // FIXME: Properly handle scattered relocations. - // For now, optimistically skip these: they can often be ignored, as - // the static linker will already have applied the relocation, and it - // only needs to be reapplied if symbols move relative to one another. - // Note: This will fail horribly where the relocations *do* need to be - // applied, but that was already the case. - if (MachO->isRelocationScattered(RE)) - return; - - RelocationValueRef Value; - SectionEntry &Section = Sections[SectionID]; - - bool isExtern = MachO->getPlainRelocationExternal(RE); - bool IsPCRel = MachO->getAnyRelocationPCRel(RE); - unsigned Size = MachO->getAnyRelocationLength(RE); - uint64_t Offset; - RelI.getOffset(Offset); - uint8_t *LocalAddress = Section.Address + Offset; - unsigned NumBytes = 1 << Size; - uint64_t Addend = 0; - memcpy(&Addend, LocalAddress, NumBytes); - - if (isExtern) { - // Obtain the symbol name which is referenced in the relocation - symbol_iterator Symbol = RelI.getSymbol(); - StringRef TargetName; - Symbol->getName(TargetName); - // First search for the symbol in the local symbol table - SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data()); - if (lsi != Symbols.end()) { - Value.SectionID = lsi->second.first; - Value.Addend = lsi->second.second + Addend; - } else { - // Search for the symbol in the global symbol table - SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data()); - if (gsi != GlobalSymbolTable.end()) { - Value.SectionID = gsi->second.first; - Value.Addend = gsi->second.second + Addend; - } else { - Value.SymbolName = TargetName.data(); - Value.Addend = Addend; - } - } - } else { - SectionRef Sec = MachO->getRelocationSection(RE); - Value.SectionID = findOrEmitSection(Obj, Sec, true, ObjSectionToID); - uint64_t Addr; - Sec.getAddress(Addr); - Value.Addend = Addend - Addr; - } - - if (Arch == Triple::x86_64 && (RelType == MachO::X86_64_RELOC_GOT || - RelType == MachO::X86_64_RELOC_GOT_LOAD)) { - assert(IsPCRel); - assert(Size == 2); - StubMap::const_iterator i = Stubs.find(Value); - uint8_t *Addr; - if (i != Stubs.end()) { - Addr = Section.Address + i->second; - } else { - Stubs[Value] = Section.StubOffset; - uint8_t *GOTEntry = Section.Address + Section.StubOffset; - RelocationEntry RE(SectionID, Section.StubOffset, - MachO::X86_64_RELOC_UNSIGNED, 0, false, 3); - if (Value.SymbolName) - addRelocationForSymbol(RE, Value.SymbolName); - else - addRelocationForSection(RE, Value.SectionID); - Section.StubOffset += 8; - Addr = GOTEntry; - } - resolveRelocation(Section, Offset, (uint64_t)Addr, - MachO::X86_64_RELOC_UNSIGNED, Value.Addend, true, 2); - } else if (Arch == Triple::arm && - (RelType & 0xf) == MachO::ARM_RELOC_BR24) { - // This is an ARM branch relocation, need to use a stub function. - - // Look up for existing stub. - StubMap::const_iterator i = Stubs.find(Value); - if (i != Stubs.end()) - resolveRelocation(Section, Offset, - (uint64_t)Section.Address + i->second, - RelType, 0, IsPCRel, Size); - else { - // Create a new stub function. - Stubs[Value] = Section.StubOffset; - uint8_t *StubTargetAddr = createStubFunction(Section.Address + - Section.StubOffset); - RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, - MachO::GENERIC_RELOC_VANILLA, Value.Addend); - if (Value.SymbolName) - addRelocationForSymbol(RE, Value.SymbolName); - else - addRelocationForSection(RE, Value.SectionID); - resolveRelocation(Section, Offset, - (uint64_t)Section.Address + Section.StubOffset, - RelType, 0, IsPCRel, Size); - Section.StubOffset += getMaxStubSize(); - } - } else { - RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, - IsPCRel, Size); - if (Value.SymbolName) - addRelocationForSymbol(RE, Value.SymbolName); - else - addRelocationForSection(RE, Value.SectionID); - } -} - - -bool RuntimeDyldMachO::isCompatibleFormat( - const ObjectBuffer *InputBuffer) const { - if (InputBuffer->getBufferSize() < 4) - return false; - StringRef Magic(InputBuffer->getBufferStart(), 4); - if (Magic == "\xFE\xED\xFA\xCE") return true; - if (Magic == "\xCE\xFA\xED\xFE") return true; - if (Magic == "\xFE\xED\xFA\xCF") return true; - if (Magic == "\xCF\xFA\xED\xFE") return true; - return false; } } // end namespace llvm diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h index bbf6aa9..7d1dc02 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h @@ -14,66 +14,31 @@ #ifndef LLVM_RUNTIME_DYLD_MACHO_H #define LLVM_RUNTIME_DYLD_MACHO_H +#include "ObjectImageCommon.h" #include "RuntimeDyldImpl.h" -#include "llvm/ADT/IndexedMap.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Format.h" +#define DEBUG_TYPE "dyld" + using namespace llvm; using namespace llvm::object; - namespace llvm { class RuntimeDyldMachO : public RuntimeDyldImpl { - bool resolveI386Relocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend); - bool resolveX86_64Relocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend); - bool resolveARMRelocation(uint8_t *LocalAddress, - uint64_t FinalAddress, - uint64_t Value, - bool isPCRel, - unsigned Type, - unsigned Size, - int64_t Addend); - - void resolveRelocation(const SectionEntry &Section, - uint64_t Offset, - uint64_t Value, - uint32_t Type, - int64_t Addend, - bool isPCRel, - unsigned Size); - - unsigned getMaxStubSize() { - if (Arch == Triple::arm || Arch == Triple::thumb) - return 8; // 32-bit instruction and 32-bit address - else if (Arch == Triple::x86_64) - return 8; // GOT entry - else - return 0; - } - - unsigned getStubAlignment() { - return 1; - } +protected: + struct SectionOffsetPair { + unsigned SectionID; + uint64_t Offset; + }; struct EHFrameRelatedSections { - EHFrameRelatedSections() : EHFrameSID(RTDYLD_INVALID_SECTION_ID), - TextSID(RTDYLD_INVALID_SECTION_ID), - ExceptTabSID(RTDYLD_INVALID_SECTION_ID) {} - EHFrameRelatedSections(SID EH, SID T, SID Ex) - : EHFrameSID(EH), TextSID(T), ExceptTabSID(Ex) {} + EHFrameRelatedSections() + : EHFrameSID(RTDYLD_INVALID_SECTION_ID), + TextSID(RTDYLD_INVALID_SECTION_ID), + ExceptTabSID(RTDYLD_INVALID_SECTION_ID) {} + EHFrameRelatedSections(SID EH, SID T, SID Ex) + : EHFrameSID(EH), TextSID(T), ExceptTabSID(Ex) {} SID EHFrameSID; SID TextSID; SID ExceptTabSID; @@ -83,21 +48,130 @@ class RuntimeDyldMachO : public RuntimeDyldImpl { // in a table until we receive a request to register all unregistered // EH frame sections with the memory manager. SmallVector<EHFrameRelatedSections, 2> UnregisteredEHFrameSections; -public: + RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} - virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value); - virtual void processRelocationRef(unsigned SectionID, - RelocationRef RelI, - ObjectImage &Obj, - ObjSectionToIDMap &ObjSectionToID, - const SymbolTableMap &Symbols, - StubMap &Stubs); - virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const; - virtual void registerEHFrames(); - virtual void finalizeLoad(ObjSectionToIDMap &SectionMap); + /// Extract the addend encoded in the instruction. + uint64_t decodeAddend(uint8_t *LocalAddress, unsigned NumBytes, + uint32_t RelType) const; + + /// Construct a RelocationValueRef representing the relocation target. + /// For Symbols in known sections, this will return a RelocationValueRef + /// representing a (SectionID, Offset) pair. + /// For Symbols whose section is not known, this will return a + /// (SymbolName, Offset) pair, where the Offset is taken from the instruction + /// immediate (held in RE.Addend). + /// In both cases the Addend field is *NOT* fixed up to be PC-relative. That + /// should be done by the caller where appropriate by calling makePCRel on + /// the RelocationValueRef. + RelocationValueRef getRelocationValueRef(ObjectImage &ObjImg, + const relocation_iterator &RI, + const RelocationEntry &RE, + ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols); + + /// Make the RelocationValueRef addend PC-relative. + void makeValueAddendPCRel(RelocationValueRef &Value, ObjectImage &ObjImg, + const relocation_iterator &RI); + + /// Dump information about the relocation entry (RE) and resolved value. + void dumpRelocationToResolve(const RelocationEntry &RE, uint64_t Value) const; + +public: + /// Create an ObjectImage from the given ObjectBuffer. + static ObjectImage *createObjectImage(ObjectBuffer *InputBuffer) { + return new ObjectImageCommon(InputBuffer); + } + + /// Create an ObjectImage from the given ObjectFile. + static ObjectImage * + createObjectImageFromFile(std::unique_ptr<object::ObjectFile> InputObject) { + return new ObjectImageCommon(std::move(InputObject)); + } + + /// Create a RuntimeDyldMachO instance for the given target architecture. + static std::unique_ptr<RuntimeDyldMachO> create(Triple::ArchType Arch, + RTDyldMemoryManager *mm); + + /// Write the least significant 'Size' bytes in 'Value' out at the address + /// pointed to by Addr. Check for overflow. + bool writeBytesUnaligned(uint8_t *Addr, uint64_t Value, unsigned Size); + + SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; } + + bool isCompatibleFormat(const ObjectBuffer *Buffer) const override; + bool isCompatibleFile(const object::ObjectFile *Obj) const override; + void registerEHFrames() override; +}; + +/// RuntimeDyldMachOTarget - Templated base class for generic MachO linker +/// algorithms and data structures. +/// +/// Concrete, target specific sub-classes can be accessed via the impl() +/// methods. (i.e. the RuntimeDyldMachO hierarchy uses the Curiously +/// Recurring Template Idiom). Concrete subclasses for each target +/// can be found in ./Targets. +template <typename Impl> +class RuntimeDyldMachOCRTPBase : public RuntimeDyldMachO { +private: + Impl &impl() { return static_cast<Impl &>(*this); } + const Impl &impl() const { return static_cast<const Impl &>(*this); } + +protected: + + /// Parse the given relocation, which must be a non-scattered, and + /// return a RelocationEntry representing the information. The 'Addend' field + /// will contain the unmodified instruction immediate. + RelocationEntry getBasicRelocationEntry(unsigned SectionID, + ObjectImage &ObjImg, + const relocation_iterator &RI) const { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RI->getRawDataRefImpl()); + + const SectionEntry &Section = Sections[SectionID]; + bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo); + unsigned Size = Obj.getAnyRelocationLength(RelInfo); + uint64_t Offset; + RI->getOffset(Offset); + uint8_t *LocalAddress = Section.Address + Offset; + unsigned NumBytes = 1 << Size; + uint32_t RelType = Obj.getAnyRelocationType(RelInfo); + uint64_t Addend = impl().decodeAddend(LocalAddress, NumBytes, RelType); + + return RelocationEntry(SectionID, Offset, RelType, Addend, IsPCRel, Size); + } + +public: + RuntimeDyldMachOCRTPBase(RTDyldMemoryManager *mm) : RuntimeDyldMachO(mm) {} + + void finalizeLoad(ObjectImage &ObjImg, ObjSectionToIDMap &SectionMap) { + unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID; + unsigned TextSID = RTDYLD_INVALID_SECTION_ID; + unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID; + ObjSectionToIDMap::iterator i, e; + + for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { + const SectionRef &Section = i->first; + StringRef Name; + Section.getName(Name); + if (Name == "__eh_frame") + EHFrameSID = i->second; + else if (Name == "__text") + TextSID = i->second; + else if (Name == "__gcc_except_tab") + ExceptTabSID = i->second; + else + impl().finalizeSection(ObjImg, i->second, Section); + } + UnregisteredEHFrameSections.push_back( + EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID)); + } }; } // end namespace llvm +#undef DEBUG_TYPE + #endif diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h new file mode 100644 index 0000000..775ed9e --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h @@ -0,0 +1,255 @@ +//===-- RuntimeDyldMachOAArch64.h -- MachO/AArch64 specific code. -*- C++ -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIMEDYLDMACHOAARCH64_H +#define LLVM_RUNTIMEDYLDMACHOAARCH64_H + +#include "../RuntimeDyldMachO.h" + +#define DEBUG_TYPE "dyld" + +namespace llvm { + +class RuntimeDyldMachOAArch64 + : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOAArch64> { +public: + RuntimeDyldMachOAArch64(RTDyldMemoryManager *MM) + : RuntimeDyldMachOCRTPBase(MM) {} + + unsigned getMaxStubSize() override { return 8; } + + unsigned getStubAlignment() override { return 8; } + + relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) override { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RelI->getRawDataRefImpl()); + + assert(!Obj.isRelocationScattered(RelInfo) && ""); + + // ARM64 has an ARM64_RELOC_ADDEND relocation type that carries an explicit + // addend for the following relocation. If found: (1) store the associated + // addend, (2) consume the next relocation, and (3) use the stored addend to + // override the addend. + bool HasExplicitAddend = false; + int64_t ExplicitAddend = 0; + if (Obj.getAnyRelocationType(RelInfo) == MachO::ARM64_RELOC_ADDEND) { + assert(!Obj.getPlainRelocationExternal(RelInfo)); + assert(!Obj.getAnyRelocationPCRel(RelInfo)); + assert(Obj.getAnyRelocationLength(RelInfo) == 2); + HasExplicitAddend = true; + int64_t RawAddend = Obj.getPlainRelocationSymbolNum(RelInfo); + // Sign-extend the 24-bit to 64-bit. + ExplicitAddend = (RawAddend << 40) >> 40; + ++RelI; + RelInfo = Obj.getRelocation(RelI->getRawDataRefImpl()); + } + + RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI)); + RelocationValueRef Value( + getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols)); + + if (HasExplicitAddend) { + RE.Addend = ExplicitAddend; + Value.Addend = ExplicitAddend; + } + + bool IsExtern = Obj.getPlainRelocationExternal(RelInfo); + if (!IsExtern && RE.IsPCRel) + makeValueAddendPCRel(Value, ObjImg, RelI); + + RE.Addend = Value.Addend; + + if (RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 || + RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12) + processGOTRelocation(RE, Value, Stubs); + else { + if (Value.SymbolName) + addRelocationForSymbol(RE, Value.SymbolName); + else + addRelocationForSection(RE, Value.SectionID); + } + + return ++RelI; + } + + void resolveRelocation(const RelocationEntry &RE, uint64_t Value) { + DEBUG(dumpRelocationToResolve(RE, Value)); + + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + + switch (RE.RelType) { + default: + llvm_unreachable("Invalid relocation type!"); + case MachO::ARM64_RELOC_UNSIGNED: { + assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_UNSIGNED not supported"); + // Mask in the target value a byte at a time (we don't have an alignment + // guarantee for the target address, so this is safest). + if (RE.Size < 2) + llvm_unreachable("Invalid size for ARM64_RELOC_UNSIGNED"); + + writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size); + break; + } + case MachO::ARM64_RELOC_BRANCH26: { + assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_BRANCH26 not supported"); + // Mask the value into the target address. We know instructions are + // 32-bit aligned, so we can do it all at once. + uint32_t *p = (uint32_t *)LocalAddress; + // Check if the addend is encoded in the instruction. + uint32_t EncodedAddend = *p & 0x03FFFFFF; + if (EncodedAddend != 0) { + if (RE.Addend == 0) + llvm_unreachable("branch26 instruction has embedded addend."); + else + llvm_unreachable("branch26 instruction has embedded addend and" + "ARM64_RELOC_ADDEND."); + } + // Check if branch is in range. + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + uint64_t PCRelVal = Value - FinalAddress + RE.Addend; + assert(isInt<26>(PCRelVal) && "Branch target out of range!"); + // Insert the value into the instruction. + *p = (*p & 0xFC000000) | ((uint32_t)(PCRelVal >> 2) & 0x03FFFFFF); + break; + } + case MachO::ARM64_RELOC_GOT_LOAD_PAGE21: + case MachO::ARM64_RELOC_PAGE21: { + assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_PAGE21 not supported"); + // Mask the value into the target address. We know instructions are + // 32-bit aligned, so we can do it all at once. + uint32_t *p = (uint32_t *)LocalAddress; + // Check if the addend is encoded in the instruction. + uint32_t EncodedAddend = + ((*p & 0x60000000) >> 29) | ((*p & 0x01FFFFE0) >> 3); + if (EncodedAddend != 0) { + if (RE.Addend == 0) + llvm_unreachable("adrp instruction has embedded addend."); + else + llvm_unreachable("adrp instruction has embedded addend and" + "ARM64_RELOC_ADDEND."); + } + // Adjust for PC-relative relocation and offset. + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + uint64_t PCRelVal = + ((Value + RE.Addend) & (-4096)) - (FinalAddress & (-4096)); + // Check that the value fits into 21 bits (+ 12 lower bits). + assert(isInt<33>(PCRelVal) && "Invalid page reloc value!"); + // Insert the value into the instruction. + uint32_t ImmLoValue = (uint32_t)(PCRelVal << 17) & 0x60000000; + uint32_t ImmHiValue = (uint32_t)(PCRelVal >> 9) & 0x00FFFFE0; + *p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue; + break; + } + case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: + case MachO::ARM64_RELOC_PAGEOFF12: { + assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_PAGEOFF21 not supported"); + // Mask the value into the target address. We know instructions are + // 32-bit aligned, so we can do it all at once. + uint32_t *p = (uint32_t *)LocalAddress; + // Check if the addend is encoded in the instruction. + uint32_t EncodedAddend = *p & 0x003FFC00; + if (EncodedAddend != 0) { + if (RE.Addend == 0) + llvm_unreachable("adrp instruction has embedded addend."); + else + llvm_unreachable("adrp instruction has embedded addend and" + "ARM64_RELOC_ADDEND."); + } + // Add the offset from the symbol. + Value += RE.Addend; + // Mask out the page address and only use the lower 12 bits. + Value &= 0xFFF; + // Check which instruction we are updating to obtain the implicit shift + // factor from LDR/STR instructions. + if (*p & 0x08000000) { + uint32_t ImplicitShift = ((*p >> 30) & 0x3); + switch (ImplicitShift) { + case 0: + // Check if this a vector op. + if ((*p & 0x04800000) == 0x04800000) { + ImplicitShift = 4; + assert(((Value & 0xF) == 0) && + "128-bit LDR/STR not 16-byte aligned."); + } + break; + case 1: + assert(((Value & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned."); + case 2: + assert(((Value & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned."); + case 3: + assert(((Value & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned."); + } + // Compensate for implicit shift. + Value >>= ImplicitShift; + } + // Insert the value into the instruction. + *p = (*p & 0xFFC003FF) | ((uint32_t)(Value << 10) & 0x003FFC00); + break; + } + case MachO::ARM64_RELOC_SUBTRACTOR: + case MachO::ARM64_RELOC_POINTER_TO_GOT: + case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21: + case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12: + llvm_unreachable("Relocation type not implemented yet!"); + case MachO::ARM64_RELOC_ADDEND: + llvm_unreachable("ARM64_RELOC_ADDEND should have been handeled by " + "processRelocationRef!"); + } + } + + void finalizeSection(ObjectImage &ObjImg, unsigned SectionID, + const SectionRef &Section) {} + +private: + void processGOTRelocation(const RelocationEntry &RE, + RelocationValueRef &Value, StubMap &Stubs) { + assert(RE.Size == 2); + SectionEntry &Section = Sections[RE.SectionID]; + StubMap::const_iterator i = Stubs.find(Value); + uint8_t *Addr; + if (i != Stubs.end()) + Addr = Section.Address + i->second; + else { + // FIXME: There must be a better way to do this then to check and fix the + // alignment every time!!! + uintptr_t BaseAddress = uintptr_t(Section.Address); + uintptr_t StubAlignment = getStubAlignment(); + uintptr_t StubAddress = + (BaseAddress + Section.StubOffset + StubAlignment - 1) & + -StubAlignment; + unsigned StubOffset = StubAddress - BaseAddress; + Stubs[Value] = StubOffset; + assert(((StubAddress % getStubAlignment()) == 0) && + "GOT entry not aligned"); + RelocationEntry GOTRE(RE.SectionID, StubOffset, + MachO::ARM64_RELOC_UNSIGNED, Value.Addend, + /*IsPCRel=*/false, /*Size=*/3); + if (Value.SymbolName) + addRelocationForSymbol(GOTRE, Value.SymbolName); + else + addRelocationForSection(GOTRE, Value.SectionID); + Section.StubOffset = StubOffset + getMaxStubSize(); + Addr = (uint8_t *)StubAddress; + } + RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, /*Addend=*/0, + RE.IsPCRel, RE.Size); + resolveRelocation(TargetRE, (uint64_t)Addr); + } +}; +} + +#undef DEBUG_TYPE + +#endif // LLVM_RUNTIMEDYLDMACHOAARCH64_H diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h new file mode 100644 index 0000000..1de9942 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h @@ -0,0 +1,154 @@ +//===----- RuntimeDyldMachOARM.h ---- MachO/ARM specific code. ----*- C++ -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIMEDYLDMACHOARM_H +#define LLVM_RUNTIMEDYLDMACHOARM_H + +#include "../RuntimeDyldMachO.h" + +#define DEBUG_TYPE "dyld" + +namespace llvm { + +class RuntimeDyldMachOARM + : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> { +public: + RuntimeDyldMachOARM(RTDyldMemoryManager *MM) : RuntimeDyldMachOCRTPBase(MM) {} + + unsigned getMaxStubSize() override { return 8; } + + unsigned getStubAlignment() override { return 4; } + + relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) override { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RelI->getRawDataRefImpl()); + + if (Obj.isRelocationScattered(RelInfo)) + return ++++RelI; + + RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI)); + RelocationValueRef Value( + getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols)); + + bool IsExtern = Obj.getPlainRelocationExternal(RelInfo); + if (!IsExtern && RE.IsPCRel) + makeValueAddendPCRel(Value, ObjImg, RelI); + + if ((RE.RelType & 0xf) == MachO::ARM_RELOC_BR24) + processBranchRelocation(RE, Value, Stubs); + else { + RE.Addend = Value.Addend; + if (Value.SymbolName) + addRelocationForSymbol(RE, Value.SymbolName); + else + addRelocationForSection(RE, Value.SectionID); + } + + return ++RelI; + } + + void resolveRelocation(const RelocationEntry &RE, uint64_t Value) { + DEBUG(dumpRelocationToResolve(RE, Value)); + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + + // If the relocation is PC-relative, the value to be encoded is the + // pointer difference. + if (RE.IsPCRel) { + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + Value -= FinalAddress; + // ARM PCRel relocations have an effective-PC offset of two instructions + // (four bytes in Thumb mode, 8 bytes in ARM mode). + // FIXME: For now, assume ARM mode. + Value -= 8; + } + + switch (RE.RelType) { + default: + llvm_unreachable("Invalid relocation type!"); + case MachO::ARM_RELOC_VANILLA: + writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size); + break; + case MachO::ARM_RELOC_BR24: { + // Mask the value into the target address. We know instructions are + // 32-bit aligned, so we can do it all at once. + uint32_t *p = (uint32_t *)LocalAddress; + // The low two bits of the value are not encoded. + Value >>= 2; + // Mask the value to 24 bits. + uint64_t FinalValue = Value & 0xffffff; + // Check for overflow. + if (Value != FinalValue) { + Error("ARM BR24 relocation out of range."); + return; + } + // FIXME: If the destination is a Thumb function (and the instruction + // is a non-predicated BL instruction), we need to change it to a BLX + // instruction instead. + + // Insert the value into the instruction. + *p = (*p & ~0xffffff) | FinalValue; + break; + } + case MachO::ARM_THUMB_RELOC_BR22: + case MachO::ARM_THUMB_32BIT_BRANCH: + case MachO::ARM_RELOC_HALF: + case MachO::ARM_RELOC_HALF_SECTDIFF: + case MachO::ARM_RELOC_PAIR: + case MachO::ARM_RELOC_SECTDIFF: + case MachO::ARM_RELOC_LOCAL_SECTDIFF: + case MachO::ARM_RELOC_PB_LA_PTR: + Error("Relocation type not implemented yet!"); + return; + } + } + + void finalizeSection(ObjectImage &ObjImg, unsigned SectionID, + const SectionRef &Section) {} + +private: + void processBranchRelocation(const RelocationEntry &RE, + const RelocationValueRef &Value, + StubMap &Stubs) { + // This is an ARM branch relocation, need to use a stub function. + // Look up for existing stub. + SectionEntry &Section = Sections[RE.SectionID]; + RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value); + uint8_t *Addr; + if (i != Stubs.end()) { + Addr = Section.Address + i->second; + } else { + // Create a new stub function. + Stubs[Value] = Section.StubOffset; + uint8_t *StubTargetAddr = + createStubFunction(Section.Address + Section.StubOffset); + RelocationEntry StubRE(RE.SectionID, StubTargetAddr - Section.Address, + MachO::GENERIC_RELOC_VANILLA, Value.Addend); + if (Value.SymbolName) + addRelocationForSymbol(StubRE, Value.SymbolName); + else + addRelocationForSection(StubRE, Value.SectionID); + Addr = Section.Address + Section.StubOffset; + Section.StubOffset += getMaxStubSize(); + } + RelocationEntry TargetRE(Value.SectionID, RE.Offset, RE.RelType, 0, + RE.IsPCRel, RE.Size); + resolveRelocation(TargetRE, (uint64_t)Addr); + } +}; +} + +#undef DEBUG_TYPE + +#endif // LLVM_RUNTIMEDYLDMACHOARM_H diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h new file mode 100644 index 0000000..856c6ca --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h @@ -0,0 +1,315 @@ +//===---- RuntimeDyldMachOI386.h ---- MachO/I386 specific code. ---*- C++ -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIMEDYLDMACHOI386_H +#define LLVM_RUNTIMEDYLDMACHOI386_H + +#include "../RuntimeDyldMachO.h" + +#define DEBUG_TYPE "dyld" + +namespace llvm { + +class RuntimeDyldMachOI386 + : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386> { +public: + RuntimeDyldMachOI386(RTDyldMemoryManager *MM) + : RuntimeDyldMachOCRTPBase(MM) {} + + unsigned getMaxStubSize() override { return 0; } + + unsigned getStubAlignment() override { return 1; } + + relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) override { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RelI->getRawDataRefImpl()); + uint32_t RelType = Obj.getAnyRelocationType(RelInfo); + + if (Obj.isRelocationScattered(RelInfo)) { + if (RelType == MachO::GENERIC_RELOC_SECTDIFF || + RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) + return processSECTDIFFRelocation(SectionID, RelI, ObjImg, + ObjSectionToID); + else if (Arch == Triple::x86 && RelType == MachO::GENERIC_RELOC_VANILLA) + return processI386ScatteredVANILLA(SectionID, RelI, ObjImg, + ObjSectionToID); + llvm_unreachable("Unhandled scattered relocation."); + } + + RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI)); + RelocationValueRef Value( + getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols)); + + // Addends for external, PC-rel relocations on i386 point back to the zero + // offset. Calculate the final offset from the relocation target instead. + // This allows us to use the same logic for both external and internal + // relocations in resolveI386RelocationRef. + // bool IsExtern = Obj.getPlainRelocationExternal(RelInfo); + // if (IsExtern && RE.IsPCRel) { + // uint64_t RelocAddr = 0; + // RelI->getAddress(RelocAddr); + // Value.Addend += RelocAddr + 4; + // } + if (RE.IsPCRel) + makeValueAddendPCRel(Value, ObjImg, RelI); + + RE.Addend = Value.Addend; + + if (Value.SymbolName) + addRelocationForSymbol(RE, Value.SymbolName); + else + addRelocationForSection(RE, Value.SectionID); + + return ++RelI; + } + + void resolveRelocation(const RelocationEntry &RE, uint64_t Value) { + DEBUG(dumpRelocationToResolve(RE, Value)); + + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + + if (RE.IsPCRel) { + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation. + } + + switch (RE.RelType) { + default: + llvm_unreachable("Invalid relocation type!"); + case MachO::GENERIC_RELOC_VANILLA: + writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size); + break; + case MachO::GENERIC_RELOC_SECTDIFF: + case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { + uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress; + uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress; + assert((Value == SectionABase || Value == SectionBBase) && + "Unexpected SECTDIFF relocation value."); + Value = SectionABase - SectionBBase + RE.Addend; + writeBytesUnaligned(LocalAddress, Value, 1 << RE.Size); + break; + } + case MachO::GENERIC_RELOC_PB_LA_PTR: + Error("Relocation type not implemented yet!"); + } + } + + void finalizeSection(ObjectImage &ObjImg, unsigned SectionID, + const SectionRef &Section) { + StringRef Name; + Section.getName(Name); + + if (Name == "__jump_table") + populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()), Section, + SectionID); + else if (Name == "__pointers") + populatePointersSection(cast<MachOObjectFile>(*ObjImg.getObjectFile()), + Section, SectionID); + } + +private: + relocation_iterator + processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI, + ObjectImage &Obj, + ObjSectionToIDMap &ObjSectionToID) { + const MachOObjectFile *MachO = + static_cast<const MachOObjectFile *>(Obj.getObjectFile()); + MachO::any_relocation_info RE = + MachO->getRelocation(RelI->getRawDataRefImpl()); + + SectionEntry &Section = Sections[SectionID]; + uint32_t RelocType = MachO->getAnyRelocationType(RE); + bool IsPCRel = MachO->getAnyRelocationPCRel(RE); + unsigned Size = MachO->getAnyRelocationLength(RE); + uint64_t Offset; + RelI->getOffset(Offset); + uint8_t *LocalAddress = Section.Address + Offset; + unsigned NumBytes = 1 << Size; + int64_t Addend = 0; + memcpy(&Addend, LocalAddress, NumBytes); + + ++RelI; + MachO::any_relocation_info RE2 = + MachO->getRelocation(RelI->getRawDataRefImpl()); + + uint32_t AddrA = MachO->getScatteredRelocationValue(RE); + section_iterator SAI = getSectionByAddress(*MachO, AddrA); + assert(SAI != MachO->section_end() && "Can't find section for address A"); + uint64_t SectionABase; + SAI->getAddress(SectionABase); + uint64_t SectionAOffset = AddrA - SectionABase; + SectionRef SectionA = *SAI; + bool IsCode; + SectionA.isText(IsCode); + uint32_t SectionAID = + findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID); + + uint32_t AddrB = MachO->getScatteredRelocationValue(RE2); + section_iterator SBI = getSectionByAddress(*MachO, AddrB); + assert(SBI != MachO->section_end() && "Can't find section for address B"); + uint64_t SectionBBase; + SBI->getAddress(SectionBBase); + uint64_t SectionBOffset = AddrB - SectionBBase; + SectionRef SectionB = *SBI; + uint32_t SectionBID = + findOrEmitSection(Obj, SectionB, IsCode, ObjSectionToID); + + if (Addend != AddrA - AddrB) + Error("Unexpected SECTDIFF relocation addend."); + + DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB + << ", Addend: " << Addend << ", SectionA ID: " << SectionAID + << ", SectionAOffset: " << SectionAOffset + << ", SectionB ID: " << SectionBID + << ", SectionBOffset: " << SectionBOffset << "\n"); + RelocationEntry R(SectionID, Offset, RelocType, 0, SectionAID, + SectionAOffset, SectionBID, SectionBOffset, IsPCRel, + Size); + + addRelocationForSection(R, SectionAID); + addRelocationForSection(R, SectionBID); + + return ++RelI; + } + + relocation_iterator processI386ScatteredVANILLA( + unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj, + RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID) { + const MachOObjectFile *MachO = + static_cast<const MachOObjectFile *>(Obj.getObjectFile()); + MachO::any_relocation_info RE = + MachO->getRelocation(RelI->getRawDataRefImpl()); + + SectionEntry &Section = Sections[SectionID]; + uint32_t RelocType = MachO->getAnyRelocationType(RE); + bool IsPCRel = MachO->getAnyRelocationPCRel(RE); + unsigned Size = MachO->getAnyRelocationLength(RE); + uint64_t Offset; + RelI->getOffset(Offset); + uint8_t *LocalAddress = Section.Address + Offset; + unsigned NumBytes = 1 << Size; + int64_t Addend = 0; + memcpy(&Addend, LocalAddress, NumBytes); + + unsigned SymbolBaseAddr = MachO->getScatteredRelocationValue(RE); + section_iterator TargetSI = getSectionByAddress(*MachO, SymbolBaseAddr); + assert(TargetSI != MachO->section_end() && "Can't find section for symbol"); + uint64_t SectionBaseAddr; + TargetSI->getAddress(SectionBaseAddr); + SectionRef TargetSection = *TargetSI; + bool IsCode; + TargetSection.isText(IsCode); + uint32_t TargetSectionID = + findOrEmitSection(Obj, TargetSection, IsCode, ObjSectionToID); + + Addend -= SectionBaseAddr; + RelocationEntry R(SectionID, Offset, RelocType, Addend, IsPCRel, Size); + + addRelocationForSection(R, TargetSectionID); + + return ++RelI; + } + + // Populate stubs in __jump_table section. + void populateJumpTable(MachOObjectFile &Obj, const SectionRef &JTSection, + unsigned JTSectionID) { + assert(!Obj.is64Bit() && + "__jump_table section not supported in 64-bit MachO."); + + MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand(); + MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl()); + uint32_t JTSectionSize = Sec32.size; + unsigned FirstIndirectSymbol = Sec32.reserved1; + unsigned JTEntrySize = Sec32.reserved2; + unsigned NumJTEntries = JTSectionSize / JTEntrySize; + uint8_t *JTSectionAddr = getSectionAddress(JTSectionID); + unsigned JTEntryOffset = 0; + + assert((JTSectionSize % JTEntrySize) == 0 && + "Jump-table section does not contain a whole number of stubs?"); + + for (unsigned i = 0; i < NumJTEntries; ++i) { + unsigned SymbolIndex = + Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i); + symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex); + StringRef IndirectSymbolName; + SI->getName(IndirectSymbolName); + uint8_t *JTEntryAddr = JTSectionAddr + JTEntryOffset; + createStubFunction(JTEntryAddr); + RelocationEntry RE(JTSectionID, JTEntryOffset + 1, + MachO::GENERIC_RELOC_VANILLA, 0, true, 2); + addRelocationForSymbol(RE, IndirectSymbolName); + JTEntryOffset += JTEntrySize; + } + } + + // Populate __pointers section. + void populatePointersSection(MachOObjectFile &Obj, + const SectionRef &PTSection, + unsigned PTSectionID) { + assert(!Obj.is64Bit() && + "__pointers section not supported in 64-bit MachO."); + + MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand(); + MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl()); + uint32_t PTSectionSize = Sec32.size; + unsigned FirstIndirectSymbol = Sec32.reserved1; + const unsigned PTEntrySize = 4; + unsigned NumPTEntries = PTSectionSize / PTEntrySize; + unsigned PTEntryOffset = 0; + + assert((PTSectionSize % PTEntrySize) == 0 && + "Pointers section does not contain a whole number of stubs?"); + + DEBUG(dbgs() << "Populating __pointers, Section ID " << PTSectionID << ", " + << NumPTEntries << " entries, " << PTEntrySize + << " bytes each:\n"); + + for (unsigned i = 0; i < NumPTEntries; ++i) { + unsigned SymbolIndex = + Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i); + symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex); + StringRef IndirectSymbolName; + SI->getName(IndirectSymbolName); + DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex + << ", PT offset: " << PTEntryOffset << "\n"); + RelocationEntry RE(PTSectionID, PTEntryOffset, + MachO::GENERIC_RELOC_VANILLA, 0, false, 2); + addRelocationForSymbol(RE, IndirectSymbolName); + PTEntryOffset += PTEntrySize; + } + } + + static section_iterator getSectionByAddress(const MachOObjectFile &Obj, + uint64_t Addr) { + section_iterator SI = Obj.section_begin(); + section_iterator SE = Obj.section_end(); + + for (; SI != SE; ++SI) { + uint64_t SAddr, SSize; + SI->getAddress(SAddr); + SI->getSize(SSize); + if ((Addr >= SAddr) && (Addr < SAddr + SSize)) + return SI; + } + + return SE; + } +}; +} + +#undef DEBUG_TYPE + +#endif // LLVM_RUNTIMEDYLDMACHOI386_H diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h new file mode 100644 index 0000000..99efe9d --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h @@ -0,0 +1,132 @@ +//===-- RuntimeDyldMachOX86_64.h ---- MachO/X86_64 specific code. -*- C++ -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIMEDYLDMACHOX86_64_H +#define LLVM_RUNTIMEDYLDMACHOX86_64_H + +#include "../RuntimeDyldMachO.h" + +#define DEBUG_TYPE "dyld" + +namespace llvm { + +class RuntimeDyldMachOX86_64 + : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64> { +public: + RuntimeDyldMachOX86_64(RTDyldMemoryManager *MM) + : RuntimeDyldMachOCRTPBase(MM) {} + + unsigned getMaxStubSize() override { return 8; } + + unsigned getStubAlignment() override { return 1; } + + relocation_iterator + processRelocationRef(unsigned SectionID, relocation_iterator RelI, + ObjectImage &ObjImg, ObjSectionToIDMap &ObjSectionToID, + const SymbolTableMap &Symbols, StubMap &Stubs) override { + const MachOObjectFile &Obj = + static_cast<const MachOObjectFile &>(*ObjImg.getObjectFile()); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RelI->getRawDataRefImpl()); + + assert(!Obj.isRelocationScattered(RelInfo) && + "Scattered relocations not supported on X86_64"); + + RelocationEntry RE(getBasicRelocationEntry(SectionID, ObjImg, RelI)); + RelocationValueRef Value( + getRelocationValueRef(ObjImg, RelI, RE, ObjSectionToID, Symbols)); + + bool IsExtern = Obj.getPlainRelocationExternal(RelInfo); + if (!IsExtern && RE.IsPCRel) + makeValueAddendPCRel(Value, ObjImg, RelI); + + if (RE.RelType == MachO::X86_64_RELOC_GOT || + RE.RelType == MachO::X86_64_RELOC_GOT_LOAD) + processGOTRelocation(RE, Value, Stubs); + else { + RE.Addend = Value.Addend; + if (Value.SymbolName) + addRelocationForSymbol(RE, Value.SymbolName); + else + addRelocationForSection(RE, Value.SectionID); + } + + return ++RelI; + } + + void resolveRelocation(const RelocationEntry &RE, uint64_t Value) { + DEBUG(dumpRelocationToResolve(RE, Value)); + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + + // If the relocation is PC-relative, the value to be encoded is the + // pointer difference. + if (RE.IsPCRel) { + // FIXME: It seems this value needs to be adjusted by 4 for an effective + // PC address. Is that expected? Only for branches, perhaps? + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + Value -= FinalAddress + 4; + } + + switch (RE.RelType) { + default: + llvm_unreachable("Invalid relocation type!"); + case MachO::X86_64_RELOC_SIGNED_1: + case MachO::X86_64_RELOC_SIGNED_2: + case MachO::X86_64_RELOC_SIGNED_4: + case MachO::X86_64_RELOC_SIGNED: + case MachO::X86_64_RELOC_UNSIGNED: + case MachO::X86_64_RELOC_BRANCH: + writeBytesUnaligned(LocalAddress, Value + RE.Addend, 1 << RE.Size); + break; + case MachO::X86_64_RELOC_GOT_LOAD: + case MachO::X86_64_RELOC_GOT: + case MachO::X86_64_RELOC_SUBTRACTOR: + case MachO::X86_64_RELOC_TLV: + Error("Relocation type not implemented yet!"); + } + } + + void finalizeSection(ObjectImage &ObjImg, unsigned SectionID, + const SectionRef &Section) {} + +private: + void processGOTRelocation(const RelocationEntry &RE, + RelocationValueRef &Value, StubMap &Stubs) { + SectionEntry &Section = Sections[RE.SectionID]; + assert(RE.IsPCRel); + assert(RE.Size == 2); + Value.Addend -= RE.Addend; + RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value); + uint8_t *Addr; + if (i != Stubs.end()) { + Addr = Section.Address + i->second; + } else { + Stubs[Value] = Section.StubOffset; + uint8_t *GOTEntry = Section.Address + Section.StubOffset; + RelocationEntry GOTRE(RE.SectionID, Section.StubOffset, + MachO::X86_64_RELOC_UNSIGNED, Value.Addend, false, + 3); + if (Value.SymbolName) + addRelocationForSymbol(GOTRE, Value.SymbolName); + else + addRelocationForSection(GOTRE, Value.SectionID); + Section.StubOffset += 8; + Addr = GOTEntry; + } + RelocationEntry TargetRE(RE.SectionID, RE.Offset, + MachO::X86_64_RELOC_UNSIGNED, RE.Addend, true, 2); + resolveRelocation(TargetRE, (uint64_t)Addr); + } +}; +} + +#undef DEBUG_TYPE + +#endif // LLVM_RUNTIMEDYLDMACHOX86_64_H diff --git a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp index 9b7d348..b10d51f 100644 --- a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp +++ b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp @@ -47,7 +47,7 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple, TheTriple.setTriple(sys::getProcessTriple()); // Adjust the triple to match what the user requested. - const Target *TheTarget = 0; + const Target *TheTarget = nullptr; if (!MArch.empty()) { for (TargetRegistry::iterator it = TargetRegistry::begin(), ie = TargetRegistry::end(); it != ie; ++it) { @@ -61,7 +61,7 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple, if (ErrorStr) *ErrorStr = "No available targets are compatible with this -march, " "see -version for the available targets.\n"; - return 0; + return nullptr; } // Adjust the triple to match (if known), otherwise stick with the @@ -72,10 +72,10 @@ TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple, } else { std::string Error; TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Error); - if (TheTarget == 0) { + if (!TheTarget) { if (ErrorStr) *ErrorStr = Error; - return 0; + return nullptr; } } |