summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
committerdim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
commit60b571e49a90d38697b3aca23020d9da42fc7d7f (patch)
tree99351324c24d6cb146b6285b6caffa4d26fce188 /contrib/llvm/lib/CodeGen
parentbea1b22c7a9bce1dfdd73e6e5b65bc4752215180 (diff)
downloadFreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.zip
FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.tar.gz
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release:
MFC r309142 (by emaste): Add WITH_LLD_AS_LD build knob If set it installs LLD as /usr/bin/ld. LLD (as of version 3.9) is not capable of linking the world and kernel, but can self-host and link many substantial applications. GNU ld continues to be used for the world and kernel build, regardless of how this knob is set. It is on by default for arm64, and off for all other CPU architectures. Sponsored by: The FreeBSD Foundation MFC r310840: Reapply 310775, now it also builds correctly if lldb is disabled: Move llvm-objdump from CLANG_EXTRAS to installed by default We currently install three tools from binutils 2.17.50: as, ld, and objdump. Work is underway to migrate to a permissively-licensed tool-chain, with one goal being the retirement of binutils 2.17.50. LLVM's llvm-objdump is intended to be compatible with GNU objdump although it is currently missing some options and may have formatting differences. Enable it by default for testing and further investigation. It may later be changed to install as /usr/bin/objdump, it becomes a fully viable replacement. Reviewed by: emaste Differential Revision: https://reviews.freebsd.org/D8879 MFC r312855 (by emaste): Rename LLD_AS_LD to LLD_IS_LD, for consistency with CLANG_IS_CC Reported by: Dan McGregor <dan.mcgregor usask.ca> MFC r313559 | glebius | 2017-02-10 18:34:48 +0100 (Fri, 10 Feb 2017) | 5 lines Don't check struct rtentry on FreeBSD, it is an internal kernel structure. On other systems it may be API structure for SIOCADDRT/SIOCDELRT. Reviewed by: emaste, dim MFC r314152 (by jkim): Remove an assembler flag, which is redundant since r309124. The upstream took care of it by introducing a macro NO_EXEC_STACK_DIRECTIVE. http://llvm.org/viewvc/llvm-project?rev=273500&view=rev Reviewed by: dim MFC r314564: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 (branches/release_40 296509). The release will follow soon. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Also note that as of 4.0.0, lld should be able to link the base system on amd64 and aarch64. See the WITH_LLD_IS_LLD setting in src.conf(5). Though please be aware that this is work in progress. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/4.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Jan Beich, Antoine Brodin and Eric Fiselier for their help. Relnotes: yes Exp-run: antoine PR: 215969, 216008 MFC r314708: For now, revert r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 This commit is the cause of excessive compile times on skein_block.c (and possibly other files) during kernel builds on amd64. We never saw the problematic behavior described in this upstream commit, so for now it is better to revert it. An upstream bug has been filed here: https://bugs.llvm.org/show_bug.cgi?id=32142 Reported by: mjg MFC r314795: Reapply r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 Pull in r296992 from upstream llvm trunk (by Sanjoy Das): [SCEV] Decrease the recursion threshold for CompareValueComplexity Fixes PR32142. r287232 accidentally increased the recursion threshold for CompareValueComplexity from 2 to 32. This change reverses that change by introducing a separate flag for CompareValueComplexity's threshold. The latter revision fixes the excessive compile times for skein_block.c. MFC r314907 | mmel | 2017-03-08 12:40:27 +0100 (Wed, 08 Mar 2017) | 7 lines Unbreak ARMv6 world. The new compiler_rt library imported with clang 4.0.0 have several fatal issues (non-functional __udivsi3 for example) with ARM specific instrict functions. As temporary workaround, until upstream solve these problems, disable all thumb[1][2] related feature. MFC r315016: Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release. We were already very close to the last release candidate, so this is a pretty minor update. Relnotes: yes MFC r316005: Revert r314907, and pull in r298713 from upstream compiler-rt trunk (by Weiming Zhao): builtins: Select correct code fragments when compiling for Thumb1/Thum2/ARM ISA. Summary: Value of __ARM_ARCH_ISA_THUMB isn't based on the actual compilation mode (-mthumb, -marm), it reflect's capability of given CPU. Due to this: - use __tbumb__ and __thumb2__ insteand of __ARM_ARCH_ISA_THUMB - use '.thumb' directive consistently in all affected files - decorate all thumb functions using DEFINE_COMPILERRT_THUMB_FUNCTION() --------- Note: This patch doesn't fix broken Thumb1 variant of __udivsi3 ! Reviewers: weimingz, rengolin, compnerd Subscribers: aemerson, dim Differential Revision: https://reviews.llvm.org/D30938 Discussed with: mmel
Diffstat (limited to 'contrib/llvm/lib/CodeGen')
-rw-r--r--contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/AllocationOrder.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/AllocationOrder.h5
-rw-r--r--contrib/llvm/lib/CodeGen/Analysis.cpp79
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp21
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp275
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp35
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp19
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp692
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.h29
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp390
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp31
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp42
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.h18
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h12
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h3
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp32
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp256
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h28
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp372
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h84
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h6
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp170
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h165
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp72
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h15
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp137
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h31
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp16
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/WinException.cpp116
-rw-r--r--contrib/llvm/lib/CodeGen/AsmPrinter/WinException.h4
-rw-r--r--contrib/llvm/lib/CodeGen/BranchFolding.cpp268
-rw-r--r--contrib/llvm/lib/CodeGen/BranchFolding.h14
-rw-r--r--contrib/llvm/lib/CodeGen/BranchRelaxation.cpp510
-rw-r--r--contrib/llvm/lib/CodeGen/CallingConvLower.cpp18
-rw-r--r--contrib/llvm/lib/CodeGen/CodeGen.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp519
-rw-r--r--contrib/llvm/lib/CodeGen/CountingFunctionInserter.cpp62
-rw-r--r--contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/DFAPacketizer.cpp21
-rw-r--r--contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/DetectDeadLanes.cpp30
-rw-r--r--contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp6
-rw-r--r--contrib/llvm/lib/CodeGen/EdgeBundles.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp94
-rw-r--r--contrib/llvm/lib/CodeGen/FuncletLayout.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/GCMetadata.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/GCRootLowering.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/GCStrategy.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp170
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp839
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp175
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp60
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp180
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp354
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp182
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp427
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp171
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp11
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp474
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalISel/Utils.cpp45
-rw-r--r--contrib/llvm/lib/CodeGen/GlobalMerge.cpp63
-rw-r--r--contrib/llvm/lib/CodeGen/IfConversion.cpp1225
-rw-r--r--contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp401
-rw-r--r--contrib/llvm/lib/CodeGen/InlineSpiller.cpp43
-rw-r--r--contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp114
-rw-r--r--contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp68
-rw-r--r--contrib/llvm/lib/CodeGen/LatencyPriorityQueue.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/LexicalScopes.cpp22
-rw-r--r--contrib/llvm/lib/CodeGen/LiveDebugValues.cpp90
-rw-r--r--contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp56
-rw-r--r--contrib/llvm/lib/CodeGen/LiveInterval.cpp105
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp70
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/LivePhysRegs.cpp53
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp211
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeCalc.h55
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp23
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/LiveVariables.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp82
-rw-r--r--contrib/llvm/lib/CodeGen/LowLevelType.cpp71
-rw-r--r--contrib/llvm/lib/CodeGen/MIRParser/MILexer.cpp78
-rw-r--r--contrib/llvm/lib/CodeGen/MIRParser/MILexer.h10
-rw-r--r--contrib/llvm/lib/CodeGen/MIRParser/MIParser.cpp485
-rw-r--r--contrib/llvm/lib/CodeGen/MIRParser/MIParser.h49
-rw-r--r--contrib/llvm/lib/CodeGen/MIRParser/MIRParser.cpp195
-rw-r--r--contrib/llvm/lib/CodeGen/MIRPrinter.cpp156
-rw-r--r--contrib/llvm/lib/CodeGen/MIRPrintingPass.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp144
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBlockFrequencyInfo.cpp27
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp473
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBranchProbabilityInfo.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCSE.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCombiner.cpp15
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp52
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunction.cpp300
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp60
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp14
-rw-r--r--contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/MachineInstr.cpp193
-rw-r--r--contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/MachineLICM.cpp17
-rw-r--r--contrib/llvm/lib/CodeGen/MachineLoopInfo.cpp45
-rw-r--r--contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp305
-rw-r--r--contrib/llvm/lib/CodeGen/MachinePipeliner.cpp3984
-rw-r--r--contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp58
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp1
-rw-r--r--contrib/llvm/lib/CodeGen/MachineScheduler.cpp214
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSink.cpp40
-rw-r--r--contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/MachineVerifier.cpp221
-rw-r--r--contrib/llvm/lib/CodeGen/OptimizePHIs.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/PHIElimination.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/PHIEliminationUtils.cpp3
-rw-r--r--contrib/llvm/lib/CodeGen/ParallelCG.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/PatchableFunction.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp68
-rw-r--r--contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp172
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBase.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBase.h1
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBasic.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocFast.cpp25
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp107
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp9
-rw-r--r--contrib/llvm/lib/CodeGen/RegUsageInfoCollector.cpp15
-rw-r--r--contrib/llvm/lib/CodeGen/RegUsageInfoPropagate.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp308
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterPressure.cpp149
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterScavenging.cpp119
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterUsageInfo.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/RenameIndependentSubregs.cpp28
-rw-r--r--contrib/llvm/lib/CodeGen/ResetMachineFunctionPass.cpp67
-rw-r--r--contrib/llvm/lib/CodeGen/SafeStack.cpp62
-rw-r--r--contrib/llvm/lib/CodeGen/SafeStackColoring.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/SafeStackLayout.cpp8
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAG.cpp35
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp244
-rw-r--r--contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp2333
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp63
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp192
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp57
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp330
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp248
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp37
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h7
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp86
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp153
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h19
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp1013
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp1060
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h19
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp24
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp316
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp66
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp582
-rw-r--r--contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp116
-rw-r--r--contrib/llvm/lib/CodeGen/ShrinkWrap.cpp14
-rw-r--r--contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp276
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.h31
-rw-r--r--contrib/llvm/lib/CodeGen/StackColoring.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/StackMaps.cpp61
-rw-r--r--contrib/llvm/lib/CodeGen/StackProtector.cpp7
-rw-r--r--contrib/llvm/lib/CodeGen/StackSlotColoring.cpp13
-rw-r--r--contrib/llvm/lib/CodeGen/TailDuplication.cpp5
-rw-r--r--contrib/llvm/lib/CodeGen/TailDuplicator.cpp254
-rw-r--r--contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp10
-rw-r--r--contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp95
-rw-r--r--contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp293
-rw-r--r--contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp262
-rw-r--r--contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/TargetPassConfig.cpp48
-rw-r--r--contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp46
-rw-r--r--contrib/llvm/lib/CodeGen/TargetSchedule.cpp2
-rw-r--r--contrib/llvm/lib/CodeGen/TargetSubtargetInfo.cpp54
-rw-r--r--contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp17
-rw-r--r--contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp4
-rw-r--r--contrib/llvm/lib/CodeGen/VirtRegMap.cpp15
-rw-r--r--contrib/llvm/lib/CodeGen/WinEHPrepare.cpp12
-rw-r--r--contrib/llvm/lib/CodeGen/XRayInstrumentation.cpp129
196 files changed, 19958 insertions, 7727 deletions
diff --git a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
index a736884..bb90861 100644
--- a/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
+++ b/contrib/llvm/lib/CodeGen/AggressiveAntiDepBreaker.cpp
@@ -161,8 +161,8 @@ void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
// Mark live-out callee-saved registers. In a return block this is
// all callee-saved registers. In non-return this is any
// callee-saved register that is not saved in the prolog.
- const MachineFrameInfo *MFI = MF.getFrameInfo();
- BitVector Pristine = MFI->getPristineRegs(MF);
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ BitVector Pristine = MFI.getPristineRegs(MF);
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
unsigned Reg = *I;
if (!IsReturnBlock && !Pristine.test(Reg)) continue;
diff --git a/contrib/llvm/lib/CodeGen/AllocationOrder.cpp b/contrib/llvm/lib/CodeGen/AllocationOrder.cpp
index 40451c0..d840a2f 100644
--- a/contrib/llvm/lib/CodeGen/AllocationOrder.cpp
+++ b/contrib/llvm/lib/CodeGen/AllocationOrder.cpp
@@ -48,7 +48,7 @@ AllocationOrder::AllocationOrder(unsigned VirtReg,
});
#ifndef NDEBUG
for (unsigned I = 0, E = Hints.size(); I != E; ++I)
- assert(std::find(Order.begin(), Order.end(), Hints[I]) != Order.end() &&
+ assert(is_contained(Order, Hints[I]) &&
"Target hint is outside allocation order.");
#endif
}
diff --git a/contrib/llvm/lib/CodeGen/AllocationOrder.h b/contrib/llvm/lib/CodeGen/AllocationOrder.h
index 2aee3a6..8223a52 100644
--- a/contrib/llvm/lib/CodeGen/AllocationOrder.h
+++ b/contrib/llvm/lib/CodeGen/AllocationOrder.h
@@ -18,6 +18,7 @@
#define LLVM_LIB_CODEGEN_ALLOCATIONORDER_H
#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCRegisterInfo.h"
namespace llvm {
@@ -79,9 +80,7 @@ public:
bool isHint() const { return Pos <= 0; }
/// Return true if PhysReg is a preferred register.
- bool isHint(unsigned PhysReg) const {
- return std::find(Hints.begin(), Hints.end(), PhysReg) != Hints.end();
- }
+ bool isHint(unsigned PhysReg) const { return is_contained(Hints, PhysReg); }
};
} // end namespace llvm
diff --git a/contrib/llvm/lib/CodeGen/Analysis.cpp b/contrib/llvm/lib/CodeGen/Analysis.cpp
index d690734..79ecc43 100644
--- a/contrib/llvm/lib/CodeGen/Analysis.cpp
+++ b/contrib/llvm/lib/CodeGen/Analysis.cpp
@@ -272,28 +272,10 @@ static const Value *getNoopInput(const Value *V,
TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
NoopInput = Op;
- } else if (isa<CallInst>(I)) {
- // Look through call (skipping callee)
- for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
- i != e; ++i) {
- unsigned attrInd = i - I->op_begin() + 1;
- if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
- isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
- NoopInput = *i;
- break;
- }
- }
- } else if (isa<InvokeInst>(I)) {
- // Look through invoke (skipping BB, BB, Callee)
- for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
- i != e; ++i) {
- unsigned attrInd = i - I->op_begin() + 1;
- if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
- isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
- NoopInput = *i;
- break;
- }
- }
+ } else if (auto CS = ImmutableCallSite(I)) {
+ const Value *ReturnedOp = CS.getReturnedArgOperand();
+ if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
+ NoopInput = ReturnedOp;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
// Value may come from either the aggregate or the scalar
ArrayRef<unsigned> InsertLoc = IVI->getIndices();
@@ -525,19 +507,15 @@ bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
}
-bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
- const Instruction *I,
- const ReturnInst *Ret,
- const TargetLoweringBase &TLI) {
- // If the block ends with a void return or unreachable, it doesn't matter
- // what the call's return type is.
- if (!Ret || Ret->getNumOperands() == 0) return true;
+bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
+ const ReturnInst *Ret,
+ const TargetLoweringBase &TLI,
+ bool *AllowDifferingSizes) {
+ // ADS may be null, so don't write to it directly.
+ bool DummyADS;
+ bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
+ ADS = true;
- // If the return value is undef, it doesn't matter what the call's
- // return type is.
- if (isa<UndefValue>(Ret->getOperand(0))) return true;
-
- // Make sure the attributes attached to each return are compatible.
AttrBuilder CallerAttrs(F->getAttributes(),
AttributeSet::ReturnIndex);
AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
@@ -545,22 +523,21 @@ bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
// Noalias is completely benign as far as calling convention goes, it
// shouldn't affect whether the call is a tail call.
- CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
- CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
+ CallerAttrs.removeAttribute(Attribute::NoAlias);
+ CalleeAttrs.removeAttribute(Attribute::NoAlias);
- bool AllowDifferingSizes = true;
if (CallerAttrs.contains(Attribute::ZExt)) {
if (!CalleeAttrs.contains(Attribute::ZExt))
return false;
- AllowDifferingSizes = false;
+ ADS = false;
CallerAttrs.removeAttribute(Attribute::ZExt);
CalleeAttrs.removeAttribute(Attribute::ZExt);
} else if (CallerAttrs.contains(Attribute::SExt)) {
if (!CalleeAttrs.contains(Attribute::SExt))
return false;
- AllowDifferingSizes = false;
+ ADS = false;
CallerAttrs.removeAttribute(Attribute::SExt);
CalleeAttrs.removeAttribute(Attribute::SExt);
}
@@ -568,7 +545,24 @@ bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
// If they're still different, there's some facet we don't understand
// (currently only "inreg", but in future who knows). It may be OK but the
// only safe option is to reject the tail call.
- if (CallerAttrs != CalleeAttrs)
+ return CallerAttrs == CalleeAttrs;
+}
+
+bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
+ const Instruction *I,
+ const ReturnInst *Ret,
+ const TargetLoweringBase &TLI) {
+ // If the block ends with a void return or unreachable, it doesn't matter
+ // what the call's return type is.
+ if (!Ret || Ret->getNumOperands() == 0) return true;
+
+ // If the return value is undef, it doesn't matter what the call's
+ // return type is.
+ if (isa<UndefValue>(Ret->getOperand(0))) return true;
+
+ // Make sure the attributes attached to each return are compatible.
+ bool AllowDifferingSizes;
+ if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
return false;
const Value *RetVal = Ret->getOperand(0), *CallVal = I;
@@ -672,7 +666,7 @@ llvm::getFuncletMembership(const MachineFunction &MF) {
DenseMap<const MachineBasicBlock *, int> FuncletMembership;
// We don't have anything to do if there aren't any EH pads.
- if (!MF.getMMI().hasEHFunclets())
+ if (!MF.hasEHFunclets())
return FuncletMembership;
int EntryBBNumber = MF.front().getNumber();
@@ -694,9 +688,10 @@ llvm::getFuncletMembership(const MachineFunction &MF) {
}
MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
+
// CatchPads are not funclets for SEH so do not consider CatchRet to
// transfer control to another funclet.
- if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
+ if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
continue;
// FIXME: SEH CatchPads are not necessarily in the parent function:
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
index 5294c98..61149d9 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/ARMException.cpp
@@ -43,13 +43,6 @@ ARMTargetStreamer &ARMException::getTargetStreamer() {
return static_cast<ARMTargetStreamer &>(TS);
}
-/// endModule - Emit all exception information that should come after the
-/// content.
-void ARMException::endModule() {
- if (shouldEmitCFI)
- Asm->OutStreamer->EmitCFISections(false, true);
-}
-
void ARMException::beginFunction(const MachineFunction *MF) {
if (Asm->MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
getTargetStreamer().emitFnStart();
@@ -57,7 +50,14 @@ void ARMException::beginFunction(const MachineFunction *MF) {
AsmPrinter::CFIMoveType MoveType = Asm->needsCFIMoves();
assert(MoveType != AsmPrinter::CFI_M_EH &&
"non-EH CFI not yet supported in prologue with EHABI lowering");
+
if (MoveType == AsmPrinter::CFI_M_Debug) {
+ if (!hasEmittedCFISections) {
+ if (Asm->needsOnlyDebugCFIMoves())
+ Asm->OutStreamer->EmitCFISections(false, true);
+ hasEmittedCFISections = true;
+ }
+
shouldEmitCFI = true;
Asm->OutStreamer->EmitCFIStartProc(false);
}
@@ -75,7 +75,7 @@ void ARMException::endFunction(const MachineFunction *MF) {
F->hasPersonalityFn() && !isNoOpWithoutInvoke(classifyEHPersonality(Per)) &&
F->needsUnwindTableEntry();
bool shouldEmitPersonality = forceEmitPersonality ||
- !MMI->getLandingPads().empty();
+ !MF->getLandingPads().empty();
if (!Asm->MF->getFunction()->needsUnwindTableEntry() &&
!shouldEmitPersonality)
ATS.emitCantUnwind();
@@ -99,8 +99,9 @@ void ARMException::endFunction(const MachineFunction *MF) {
}
void ARMException::emitTypeInfos(unsigned TTypeEncoding) {
- const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const MachineFunction *MF = Asm->MF;
+ const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MF->getFilterIds();
bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.cpp
index 8c68383..ec552e0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AddressPool.cpp
@@ -14,8 +14,6 @@
using namespace llvm;
-class MCExpr;
-
unsigned AddressPool::getIndex(const MCSymbol *Sym, bool TLS) {
HasBeenUsed = true;
auto IterBool =
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 272bace..24fdbfc 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -37,6 +37,8 @@
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCValue.h"
@@ -55,10 +57,15 @@ using namespace llvm;
#define DEBUG_TYPE "asm-printer"
-static const char *const DWARFGroupName = "DWARF Emission";
-static const char *const DbgTimerName = "Debug Info Emission";
-static const char *const EHTimerName = "DWARF Exception Writer";
-static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
+static const char *const DWARFGroupName = "dwarf";
+static const char *const DWARFGroupDescription = "DWARF Emission";
+static const char *const DbgTimerName = "emit";
+static const char *const DbgTimerDescription = "Debug Info Emission";
+static const char *const EHTimerName = "write_exception";
+static const char *const EHTimerDescription = "DWARF Exception Writer";
+static const char *const CodeViewLineTablesGroupName = "linetables";
+static const char *const CodeViewLineTablesGroupDescription =
+ "CodeView Line Tables";
STATISTIC(EmittedInsts, "Number of machine instrs printed");
@@ -101,7 +108,7 @@ static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
: MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
- LastMI(nullptr), LastFn(0), Counter(~0U) {
+ isCFIMoveForDebugging(false), LastMI(nullptr), LastFn(0), Counter(~0U) {
DD = nullptr;
MMI = nullptr;
LI = nullptr;
@@ -143,7 +150,7 @@ const DataLayout &AsmPrinter::getDataLayout() const {
}
// Do not use the cached DataLayout because some client use it without a Module
-// (llmv-dsymutil, llvm-dwarfdump).
+// (llvm-dsymutil, llvm-dwarfdump).
unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
@@ -155,17 +162,11 @@ void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
S.EmitInstruction(Inst, getSubtargetInfo());
}
-StringRef AsmPrinter::getTargetTriple() const {
- return TM.getTargetTriple().str();
-}
-
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
- return OutStreamer->getCurrentSection().first;
+ return OutStreamer->getCurrentSectionOnly();
}
-
-
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
@@ -184,8 +185,6 @@ bool AsmPrinter::doInitialization(Module &M) {
OutStreamer->InitSections(false);
- Mang = new Mangler();
-
// Emit the version-min deplyment target directive if needed.
//
// FIXME: If we end up with a collection of these sorts of Darwin-specific
@@ -194,7 +193,7 @@ bool AsmPrinter::doInitialization(Module &M) {
// alternative is duplicated code in each of the target asm printers that
// use the directive, where it would need the same conditionalization
// anyway.
- Triple TT(getTargetTriple());
+ const Triple &TT = TM.getTargetTriple();
// If there is a version specified, Major will be non-zero.
if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
unsigned Major, Minor, Update;
@@ -250,18 +249,43 @@ bool AsmPrinter::doInitialization(Module &M) {
if (MAI->doesSupportDebugInformation()) {
bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
- if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
+ if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
+ TM.getTargetTriple().isWindowsItaniumEnvironment())) {
Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
- DbgTimerName,
- CodeViewLineTablesGroupName));
+ DbgTimerName, DbgTimerDescription,
+ CodeViewLineTablesGroupName,
+ CodeViewLineTablesGroupDescription));
}
if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
DD = new DwarfDebug(this, &M);
DD->beginModule();
- Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
+ Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
+ DWARFGroupName, DWARFGroupDescription));
}
}
+ switch (MAI->getExceptionHandlingType()) {
+ case ExceptionHandling::SjLj:
+ case ExceptionHandling::DwarfCFI:
+ case ExceptionHandling::ARM:
+ isCFIMoveForDebugging = true;
+ if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
+ break;
+ for (auto &F: M.getFunctionList()) {
+ // If the module contains any function with unwind data,
+ // .eh_frame has to be emitted.
+ // Ignore functions that won't get emitted.
+ if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
+ isCFIMoveForDebugging = false;
+ break;
+ }
+ }
+ break;
+ default:
+ isCFIMoveForDebugging = false;
+ break;
+ }
+
EHStreamer *ES = nullptr;
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
@@ -286,7 +310,8 @@ bool AsmPrinter::doInitialization(Module &M) {
break;
}
if (ES)
- Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
+ Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
+ DWARFGroupName, DWARFGroupDescription));
return false;
}
@@ -340,11 +365,11 @@ void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV) const {
- TM.getNameWithPrefix(Name, GV, *Mang);
+ TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
}
MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
- return TM.getSymbol(GV, *Mang);
+ return TM.getSymbol(GV);
}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
@@ -407,7 +432,9 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
unsigned AlignLog = getGVAlignmentLog2(GV, DL);
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
+ HI.TimerGroupName, HI.TimerGroupDescription,
+ TimePassesIsEnabled);
HI.Handler->setSymbolSize(GVSym, Size);
}
@@ -424,8 +451,7 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
}
// Determine to which section this global should be emitted.
- MCSection *TheSection =
- getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
+ MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
// If we have a bss global going to a section that supports the
// zerofill directive, do so here.
@@ -483,7 +509,7 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
// Emit the .tbss symbol
MCSymbol *MangSym =
- OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
+ OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
if (GVKind.isThreadBSS()) {
TheSection = getObjFileLowering().getTLSBSSSection();
@@ -535,12 +561,21 @@ void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
if (MAI->hasDotTypeDotSizeDirective())
// .size foo, 42
- OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
+ OutStreamer->emitELFSize(EmittedInitSym,
MCConstantExpr::create(Size, OutContext));
OutStreamer->AddBlankLine();
}
+/// Emit the directive and value for debug thread local expression
+///
+/// \p Value - The value to emit.
+/// \p Size - The size of the integer (in bytes) to emit.
+void AsmPrinter::EmitDebugValue(const MCExpr *Value,
+ unsigned Size) const {
+ OutStreamer->EmitValue(Value, Size);
+}
+
/// EmitFunctionHeader - This method emits the header for the current
/// function.
void AsmPrinter::EmitFunctionHeader() {
@@ -550,8 +585,7 @@ void AsmPrinter::EmitFunctionHeader() {
// Print the 'header' of function.
const Function *F = MF->getFunction();
- OutStreamer->SwitchSection(
- getObjFileLowering().SectionForGlobal(F, *Mang, TM));
+ OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
EmitVisibility(CurrentFnSym, F->getVisibility());
EmitLinkage(F, CurrentFnSym);
@@ -598,7 +632,8 @@ void AsmPrinter::EmitFunctionHeader() {
// Emit pre-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
+ HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginFunction(MF);
}
@@ -632,26 +667,26 @@ static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
// Check for spills and reloads
int FI;
- const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
// We assume a single instruction only has a spill or reload, not
// both.
const MachineMemOperand *MMO;
if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
- if (FrameInfo->isSpillSlotObjectIndex(FI)) {
+ if (MFI.isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Reload\n";
}
} else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
- if (FrameInfo->isSpillSlotObjectIndex(FI))
+ if (MFI.isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Reload\n";
} else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
- if (FrameInfo->isSpillSlotObjectIndex(FI)) {
+ if (MFI.isSpillSlotObjectIndex(FI)) {
MMO = *MI.memoperands_begin();
CommentOS << MMO->getSize() << "-byte Spill\n";
}
} else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
- if (FrameInfo->isSpillSlotObjectIndex(FI))
+ if (MFI.isSpillSlotObjectIndex(FI))
CommentOS << MMO->getSize() << "-byte Folded Spill\n";
}
@@ -711,9 +746,10 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
OS << V->getName();
const DIExpression *Expr = MI->getDebugExpression();
- if (Expr->isBitPiece())
- OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
- << " size=" << Expr->getBitPieceSize() << "]";
+ auto Fragment = Expr->getFragmentInfo();
+ if (Fragment)
+ OS << " [fragment offset=" << Fragment->OffsetInBits
+ << " size=" << Fragment->SizeInBits << "]";
OS << " <- ";
// The second operand is only an offset if it's an immediate.
@@ -721,21 +757,21 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
- if (Deref) {
+ uint64_t Op = Expr->getElement(i);
+ if (Op == dwarf::DW_OP_LLVM_fragment) {
+ // There can't be any operands after this in a valid expression
+ break;
+ } else if (Deref) {
// We currently don't support extra Offsets or derefs after the first
// one. Bail out early instead of emitting an incorrect comment
OS << " [complex expression]";
AP.OutStreamer->emitRawComment(OS.str());
return true;
- }
- uint64_t Op = Expr->getElement(i);
- if (Op == dwarf::DW_OP_deref) {
+ } else if (Op == dwarf::DW_OP_deref) {
Deref = true;
continue;
- } else if (Op == dwarf::DW_OP_bit_piece) {
- // There can't be any operands after this in a valid expression
- break;
}
+
uint64_t ExtraOffset = Expr->getElement(i++);
if (Op == dwarf::DW_OP_plus)
Offset += ExtraOffset;
@@ -756,7 +792,7 @@ static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
OS << "(long double) " << APF.convertToDouble();
}
@@ -819,8 +855,7 @@ void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
if (needsCFIMoves() == CFI_M_None)
return;
- const MachineModuleInfo &MMI = MF->getMMI();
- const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
+ const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
const MCCFIInstruction &CFI = Instrs[CFIIndex];
emitCFIInstruction(CFI);
@@ -862,7 +897,8 @@ void AsmPrinter::EmitFunctionBody() {
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
+ HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->beginInstruction(&MI);
}
@@ -906,7 +942,8 @@ void AsmPrinter::EmitFunctionBody() {
if (ShouldPrintDebugScopes) {
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
+ HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->endInstruction();
}
@@ -944,8 +981,8 @@ void AsmPrinter::EmitFunctionBody() {
// Emit target-specific gunk after the function body.
EmitFunctionBodyEnd();
- if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
- MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
+ if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() ||
+ MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
// Create a symbol for the end of function.
CurrentFnEnd = createTempSymbol("func_end");
OutStreamer->EmitLabel(CurrentFnEnd);
@@ -959,12 +996,12 @@ void AsmPrinter::EmitFunctionBody() {
const MCExpr *SizeExp = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
- if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
- OutStreamer->emitELFSize(Sym, SizeExp);
+ OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
}
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
+ HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->markFunctionEnd();
}
@@ -973,10 +1010,10 @@ void AsmPrinter::EmitFunctionBody() {
// Emit post-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
+ HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endFunction(MF);
}
- MMI->EndFunction();
OutStreamer->AddBlankLine();
}
@@ -1100,8 +1137,7 @@ void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
(!BaseObject || BaseObject->hasPrivateLinkage())) {
const DataLayout &DL = M.getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
- OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
- MCConstantExpr::create(Size, OutContext));
+ OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
}
}
}
@@ -1143,7 +1179,7 @@ bool AsmPrinter::doFinalization(Module &M) {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
M.getModuleFlagsMetadata(ModuleFlags);
if (!ModuleFlags.empty())
- TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM);
+ TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
if (TM.getTargetTriple().isOSBinFormatELF()) {
MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
@@ -1164,8 +1200,8 @@ bool AsmPrinter::doFinalization(Module &M) {
// Finalize debug and EH information.
for (const HandlerInfo &HI : Handlers) {
- NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
- TimePassesIsEnabled);
+ NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
+ HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endModule();
delete HI.Handler;
}
@@ -1246,7 +1282,6 @@ bool AsmPrinter::doFinalization(Module &M) {
// after everything else has gone out.
EmitEndOfAsmFile(M);
- delete Mang; Mang = nullptr;
MMI = nullptr;
OutStreamer->Finish();
@@ -1269,8 +1304,8 @@ void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
CurrentFnBegin = nullptr;
CurExceptionSym = nullptr;
bool NeedsLocalForSize = MAI->needsLocalForSize();
- if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
- MMI->hasEHFunclets() || NeedsLocalForSize) {
+ if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() ||
+ MF.hasEHFunclets() || NeedsLocalForSize) {
CurrentFnBegin = createTempSymbol("func_begin");
if (NeedsLocalForSize)
CurrentFnSymForSize = CurrentFnBegin;
@@ -1392,7 +1427,7 @@ void AsmPrinter::EmitJumpTableInfo() {
*F);
if (JTInDiffSection) {
// Drop it in the readonly section.
- MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM);
+ MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
OutStreamer->SwitchSection(ReadOnlySection);
}
@@ -1536,12 +1571,6 @@ bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ true);
- if (TM.getRelocationModel() == Reloc::Static &&
- MAI->hasStaticCtorDtorReferenceInStaticMode()) {
- StringRef Sym(".constructors_used");
- OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
- MCSA_Reference);
- }
return true;
}
@@ -1549,12 +1578,6 @@ bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ false);
- if (TM.getRelocationModel() == Reloc::Static &&
- MAI->hasStaticCtorDtorReferenceInStaticMode()) {
- StringRef Sym(".destructors_used");
- OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
- MCSA_Reference);
- }
return true;
}
@@ -1699,7 +1722,9 @@ void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
unsigned Size,
bool IsSectionRelative) const {
if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
- OutStreamer->EmitCOFFSecRel32(Label);
+ OutStreamer->EmitCOFFSecRel32(Label, Offset);
+ if (Size > 4)
+ OutStreamer->EmitZeros(Size - 4);
return;
}
@@ -1764,7 +1789,7 @@ const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
- if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
+ if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
if (C != CE)
return lowerConstant(C);
@@ -1796,7 +1821,7 @@ const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
- // FALL THROUGH.
+ LLVM_FALLTHROUGH;
case Instruction::BitCast:
return lowerConstant(CE->getOperand(0));
@@ -1843,8 +1868,8 @@ const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
APInt RHSOffset;
if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
getDataLayout())) {
- const MCExpr *RelocExpr = getObjFileLowering().lowerRelativeReference(
- LHSGV, RHSGV, *Mang, TM);
+ const MCExpr *RelocExpr =
+ getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
if (!RelocExpr)
RelocExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
@@ -2299,7 +2324,7 @@ static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
// If the constant expression's size is greater than 64-bits, then we have
// to emit the value in chunks. Try to constant fold the value and emit it
// that way.
- Constant *New = ConstantFoldConstantExpression(CE, DL);
+ Constant *New = ConstantFoldConstant(CE, DL);
if (New && New != CE)
return emitGlobalConstantImpl(DL, New, AP);
}
@@ -2385,8 +2410,7 @@ MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix) const {
- return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
- TM);
+ return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
}
/// Return the MCSymbol for the specified ExternalSymbol.
@@ -2599,12 +2623,12 @@ GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
if (GCPI != GCMap.end())
return GCPI->second.get();
- const char *Name = S.getName().c_str();
+ auto Name = S.getName();
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
- if (strcmp(Name, I->getName()) == 0) {
+ if (Name == I->getName()) {
std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
GMP->S = &S;
auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
@@ -2618,3 +2642,76 @@ GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
AsmPrinterHandler::~AsmPrinterHandler() {}
void AsmPrinterHandler::markFunctionEnd() {}
+
+// In the binary's "xray_instr_map" section, an array of these function entries
+// describes each instrumentation point. When XRay patches your code, the index
+// into this table will be given to your handler as a patch point identifier.
+void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
+ const MCSymbol *CurrentFnSym) const {
+ Out->EmitSymbolValue(Sled, Bytes);
+ Out->EmitSymbolValue(CurrentFnSym, Bytes);
+ auto Kind8 = static_cast<uint8_t>(Kind);
+ Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
+ Out->EmitBytes(
+ StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
+ Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries
+}
+
+void AsmPrinter::emitXRayTable() {
+ if (Sleds.empty())
+ return;
+
+ auto PrevSection = OutStreamer->getCurrentSectionOnly();
+ auto Fn = MF->getFunction();
+ MCSection *Section = nullptr;
+ if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
+ if (Fn->hasComdat()) {
+ Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
+ Fn->getComdat()->getName());
+ } else {
+ Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC);
+ }
+ } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
+ Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
+ SectionKind::getReadOnlyWithRel());
+ } else {
+ llvm_unreachable("Unsupported target");
+ }
+
+ // Before we switch over, we force a reference to a label inside the
+ // xray_instr_map section. Since this function is always called just
+ // before the function's end, we assume that this is happening after
+ // the last return instruction.
+
+ auto WordSizeBytes = TM.getPointerSize();
+ MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true);
+ OutStreamer->EmitCodeAlignment(16);
+ OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false);
+ OutStreamer->SwitchSection(Section);
+ OutStreamer->EmitLabel(Tmp);
+ for (const auto &Sled : Sleds)
+ Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
+
+ OutStreamer->SwitchSection(PrevSection);
+ Sleds.clear();
+}
+
+void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
+ SledKind Kind) {
+ auto Fn = MI.getParent()->getParent()->getFunction();
+ auto Attr = Fn->getFnAttribute("function-instrument");
+ bool AlwaysInstrument =
+ Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
+ Sleds.emplace_back(
+ XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
+}
+
+uint16_t AsmPrinter::getDwarfVersion() const {
+ return OutStreamer->getContext().getDwarfVersion();
+}
+
+void AsmPrinter::setDwarfVersion(uint16_t Version) {
+ OutStreamer->getContext().setDwarfVersion(Version);
+}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
index 60f40d0..0185c38 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp
@@ -138,8 +138,7 @@ void AsmPrinter::EmitTTypeReference(const GlobalValue *GV,
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
const MCExpr *Exp =
- TLOF.getTTypeGlobalReference(GV, Encoding, *Mang, TM, MMI,
- *OutStreamer);
+ TLOF.getTTypeGlobalReference(GV, Encoding, TM, MMI, *OutStreamer);
OutStreamer->EmitValue(Exp, GetSizeOfEncodedValue(Encoding));
} else
OutStreamer->EmitIntValue(0, GetSizeOfEncodedValue(Encoding));
@@ -150,7 +149,7 @@ void AsmPrinter::emitDwarfSymbolReference(const MCSymbol *Label,
if (!ForceOffset) {
// On COFF targets, we have to emit the special .secrel32 directive.
if (MAI->needsDwarfSectionOffsetDirective()) {
- OutStreamer->EmitCOFFSecRel32(Label);
+ OutStreamer->EmitCOFFSecRel32(Label, /*Offset=*/0);
return;
}
@@ -175,36 +174,6 @@ void AsmPrinter::emitDwarfStringOffset(DwarfStringPoolEntryRef S) const {
EmitInt32(S.getOffset());
}
-/// EmitDwarfRegOp - Emit dwarf register operation.
-void AsmPrinter::EmitDwarfRegOp(ByteStreamer &Streamer,
- const MachineLocation &MLoc) const {
- DebugLocDwarfExpression Expr(getDwarfDebug()->getDwarfVersion(), Streamer);
- const MCRegisterInfo *MRI = MMI->getContext().getRegisterInfo();
- int Reg = MRI->getDwarfRegNum(MLoc.getReg(), false);
- if (Reg < 0) {
- // We assume that pointers are always in an addressable register.
- if (MLoc.isIndirect())
- // FIXME: We have no reasonable way of handling errors in here. The
- // caller might be in the middle of a dwarf expression. We should
- // probably assert that Reg >= 0 once debug info generation is more
- // mature.
- return Expr.EmitOp(dwarf::DW_OP_nop,
- "nop (could not find a dwarf register number)");
-
- // Attempt to find a valid super- or sub-register.
- if (!Expr.AddMachineRegPiece(*MF->getSubtarget().getRegisterInfo(),
- MLoc.getReg()))
- Expr.EmitOp(dwarf::DW_OP_nop,
- "nop (could not find a dwarf register number)");
- return;
- }
-
- if (MLoc.isIndirect())
- Expr.AddRegIndirect(Reg, MLoc.getOffset());
- else
- Expr.AddReg(Reg);
-}
-
//===----------------------------------------------------------------------===//
// Dwarf Lowering Routines
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
index 2ce6c18..57864e4 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
@@ -100,6 +100,8 @@ void AsmPrinter::EmitInlineAsm(StringRef Str, const MCSubtargetInfo &STI,
}
SourceMgr SrcMgr;
+ SrcMgr.setIncludeDirs(MCOptions.IASSearchPaths);
+
SrcMgrDiagInfo DiagInfo;
// If the current LLVMContext has an inline asm handler, set it in SourceMgr.
@@ -193,6 +195,23 @@ static void EmitMSInlineAsmStr(const char *AsmStr, const MachineInstr *MI,
}
if (Done) break;
+ // If we have ${:foo}, then this is not a real operand reference, it is a
+ // "magic" string reference, just like in .td files. Arrange to call
+ // PrintSpecial.
+ if (LastEmitted[0] == '{' && LastEmitted[1] == ':') {
+ LastEmitted += 2;
+ const char *StrStart = LastEmitted;
+ const char *StrEnd = strchr(StrStart, '}');
+ if (!StrEnd)
+ report_fatal_error("Unterminated ${:foo} operand in inline asm"
+ " string: '" + Twine(AsmStr) + "'");
+
+ std::string Val(StrStart, StrEnd);
+ AP->PrintSpecial(MI, OS, Val.c_str());
+ LastEmitted = StrEnd+1;
+ break;
+ }
+
const char *IDStart = LastEmitted;
const char *IDEnd = IDStart;
while (*IDEnd >= '0' && *IDEnd <= '9') ++IDEnd;
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
index ebf80de..8344051 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
@@ -13,17 +13,20 @@
#include "CodeViewDebug.h"
#include "llvm/ADT/TinyPtrVector.h"
-#include "llvm/DebugInfo/CodeView/ByteStream.h"
+#include "llvm/DebugInfo/CodeView/CVTypeDumper.h"
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
-#include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
#include "llvm/DebugInfo/CodeView/Line.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
-#include "llvm/DebugInfo/CodeView/TypeDumper.h"
+#include "llvm/DebugInfo/CodeView/TypeDatabase.h"
+#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
+#include "llvm/DebugInfo/MSF/ByteStream.h"
+#include "llvm/DebugInfo/MSF/StreamReader.h"
#include "llvm/IR/Constants.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSymbol.h"
@@ -35,9 +38,11 @@
using namespace llvm;
using namespace llvm::codeview;
+using namespace llvm::msf;
CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
- : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
+ : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
+ TypeTable(Allocator), CurFn(nullptr) {
// If module doesn't have named metadata anchors or COFF debug section
// is not available, skip any debug info related stuff.
if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
@@ -108,8 +113,9 @@ unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
if (Insertion.second) {
// We have to compute the full filepath and emit a .cv_file directive.
StringRef FullPath = getFullFilepath(F);
- NextId = OS.EmitCVFileDirective(NextId, FullPath);
- assert(NextId == FileIdMap.size() && ".cv_file directive failed");
+ bool Success = OS.EmitCVFileDirective(NextId, FullPath);
+ (void)Success;
+ assert(Success && ".cv_file directive failed");
}
return Insertion.first->second;
}
@@ -120,7 +126,16 @@ CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
InlineSite *Site = &SiteInsertion.first->second;
if (SiteInsertion.second) {
+ unsigned ParentFuncId = CurFn->FuncId;
+ if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
+ ParentFuncId =
+ getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
+ .SiteFuncId;
+
Site->SiteFuncId = NextFuncId++;
+ OS.EmitCVInlineSiteIdDirective(
+ Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
+ InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
Site->Inlinee = Inlinee;
InlinedSubprograms.insert(Inlinee);
getFuncIdForSubprogram(Inlinee);
@@ -208,8 +223,8 @@ TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
// Build the fully qualified name of the scope.
std::string ScopeName = getFullyQualifiedName(Scope);
- TypeIndex TI =
- TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
+ StringIdRecord SID(TypeIndex(), ScopeName);
+ auto TI = TypeTable.writeKnownType(SID);
return recordTypeIndexForDINode(Scope, TI);
}
@@ -234,12 +249,12 @@ TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
TypeIndex ClassType = getTypeIndex(Class);
MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
DisplayName);
- TI = TypeTable.writeMemberFuncId(MFuncId);
+ TI = TypeTable.writeKnownType(MFuncId);
} else {
// Otherwise, this must be a free function.
TypeIndex ParentScope = getScopeIndex(Scope);
FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
- TI = TypeTable.writeFuncId(FuncId);
+ TI = TypeTable.writeKnownType(FuncId);
}
return recordTypeIndexForDINode(SP, TI);
@@ -353,8 +368,8 @@ void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
}
OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
- /*PrologueEnd=*/false,
- /*IsStmt=*/false, DL->getFilename());
+ /*PrologueEnd=*/false, /*IsStmt=*/false,
+ DL->getFilename(), SMLoc());
}
void CodeViewDebug::emitCodeViewMagicVersion() {
@@ -377,6 +392,11 @@ void CodeViewDebug::endModule() {
// Use the generic .debug$S section, and make a subsection for all the inlined
// subprograms.
switchToDebugSectionForSymbol(nullptr);
+
+ MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols);
+ emitCompilerInformation();
+ endCVSubsection(CompilerInfo);
+
emitInlineeLinesSubsection();
// Emit per-function debug information.
@@ -418,10 +438,13 @@ void CodeViewDebug::endModule() {
}
static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
- // Microsoft's linker seems to have trouble with symbol names longer than
- // 0xffd8 bytes.
- S = S.substr(0, 0xffd8);
- SmallString<32> NullTerminatedString(S);
+ // The maximum CV record length is 0xFF00. Most of the strings we emit appear
+ // after a fixed length portion of the record. The fixed length portion should
+ // always be less than 0xF00 (3840) bytes, so truncate the string so that the
+ // overall record size is less than the maximum allowed.
+ unsigned MaxFixedRecordLength = 0xF00;
+ SmallString<32> NullTerminatedString(
+ S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
NullTerminatedString.push_back('\0');
OS.EmitBytes(NullTerminatedString);
}
@@ -446,48 +469,175 @@ void CodeViewDebug::emitTypeInformation() {
CommentPrefix += ' ';
}
- CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
- TypeTable.ForEachRecord(
- [&](TypeIndex Index, StringRef Record) {
- if (OS.isVerboseAsm()) {
- // Emit a block comment describing the type record for readability.
- SmallString<512> CommentBlock;
- raw_svector_ostream CommentOS(CommentBlock);
- ScopedPrinter SP(CommentOS);
- SP.setPrefix(CommentPrefix);
- CVTD.setPrinter(&SP);
- Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
- if (E) {
- logAllUnhandledErrors(std::move(E), errs(), "error: ");
- llvm_unreachable("produced malformed type record");
- }
- // emitRawComment will insert its own tab and comment string before
- // the first line, so strip off our first one. It also prints its own
- // newline.
- OS.emitRawComment(
- CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
- } else {
+ TypeDatabase TypeDB;
+ CVTypeDumper CVTD(TypeDB);
+ TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) {
+ if (OS.isVerboseAsm()) {
+ // Emit a block comment describing the type record for readability.
+ SmallString<512> CommentBlock;
+ raw_svector_ostream CommentOS(CommentBlock);
+ ScopedPrinter SP(CommentOS);
+ SP.setPrefix(CommentPrefix);
+ TypeDumpVisitor TDV(TypeDB, &SP, false);
+ Error E = CVTD.dump(Record, TDV);
+ if (E) {
+ logAllUnhandledErrors(std::move(E), errs(), "error: ");
+ llvm_unreachable("produced malformed type record");
+ }
+ // emitRawComment will insert its own tab and comment string before
+ // the first line, so strip off our first one. It also prints its own
+ // newline.
+ OS.emitRawComment(
+ CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
+ } else {
#ifndef NDEBUG
- // Assert that the type data is valid even if we aren't dumping
- // comments. The MSVC linker doesn't do much type record validation,
- // so the first link of an invalid type record can succeed while
- // subsequent links will fail with LNK1285.
- ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()});
- CVTypeArray Types;
- StreamReader Reader(Stream);
- Error E = Reader.readArray(Types, Reader.getLength());
- if (!E) {
- TypeVisitorCallbacks C;
- E = CVTypeVisitor(C).visitTypeStream(Types);
- }
- if (E) {
- logAllUnhandledErrors(std::move(E), errs(), "error: ");
- llvm_unreachable("produced malformed type record");
- }
+ // Assert that the type data is valid even if we aren't dumping
+ // comments. The MSVC linker doesn't do much type record validation,
+ // so the first link of an invalid type record can succeed while
+ // subsequent links will fail with LNK1285.
+ ByteStream Stream(Record);
+ CVTypeArray Types;
+ StreamReader Reader(Stream);
+ Error E = Reader.readArray(Types, Reader.getLength());
+ if (!E) {
+ TypeVisitorCallbacks C;
+ E = CVTypeVisitor(C).visitTypeStream(Types);
+ }
+ if (E) {
+ logAllUnhandledErrors(std::move(E), errs(), "error: ");
+ llvm_unreachable("produced malformed type record");
+ }
#endif
- }
- OS.EmitBinaryData(Record);
- });
+ }
+ StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size());
+ OS.EmitBinaryData(S);
+ });
+}
+
+namespace {
+
+static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
+ switch (DWLang) {
+ case dwarf::DW_LANG_C:
+ case dwarf::DW_LANG_C89:
+ case dwarf::DW_LANG_C99:
+ case dwarf::DW_LANG_C11:
+ case dwarf::DW_LANG_ObjC:
+ return SourceLanguage::C;
+ case dwarf::DW_LANG_C_plus_plus:
+ case dwarf::DW_LANG_C_plus_plus_03:
+ case dwarf::DW_LANG_C_plus_plus_11:
+ case dwarf::DW_LANG_C_plus_plus_14:
+ return SourceLanguage::Cpp;
+ case dwarf::DW_LANG_Fortran77:
+ case dwarf::DW_LANG_Fortran90:
+ case dwarf::DW_LANG_Fortran03:
+ case dwarf::DW_LANG_Fortran08:
+ return SourceLanguage::Fortran;
+ case dwarf::DW_LANG_Pascal83:
+ return SourceLanguage::Pascal;
+ case dwarf::DW_LANG_Cobol74:
+ case dwarf::DW_LANG_Cobol85:
+ return SourceLanguage::Cobol;
+ case dwarf::DW_LANG_Java:
+ return SourceLanguage::Java;
+ default:
+ // There's no CodeView representation for this language, and CV doesn't
+ // have an "unknown" option for the language field, so we'll use MASM,
+ // as it's very low level.
+ return SourceLanguage::Masm;
+ }
+}
+
+struct Version {
+ int Part[4];
+};
+
+// Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
+// the version number.
+static Version parseVersion(StringRef Name) {
+ Version V = {{0}};
+ int N = 0;
+ for (const char C : Name) {
+ if (isdigit(C)) {
+ V.Part[N] *= 10;
+ V.Part[N] += C - '0';
+ } else if (C == '.') {
+ ++N;
+ if (N >= 4)
+ return V;
+ } else if (N > 0)
+ return V;
+ }
+ return V;
+}
+
+static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
+ switch (Type) {
+ case Triple::ArchType::x86:
+ return CPUType::Pentium3;
+ case Triple::ArchType::x86_64:
+ return CPUType::X64;
+ case Triple::ArchType::thumb:
+ return CPUType::Thumb;
+ default:
+ report_fatal_error("target architecture doesn't map to a CodeView "
+ "CPUType");
+ }
+}
+
+} // anonymous namespace
+
+void CodeViewDebug::emitCompilerInformation() {
+ MCContext &Context = MMI->getContext();
+ MCSymbol *CompilerBegin = Context.createTempSymbol(),
+ *CompilerEnd = Context.createTempSymbol();
+ OS.AddComment("Record length");
+ OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
+ OS.EmitLabel(CompilerBegin);
+ OS.AddComment("Record kind: S_COMPILE3");
+ OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
+ uint32_t Flags = 0;
+
+ NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
+ const MDNode *Node = *CUs->operands().begin();
+ const auto *CU = cast<DICompileUnit>(Node);
+
+ // The low byte of the flags indicates the source language.
+ Flags = MapDWLangToCVLang(CU->getSourceLanguage());
+ // TODO: Figure out which other flags need to be set.
+
+ OS.AddComment("Flags and language");
+ OS.EmitIntValue(Flags, 4);
+
+ OS.AddComment("CPUType");
+ CPUType CPU =
+ mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
+ OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
+
+ StringRef CompilerVersion = CU->getProducer();
+ Version FrontVer = parseVersion(CompilerVersion);
+ OS.AddComment("Frontend version");
+ for (int N = 0; N < 4; ++N)
+ OS.EmitIntValue(FrontVer.Part[N], 2);
+
+ // Some Microsoft tools, like Binscope, expect a backend version number of at
+ // least 8.something, so we'll coerce the LLVM version into a form that
+ // guarantees it'll be big enough without really lying about the version.
+ int Major = 1000 * LLVM_VERSION_MAJOR +
+ 10 * LLVM_VERSION_MINOR +
+ LLVM_VERSION_PATCH;
+ // Clamp it for builds that use unusually large version numbers.
+ Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
+ Version BackVer = {{ Major, 0, 0, 0 }};
+ OS.AddComment("Backend version");
+ for (int N = 0; N < 4; ++N)
+ OS.EmitIntValue(BackVer.Part[N], 2);
+
+ OS.AddComment("Null-terminated compiler version string");
+ emitNullTerminatedSymbolName(OS, CompilerVersion);
+
+ OS.EmitLabel(CompilerEnd);
}
void CodeViewDebug::emitInlineeLinesSubsection() {
@@ -525,17 +675,6 @@ void CodeViewDebug::emitInlineeLinesSubsection() {
endCVSubsection(InlineEnd);
}
-void CodeViewDebug::collectInlineSiteChildren(
- SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
- const InlineSite &Site) {
- for (const DILocation *ChildSiteLoc : Site.ChildSites) {
- auto I = FI.InlineSites.find(ChildSiteLoc);
- const InlineSite &ChildSite = I->second;
- Children.push_back(ChildSite.SiteFuncId);
- collectInlineSiteChildren(Children, FI, ChildSite);
- }
-}
-
void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
const DILocation *InlinedAt,
const InlineSite &Site) {
@@ -561,11 +700,9 @@ void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
unsigned StartLineNum = Site.Inlinee->getLine();
- SmallVector<unsigned, 3> SecondaryFuncIds;
- collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
- FI.Begin, FI.End, SecondaryFuncIds);
+ FI.Begin, FI.End);
OS.EmitLabel(InlineEnd);
@@ -641,13 +778,13 @@ void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
OS.EmitLabel(ProcRecordBegin);
- if (GV->hasLocalLinkage()) {
- OS.AddComment("Record kind: S_LPROC32_ID");
- OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
- } else {
- OS.AddComment("Record kind: S_GPROC32_ID");
- OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
- }
+ if (GV->hasLocalLinkage()) {
+ OS.AddComment("Record kind: S_LPROC32_ID");
+ OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
+ } else {
+ OS.AddComment("Record kind: S_GPROC32_ID");
+ OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
+ }
// These fields are filled in by tools like CVPACK which run after the fact.
OS.AddComment("PtrParent");
@@ -667,7 +804,7 @@ void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
OS.AddComment("Function type index");
OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
OS.AddComment("Function section relative address");
- OS.EmitCOFFSecRel32(Fn);
+ OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
OS.AddComment("Function section index");
OS.EmitCOFFSectionIndex(Fn);
OS.AddComment("Flags");
@@ -711,29 +848,33 @@ CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
DR.InMemory = -1;
DR.DataOffset = Offset;
assert(DR.DataOffset == Offset && "truncation");
+ DR.IsSubfield = 0;
DR.StructOffset = 0;
DR.CVRegister = CVRegister;
return DR;
}
CodeViewDebug::LocalVarDefRange
-CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
+CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
+ int Offset, bool IsSubfield,
+ uint16_t StructOffset) {
LocalVarDefRange DR;
- DR.InMemory = 0;
- DR.DataOffset = 0;
- DR.StructOffset = 0;
+ DR.InMemory = InMemory;
+ DR.DataOffset = Offset;
+ DR.IsSubfield = IsSubfield;
+ DR.StructOffset = StructOffset;
DR.CVRegister = CVRegister;
return DR;
}
-void CodeViewDebug::collectVariableInfoFromMMITable(
+void CodeViewDebug::collectVariableInfoFromMFTable(
DenseSet<InlinedVariable> &Processed) {
- const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
+ const MachineFunction &MF = *Asm->MF;
+ const TargetSubtargetInfo &TSI = MF.getSubtarget();
const TargetFrameLowering *TFI = TSI.getFrameLowering();
const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
- for (const MachineModuleInfo::VariableDbgInfo &VI :
- MMI->getVariableDbgInfo()) {
+ for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
if (!VI.Var)
continue;
assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
@@ -770,7 +911,7 @@ void CodeViewDebug::collectVariableInfoFromMMITable(
void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
DenseSet<InlinedVariable> Processed;
// Grab the variable info that was squirreled away in the MMI side-table.
- collectVariableInfoFromMMITable(Processed);
+ collectVariableInfoFromMFTable(Processed);
const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
@@ -802,10 +943,17 @@ void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
const MachineInstr *DVInst = Range.first;
assert(DVInst->isDebugValue() && "Invalid History entry");
const DIExpression *DIExpr = DVInst->getDebugExpression();
-
- // Bail if there is a complex DWARF expression for now.
- if (DIExpr && DIExpr->getNumElements() > 0)
- continue;
+ bool IsSubfield = false;
+ unsigned StructOffset = 0;
+
+ // Handle fragments.
+ auto Fragment = DIExpr->getFragmentInfo();
+ if (DIExpr && Fragment) {
+ IsSubfield = true;
+ StructOffset = Fragment->OffsetInBits / 8;
+ } else if (DIExpr && DIExpr->getNumElements() > 0) {
+ continue; // Ignore unrecognized exprs.
+ }
// Bail if operand 0 is not a valid register. This means the variable is a
// simple constant, or is described by a complex expression.
@@ -817,19 +965,20 @@ void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
continue;
// Handle the two cases we can handle: indirect in memory and in register.
- bool IsIndirect = DVInst->getOperand(1).isImm();
- unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
+ unsigned CVReg = TRI->getCodeViewRegNum(Reg);
+ bool InMemory = DVInst->getOperand(1).isImm();
+ int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
{
- LocalVarDefRange DefRange;
- if (IsIndirect) {
- int64_t Offset = DVInst->getOperand(1).getImm();
- DefRange = createDefRangeMem(CVReg, Offset);
- } else {
- DefRange = createDefRangeReg(CVReg);
- }
+ LocalVarDefRange DR;
+ DR.CVRegister = CVReg;
+ DR.InMemory = InMemory;
+ DR.DataOffset = Offset;
+ DR.IsSubfield = IsSubfield;
+ DR.StructOffset = StructOffset;
+
if (Var.DefRanges.empty() ||
- Var.DefRanges.back().isDifferentLocation(DefRange)) {
- Var.DefRanges.emplace_back(std::move(DefRange));
+ Var.DefRanges.back().isDifferentLocation(DR)) {
+ Var.DefRanges.emplace_back(std::move(DR));
}
}
@@ -837,8 +986,14 @@ void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
const MCSymbol *End = getLabelAfterInsn(Range.second);
if (!End) {
- if (std::next(I) != E)
- End = getLabelBeforeInsn(std::next(I)->first);
+ // This range is valid until the next overlapping bitpiece. In the
+ // common case, ranges will not be bitpieces, so they will overlap.
+ auto J = std::next(I);
+ while (J != E &&
+ !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
+ ++J;
+ if (J != E)
+ End = getLabelBeforeInsn(J->first);
else
End = Asm->getFunctionEnd();
}
@@ -873,6 +1028,8 @@ void CodeViewDebug::beginFunction(const MachineFunction *MF) {
CurFn->FuncId = NextFuncId++;
CurFn->Begin = Asm->getFunctionBegin();
+ OS.EmitCVFuncIdDirective(CurFn->FuncId);
+
// Find the end of the function prolog. First known non-DBG_VALUE and
// non-frame setup location marks the beginning of the function body.
// FIXME: is there a simpler a way to do this? Can we just search
@@ -933,6 +1090,9 @@ TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
case dwarf::DW_TAG_base_type:
return lowerTypeBasic(cast<DIBasicType>(Ty));
case dwarf::DW_TAG_pointer_type:
+ if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
+ return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
+ LLVM_FALLTHROUGH;
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_rvalue_reference_type:
return lowerTypePointer(cast<DIDerivedType>(Ty));
@@ -940,6 +1100,7 @@ TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_volatile_type:
+ // TODO: add support for DW_TAG_atomic_type here
return lowerTypeModifier(cast<DIDerivedType>(Ty));
case dwarf::DW_TAG_subroutine_type:
if (ClassTy) {
@@ -989,20 +1150,25 @@ TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
- bool UndefinedSubrange = false;
- // FIXME:
- // There is a bug in the front-end where an array of a structure, which was
- // declared as incomplete structure first, ends up not getting a size assigned
- // to it. (PR28303)
+ // We want to assert that the element type multiplied by the array lengths
+ // match the size of the overall array. However, if we don't have complete
+ // type information for the base type, we can't make this assertion. This
+ // happens if limited debug info is enabled in this case:
+ // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
+ // VTableOptzn array[3];
+ // The DICompositeType of VTableOptzn will have size zero, and the array will
+ // have size 3 * sizeof(void*), and we should avoid asserting.
+ //
+ // There is a related bug in the front-end where an array of a structure,
+ // which was declared as incomplete structure first, ends up not getting a
+ // size assigned to it. (PR28303)
// Example:
// struct A(*p)[3];
// struct A { int f; } a[3];
- //
- // This needs to be fixed in the front-end, but in the meantime we don't want
- // to trigger an assertion because of this.
- if (Ty->getSizeInBits() == 0) {
- UndefinedSubrange = true;
+ bool PartiallyIncomplete = false;
+ if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
+ PartiallyIncomplete = true;
}
// Add subranges to array type.
@@ -1021,18 +1187,24 @@ TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
// FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
if (Count == -1) {
Count = 1;
- UndefinedSubrange = true;
+ PartiallyIncomplete = true;
}
- StringRef Name = (i == 0) ? Ty->getName() : "";
// Update the element size and element type index for subsequent subranges.
ElementSize *= Count;
- ElementTypeIndex = TypeTable.writeArray(
- ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name));
+
+ // If this is the outermost array, use the size from the array. It will be
+ // more accurate if PartiallyIncomplete is true.
+ uint64_t ArraySize =
+ (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
+
+ StringRef Name = (i == 0) ? Ty->getName() : "";
+ ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
+ ElementTypeIndex = TypeTable.writeKnownType(AR);
}
- (void)UndefinedSubrange;
- assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8));
+ (void)PartiallyIncomplete;
+ assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
return ElementTypeIndex;
}
@@ -1080,20 +1252,20 @@ TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
break;
case dwarf::DW_ATE_signed:
switch (ByteSize) {
- case 1: STK = SimpleTypeKind::SByte; break;
- case 2: STK = SimpleTypeKind::Int16Short; break;
- case 4: STK = SimpleTypeKind::Int32; break;
- case 8: STK = SimpleTypeKind::Int64Quad; break;
- case 16: STK = SimpleTypeKind::Int128Oct; break;
+ case 1: STK = SimpleTypeKind::SignedCharacter; break;
+ case 2: STK = SimpleTypeKind::Int16Short; break;
+ case 4: STK = SimpleTypeKind::Int32; break;
+ case 8: STK = SimpleTypeKind::Int64Quad; break;
+ case 16: STK = SimpleTypeKind::Int128Oct; break;
}
break;
case dwarf::DW_ATE_unsigned:
switch (ByteSize) {
- case 1: STK = SimpleTypeKind::Byte; break;
- case 2: STK = SimpleTypeKind::UInt16Short; break;
- case 4: STK = SimpleTypeKind::UInt32; break;
- case 8: STK = SimpleTypeKind::UInt64Quad; break;
- case 16: STK = SimpleTypeKind::UInt128Oct; break;
+ case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
+ case 2: STK = SimpleTypeKind::UInt16Short; break;
+ case 4: STK = SimpleTypeKind::UInt32; break;
+ case 8: STK = SimpleTypeKind::UInt64Quad; break;
+ case 16: STK = SimpleTypeKind::UInt128Oct; break;
}
break;
case dwarf::DW_ATE_UTF:
@@ -1133,13 +1305,6 @@ TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
- // While processing the type being pointed to it is possible we already
- // created this pointer type. If so, we check here and return the existing
- // pointer type.
- auto I = TypeIndices.find({Ty, nullptr});
- if (I != TypeIndices.end())
- return I->second;
-
// Pointers to simple types can use SimpleTypeMode, rather than having a
// dedicated pointer type record.
if (PointeeTI.isSimple() &&
@@ -1171,7 +1336,7 @@ TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
// do.
PointerOptions PO = PointerOptions::None;
PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
- return TypeTable.writePointer(PR);
+ return TypeTable.writeKnownType(PR);
}
static PointerToMemberRepresentation
@@ -1222,7 +1387,7 @@ TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
MemberPointerInfo MPI(
ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
- return TypeTable.writePointer(PR);
+ return TypeTable.writeKnownType(PR);
}
/// Given a DWARF calling convention, get the CodeView equivalent. If we don't
@@ -1244,7 +1409,7 @@ TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
bool IsModifier = true;
const DIType *BaseTy = Ty;
while (IsModifier && BaseTy) {
- // FIXME: Need to add DWARF tag for __unaligned.
+ // FIXME: Need to add DWARF tags for __unaligned and _Atomic
switch (BaseTy->getTag()) {
case dwarf::DW_TAG_const_type:
Mods |= ModifierOptions::Const;
@@ -1260,16 +1425,8 @@ TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
}
TypeIndex ModifiedTI = getTypeIndex(BaseTy);
-
- // While processing the type being pointed to, it is possible we already
- // created this modifier type. If so, we check here and return the existing
- // modifier type.
- auto I = TypeIndices.find({Ty, nullptr});
- if (I != TypeIndices.end())
- return I->second;
-
ModifierRecord MR(ModifiedTI, Mods);
- return TypeTable.writeModifier(MR);
+ return TypeTable.writeKnownType(MR);
}
TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
@@ -1286,13 +1443,13 @@ TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
}
ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
- TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
+ TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
ArgTypeIndices.size(), ArgListIndex);
- return TypeTable.writeProcedure(Procedure);
+ return TypeTable.writeKnownType(Procedure);
}
TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
@@ -1319,20 +1476,29 @@ TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
}
ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
- TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
+ TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
// TODO: Need to use the correct values for:
// FunctionOptions
// ThisPointerAdjustment.
- TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
- ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
- ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
+ MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
+ FunctionOptions::None, ArgTypeIndices.size(),
+ ArgListIndex, ThisAdjustment);
+ TypeIndex TI = TypeTable.writeKnownType(MFR);
return TI;
}
+TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
+ unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
+ SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
+
+ VFTableShapeRecord VFTSR(Slots);
+ return TypeTable.writeKnownType(VFTSR);
+}
+
static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
switch (Flags & DINode::FlagAccessibility) {
case DINode::FlagPrivate: return MemberAccess::Private;
@@ -1420,25 +1586,28 @@ TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
if (Ty->isForwardDecl()) {
CO |= ClassOptions::ForwardReference;
} else {
- FieldListRecordBuilder Fields;
+ FieldListRecordBuilder FLRB(TypeTable);
+
+ FLRB.begin();
for (const DINode *Element : Ty->getElements()) {
// We assume that the frontend provides all members in source declaration
// order, which is what MSVC does.
if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
- Fields.writeEnumerator(EnumeratorRecord(
- MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
- Enumerator->getName()));
+ EnumeratorRecord ER(MemberAccess::Public,
+ APSInt::getUnsigned(Enumerator->getValue()),
+ Enumerator->getName());
+ FLRB.writeMemberType(ER);
EnumeratorCount++;
}
}
- FTI = TypeTable.writeFieldList(Fields);
+ FTI = FLRB.end();
}
std::string FullName = getFullyQualifiedName(Ty);
- return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
- Ty->getIdentifier(),
- getTypeIndex(Ty->getBaseType())));
+ EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
+ getTypeIndex(Ty->getBaseType()));
+ return TypeTable.writeKnownType(ER);
}
//===----------------------------------------------------------------------===//
@@ -1465,6 +1634,8 @@ struct llvm::ClassInfo {
// Direct overloaded methods gathered by name.
MethodsMap Methods;
+ TypeIndex VShapeTI;
+
std::vector<const DICompositeType *> NestedClasses;
};
@@ -1513,11 +1684,13 @@ ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
collectMemberInfo(Info, DDTy);
} else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
Info.Inheritance.push_back(DDTy);
+ } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
+ DDTy->getName() == "__vtbl_ptr_type") {
+ Info.VShapeTI = getTypeIndex(DDTy);
} else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
// Ignore friend members. It appears that MSVC emitted info about
// friends in the past, but modern versions do not.
}
- // FIXME: Get Clang to emit function virtual table here and handle it.
} else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
Info.NestedClasses.push_back(Composite);
}
@@ -1533,9 +1706,9 @@ TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
ClassOptions CO =
ClassOptions::ForwardReference | getCommonClassOptions(Ty);
std::string FullName = getFullyQualifiedName(Ty);
- TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
- Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
- TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
+ ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
+ FullName, Ty->getIdentifier());
+ TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
if (!Ty->isForwardDecl())
DeferredCompleteTypes.push_back(Ty);
return FwdDeclTI;
@@ -1559,14 +1732,14 @@ TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
- TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
- Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
- TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
+ ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
+ SizeInBytes, FullName, Ty->getIdentifier());
+ TypeIndex ClassTI = TypeTable.writeKnownType(CR);
- TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
- ClassTI, TypeTable.writeStringId(StringIdRecord(
- TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
- Ty->getLine()));
+ StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
+ TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
+ UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
+ TypeTable.writeKnownType(USLR);
addToUDTs(Ty, ClassTI);
@@ -1577,9 +1750,8 @@ TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
ClassOptions CO =
ClassOptions::ForwardReference | getCommonClassOptions(Ty);
std::string FullName = getFullyQualifiedName(Ty);
- TypeIndex FwdDeclTI =
- TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
- FullName, Ty->getIdentifier()));
+ UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
+ TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
if (!Ty->isForwardDecl())
DeferredCompleteTypes.push_back(Ty);
return FwdDeclTI;
@@ -1599,14 +1771,14 @@ TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
std::string FullName = getFullyQualifiedName(Ty);
- TypeIndex UnionTI = TypeTable.writeUnion(
- UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
- Ty->getIdentifier()));
+ UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
+ Ty->getIdentifier());
+ TypeIndex UnionTI = TypeTable.writeKnownType(UR);
- TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
- UnionTI, TypeTable.writeStringId(StringIdRecord(
- TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
- Ty->getLine()));
+ StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
+ TypeIndex SIRI = TypeTable.writeKnownType(SIR);
+ UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
+ TypeTable.writeKnownType(USLR);
addToUDTs(Ty, UnionTI);
@@ -1621,7 +1793,8 @@ CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
// list record.
unsigned MemberCount = 0;
ClassInfo Info = collectClassInfo(Ty);
- FieldListRecordBuilder Fields;
+ FieldListRecordBuilder FLBR(TypeTable);
+ FLBR.begin();
// Create base classes.
for (const DIDerivedType *I : Info.Inheritance) {
@@ -1631,16 +1804,22 @@ CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
unsigned VBPtrOffset = 0;
// FIXME: Despite the accessor name, the offset is really in bytes.
unsigned VBTableIndex = I->getOffsetInBits() / 4;
- Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
- translateAccessFlags(Ty->getTag(), I->getFlags()),
+ auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
+ ? TypeRecordKind::IndirectVirtualBaseClass
+ : TypeRecordKind::VirtualBaseClass;
+ VirtualBaseClassRecord VBCR(
+ RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
- VBTableIndex));
+ VBTableIndex);
+
+ FLBR.writeMemberType(VBCR);
} else {
assert(I->getOffsetInBits() % 8 == 0 &&
"bases must be on byte boundaries");
- Fields.writeBaseClass(BaseClassRecord(
- translateAccessFlags(Ty->getTag(), I->getFlags()),
- getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
+ BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
+ getTypeIndex(I->getBaseType()),
+ I->getOffsetInBits() / 8);
+ FLBR.writeMemberType(BCR);
}
}
@@ -1653,8 +1832,17 @@ CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
translateAccessFlags(Ty->getTag(), Member->getFlags());
if (Member->isStaticMember()) {
- Fields.writeStaticDataMember(
- StaticDataMemberRecord(Access, MemberBaseType, MemberName));
+ StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
+ FLBR.writeMemberType(SDMR);
+ MemberCount++;
+ continue;
+ }
+
+ // Virtual function pointer member.
+ if ((Member->getFlags() & DINode::FlagArtificial) &&
+ Member->getName().startswith("_vptr$")) {
+ VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
+ FLBR.writeMemberType(VFPR);
MemberCount++;
continue;
}
@@ -1669,12 +1857,14 @@ CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
}
StartBitOffset -= MemberOffsetInBits;
- MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
- MemberBaseType, Member->getSizeInBits(), StartBitOffset));
+ BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
+ StartBitOffset);
+ MemberBaseType = TypeTable.writeKnownType(BFR);
}
uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
- Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
- MemberOffsetInBytes, MemberName));
+ DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
+ MemberName);
+ FLBR.writeMemberType(DMR);
MemberCount++;
}
@@ -1691,33 +1881,32 @@ CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
if (Introduced)
VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
- Methods.push_back(
- OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
- translateMethodOptionFlags(SP),
- translateAccessFlags(Ty->getTag(), SP->getFlags()),
- VFTableOffset, Name));
+ Methods.push_back(OneMethodRecord(
+ MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
+ translateMethodKindFlags(SP, Introduced),
+ translateMethodOptionFlags(SP), VFTableOffset, Name));
MemberCount++;
}
assert(Methods.size() > 0 && "Empty methods map entry");
if (Methods.size() == 1)
- Fields.writeOneMethod(Methods[0]);
+ FLBR.writeMemberType(Methods[0]);
else {
- TypeIndex MethodList =
- TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
- Fields.writeOverloadedMethod(
- OverloadedMethodRecord(Methods.size(), MethodList, Name));
+ MethodOverloadListRecord MOLR(Methods);
+ TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
+ OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
+ FLBR.writeMemberType(OMR);
}
}
// Create nested classes.
for (const DICompositeType *Nested : Info.NestedClasses) {
NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
- Fields.writeNestedType(R);
+ FLBR.writeMemberType(R);
MemberCount++;
}
- TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
- return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
+ TypeIndex FieldTI = FLBR.end();
+ return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
!Info.NestedClasses.empty());
}
@@ -1725,7 +1914,7 @@ TypeIndex CodeViewDebug::getVBPTypeIndex() {
if (!VBPType.getIndex()) {
// Make a 'const int *' type.
ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
- TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
+ TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
: PointerKind::Near32;
@@ -1733,7 +1922,7 @@ TypeIndex CodeViewDebug::getVBPTypeIndex() {
PointerOptions PO = PointerOptions::None;
PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
- VBPType = TypeTable.writePointer(PR);
+ VBPType = TypeTable.writeKnownType(PR);
}
return VBPType;
@@ -1880,30 +2069,47 @@ void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
SmallString<20> BytePrefix;
for (const LocalVarDefRange &DefRange : Var.DefRanges) {
BytePrefix.clear();
- // FIXME: Handle bitpieces.
- if (DefRange.StructOffset != 0)
- continue;
-
if (DefRange.InMemory) {
- DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
- 0, 0, ArrayRef<LocalVariableAddrGap>());
+ uint16_t RegRelFlags = 0;
+ if (DefRange.IsSubfield) {
+ RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
+ (DefRange.StructOffset
+ << DefRangeRegisterRelSym::OffsetInParentShift);
+ }
+ DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
+ Sym.Hdr.Register = DefRange.CVRegister;
+ Sym.Hdr.Flags = RegRelFlags;
+ Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
BytePrefix +=
StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
BytePrefix +=
- StringRef(reinterpret_cast<const char *>(&Sym.Header),
- sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
+ StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
} else {
assert(DefRange.DataOffset == 0 && "unexpected offset into register");
- // Unclear what matters here.
- DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
- ArrayRef<LocalVariableAddrGap>());
- ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
- BytePrefix +=
- StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
- BytePrefix +=
- StringRef(reinterpret_cast<const char *>(&Sym.Header),
- sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
+ if (DefRange.IsSubfield) {
+ // Unclear what matters here.
+ DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
+ Sym.Hdr.Register = DefRange.CVRegister;
+ Sym.Hdr.MayHaveNoName = 0;
+ Sym.Hdr.OffsetInParent = DefRange.StructOffset;
+
+ ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
+ BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
+ sizeof(SymKind));
+ BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
+ sizeof(Sym.Hdr));
+ } else {
+ // Unclear what matters here.
+ DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
+ Sym.Hdr.Register = DefRange.CVRegister;
+ Sym.Hdr.MayHaveNoName = 0;
+ ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
+ BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
+ sizeof(SymKind));
+ BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
+ sizeof(Sym.Hdr));
+ }
}
OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
}
@@ -1983,6 +2189,15 @@ void CodeViewDebug::emitDebugInfoForUDTs(
}
void CodeViewDebug::emitDebugInfoForGlobals() {
+ DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
+ GlobalMap;
+ for (const GlobalVariable &GV : MMI->getModule()->globals()) {
+ SmallVector<DIGlobalVariableExpression *, 1> GVEs;
+ GV.getDebugInfo(GVEs);
+ for (const auto *GVE : GVEs)
+ GlobalMap[GVE] = &GV;
+ }
+
NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
for (const MDNode *Node : CUs->operands()) {
const auto *CU = cast<DICompileUnit>(Node);
@@ -1992,31 +2207,32 @@ void CodeViewDebug::emitDebugInfoForGlobals() {
// it if we have at least one global to emit.
switchToDebugSectionForSymbol(nullptr);
MCSymbol *EndLabel = nullptr;
- for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
- if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
+ for (const auto *GVE : CU->getGlobalVariables()) {
+ if (const auto *GV = GlobalMap.lookup(GVE))
if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
if (!EndLabel) {
OS.AddComment("Symbol subsection for globals");
EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
}
- emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
+ // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
+ emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
}
- }
}
if (EndLabel)
endCVSubsection(EndLabel);
// Second, emit each global that is in a comdat into its own .debug$S
// section along with its own symbol substream.
- for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
- if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
+ for (const auto *GVE : CU->getGlobalVariables()) {
+ if (const auto *GV = GlobalMap.lookup(GVE)) {
if (GV->hasComdat()) {
MCSymbol *GVSym = Asm->getSymbol(GV);
OS.AddComment("Symbol subsection for " +
Twine(GlobalValue::getRealLinkageName(GV->getName())));
switchToDebugSectionForSymbol(GVSym);
EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
- emitDebugInfoForGlobal(G, GVSym);
+ // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
+ emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
endCVSubsection(EndLabel);
}
}
@@ -2037,6 +2253,7 @@ void CodeViewDebug::emitDebugInfoForRetainedTypes() {
}
void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
+ const GlobalVariable *GV,
MCSymbol *GVSym) {
// DataSym record, see SymbolRecord.h for more info.
// FIXME: Thread local data, etc
@@ -2045,7 +2262,6 @@ void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
OS.AddComment("Record length");
OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
OS.EmitLabel(DataBegin);
- const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
if (DIGV->isLocalToUnit()) {
if (GV->isThreadLocal()) {
OS.AddComment("Record kind: S_LTHREAD32");
@@ -2066,7 +2282,7 @@ void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
OS.AddComment("Type");
OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
OS.AddComment("DataOffset");
- OS.EmitCOFFSecRel32(GVSym);
+ OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
OS.AddComment("Segment");
OS.EmitCOFFSectionIndex(GVSym);
OS.AddComment("Name");
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.h b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.h
index e4bbd61..3dd4315 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.h
@@ -20,8 +20,8 @@
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/DebugInfo/CodeView/MemoryTypeTableBuilder.h"
#include "llvm/DebugInfo/CodeView/TypeIndex.h"
+#include "llvm/DebugInfo/CodeView/TypeTableBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCStreamer.h"
@@ -36,7 +36,8 @@ struct ClassInfo;
/// \brief Collects and handles line tables information in a CodeView format.
class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
MCStreamer &OS;
- codeview::MemoryTypeTableBuilder TypeTable;
+ llvm::BumpPtrAllocator Allocator;
+ codeview::TypeTableBuilder TypeTable;
/// Represents the most general definition range.
struct LocalVarDefRange {
@@ -47,9 +48,11 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
/// Offset of variable data in memory.
int DataOffset : 31;
- /// Offset of the data into the user level struct. If zero, no splitting
- /// occurred.
- uint16_t StructOffset;
+ /// Non-zero if this is a piece of an aggregate.
+ uint16_t IsSubfield : 1;
+
+ /// Offset into aggregate.
+ uint16_t StructOffset : 15;
/// Register containing the data or the register base of the memory
/// location containing the data.
@@ -59,14 +62,18 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
/// ranges.
bool isDifferentLocation(LocalVarDefRange &O) {
return InMemory != O.InMemory || DataOffset != O.DataOffset ||
- StructOffset != O.StructOffset || CVRegister != O.CVRegister;
+ IsSubfield != O.IsSubfield || StructOffset != O.StructOffset ||
+ CVRegister != O.CVRegister;
}
SmallVector<std::pair<const MCSymbol *, const MCSymbol *>, 1> Ranges;
};
static LocalVarDefRange createDefRangeMem(uint16_t CVRegister, int Offset);
- static LocalVarDefRange createDefRangeReg(uint16_t CVRegister);
+ static LocalVarDefRange createDefRangeGeneral(uint16_t CVRegister,
+ bool InMemory, int Offset,
+ bool IsSubfield,
+ uint16_t StructOffset);
/// Similar to DbgVariable in DwarfDebug, but not dwarf-specific.
struct LocalVariable {
@@ -190,6 +197,8 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
void emitTypeInformation();
+ void emitCompilerInformation();
+
void emitInlineeLinesSubsection();
void emitDebugInfoForFunction(const Function *GV, FunctionInfo &FI);
@@ -201,7 +210,8 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
void emitDebugInfoForUDTs(
ArrayRef<std::pair<std::string, codeview::TypeIndex>> UDTs);
- void emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, MCSymbol *GVSym);
+ void emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
+ const GlobalVariable *GV, MCSymbol *GVSym);
/// Opens a subsection of the given kind in a .debug$S codeview section.
/// Returns an end label for use with endCVSubsection when the subsection is
@@ -217,7 +227,7 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
void collectVariableInfo(const DISubprogram *SP);
- void collectVariableInfoFromMMITable(DenseSet<InlinedVariable> &Processed);
+ void collectVariableInfoFromMFTable(DenseSet<InlinedVariable> &Processed);
/// Records information about a local variable in the appropriate scope. In
/// particular, locals from inlined code live inside the inlining site.
@@ -251,6 +261,7 @@ class LLVM_LIBRARY_VISIBILITY CodeViewDebug : public DebugHandlerBase {
codeview::TypeIndex lowerTypeMemberPointer(const DIDerivedType *Ty);
codeview::TypeIndex lowerTypeModifier(const DIDerivedType *Ty);
codeview::TypeIndex lowerTypeFunction(const DISubroutineType *Ty);
+ codeview::TypeIndex lowerTypeVFTableShape(const DIDerivedType *Ty);
codeview::TypeIndex lowerTypeMemberFunction(const DISubroutineType *Ty,
const DIType *ClassTy,
int ThisAdjustment);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
index 2aaa85a..8799189 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DIE.cpp
@@ -63,10 +63,10 @@ void DIEAbbrev::Profile(FoldingSetNodeID &ID) const {
///
void DIEAbbrev::Emit(const AsmPrinter *AP) const {
// Emit its Dwarf tag type.
- AP->EmitULEB128(Tag, dwarf::TagString(Tag));
+ AP->EmitULEB128(Tag, dwarf::TagString(Tag).data());
// Emit whether it has children DIEs.
- AP->EmitULEB128((unsigned)Children, dwarf::ChildrenString(Children));
+ AP->EmitULEB128((unsigned)Children, dwarf::ChildrenString(Children).data());
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
@@ -74,11 +74,18 @@ void DIEAbbrev::Emit(const AsmPrinter *AP) const {
// Emit attribute type.
AP->EmitULEB128(AttrData.getAttribute(),
- dwarf::AttributeString(AttrData.getAttribute()));
+ dwarf::AttributeString(AttrData.getAttribute()).data());
// Emit form type.
AP->EmitULEB128(AttrData.getForm(),
- dwarf::FormEncodingString(AttrData.getForm()));
+ dwarf::FormEncodingString(AttrData.getForm()).data());
+
+ // Emit value for DW_FORM_implicit_const.
+ if (AttrData.getForm() == dwarf::DW_FORM_implicit_const) {
+ assert(AP->getDwarfVersion() >= 5 &&
+ "DW_FORM_implicit_const is supported starting from DWARFv5");
+ AP->EmitSLEB128(AttrData.getValue());
+ }
}
// Mark end of abbreviation.
@@ -108,24 +115,73 @@ void DIEAbbrev::print(raw_ostream &O) {
LLVM_DUMP_METHOD
void DIEAbbrev::dump() { print(dbgs()); }
+//===----------------------------------------------------------------------===//
+// DIEAbbrevSet Implementation
+//===----------------------------------------------------------------------===//
+
+DIEAbbrevSet::~DIEAbbrevSet() {
+ for (DIEAbbrev *Abbrev : Abbreviations)
+ Abbrev->~DIEAbbrev();
+}
+
+DIEAbbrev &DIEAbbrevSet::uniqueAbbreviation(DIE &Die) {
+
+ FoldingSetNodeID ID;
+ DIEAbbrev Abbrev = Die.generateAbbrev();
+ Abbrev.Profile(ID);
+
+ void *InsertPos;
+ if (DIEAbbrev *Existing =
+ AbbreviationsSet.FindNodeOrInsertPos(ID, InsertPos)) {
+ Die.setAbbrevNumber(Existing->getNumber());
+ return *Existing;
+ }
+
+ // Move the abbreviation to the heap and assign a number.
+ DIEAbbrev *New = new (Alloc) DIEAbbrev(std::move(Abbrev));
+ Abbreviations.push_back(New);
+ New->setNumber(Abbreviations.size());
+ Die.setAbbrevNumber(Abbreviations.size());
+
+ // Store it for lookup.
+ AbbreviationsSet.InsertNode(New, InsertPos);
+ return *New;
+}
+
+void DIEAbbrevSet::Emit(const AsmPrinter *AP, MCSection *Section) const {
+ if (!Abbreviations.empty()) {
+ // Start the debug abbrev section.
+ AP->OutStreamer->SwitchSection(Section);
+ AP->emitDwarfAbbrevs(Abbreviations);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// DIE Implementation
+//===----------------------------------------------------------------------===//
+
+DIE *DIE::getParent() const {
+ return Owner.dyn_cast<DIE*>();
+}
+
DIEAbbrev DIE::generateAbbrev() const {
DIEAbbrev Abbrev(Tag, hasChildren());
for (const DIEValue &V : values())
- Abbrev.AddAttribute(V.getAttribute(), V.getForm());
+ if (V.getForm() == dwarf::DW_FORM_implicit_const)
+ Abbrev.AddImplicitConstAttribute(V.getAttribute(),
+ V.getDIEInteger().getValue());
+ else
+ Abbrev.AddAttribute(V.getAttribute(), V.getForm());
return Abbrev;
}
-/// Climb up the parent chain to get the unit DIE to which this DIE
-/// belongs.
-const DIE *DIE::getUnit() const {
- const DIE *Cu = getUnitOrNull();
- assert(Cu && "We should not have orphaned DIEs.");
- return Cu;
+unsigned DIE::getDebugSectionOffset() const {
+ const DIEUnit *Unit = getUnit();
+ assert(Unit && "DIE must be owned by a DIEUnit to get its absolute offset");
+ return Unit->getDebugSectionOffset() + getOffset();
}
-/// Climb up the parent chain to get the unit DIE this DIE belongs
-/// to. Return NULL if DIE is not added to an owner yet.
-const DIE *DIE::getUnitOrNull() const {
+const DIE *DIE::getUnitDie() const {
const DIE *p = this;
while (p) {
if (p->getTag() == dwarf::DW_TAG_compile_unit ||
@@ -136,6 +192,13 @@ const DIE *DIE::getUnitOrNull() const {
return nullptr;
}
+const DIEUnit *DIE::getUnit() const {
+ const DIE *UnitDie = getUnitDie();
+ if (UnitDie)
+ return UnitDie->Owner.dyn_cast<DIEUnit*>();
+ return nullptr;
+}
+
DIEValue DIE::findAttribute(dwarf::Attribute Attribute) const {
// Iterate through all the attributes until we find the one we're
// looking for, if we can't find it return NULL.
@@ -191,6 +254,55 @@ void DIE::dump() {
print(dbgs());
}
+unsigned DIE::computeOffsetsAndAbbrevs(const AsmPrinter *AP,
+ DIEAbbrevSet &AbbrevSet,
+ unsigned CUOffset) {
+ // Unique the abbreviation and fill in the abbreviation number so this DIE
+ // can be emitted.
+ const DIEAbbrev &Abbrev = AbbrevSet.uniqueAbbreviation(*this);
+
+ // Set compile/type unit relative offset of this DIE.
+ setOffset(CUOffset);
+
+ // Add the byte size of the abbreviation code.
+ CUOffset += getULEB128Size(getAbbrevNumber());
+
+ // Add the byte size of all the DIE attribute values.
+ for (const auto &V : values())
+ CUOffset += V.SizeOf(AP);
+
+ // Let the children compute their offsets and abbreviation numbers.
+ if (hasChildren()) {
+ (void)Abbrev;
+ assert(Abbrev.hasChildren() && "Children flag not set");
+
+ for (auto &Child : children())
+ CUOffset = Child.computeOffsetsAndAbbrevs(AP, AbbrevSet, CUOffset);
+
+ // Each child chain is terminated with a zero byte, adjust the offset.
+ CUOffset += sizeof(int8_t);
+ }
+
+ // Compute the byte size of this DIE and all of its children correctly. This
+ // is needed so that top level DIE can help the compile unit set its length
+ // correctly.
+ setSize(CUOffset - getOffset());
+ return CUOffset;
+}
+
+//===----------------------------------------------------------------------===//
+// DIEUnit Implementation
+//===----------------------------------------------------------------------===//
+DIEUnit::DIEUnit(uint16_t V, uint8_t A, dwarf::Tag UnitTag)
+ : Die(UnitTag), Section(nullptr), Offset(0), Length(0), Version(V),
+ AddrSize(A)
+{
+ Die.Owner = this;
+ assert((UnitTag == dwarf::DW_TAG_compile_unit ||
+ UnitTag == dwarf::DW_TAG_type_unit ||
+ UnitTag == dwarf::DW_TAG_partial_unit) && "expected a unit TAG");
+}
+
void DIEValue::EmitValue(const AsmPrinter *AP) const {
switch (Ty) {
case isNone:
@@ -240,67 +352,121 @@ void DIEValue::dump() const {
/// EmitValue - Emit integer of appropriate size.
///
void DIEInteger::EmitValue(const AsmPrinter *Asm, dwarf::Form Form) const {
- unsigned Size = ~0U;
switch (Form) {
+ case dwarf::DW_FORM_implicit_const:
+ LLVM_FALLTHROUGH;
case dwarf::DW_FORM_flag_present:
// Emit something to keep the lines and comments in sync.
// FIXME: Is there a better way to do this?
Asm->OutStreamer->AddBlankLine();
return;
- case dwarf::DW_FORM_flag: // Fall thru
- case dwarf::DW_FORM_ref1: // Fall thru
- case dwarf::DW_FORM_data1: Size = 1; break;
- case dwarf::DW_FORM_ref2: // Fall thru
- case dwarf::DW_FORM_data2: Size = 2; break;
- case dwarf::DW_FORM_sec_offset: // Fall thru
- case dwarf::DW_FORM_strp: // Fall thru
- case dwarf::DW_FORM_ref4: // Fall thru
- case dwarf::DW_FORM_data4: Size = 4; break;
- case dwarf::DW_FORM_ref8: // Fall thru
- case dwarf::DW_FORM_ref_sig8: // Fall thru
- case dwarf::DW_FORM_data8: Size = 8; break;
- case dwarf::DW_FORM_GNU_str_index: Asm->EmitULEB128(Integer); return;
- case dwarf::DW_FORM_GNU_addr_index: Asm->EmitULEB128(Integer); return;
- case dwarf::DW_FORM_udata: Asm->EmitULEB128(Integer); return;
- case dwarf::DW_FORM_sdata: Asm->EmitSLEB128(Integer); return;
+ case dwarf::DW_FORM_flag:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref1:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_data1:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref2:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_data2:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_strp:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref4:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_data4:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref8:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_sig8:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_data8:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_ref_alt:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_strp_alt:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_line_strp:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_sec_offset:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_strp_sup:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_sup:
+ LLVM_FALLTHROUGH;
case dwarf::DW_FORM_addr:
- Size = Asm->getPointerSize();
- break;
+ LLVM_FALLTHROUGH;
case dwarf::DW_FORM_ref_addr:
- Size = SizeOf(Asm, dwarf::DW_FORM_ref_addr);
- break;
+ Asm->OutStreamer->EmitIntValue(Integer, SizeOf(Asm, Form));
+ return;
+ case dwarf::DW_FORM_GNU_str_index:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_addr_index:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_udata:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_udata:
+ Asm->EmitULEB128(Integer);
+ return;
+ case dwarf::DW_FORM_sdata:
+ Asm->EmitSLEB128(Integer);
+ return;
default: llvm_unreachable("DIE Value form not supported yet");
}
- Asm->OutStreamer->EmitIntValue(Integer, Size);
}
/// SizeOf - Determine size of integer value in bytes.
///
unsigned DIEInteger::SizeOf(const AsmPrinter *AP, dwarf::Form Form) const {
switch (Form) {
+ case dwarf::DW_FORM_implicit_const: LLVM_FALLTHROUGH;
case dwarf::DW_FORM_flag_present: return 0;
- case dwarf::DW_FORM_flag: // Fall thru
- case dwarf::DW_FORM_ref1: // Fall thru
+ case dwarf::DW_FORM_flag: LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref1: LLVM_FALLTHROUGH;
case dwarf::DW_FORM_data1: return sizeof(int8_t);
- case dwarf::DW_FORM_ref2: // Fall thru
+ case dwarf::DW_FORM_ref2: LLVM_FALLTHROUGH;
case dwarf::DW_FORM_data2: return sizeof(int16_t);
- case dwarf::DW_FORM_sec_offset: // Fall thru
- case dwarf::DW_FORM_strp: // Fall thru
- case dwarf::DW_FORM_ref4: // Fall thru
+ case dwarf::DW_FORM_ref4: LLVM_FALLTHROUGH;
case dwarf::DW_FORM_data4: return sizeof(int32_t);
- case dwarf::DW_FORM_ref8: // Fall thru
- case dwarf::DW_FORM_ref_sig8: // Fall thru
+ case dwarf::DW_FORM_ref8: LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_sig8: LLVM_FALLTHROUGH;
case dwarf::DW_FORM_data8: return sizeof(int64_t);
- case dwarf::DW_FORM_GNU_str_index: return getULEB128Size(Integer);
- case dwarf::DW_FORM_GNU_addr_index: return getULEB128Size(Integer);
- case dwarf::DW_FORM_udata: return getULEB128Size(Integer);
- case dwarf::DW_FORM_sdata: return getSLEB128Size(Integer);
- case dwarf::DW_FORM_addr:
- return AP->getPointerSize();
case dwarf::DW_FORM_ref_addr:
- if (AP->OutStreamer->getContext().getDwarfVersion() == 2)
+ if (AP->getDwarfVersion() == 2)
return AP->getPointerSize();
- return sizeof(int32_t);
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_strp:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_ref_alt:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_strp_alt:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_line_strp:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_sec_offset:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_strp_sup:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_sup:
+ switch (AP->OutStreamer->getContext().getDwarfFormat()) {
+ case dwarf::DWARF32:
+ return 4;
+ case dwarf::DWARF64:
+ return 8;
+ }
+ llvm_unreachable("Invalid DWARF format");
+ case dwarf::DW_FORM_GNU_str_index:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_GNU_addr_index:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_ref_udata:
+ LLVM_FALLTHROUGH;
+ case dwarf::DW_FORM_udata:
+ return getULEB128Size(Integer);
+ case dwarf::DW_FORM_sdata:
+ return getSLEB128Size(Integer);
+ case dwarf::DW_FORM_addr:
+ return AP->getPointerSize();
default: llvm_unreachable("DIE Value form not supported yet");
}
}
@@ -318,7 +484,7 @@ void DIEInteger::print(raw_ostream &O) const {
/// EmitValue - Emit expression value.
///
void DIEExpr::EmitValue(const AsmPrinter *AP, dwarf::Form Form) const {
- AP->OutStreamer->EmitValue(Expr, SizeOf(AP, Form));
+ AP->EmitDebugValue(Expr, SizeOf(AP, Form));
}
/// SizeOf - Determine size of expression value in bytes.
@@ -343,7 +509,8 @@ void DIELabel::EmitValue(const AsmPrinter *AP, dwarf::Form Form) const {
AP->EmitLabelReference(Label, SizeOf(AP, Form),
Form == dwarf::DW_FORM_strp ||
Form == dwarf::DW_FORM_sec_offset ||
- Form == dwarf::DW_FORM_ref_addr);
+ Form == dwarf::DW_FORM_ref_addr ||
+ Form == dwarf::DW_FORM_data4);
}
/// SizeOf - Determine size of label value in bytes.
@@ -435,6 +602,29 @@ void DIEString::print(raw_ostream &O) const {
}
//===----------------------------------------------------------------------===//
+// DIEInlineString Implementation
+//===----------------------------------------------------------------------===//
+void DIEInlineString::EmitValue(const AsmPrinter *AP, dwarf::Form Form) const {
+ if (Form == dwarf::DW_FORM_string) {
+ for (char ch : S)
+ AP->EmitInt8(ch);
+ AP->EmitInt8(0);
+ return;
+ }
+ llvm_unreachable("Expected valid string form");
+}
+
+unsigned DIEInlineString::SizeOf(const AsmPrinter *AP, dwarf::Form Form) const {
+ // Emit string bytes + NULL byte.
+ return S.size() + 1;
+}
+
+LLVM_DUMP_METHOD
+void DIEInlineString::print(raw_ostream &O) const {
+ O << "InlineString: " << S;
+}
+
+//===----------------------------------------------------------------------===//
// DIEEntry Implementation
//===----------------------------------------------------------------------===//
@@ -442,35 +632,69 @@ void DIEString::print(raw_ostream &O) const {
///
void DIEEntry::EmitValue(const AsmPrinter *AP, dwarf::Form Form) const {
- if (Form == dwarf::DW_FORM_ref_addr) {
- const DwarfDebug *DD = AP->getDwarfDebug();
- unsigned Addr = Entry->getOffset();
- assert(!DD->useSplitDwarf() && "TODO: dwo files can't have relocations.");
- // For DW_FORM_ref_addr, output the offset from beginning of debug info
- // section. Entry->getOffset() returns the offset from start of the
- // compile unit.
- DwarfCompileUnit *CU = DD->lookupUnit(Entry->getUnit());
- assert(CU && "CUDie should belong to a CU.");
- Addr += CU->getDebugInfoOffset();
- if (AP->MAI->doesDwarfUseRelocationsAcrossSections())
- AP->EmitLabelPlusOffset(CU->getSectionSym(), Addr,
- DIEEntry::getRefAddrSize(AP));
- else
- AP->OutStreamer->EmitIntValue(Addr, DIEEntry::getRefAddrSize(AP));
- } else
- AP->EmitInt32(Entry->getOffset());
-}
-
-unsigned DIEEntry::getRefAddrSize(const AsmPrinter *AP) {
- // DWARF4: References that use the attribute form DW_FORM_ref_addr are
- // specified to be four bytes in the DWARF 32-bit format and eight bytes
- // in the DWARF 64-bit format, while DWARF Version 2 specifies that such
- // references have the same size as an address on the target system.
- const DwarfDebug *DD = AP->getDwarfDebug();
- assert(DD && "Expected Dwarf Debug info to be available");
- if (DD->getDwarfVersion() == 2)
- return AP->getPointerSize();
- return sizeof(int32_t);
+ switch (Form) {
+ case dwarf::DW_FORM_ref1:
+ case dwarf::DW_FORM_ref2:
+ case dwarf::DW_FORM_ref4:
+ case dwarf::DW_FORM_ref8:
+ AP->OutStreamer->EmitIntValue(Entry->getOffset(), SizeOf(AP, Form));
+ return;
+
+ case dwarf::DW_FORM_ref_udata:
+ AP->EmitULEB128(Entry->getOffset());
+ return;
+
+ case dwarf::DW_FORM_ref_addr: {
+ // Get the absolute offset for this DIE within the debug info/types section.
+ unsigned Addr = Entry->getDebugSectionOffset();
+ if (AP->MAI->doesDwarfUseRelocationsAcrossSections()) {
+ const DwarfDebug *DD = AP->getDwarfDebug();
+ if (DD)
+ assert(!DD->useSplitDwarf() &&
+ "TODO: dwo files can't have relocations.");
+ const DIEUnit *Unit = Entry->getUnit();
+ assert(Unit && "CUDie should belong to a CU.");
+ MCSection *Section = Unit->getSection();
+ if (Section) {
+ const MCSymbol *SectionSym = Section->getBeginSymbol();
+ AP->EmitLabelPlusOffset(SectionSym, Addr, SizeOf(AP, Form), true);
+ return;
+ }
+ }
+ AP->OutStreamer->EmitIntValue(Addr, SizeOf(AP, Form));
+ return;
+ }
+ default:
+ llvm_unreachable("Improper form for DIE reference");
+ }
+}
+
+unsigned DIEEntry::SizeOf(const AsmPrinter *AP, dwarf::Form Form) const {
+ switch (Form) {
+ case dwarf::DW_FORM_ref1:
+ return 1;
+ case dwarf::DW_FORM_ref2:
+ return 2;
+ case dwarf::DW_FORM_ref4:
+ return 4;
+ case dwarf::DW_FORM_ref8:
+ return 8;
+ case dwarf::DW_FORM_ref_udata:
+ return getULEB128Size(Entry->getOffset());
+ case dwarf::DW_FORM_ref_addr:
+ if (AP->getDwarfVersion() == 2)
+ return AP->getPointerSize();
+ switch (AP->OutStreamer->getContext().getDwarfFormat()) {
+ case dwarf::DWARF32:
+ return 4;
+ case dwarf::DWARF64:
+ return 8;
+ }
+ llvm_unreachable("Invalid DWARF format");
+
+ default:
+ llvm_unreachable("Improper form for DIE reference");
+ }
}
LLVM_DUMP_METHOD
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
index 74c47d1..d8ecc7c 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
@@ -330,6 +330,12 @@ void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
addULEB128(dwarf::DW_FORM_string);
addString(Value.getDIEString().getString());
break;
+ case DIEValue::isInlineString:
+ addULEB128('A');
+ addULEB128(Attribute);
+ addULEB128(dwarf::DW_FORM_string);
+ addString(Value.getDIEInlineString().getString());
+ break;
case DIEValue::isBlock:
case DIEValue::isLoc:
case DIEValue::isLocList:
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
index adc536f..22fd7bb 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp
@@ -31,7 +31,7 @@ static unsigned isDescribedByReg(const MachineInstr &MI) {
assert(MI.isDebugValue());
assert(MI.getNumOperands() == 4);
// If location of variable is described using a register (directly or
- // indirecltly), this register is always a first operand.
+ // indirectly), this register is always a first operand.
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
}
@@ -83,7 +83,7 @@ static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
const auto &I = RegVars.find(RegNo);
assert(RegNo != 0U && I != RegVars.end());
auto &VarSet = I->second;
- const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var);
+ const auto &VarPos = find(VarSet, Var);
assert(VarPos != VarSet.end());
VarSet.erase(VarPos);
// Don't keep empty sets in a map to keep it as small as possible.
@@ -96,7 +96,7 @@ static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo,
InlinedVariable Var) {
assert(RegNo != 0U);
auto &VarSet = RegVars[RegNo];
- assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end());
+ assert(!is_contained(VarSet, Var));
VarSet.push_back(Var);
}
@@ -134,8 +134,8 @@ static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
// as the return instruction.
DebugLoc LastLoc = LastMI->getDebugLoc();
auto Res = LastMI;
- for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)),
- E = MBB.rend();
+ for (MachineBasicBlock::const_reverse_iterator I = LastMI.getReverse(),
+ E = MBB.rend();
I != E; ++I) {
if (I->getDebugLoc() != LastLoc)
return &*Res;
@@ -164,7 +164,9 @@ static void collectChangingRegs(const MachineFunction *MF,
// Look for register defs and register masks. Register masks are
// typically on calls and they clobber everything not in the mask.
for (const MachineOperand &MO : MI.operands()) {
- if (MO.isReg() && MO.isDef() && MO.getReg()) {
+ // Skip virtual registers since they are handled by the parent.
+ if (MO.isReg() && MO.isDef() && MO.getReg() &&
+ !TRI->isVirtualRegister(MO.getReg())) {
for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
++AI)
Regs.set(*AI);
@@ -192,12 +194,18 @@ void llvm::calculateDbgValueHistory(const MachineFunction *MF,
// some variables.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg()) {
+ // If this is a virtual register, only clobber it since it doesn't
+ // have aliases.
+ if (TRI->isVirtualRegister(MO.getReg()))
+ clobberRegisterUses(RegVars, MO.getReg(), Result, MI);
// If this is a register def operand, it may end a debug value
// range.
- for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
- ++AI)
- if (ChangingRegs.test(*AI))
- clobberRegisterUses(RegVars, *AI, Result, MI);
+ else {
+ for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid();
+ ++AI)
+ if (ChangingRegs.test(*AI))
+ clobberRegisterUses(RegVars, *AI, Result, MI);
+ }
} else if (MO.isRegMask()) {
// If this is a register mask operand, clobber all debug values in
// non-CSRs.
@@ -238,7 +246,8 @@ void llvm::calculateDbgValueHistory(const MachineFunction *MF,
if (!MBB.empty() && &MBB != &MF->back()) {
for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
auto CurElem = I++; // CurElem can be erased below.
- if (ChangingRegs.test(CurElem->first))
+ if (TRI->isVirtualRegister(CurElem->first) ||
+ ChangingRegs.test(CurElem->first))
clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
}
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp
index 16ffe2e..9419098 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp
@@ -18,6 +18,7 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/DebugInfo.h"
+#include "llvm/MC/MCStreamer.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -62,14 +63,14 @@ MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
return LabelsAfterInsn.lookup(MI);
}
-// Determine the relative position of the pieces described by P1 and P2.
-// Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap,
-// 1 if P1 is entirely after P2.
-int DebugHandlerBase::pieceCmp(const DIExpression *P1, const DIExpression *P2) {
- unsigned l1 = P1->getBitPieceOffset();
- unsigned l2 = P2->getBitPieceOffset();
- unsigned r1 = l1 + P1->getBitPieceSize();
- unsigned r2 = l2 + P2->getBitPieceSize();
+int DebugHandlerBase::fragmentCmp(const DIExpression *P1,
+ const DIExpression *P2) {
+ auto Fragment1 = *P1->getFragmentInfo();
+ auto Fragment2 = *P2->getFragmentInfo();
+ unsigned l1 = Fragment1.OffsetInBits;
+ unsigned l2 = Fragment2.OffsetInBits;
+ unsigned r1 = l1 + Fragment1.SizeInBits;
+ unsigned r2 = l2 + Fragment2.SizeInBits;
if (r1 <= l2)
return -1;
else if (r2 <= l1)
@@ -78,11 +79,11 @@ int DebugHandlerBase::pieceCmp(const DIExpression *P1, const DIExpression *P2) {
return 0;
}
-/// Determine whether two variable pieces overlap.
-bool DebugHandlerBase::piecesOverlap(const DIExpression *P1, const DIExpression *P2) {
- if (!P1->isBitPiece() || !P2->isBitPiece())
+bool DebugHandlerBase::fragmentsOverlap(const DIExpression *P1,
+ const DIExpression *P2) {
+ if (!P1->isFragment() || !P2->isFragment())
return true;
- return pieceCmp(P1, P2) == 0;
+ return fragmentCmp(P1, P2) == 0;
}
/// If this type is derived from a base type then return base type size.
@@ -97,7 +98,7 @@ uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) {
if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
- Tag != dwarf::DW_TAG_restrict_type)
+ Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type)
return DDTy->getSizeInBits();
DIType *BaseType = DDTy->getBaseType().resolve();
@@ -141,14 +142,15 @@ void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
if (DIVar->isParameter() &&
getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) {
LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin();
- if (Ranges.front().first->getDebugExpression()->isBitPiece()) {
- // Mark all non-overlapping initial pieces.
+ if (Ranges.front().first->getDebugExpression()->isFragment()) {
+ // Mark all non-overlapping initial fragments.
for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
- const DIExpression *Piece = I->first->getDebugExpression();
+ const DIExpression *Fragment = I->first->getDebugExpression();
if (std::all_of(Ranges.begin(), I,
[&](DbgValueHistoryMap::InstrRange Pred) {
- return !piecesOverlap(Piece, Pred.first->getDebugExpression());
- }))
+ return !fragmentsOverlap(
+ Fragment, Pred.first->getDebugExpression());
+ }))
LabelsBeforeInsn[I->first] = Asm->getFunctionBegin();
else
break;
@@ -200,8 +202,10 @@ void DebugHandlerBase::endInstruction() {
assert(CurMI != nullptr);
// Don't create a new label after DBG_VALUE instructions.
// They don't generate code.
- if (!CurMI->isDebugValue())
+ if (!CurMI->isDebugValue()) {
PrevLabel = nullptr;
+ PrevInstBB = CurMI->getParent();
+ }
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
LabelsAfterInsn.find(CurMI);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.h
index b8bbcec..c00fa18 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.h
@@ -38,10 +38,12 @@ protected:
MachineModuleInfo *MMI;
/// Previous instruction's location information. This is used to
- /// determine label location to indicate scope boundries in dwarf
- /// debug info.
+ /// determine label location to indicate scope boundaries in debug info.
+ /// We track the previous instruction's source location (if not line 0),
+ /// whether it was a label, and its parent BB.
DebugLoc PrevInstLoc;
MCSymbol *PrevLabel = nullptr;
+ const MachineBasicBlock *PrevInstBB = nullptr;
/// This location indicates end of function prologue and beginning of
/// function body.
@@ -92,13 +94,13 @@ public:
/// Return Label immediately following the instruction.
MCSymbol *getLabelAfterInsn(const MachineInstr *MI);
- /// Determine the relative position of the pieces described by P1 and P2.
- /// Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap,
- /// 1 if P1 is entirely after P2.
- static int pieceCmp(const DIExpression *P1, const DIExpression *P2);
+ /// Determine the relative position of the fragments described by P1 and P2.
+ /// Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap, 1 if P1 is
+ /// entirely after P2.
+ static int fragmentCmp(const DIExpression *P1, const DIExpression *P2);
- /// Determine whether two variable pieces overlap.
- static bool piecesOverlap(const DIExpression *P1, const DIExpression *P2);
+ /// Determine whether two variable fragments overlap.
+ static bool fragmentsOverlap(const DIExpression *P1, const DIExpression *P2);
/// If this type is derived from a base type then return base type size.
static uint64_t getBaseTypeSize(const DITypeRef TyRef);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
index 20acd45..36fb150 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DebugLocEntry.h
@@ -72,7 +72,7 @@ public:
const ConstantFP *getConstantFP() const { return Constant.CFP; }
const ConstantInt *getConstantInt() const { return Constant.CIP; }
MachineLocation getLoc() const { return Loc; }
- bool isBitPiece() const { return getExpression()->isBitPiece(); }
+ bool isFragment() const { return getExpression()->isFragment(); }
const DIExpression *getExpression() const { return Expression; }
friend bool operator==(const Value &, const Value &);
friend bool operator<(const Value &, const Value &);
@@ -128,8 +128,8 @@ public:
void addValues(ArrayRef<DebugLocEntry::Value> Vals) {
Values.append(Vals.begin(), Vals.end());
sortUniqueValues();
- assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value V){
- return V.isBitPiece();
+ assert(all_of(Values, [](DebugLocEntry::Value V) {
+ return V.isFragment();
}) && "value must be a piece");
}
@@ -172,11 +172,11 @@ inline bool operator==(const DebugLocEntry::Value &A,
llvm_unreachable("unhandled EntryKind");
}
-/// \brief Compare two pieces based on their offset.
+/// Compare two fragments based on their offset.
inline bool operator<(const DebugLocEntry::Value &A,
const DebugLocEntry::Value &B) {
- return A.getExpression()->getBitPieceOffset() <
- B.getExpression()->getBitPieceOffset();
+ return A.getExpression()->getFragmentInfo()->OffsetInBits <
+ B.getExpression()->getFragmentInfo()->OffsetInBits;
}
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
index 4ad3e18..9c324ea 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.cpp
@@ -221,9 +221,7 @@ void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D) {
Asm->EmitInt32((*HI)->Data.Values.size());
for (HashDataContents *HD : (*HI)->Data.Values) {
// Emit the DIE offset
- DwarfCompileUnit *CU = D->lookupUnit(HD->Die->getUnit());
- assert(CU && "Accelerated DIE should belong to a CU.");
- Asm->EmitInt32(HD->Die->getOffset() + CU->getDebugInfoOffset());
+ Asm->EmitInt32(HD->Die->getDebugSectionOffset());
// If we have multiple Atoms emit that info too.
// FIXME: A bit of a hack, we either emit only one atom or all info.
if (HeaderData.Atoms.size() > 1) {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
index 4d81441..05ac1cb 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
@@ -126,8 +126,7 @@ public:
uint16_t type; // enum AtomType
uint16_t form; // DWARF DW_FORM_ defines
- LLVM_CONSTEXPR Atom(uint16_t type, uint16_t form)
- : type(type), form(form) {}
+ constexpr Atom(uint16_t type, uint16_t form) : type(type), form(form) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
O << "Type: " << dwarf::AtomTypeString(type) << "\n"
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
index 2eae1b2..e08306b 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCFIException.cpp
@@ -39,16 +39,16 @@
using namespace llvm;
DwarfCFIExceptionBase::DwarfCFIExceptionBase(AsmPrinter *A)
- : EHStreamer(A), shouldEmitCFI(false) {}
+ : EHStreamer(A), shouldEmitCFI(false), hasEmittedCFISections(false) {}
void DwarfCFIExceptionBase::markFunctionEnd() {
endFragment();
- if (MMI->getLandingPads().empty())
- return;
-
// Map all labels and get rid of any dead landing pads.
- MMI->TidyLandingPads();
+ if (!Asm->MF->getLandingPads().empty()) {
+ MachineFunction *NonConstMF = const_cast<MachineFunction*>(Asm->MF);
+ NonConstMF->tidyLandingPads();
+ }
}
void DwarfCFIExceptionBase::endFragment() {
@@ -59,7 +59,7 @@ void DwarfCFIExceptionBase::endFragment() {
DwarfCFIException::DwarfCFIException(AsmPrinter *A)
: DwarfCFIExceptionBase(A), shouldEmitPersonality(false),
forceEmitPersonality(false), shouldEmitLSDA(false),
- shouldEmitMoves(false), moveTypeModule(AsmPrinter::CFI_M_None) {}
+ shouldEmitMoves(false) {}
DwarfCFIException::~DwarfCFIException() {}
@@ -70,9 +70,6 @@ void DwarfCFIException::endModule() {
if (!Asm->MAI->usesCFIForEH())
return;
- if (moveTypeModule == AsmPrinter::CFI_M_Debug)
- Asm->OutStreamer->EmitCFISections(false, true);
-
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
unsigned PerEncoding = TLOF.getPersonalityEncoding();
@@ -98,14 +95,10 @@ void DwarfCFIException::beginFunction(const MachineFunction *MF) {
const Function *F = MF->getFunction();
// If any landing pads survive, we need an EH table.
- bool hasLandingPads = !MMI->getLandingPads().empty();
+ bool hasLandingPads = !MF->getLandingPads().empty();
// See if we need frame move info.
AsmPrinter::CFIMoveType MoveType = Asm->needsCFIMoves();
- if (MoveType == AsmPrinter::CFI_M_EH ||
- (MoveType == AsmPrinter::CFI_M_Debug &&
- moveTypeModule == AsmPrinter::CFI_M_None))
- moveTypeModule = MoveType;
shouldEmitMoves = MoveType != AsmPrinter::CFI_M_None;
@@ -143,6 +136,12 @@ void DwarfCFIException::beginFragment(const MachineBasicBlock *MBB,
if (!shouldEmitCFI)
return;
+ if (!hasEmittedCFISections) {
+ if (Asm->needsOnlyDebugCFIMoves())
+ Asm->OutStreamer->EmitCFISections(false, true);
+ hasEmittedCFISections = true;
+ }
+
Asm->OutStreamer->EmitCFIStartProc(/*IsSimple=*/false);
// Indicate personality routine, if any.
@@ -160,8 +159,7 @@ void DwarfCFIException::beginFragment(const MachineBasicBlock *MBB,
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
unsigned PerEncoding = TLOF.getPersonalityEncoding();
- const MCSymbol *Sym =
- TLOF.getCFIPersonalitySymbol(P, *Asm->Mang, Asm->TM, MMI);
+ const MCSymbol *Sym = TLOF.getCFIPersonalitySymbol(P, Asm->TM, MMI);
Asm->OutStreamer->EmitCFIPersonality(Sym, PerEncoding);
// Provide LSDA information.
@@ -171,7 +169,7 @@ void DwarfCFIException::beginFragment(const MachineBasicBlock *MBB,
/// endFunction - Gather and emit post-function exception information.
///
-void DwarfCFIException::endFunction(const MachineFunction *) {
+void DwarfCFIException::endFunction(const MachineFunction *MF) {
if (!shouldEmitPersonality)
return;
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
index 7822814c..d904372 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp
@@ -73,36 +73,8 @@ unsigned DwarfCompileUnit::getOrCreateSourceID(StringRef FileName,
Asm->OutStreamer->hasRawTextSupport() ? 0 : getUniqueID());
}
-// Return const expression if value is a GEP to access merged global
-// constant. e.g.
-// i8* getelementptr ({ i8, i8, i8, i8 }* @_MergedGlobals, i32 0, i32 0)
-static const ConstantExpr *getMergedGlobalExpr(const Value *V) {
- const ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(V);
- if (!CE || CE->getNumOperands() != 3 ||
- CE->getOpcode() != Instruction::GetElementPtr)
- return nullptr;
-
- // First operand points to a global struct.
- Value *Ptr = CE->getOperand(0);
- GlobalValue *GV = dyn_cast<GlobalValue>(Ptr);
- if (!GV || !isa<StructType>(GV->getValueType()))
- return nullptr;
-
- // Second operand is zero.
- const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CE->getOperand(1));
- if (!CI || !CI->isZero())
- return nullptr;
-
- // Third operand is offset.
- if (!isa<ConstantInt>(CE->getOperand(2)))
- return nullptr;
-
- return CE;
-}
-
-/// getOrCreateGlobalVariableDIE - get or create global variable DIE.
DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(
- const DIGlobalVariable *GV) {
+ const DIGlobalVariable *GV, ArrayRef<GlobalExpr> GlobalExprs) {
// Check for pre-existence.
if (DIE *Die = getDIE(GV))
return Die;
@@ -126,6 +98,10 @@ DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(
// We need the declaration DIE that is in the static member's class.
DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl);
addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE);
+ // If the global variable's type is different from the one in the class
+ // member type, assume that it's more specific and also emit it.
+ if (GTy != DD->resolve(SDMDecl->getBaseType()))
+ addType(*VariableDIE, GTy);
} else {
DeclContext = GV->getScope();
// Add name and type.
@@ -145,73 +121,82 @@ DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(
else
addGlobalName(GV->getName(), *VariableDIE, DeclContext);
+ if (uint32_t AlignInBytes = GV->getAlignInBytes())
+ addUInt(*VariableDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
+ AlignInBytes);
+
// Add location.
bool addToAccelTable = false;
- if (auto *Global = dyn_cast_or_null<GlobalVariable>(GV->getVariable())) {
- // We cannot describe the location of dllimport'd variables: the computation
- // of their address requires loads from the IAT.
- if (!Global->hasDLLImportStorageClass()) {
+ DIELoc *Loc = nullptr;
+ std::unique_ptr<DIEDwarfExpression> DwarfExpr;
+ bool AllConstant = std::all_of(
+ GlobalExprs.begin(), GlobalExprs.end(),
+ [&](const GlobalExpr GE) {
+ return GE.Expr && GE.Expr->isConstant();
+ });
+
+ for (const auto &GE : GlobalExprs) {
+ const GlobalVariable *Global = GE.Var;
+ const DIExpression *Expr = GE.Expr;
+ // For compatibility with DWARF 3 and earlier,
+ // DW_AT_location(DW_OP_constu, X, DW_OP_stack_value) becomes
+ // DW_AT_const_value(X).
+ if (GlobalExprs.size() == 1 && Expr && Expr->isConstant()) {
+ addConstantValue(*VariableDIE, /*Unsigned=*/true, Expr->getElement(1));
+ // We cannot describe the location of dllimport'd variables: the
+ // computation of their address requires loads from the IAT.
+ } else if ((Global && !Global->hasDLLImportStorageClass()) || AllConstant) {
+ if (!Loc) {
+ Loc = new (DIEValueAllocator) DIELoc;
+ DwarfExpr = llvm::make_unique<DIEDwarfExpression>(*Asm, *this, *Loc);
+ }
addToAccelTable = true;
- DIELoc *Loc = new (DIEValueAllocator) DIELoc;
- const MCSymbol *Sym = Asm->getSymbol(Global);
- if (Global->isThreadLocal()) {
- if (Asm->TM.Options.EmulatedTLS) {
- // TODO: add debug info for emulated thread local mode.
- } else {
- // FIXME: Make this work with -gsplit-dwarf.
- unsigned PointerSize = Asm->getDataLayout().getPointerSize();
- assert((PointerSize == 4 || PointerSize == 8) &&
- "Add support for other sizes if necessary");
- // Based on GCC's support for TLS:
- if (!DD->useSplitDwarf()) {
- // 1) Start with a constNu of the appropriate pointer size
- addUInt(*Loc, dwarf::DW_FORM_data1, PointerSize == 4
- ? dwarf::DW_OP_const4u
- : dwarf::DW_OP_const8u);
- // 2) containing the (relocated) offset of the TLS variable
- // within the module's TLS block.
- addExpr(*Loc, dwarf::DW_FORM_udata,
- Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
+ if (Global) {
+ const MCSymbol *Sym = Asm->getSymbol(Global);
+ if (Global->isThreadLocal()) {
+ if (Asm->TM.Options.EmulatedTLS) {
+ // TODO: add debug info for emulated thread local mode.
} else {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
- addUInt(*Loc, dwarf::DW_FORM_udata,
- DD->getAddressPool().getIndex(Sym, /* TLS */ true));
+ // FIXME: Make this work with -gsplit-dwarf.
+ unsigned PointerSize = Asm->getDataLayout().getPointerSize();
+ assert((PointerSize == 4 || PointerSize == 8) &&
+ "Add support for other sizes if necessary");
+ // Based on GCC's support for TLS:
+ if (!DD->useSplitDwarf()) {
+ // 1) Start with a constNu of the appropriate pointer size
+ addUInt(*Loc, dwarf::DW_FORM_data1,
+ PointerSize == 4 ? dwarf::DW_OP_const4u
+ : dwarf::DW_OP_const8u);
+ // 2) containing the (relocated) offset of the TLS variable
+ // within the module's TLS block.
+ addExpr(*Loc, dwarf::DW_FORM_udata,
+ Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
+ } else {
+ addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
+ addUInt(*Loc, dwarf::DW_FORM_udata,
+ DD->getAddressPool().getIndex(Sym, /* TLS */ true));
+ }
+ // 3) followed by an OP to make the debugger do a TLS lookup.
+ addUInt(*Loc, dwarf::DW_FORM_data1,
+ DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address
+ : dwarf::DW_OP_form_tls_address);
}
- // 3) followed by an OP to make the debugger do a TLS lookup.
- addUInt(*Loc, dwarf::DW_FORM_data1,
- DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address
- : dwarf::DW_OP_form_tls_address);
+ } else {
+ DD->addArangeLabel(SymbolCU(this, Sym));
+ addOpAddress(*Loc, Sym);
}
- } else {
- DD->addArangeLabel(SymbolCU(this, Sym));
- addOpAddress(*Loc, Sym);
}
-
- addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
- if (DD->useAllLinkageNames())
- addLinkageName(*VariableDIE, GV->getLinkageName());
- }
- } else if (const ConstantInt *CI =
- dyn_cast_or_null<ConstantInt>(GV->getVariable())) {
- addConstantValue(*VariableDIE, CI, GTy);
- } else if (const ConstantExpr *CE = getMergedGlobalExpr(GV->getVariable())) {
- auto *Ptr = cast<GlobalValue>(CE->getOperand(0));
- if (!Ptr->hasDLLImportStorageClass()) {
- addToAccelTable = true;
- // GV is a merged global.
- DIELoc *Loc = new (DIEValueAllocator) DIELoc;
- MCSymbol *Sym = Asm->getSymbol(Ptr);
- DD->addArangeLabel(SymbolCU(this, Sym));
- addOpAddress(*Loc, Sym);
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_constu);
- SmallVector<Value *, 3> Idx(CE->op_begin() + 1, CE->op_end());
- addUInt(*Loc, dwarf::DW_FORM_udata,
- Asm->getDataLayout().getIndexedOffsetInType(Ptr->getValueType(),
- Idx));
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
- addBlock(*VariableDIE, dwarf::DW_AT_location, Loc);
+ if (Expr) {
+ DwarfExpr->addFragmentOffset(Expr);
+ DwarfExpr->AddExpression(Expr);
+ }
}
}
+ if (Loc)
+ addBlock(*VariableDIE, dwarf::DW_AT_location, DwarfExpr->finalize());
+
+ if (DD->useAllLinkageNames())
+ addLinkageName(*VariableDIE, GV->getLinkageName());
if (addToAccelTable) {
DD->addAccelName(GV->getName(), *VariableDIE);
@@ -265,7 +250,7 @@ void DwarfCompileUnit::initStmtList() {
// is not okay to use line_table_start here.
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
StmtListValue =
- addSectionLabel(UnitDie, dwarf::DW_AT_stmt_list, LineTableStartSym,
+ addSectionLabel(getUnitDie(), dwarf::DW_AT_stmt_list, LineTableStartSym,
TLOF.getDwarfLineSection()->getBeginSymbol());
}
@@ -450,7 +435,7 @@ DIE *DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope) {
addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
getOrCreateSourceID(IA->getFilename(), IA->getDirectory()));
addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, IA->getLine());
- if (IA->getDiscriminator())
+ if (IA->getDiscriminator() && DD->getDwarfVersion() >= 4)
addUInt(*ScopeDIE, dwarf::DW_AT_GNU_discriminator, None,
IA->getDiscriminator());
@@ -521,9 +506,10 @@ DIE *DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV,
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
// If there is an expression, emit raw unsigned bytes.
+ DwarfExpr.addFragmentOffset(Expr);
DwarfExpr.AddUnsignedConstant(DVInsn->getOperand(0).getImm());
- DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end());
- addBlock(*VariableDie, dwarf::DW_AT_location, Loc);
+ DwarfExpr.AddExpression(Expr);
+ addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
} else
addConstantValue(*VariableDie, DVInsn->getOperand(0), DV.getType());
} else if (DVInsn->getOperand(0).isFPImm())
@@ -536,23 +522,21 @@ DIE *DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV,
}
// .. else use frame index.
- if (DV.getFrameIndex().empty())
+ if (!DV.hasFrameIndexExprs())
return VariableDie;
- auto Expr = DV.getExpression().begin();
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
- for (auto FI : DV.getFrameIndex()) {
+ for (auto &Fragment : DV.getFrameIndexExprs()) {
unsigned FrameReg = 0;
const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
- int Offset = TFI->getFrameIndexReference(*Asm->MF, FI, FrameReg);
- assert(Expr != DV.getExpression().end() && "Wrong number of expressions");
+ int Offset = TFI->getFrameIndexReference(*Asm->MF, Fragment.FI, FrameReg);
+ DwarfExpr.addFragmentOffset(Fragment.Expr);
DwarfExpr.AddMachineRegIndirect(*Asm->MF->getSubtarget().getRegisterInfo(),
FrameReg, Offset);
- DwarfExpr.AddExpression((*Expr)->expr_op_begin(), (*Expr)->expr_op_end());
- ++Expr;
+ DwarfExpr.AddExpression(Fragment.Expr);
}
- addBlock(*VariableDie, dwarf::DW_AT_location, Loc);
+ addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
return VariableDie;
}
@@ -585,25 +569,22 @@ DIE *DwarfCompileUnit::createScopeChildrenDIE(LexicalScope *Scope,
return ObjectPointer;
}
-void DwarfCompileUnit::constructSubprogramScopeDIE(LexicalScope *Scope) {
- assert(Scope && Scope->getScopeNode());
- assert(!Scope->getInlinedAt());
- assert(!Scope->isAbstractScope());
- auto *Sub = cast<DISubprogram>(Scope->getScopeNode());
-
- DD->getProcessedSPNodes().insert(Sub);
-
+void DwarfCompileUnit::constructSubprogramScopeDIE(const DISubprogram *Sub, LexicalScope *Scope) {
DIE &ScopeDIE = updateSubprogramScopeDIE(Sub);
+ if (Scope) {
+ assert(!Scope->getInlinedAt());
+ assert(!Scope->isAbstractScope());
+ // Collect lexical scope children first.
+ // ObjectPointer might be a local (non-argument) local variable if it's a
+ // block's synthetic this pointer.
+ if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE))
+ addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
+ }
+
// If this is a variadic function, add an unspecified parameter.
DITypeRefArray FnArgs = Sub->getType()->getTypeArray();
- // Collect lexical scope children first.
- // ObjectPointer might be a local (non-argument) local variable if it's a
- // block's synthetic this pointer.
- if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE))
- addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
-
// If we have a single element of null, it is a function that returns void.
// If we have more than one elements and the last one is null, it is a
// variadic function.
@@ -674,7 +655,7 @@ DIE *DwarfCompileUnit::constructImportedEntityDIE(
else if (auto *T = dyn_cast<DIType>(Entity))
EntityDie = getOrCreateTypeDIE(T);
else if (auto *GV = dyn_cast<DIGlobalVariable>(Entity))
- EntityDie = getOrCreateGlobalVariableDIE(GV);
+ EntityDie = getOrCreateGlobalVariableDIE(GV, {});
else
EntityDie = getDIE(Entity);
assert(EntityDie);
@@ -695,11 +676,7 @@ void DwarfCompileUnit::finishSubprogramDefinition(const DISubprogram *SP) {
// If this subprogram has an abstract definition, reference that
addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
} else {
- if (!D && !includeMinimalInlineScopes())
- // Lazily construct the subprogram if we didn't see either concrete or
- // inlined versions during codegen. (except in -gmlt ^ where we want
- // to omit these entirely)
- D = getOrCreateSubprogramDIE(SP);
+ assert(D || includeMinimalInlineScopes());
if (D)
// And attach the attributes
applySubprogramAttributesToDefinition(SP, *D);
@@ -750,18 +727,22 @@ void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die,
void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute,
const MachineLocation &Location) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
+ DIEDwarfExpression Expr(*Asm, *this, *Loc);
bool validReg;
if (Location.isReg())
- validReg = addRegisterOpPiece(*Loc, Location.getReg());
+ validReg = Expr.AddMachineReg(*Asm->MF->getSubtarget().getRegisterInfo(),
+ Location.getReg());
else
- validReg = addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
+ validReg =
+ Expr.AddMachineRegIndirect(*Asm->MF->getSubtarget().getRegisterInfo(),
+ Location.getReg(), Location.getOffset());
if (!validReg)
return;
// Now attach the location information to the DIE.
- addBlock(Die, Attribute, Loc);
+ addBlock(Die, Attribute, Expr.finalize());
}
/// Start with the address based on the location provided, and generate the
@@ -774,19 +755,22 @@ void DwarfCompileUnit::addComplexAddress(const DbgVariable &DV, DIE &Die,
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
const DIExpression *Expr = DV.getSingleExpression();
- bool ValidReg;
+ DIExpressionCursor ExprCursor(Expr);
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
- if (Location.getOffset()) {
- ValidReg = DwarfExpr.AddMachineRegIndirect(TRI, Location.getReg(),
- Location.getOffset());
- if (ValidReg)
- DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end());
- } else
- ValidReg = DwarfExpr.AddMachineRegExpression(TRI, Expr, Location.getReg());
+ auto Reg = Location.getReg();
+ DwarfExpr.addFragmentOffset(Expr);
+ bool ValidReg =
+ Location.getOffset()
+ ? DwarfExpr.AddMachineRegIndirect(TRI, Reg, Location.getOffset())
+ : DwarfExpr.AddMachineRegExpression(TRI, ExprCursor, Reg);
+
+ if (!ValidReg)
+ return;
+
+ DwarfExpr.AddExpression(std::move(ExprCursor));
// Now attach the location information to the DIE.
- if (ValidReg)
- addBlock(Die, Attribute, Loc);
+ addBlock(Die, Attribute, Loc);
}
/// Add a Dwarf loclistptr attribute data and value.
@@ -802,7 +786,13 @@ void DwarfCompileUnit::applyVariableAttributes(const DbgVariable &Var,
StringRef Name = Var.getName();
if (!Name.empty())
addString(VariableDie, dwarf::DW_AT_name, Name);
- addSourceLine(VariableDie, Var.getVariable());
+ const auto *DIVar = Var.getVariable();
+ if (DIVar)
+ if (uint32_t AlignInBytes = DIVar->getAlignInBytes())
+ addUInt(VariableDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
+ AlignInBytes);
+
+ addSourceLine(VariableDie, DIVar);
addType(VariableDie, Var.getType());
if (Var.isArtificial())
addFlag(VariableDie, dwarf::DW_AT_artificial);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
index 90f74a3..a8025f1 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.h
@@ -32,9 +32,6 @@ class DwarfCompileUnit : public DwarfUnit {
/// A numeric ID unique among all CUs in the module
unsigned UniqueID;
- /// Offset of the UnitDie from beginning of debug info section.
- unsigned DebugInfoOffset = 0;
-
/// The attribute index of DW_AT_stmt_list in the compile unit DIE, avoiding
/// the need to search for it in applyStmtList.
DIE::value_iterator StmtListValue;
@@ -84,8 +81,6 @@ public:
DwarfDebug *DW, DwarfFile *DWU);
unsigned getUniqueID() const { return UniqueID; }
- unsigned getDebugInfoOffset() const { return DebugInfoOffset; }
- void setDebugInfoOffset(unsigned DbgInfoOff) { DebugInfoOffset = DbgInfoOff; }
DwarfCompileUnit *getSkeleton() const {
return Skeleton;
@@ -96,8 +91,16 @@ public:
/// Apply the DW_AT_stmt_list from this compile unit to the specified DIE.
void applyStmtList(DIE &D);
- /// getOrCreateGlobalVariableDIE - get or create global variable DIE.
- DIE *getOrCreateGlobalVariableDIE(const DIGlobalVariable *GV);
+ /// A pair of GlobalVariable and DIExpression.
+ struct GlobalExpr {
+ const GlobalVariable *Var;
+ const DIExpression *Expr;
+ };
+
+ /// Get or create global variable DIE.
+ DIE *
+ getOrCreateGlobalVariableDIE(const DIGlobalVariable *GV,
+ ArrayRef<GlobalExpr> GlobalExprs);
/// addLabelAddress - Add a dwarf label attribute data and value using
/// either DW_FORM_addr or DW_FORM_GNU_addr_index.
@@ -176,7 +179,7 @@ public:
unsigned *ChildScopeCount = nullptr);
/// \brief Construct a DIE for this subprogram scope.
- void constructSubprogramScopeDIE(LexicalScope *Scope);
+ void constructSubprogramScopeDIE(const DISubprogram *Sub, LexicalScope *Scope);
DIE *createAndAddScopeChildren(LexicalScope *Scope, DIE &ScopeDIE);
@@ -190,20 +193,15 @@ public:
/// Set the skeleton unit associated with this unit.
void setSkeleton(DwarfCompileUnit &Skel) { Skeleton = &Skel; }
- const MCSymbol *getSectionSym() const {
- assert(Section);
- return Section->getBeginSymbol();
- }
-
unsigned getLength() {
return sizeof(uint32_t) + // Length field
- getHeaderSize() + UnitDie.getSize();
+ getHeaderSize() + getUnitDie().getSize();
}
void emitHeader(bool UseOffsets) override;
MCSymbol *getLabelBegin() const {
- assert(Section);
+ assert(getSection());
return LabelBegin;
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 7fba768..91a3d09 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -62,11 +62,6 @@ static cl::opt<bool>
DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
cl::desc("Disable debug info printing"));
-static cl::opt<bool> UnknownLocations(
- "use-unknown-locations", cl::Hidden,
- cl::desc("Make an absence of debug location information explicit."),
- cl::init(false));
-
static cl::opt<bool>
GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
cl::desc("Generate GNU-style pubnames and pubtypes"),
@@ -81,12 +76,19 @@ namespace {
enum DefaultOnOff { Default, Enable, Disable };
}
+static cl::opt<DefaultOnOff> UnknownLocations(
+ "use-unknown-locations", cl::Hidden,
+ cl::desc("Make an absence of debug location information explicit."),
+ cl::values(clEnumVal(Default, "At top of block or after label"),
+ clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
+ cl::init(Default));
+
static cl::opt<DefaultOnOff>
DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
cl::desc("Output prototype dwarf accelerator tables."),
cl::values(clEnumVal(Default, "Default for platform"),
clEnumVal(Enable, "Enabled"),
- clEnumVal(Disable, "Disabled"), clEnumValEnd),
+ clEnumVal(Disable, "Disabled")),
cl::init(Default));
static cl::opt<DefaultOnOff>
@@ -94,7 +96,7 @@ SplitDwarf("split-dwarf", cl::Hidden,
cl::desc("Output DWARF5 split debug info."),
cl::values(clEnumVal(Default, "Default for platform"),
clEnumVal(Enable, "Enabled"),
- clEnumVal(Disable, "Disabled"), clEnumValEnd),
+ clEnumVal(Disable, "Disabled")),
cl::init(Default));
static cl::opt<DefaultOnOff>
@@ -102,7 +104,7 @@ DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
cl::desc("Generate DWARF pubnames and pubtypes sections"),
cl::values(clEnumVal(Default, "Default for platform"),
clEnumVal(Enable, "Enabled"),
- clEnumVal(Disable, "Disabled"), clEnumValEnd),
+ clEnumVal(Disable, "Disabled")),
cl::init(Default));
enum LinkageNameOption {
@@ -117,12 +119,13 @@ static cl::opt<LinkageNameOption>
"Default for platform"),
clEnumValN(AllLinkageNames, "All", "All"),
clEnumValN(AbstractLinkageNames, "Abstract",
- "Abstract subprograms"),
- clEnumValEnd),
+ "Abstract subprograms")),
cl::init(DefaultLinkageNames));
-static const char *const DWARFGroupName = "DWARF Emission";
-static const char *const DbgTimerName = "DWARF Debug Writer";
+static const char *const DWARFGroupName = "dwarf";
+static const char *const DWARFGroupDescription = "DWARF Emission";
+static const char *const DbgTimerName = "writer";
+static const char *const DbgTimerDescription = "DWARF Debug Writer";
void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) {
BS.EmitInt8(
@@ -196,7 +199,16 @@ const DIType *DbgVariable::getType() const {
return Ty;
}
-static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
+ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
+ std::sort(FrameIndexExprs.begin(), FrameIndexExprs.end(),
+ [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
+ return A.Expr->getFragmentInfo()->OffsetInBits <
+ B.Expr->getFragmentInfo()->OffsetInBits;
+ });
+ return FrameIndexExprs;
+}
+
+static const DwarfAccelTable::Atom TypeAtoms[] = {
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
@@ -205,7 +217,7 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
: DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
InfoHolder(A, "info_string", DIEValueAllocator),
SkeletonHolder(A, "skel_string", DIEValueAllocator),
- IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
+ IsDarwin(A->TM.getTargetTriple().isOSDarwin()),
AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
dwarf::DW_FORM_data4)),
AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
@@ -215,7 +227,7 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) {
CurFn = nullptr;
- Triple TT(Asm->getTargetTriple());
+ const Triple &TT = Asm->TM.getTargetTriple();
// Make sure we know our "debugger tuning." The target option takes
// precedence; fall back to triple-based defaults.
@@ -255,7 +267,7 @@ DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
- DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
+ unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
: MMI->getModule()->getDwarfVersion();
// Use dwarf 4 by default if nothing is requested.
DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION;
@@ -349,10 +361,11 @@ bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
return !getLabelAfterInsn(Ranges.front().second);
}
-template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
+template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
F(CU);
if (auto *SkelCU = CU.getSkeleton())
- F(*SkelCU);
+ if (CU.getCUNode()->getSplitDebugInlining())
+ F(*SkelCU);
}
void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
@@ -360,13 +373,13 @@ void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
assert(Scope->isAbstractScope());
assert(!Scope->getInlinedAt());
- const MDNode *SP = Scope->getScopeNode();
+ auto *SP = cast<DISubprogram>(Scope->getScopeNode());
ProcessedSPNodes.insert(SP);
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
// was inlined from another compile unit.
- auto &CU = *CUMap.lookup(cast<DISubprogram>(SP)->getUnit());
+ auto &CU = *CUMap.lookup(SP->getUnit());
forBothCUs(CU, [&](DwarfCompileUnit &CU) {
CU.constructAbstractSubprogramScopeDIE(Scope);
});
@@ -435,9 +448,9 @@ DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) {
}
if (useSplitDwarf())
- NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
else
- NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection());
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
if (DIUnit->getDWOId()) {
// This CU is either a clang module DWO or a skeleton CU.
@@ -449,8 +462,8 @@ DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) {
DIUnit->getSplitDebugFilename());
}
- CUMap.insert(std::make_pair(DIUnit, &NewCU));
- CUDieMap.insert(std::make_pair(&Die, &NewCU));
+ CUMap.insert({DIUnit, &NewCU});
+ CUDieMap.insert({&Die, &NewCU});
return NewCU;
}
@@ -460,11 +473,34 @@ void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
D->addChild(TheCU.constructImportedEntityDIE(N));
}
+/// Sort and unique GVEs by comparing their fragment offset.
+static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
+sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
+ std::sort(GVEs.begin(), GVEs.end(),
+ [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
+ if (A.Expr != B.Expr && A.Expr && B.Expr) {
+ auto FragmentA = A.Expr->getFragmentInfo();
+ auto FragmentB = B.Expr->getFragmentInfo();
+ if (FragmentA && FragmentB)
+ return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
+ }
+ return false;
+ });
+ GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
+ [](DwarfCompileUnit::GlobalExpr A,
+ DwarfCompileUnit::GlobalExpr B) {
+ return A.Expr == B.Expr;
+ }),
+ GVEs.end());
+ return GVEs;
+}
+
// Emit all Dwarf sections that should come prior to the content. Create
// global DIEs and emit initial debug info sections. This is invoked by
// the target AsmPrinter.
void DwarfDebug::beginModule() {
- NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
+ DWARFGroupDescription, TimePassesIsEnabled);
if (DisableDebugInfoPrinting)
return;
@@ -475,13 +511,30 @@ void DwarfDebug::beginModule() {
// Tell MMI whether we have debug info.
MMI->setDebugInfoAvailability(NumDebugCUs > 0);
SingleCU = NumDebugCUs == 1;
+ DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
+ GVMap;
+ for (const GlobalVariable &Global : M->globals()) {
+ SmallVector<DIGlobalVariableExpression *, 1> GVs;
+ Global.getDebugInfo(GVs);
+ for (auto *GVE : GVs)
+ GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
+ }
for (DICompileUnit *CUNode : M->debug_compile_units()) {
DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
for (auto *IE : CUNode->getImportedEntities())
CU.addImportedEntity(IE);
- for (auto *GV : CUNode->getGlobalVariables())
- CU.getOrCreateGlobalVariableDIE(GV);
+
+ // Global Variables.
+ for (auto *GVE : CUNode->getGlobalVariables())
+ GVMap[GVE->getVariable()].push_back({nullptr, GVE->getExpression()});
+ DenseSet<DIGlobalVariable *> Processed;
+ for (auto *GVE : CUNode->getGlobalVariables()) {
+ DIGlobalVariable *GV = GVE->getVariable();
+ if (Processed.insert(GV).second)
+ CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
+ }
+
for (auto *Ty : CUNode->getEnumTypes()) {
// The enum types array by design contains pointers to
// MDNodes rather than DIRefs. Unique them here.
@@ -509,7 +562,7 @@ void DwarfDebug::finishVariableDefinitions() {
// FIXME: Consider the time-space tradeoff of just storing the unit pointer
// in the ConcreteVariables list, rather than looking it up again here.
// DIE::getUnit isn't simple - it walks parent pointers, etc.
- DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
+ DwarfCompileUnit *Unit = CUDieMap.lookup(VariableDie->getUnitDie());
assert(Unit);
DbgVariable *AbsVar = getExistingAbstractVariable(
InlinedVariable(Var->getVariable(), Var->getInlinedAt()));
@@ -522,13 +575,11 @@ void DwarfDebug::finishVariableDefinitions() {
}
void DwarfDebug::finishSubprogramDefinitions() {
- for (auto &F : MMI->getModule()->functions())
- if (auto *SP = F.getSubprogram())
- if (ProcessedSPNodes.count(SP) &&
- SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug)
- forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) {
- CU.finishSubprogramDefinition(SP);
- });
+ for (const DISubprogram *SP : ProcessedSPNodes)
+ if (SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug)
+ forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) {
+ CU.finishSubprogramDefinition(SP);
+ });
}
void DwarfDebug::finalizeModuleInfo() {
@@ -715,10 +766,10 @@ void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(
createAbstractVariable(Cleansed, Scope);
}
-// Collect variable information from side table maintained by MMI.
-void DwarfDebug::collectVariableInfoFromMMITable(
+// Collect variable information from side table maintained by MF.
+void DwarfDebug::collectVariableInfoFromMFTable(
DenseSet<InlinedVariable> &Processed) {
- for (const auto &VI : MMI->getVariableDbgInfo()) {
+ for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
if (!VI.Var)
continue;
assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
@@ -765,7 +816,7 @@ static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
}
-/// \brief If this and Next are describing different pieces of the same
+/// \brief If this and Next are describing different fragments of the same
/// variable, merge them by appending Next's values to the current
/// list of values.
/// Return true if the merge was successful.
@@ -773,15 +824,15 @@ bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) {
if (Begin == Next.Begin) {
auto *FirstExpr = cast<DIExpression>(Values[0].Expression);
auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression);
- if (!FirstExpr->isBitPiece() || !FirstNextExpr->isBitPiece())
+ if (!FirstExpr->isFragment() || !FirstNextExpr->isFragment())
return false;
- // We can only merge entries if none of the pieces overlap any others.
+ // We can only merge entries if none of the fragments overlap any others.
// In doing so, we can take advantage of the fact that both lists are
// sorted.
for (unsigned i = 0, j = 0; i < Values.size(); ++i) {
for (; j < Next.Values.size(); ++j) {
- int res = DebugHandlerBase::pieceCmp(
+ int res = DebugHandlerBase::fragmentCmp(
cast<DIExpression>(Values[i].Expression),
cast<DIExpression>(Next.Values[j].Expression));
if (res == 0) // The two expressions overlap, we can't merge.
@@ -804,27 +855,27 @@ bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) {
/// Build the location list for all DBG_VALUEs in the function that
/// describe the same variable. If the ranges of several independent
-/// pieces of the same variable overlap partially, split them up and
+/// fragments of the same variable overlap partially, split them up and
/// combine the ranges. The resulting DebugLocEntries are will have
/// strict monotonically increasing begin addresses and will never
/// overlap.
//
// Input:
//
-// Ranges History [var, loc, piece ofs size]
-// 0 | [x, (reg0, piece 0, 32)]
-// 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
+// Ranges History [var, loc, fragment ofs size]
+// 0 | [x, (reg0, fragment 0, 32)]
+// 1 | | [x, (reg1, fragment 32, 32)] <- IsFragmentOfPrevEntry
// 2 | | ...
// 3 | [clobber reg0]
-// 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of
+// 4 [x, (mem, fragment 0, 64)] <- overlapping with both previous fragments of
// x.
//
// Output:
//
-// [0-1] [x, (reg0, piece 0, 32)]
-// [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)]
-// [3-4] [x, (reg1, piece 32, 32)]
-// [4- ] [x, (mem, piece 0, 64)]
+// [0-1] [x, (reg0, fragment 0, 32)]
+// [1-3] [x, (reg0, fragment 0, 32), (reg1, fragment 32, 32)]
+// [3-4] [x, (reg1, fragment 32, 32)]
+// [4- ] [x, (mem, fragment 0, 64)]
void
DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
const DbgValueHistoryMap::InstrRanges &Ranges) {
@@ -842,11 +893,10 @@ DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
continue;
}
- // If this piece overlaps with any open ranges, truncate them.
+ // If this fragment overlaps with any open ranges, truncate them.
const DIExpression *DIExpr = Begin->getDebugExpression();
- auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
- [&](DebugLocEntry::Value R) {
- return piecesOverlap(DIExpr, R.getExpression());
+ auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) {
+ return fragmentsOverlap(DIExpr, R.getExpression());
});
OpenRanges.erase(Last, OpenRanges.end());
@@ -868,12 +918,12 @@ DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
DebugLocEntry Loc(StartLabel, EndLabel, Value);
bool couldMerge = false;
- // If this is a piece, it may belong to the current DebugLocEntry.
- if (DIExpr->isBitPiece()) {
+ // If this is a fragment, it may belong to the current DebugLocEntry.
+ if (DIExpr->isFragment()) {
// Add this value to the list of open ranges.
OpenRanges.push_back(Value);
- // Attempt to add the piece to the last entry.
+ // Attempt to add the fragment to the last entry.
if (!DebugLoc.empty())
if (DebugLoc.back().MergeValues(Loc))
couldMerge = true;
@@ -881,7 +931,7 @@ DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
if (!couldMerge) {
// Need to add a new DebugLocEntry. Add all values from still
- // valid non-overlapping pieces.
+ // valid non-overlapping fragments.
if (OpenRanges.size())
Loc.addValues(OpenRanges);
@@ -929,7 +979,7 @@ void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU,
const DISubprogram *SP,
DenseSet<InlinedVariable> &Processed) {
// Grab the variable info that was squirreled away in the MMI side-table.
- collectVariableInfoFromMMITable(Processed);
+ collectVariableInfoFromMFTable(Processed);
for (const auto &I : DbgValues) {
InlinedVariable IV = I.first;
@@ -996,30 +1046,82 @@ void DwarfDebug::beginInstruction(const MachineInstr *MI) {
DebugHandlerBase::beginInstruction(MI);
assert(CurMI);
- // Check if source location changes, but ignore DBG_VALUE locations.
- if (!MI->isDebugValue()) {
- const DebugLoc &DL = MI->getDebugLoc();
- if (DL != PrevInstLoc) {
- if (DL) {
- unsigned Flags = 0;
- PrevInstLoc = DL;
- if (DL == PrologEndLoc) {
- Flags |= DWARF2_FLAG_PROLOGUE_END;
- PrologEndLoc = DebugLoc();
- Flags |= DWARF2_FLAG_IS_STMT;
- }
- if (DL.getLine() !=
- Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine())
- Flags |= DWARF2_FLAG_IS_STMT;
-
- const MDNode *Scope = DL.getScope();
- recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
- } else if (UnknownLocations) {
- PrevInstLoc = DL;
- recordSourceLine(0, 0, nullptr, 0);
+ // Check if source location changes, but ignore DBG_VALUE and CFI locations.
+ if (MI->isDebugValue() || MI->isCFIInstruction())
+ return;
+ const DebugLoc &DL = MI->getDebugLoc();
+ // When we emit a line-0 record, we don't update PrevInstLoc; so look at
+ // the last line number actually emitted, to see if it was line 0.
+ unsigned LastAsmLine =
+ Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
+
+ if (DL == PrevInstLoc) {
+ // If we have an ongoing unspecified location, nothing to do here.
+ if (!DL)
+ return;
+ // We have an explicit location, same as the previous location.
+ // But we might be coming back to it after a line 0 record.
+ if (LastAsmLine == 0 && DL.getLine() != 0) {
+ // Reinstate the source location but not marked as a statement.
+ const MDNode *Scope = DL.getScope();
+ recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
+ }
+ return;
+ }
+
+ if (!DL) {
+ // We have an unspecified location, which might want to be line 0.
+ // If we have already emitted a line-0 record, don't repeat it.
+ if (LastAsmLine == 0)
+ return;
+ // If user said Don't Do That, don't do that.
+ if (UnknownLocations == Disable)
+ return;
+ // See if we have a reason to emit a line-0 record now.
+ // Reasons to emit a line-0 record include:
+ // - User asked for it (UnknownLocations).
+ // - Instruction has a label, so it's referenced from somewhere else,
+ // possibly debug information; we want it to have a source location.
+ // - Instruction is at the top of a block; we don't want to inherit the
+ // location from the physically previous (maybe unrelated) block.
+ if (UnknownLocations == Enable || PrevLabel ||
+ (PrevInstBB && PrevInstBB != MI->getParent())) {
+ // Preserve the file and column numbers, if we can, to save space in
+ // the encoded line table.
+ // Do not update PrevInstLoc, it remembers the last non-0 line.
+ const MDNode *Scope = nullptr;
+ unsigned Column = 0;
+ if (PrevInstLoc) {
+ Scope = PrevInstLoc.getScope();
+ Column = PrevInstLoc.getCol();
}
+ recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
}
+ return;
+ }
+
+ // We have an explicit location, different from the previous location.
+ // Don't repeat a line-0 record, but otherwise emit the new location.
+ // (The new location might be an explicit line 0, which we do emit.)
+ if (PrevInstLoc && DL.getLine() == 0 && LastAsmLine == 0)
+ return;
+ unsigned Flags = 0;
+ if (DL == PrologEndLoc) {
+ Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
+ PrologEndLoc = DebugLoc();
}
+ // If the line changed, we call that a new statement; unless we went to
+ // line 0 and came back, in which case it is not a new statement.
+ unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
+ if (DL.getLine() && DL.getLine() != OldLine)
+ Flags |= DWARF2_FLAG_IS_STMT;
+
+ const MDNode *Scope = DL.getScope();
+ recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
+
+ // If we're not at line 0, remember this location.
+ if (DL.getLine())
+ PrevInstLoc = DL;
}
static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
@@ -1093,18 +1195,14 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
"endFunction should be called with the same function as beginFunction");
const DISubprogram *SP = MF->getFunction()->getSubprogram();
- if (!MMI->hasDebugInfo() || LScopes.empty() || !SP ||
+ if (!MMI->hasDebugInfo() || !SP ||
SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) {
- // If we don't have a lexical scope for this function then there will
- // be a hole in the range information. Keep note of this by setting the
- // previously used section to nullptr.
+ // If we don't have a subprogram for this function then there will be a hole
+ // in the range information. Keep note of this by setting the previously
+ // used section to nullptr.
PrevCU = nullptr;
CurFn = nullptr;
DebugHandlerBase::endFunction(MF);
- // Mark functions with no debug info on any instructions, but a
- // valid DISubprogram as processed.
- if (SP)
- ProcessedSPNodes.insert(SP);
return;
}
@@ -1112,7 +1210,7 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
- SP = cast<DISubprogram>(FnScope->getScopeNode());
+ assert(!FnScope || SP == FnScope->getScopeNode());
DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
DenseSet<InlinedVariable> ProcessedVars;
@@ -1154,10 +1252,12 @@ void DwarfDebug::endFunction(const MachineFunction *MF) {
constructAbstractSubprogramScopeDIE(AScope);
}
- TheCU.constructSubprogramScopeDIE(FnScope);
+ ProcessedSPNodes.insert(SP);
+ TheCU.constructSubprogramScopeDIE(SP, FnScope);
if (auto *SkelCU = TheCU.getSkeleton())
- if (!LScopes.getAbstractScopesList().empty())
- SkelCU->constructSubprogramScopeDIE(FnScope);
+ if (!LScopes.getAbstractScopesList().empty() &&
+ TheCU.getCUNode()->getSplitDebugInlining())
+ SkelCU->constructSubprogramScopeDIE(SP, FnScope);
// Clear debug info
// Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
@@ -1181,7 +1281,8 @@ void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
Fn = Scope->getFilename();
Dir = Scope->getDirectory();
if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
- Discriminator = LBF->getDiscriminator();
+ if (getDwarfVersion() >= 4)
+ Discriminator = LBF->getDiscriminator();
unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID();
Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
@@ -1396,9 +1497,9 @@ void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
ByteStreamer &Streamer,
const DebugLocEntry::Value &Value,
- unsigned PieceOffsetInBits) {
- DebugLocDwarfExpression DwarfExpr(AP.getDwarfDebug()->getDwarfVersion(),
- Streamer);
+ DwarfExpression &DwarfExpr) {
+ DIExpressionCursor ExprCursor(Value.getExpression());
+ DwarfExpr.addFragmentOffset(Value.getExpression());
// Regular entry.
if (Value.isInt()) {
if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
@@ -1408,25 +1509,16 @@ static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
DwarfExpr.AddUnsignedConstant(Value.getInt());
} else if (Value.isLocation()) {
MachineLocation Loc = Value.getLoc();
- const DIExpression *Expr = Value.getExpression();
- if (!Expr || !Expr->getNumElements())
- // Regular entry.
- AP.EmitDwarfRegOp(Streamer, Loc);
- else {
- // Complex address entry.
- const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
- if (Loc.getOffset()) {
- DwarfExpr.AddMachineRegIndirect(TRI, Loc.getReg(), Loc.getOffset());
- DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end(),
- PieceOffsetInBits);
- } else
- DwarfExpr.AddMachineRegExpression(TRI, Expr, Loc.getReg(),
- PieceOffsetInBits);
- }
+ const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
+ if (Loc.getOffset())
+ DwarfExpr.AddMachineRegIndirect(TRI, Loc.getReg(), Loc.getOffset());
+ else
+ DwarfExpr.AddMachineRegExpression(TRI, ExprCursor, Loc.getReg());
} else if (Value.isConstantFP()) {
APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
DwarfExpr.AddUnsignedConstant(RawBytes);
}
+ DwarfExpr.AddExpression(std::move(ExprCursor));
}
void DebugLocEntry::finalize(const AsmPrinter &AP,
@@ -1434,36 +1526,24 @@ void DebugLocEntry::finalize(const AsmPrinter &AP,
const DIBasicType *BT) {
DebugLocStream::EntryBuilder Entry(List, Begin, End);
BufferByteStreamer Streamer = Entry.getStreamer();
+ DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer);
const DebugLocEntry::Value &Value = Values[0];
- if (Value.isBitPiece()) {
- // Emit all pieces that belong to the same variable and range.
- assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
- return P.isBitPiece();
- }) && "all values are expected to be pieces");
+ if (Value.isFragment()) {
+ // Emit all fragments that belong to the same variable and range.
+ assert(all_of(Values, [](DebugLocEntry::Value P) {
+ return P.isFragment();
+ }) && "all values are expected to be fragments");
assert(std::is_sorted(Values.begin(), Values.end()) &&
- "pieces are expected to be sorted");
-
- unsigned Offset = 0;
- for (auto Piece : Values) {
- const DIExpression *Expr = Piece.getExpression();
- unsigned PieceOffset = Expr->getBitPieceOffset();
- unsigned PieceSize = Expr->getBitPieceSize();
- assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
- if (Offset < PieceOffset) {
- // The DWARF spec seriously mandates pieces with no locations for gaps.
- DebugLocDwarfExpression Expr(AP.getDwarfDebug()->getDwarfVersion(),
- Streamer);
- Expr.AddOpPiece(PieceOffset-Offset, 0);
- Offset += PieceOffset-Offset;
- }
- Offset += PieceSize;
+ "fragments are expected to be sorted");
+
+ for (auto Fragment : Values)
+ emitDebugLocValue(AP, BT, Streamer, Fragment, DwarfExpr);
- emitDebugLocValue(AP, BT, Streamer, Piece, PieceOffset);
- }
} else {
- assert(Values.size() == 1 && "only pieces may have >1 value");
- emitDebugLocValue(AP, BT, Streamer, Value, 0);
+ assert(Values.size() == 1 && "only fragments may have >1 value");
+ emitDebugLocValue(AP, BT, Streamer, Value, DwarfExpr);
}
+ DwarfExpr.finalize();
}
void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) {
@@ -1514,14 +1594,14 @@ void DwarfDebug::emitDebugLocDWO() {
// rather than two. We could get fancier and try to, say, reuse an
// address we know we've emitted elsewhere (the start of the function?
// The start of the CU or CU subrange that encloses this range?)
- Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
+ Asm->EmitInt8(dwarf::DW_LLE_startx_length);
unsigned idx = AddrPool.getIndex(Entry.BeginSym);
Asm->EmitULEB128(idx);
Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4);
emitDebugLocEntryLocation(Entry);
}
- Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
+ Asm->EmitInt8(dwarf::DW_LLE_end_of_list);
}
}
@@ -1807,7 +1887,7 @@ DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
auto OwnedUnit = make_unique<DwarfCompileUnit>(
CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
DwarfCompileUnit &NewCU = *OwnedUnit;
- NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection());
+ NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
NewCU.initStmtList();
@@ -1889,8 +1969,7 @@ void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
getDwoLineTable(CU));
DwarfTypeUnit &NewTU = *OwnedUnit;
DIE &UnitDie = NewTU.getUnitDie();
- TypeUnitsUnderConstruction.push_back(
- std::make_pair(std::move(OwnedUnit), CTy));
+ TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
CU.getLanguage());
@@ -1900,11 +1979,10 @@ void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
Ins.first->second = Signature;
if (useSplitDwarf())
- NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
+ NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
else {
CU.applyStmtList(UnitDie);
- NewTU.initSection(
- Asm->getObjFileLowering().getDwarfTypesSection(Signature));
+ NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesSection(Signature));
}
NewTU.setType(NewTU.createTypeDIE(CTy));
@@ -1968,3 +2046,7 @@ void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
return;
AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
}
+
+uint16_t DwarfDebug::getDwarfVersion() const {
+ return Asm->OutStreamer->getContext().getDwarfVersion();
+}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
index 6b06757..253e3f0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.h
@@ -22,6 +22,7 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/DIE.h"
@@ -53,7 +54,7 @@ class MachineModuleInfo;
///
/// Variables can be created from allocas, in which case they're generated from
/// the MMI table. Such variables can have multiple expressions and frame
-/// indices. The \a Expr and \a FrameIndices array must match.
+/// indices.
///
/// Variables can be created from \c DBG_VALUE instructions. Those whose
/// location changes over time use \a DebugLocListIndex, while those with a
@@ -63,11 +64,16 @@ class MachineModuleInfo;
class DbgVariable {
const DILocalVariable *Var; /// Variable Descriptor.
const DILocation *IA; /// Inlined at location.
- SmallVector<const DIExpression *, 1> Expr; /// Complex address.
DIE *TheDIE = nullptr; /// Variable DIE.
unsigned DebugLocListIndex = ~0u; /// Offset in DebugLocs.
const MachineInstr *MInsn = nullptr; /// DBG_VALUE instruction.
- SmallVector<int, 1> FrameIndex; /// Frame index.
+
+ struct FrameIndexExpr {
+ int FI;
+ const DIExpression *Expr;
+ };
+ mutable SmallVector<FrameIndexExpr, 1>
+ FrameIndexExprs; /// Frame index + expression.
public:
/// Construct a DbgVariable.
@@ -79,21 +85,18 @@ public:
/// Initialize from the MMI table.
void initializeMMI(const DIExpression *E, int FI) {
- assert(Expr.empty() && "Already initialized?");
- assert(FrameIndex.empty() && "Already initialized?");
+ assert(FrameIndexExprs.empty() && "Already initialized?");
assert(!MInsn && "Already initialized?");
assert((!E || E->isValid()) && "Expected valid expression");
assert(~FI && "Expected valid index");
- Expr.push_back(E);
- FrameIndex.push_back(FI);
+ FrameIndexExprs.push_back({FI, E});
}
/// Initialize from a DBG_VALUE instruction.
void initializeDbgValue(const MachineInstr *DbgValue) {
- assert(Expr.empty() && "Already initialized?");
- assert(FrameIndex.empty() && "Already initialized?");
+ assert(FrameIndexExprs.empty() && "Already initialized?");
assert(!MInsn && "Already initialized?");
assert(Var == DbgValue->getDebugVariable() && "Wrong variable");
@@ -102,16 +105,15 @@ public:
MInsn = DbgValue;
if (auto *E = DbgValue->getDebugExpression())
if (E->getNumElements())
- Expr.push_back(E);
+ FrameIndexExprs.push_back({0, E});
}
// Accessors.
const DILocalVariable *getVariable() const { return Var; }
const DILocation *getInlinedAt() const { return IA; }
- ArrayRef<const DIExpression *> getExpression() const { return Expr; }
const DIExpression *getSingleExpression() const {
- assert(MInsn && Expr.size() <= 1);
- return Expr.size() ? Expr[0] : nullptr;
+ assert(MInsn && FrameIndexExprs.size() <= 1);
+ return FrameIndexExprs.size() ? FrameIndexExprs[0].Expr : nullptr;
}
void setDIE(DIE &D) { TheDIE = &D; }
DIE *getDIE() const { return TheDIE; }
@@ -119,7 +121,9 @@ public:
unsigned getDebugLocListIndex() const { return DebugLocListIndex; }
StringRef getName() const { return Var->getName(); }
const MachineInstr *getMInsn() const { return MInsn; }
- ArrayRef<int> getFrameIndex() const { return FrameIndex; }
+ /// Get the FI entries, sorted by fragment offset.
+ ArrayRef<FrameIndexExpr> getFrameIndexExprs() const;
+ bool hasFrameIndexExprs() const { return !FrameIndexExprs.empty(); }
void addMMIEntry(const DbgVariable &V) {
assert(DebugLocListIndex == ~0U && !MInsn && "not an MMI entry");
@@ -127,16 +131,15 @@ public:
assert(V.Var == Var && "conflicting variable");
assert(V.IA == IA && "conflicting inlined-at location");
- assert(!FrameIndex.empty() && "Expected an MMI entry");
- assert(!V.FrameIndex.empty() && "Expected an MMI entry");
- assert(Expr.size() == FrameIndex.size() && "Mismatched expressions");
- assert(V.Expr.size() == V.FrameIndex.size() && "Mismatched expressions");
+ assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
+ assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
- Expr.append(V.Expr.begin(), V.Expr.end());
- FrameIndex.append(V.FrameIndex.begin(), V.FrameIndex.end());
- assert(std::all_of(Expr.begin(), Expr.end(), [](const DIExpression *E) {
- return E && E->isBitPiece();
- }) && "conflicting locations for variable");
+ FrameIndexExprs.append(V.FrameIndexExprs.begin(), V.FrameIndexExprs.end());
+ assert(all_of(FrameIndexExprs,
+ [](FrameIndexExpr &FIE) {
+ return FIE.Expr && FIE.Expr->isFragment();
+ }) &&
+ "conflicting locations for variable");
}
// Translate tag to proper Dwarf tag.
@@ -166,11 +169,11 @@ public:
bool hasComplexAddress() const {
assert(MInsn && "Expected DBG_VALUE, not MMI variable");
- assert(FrameIndex.empty() && "Expected DBG_VALUE, not MMI variable");
- assert(
- (Expr.empty() || (Expr.size() == 1 && Expr.back()->getNumElements())) &&
- "Invalid Expr for DBG_VALUE");
- return !Expr.empty();
+ assert((FrameIndexExprs.empty() ||
+ (FrameIndexExprs.size() == 1 &&
+ FrameIndexExprs[0].Expr->getNumElements())) &&
+ "Invalid Expr for DBG_VALUE");
+ return !FrameIndexExprs.empty();
}
bool isBlockByrefVariable() const;
const DIType *getType() const;
@@ -216,7 +219,9 @@ class DwarfDebug : public DebugHandlerBase {
/// This is a collection of subprogram MDNodes that are processed to
/// create DIEs.
- SmallPtrSet<const MDNode *, 16> ProcessedSPNodes;
+ SetVector<const DISubprogram *, SmallVector<const DISubprogram *, 16>,
+ SmallPtrSet<const DISubprogram *, 16>>
+ ProcessedSPNodes;
/// If nonnull, stores the current machine function we're processing.
const MachineFunction *CurFn;
@@ -254,9 +259,6 @@ class DwarfDebug : public DebugHandlerBase {
/// Whether to emit all linkage names, or just abstract subprograms.
bool UseAllLinkageNames;
- /// Version of dwarf we're emitting.
- unsigned DwarfVersion;
-
/// DWARF5 Experimental Options
/// @{
bool HasDwarfAccelTables;
@@ -443,9 +445,8 @@ class DwarfDebug : public DebugHandlerBase {
void buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
const DbgValueHistoryMap::InstrRanges &Ranges);
- /// Collect variable information from the side table maintained
- /// by MMI.
- void collectVariableInfoFromMMITable(DenseSet<InlinedVariable> &P);
+ /// Collect variable information from the side table maintained by MF.
+ void collectVariableInfoFromMFTable(DenseSet<InlinedVariable> &P);
public:
//===--------------------------------------------------------------------===//
@@ -515,7 +516,7 @@ public:
bool useSplitDwarf() const { return HasSplitDwarf; }
/// Returns the Dwarf Version.
- unsigned getDwarfVersion() const { return DwarfVersion; }
+ uint16_t getDwarfVersion() const;
/// Returns the previous CU that was being updated
const DwarfCompileUnit *getPrevCU() const { return PrevCU; }
@@ -537,11 +538,6 @@ public:
return Ref.resolve();
}
- /// Find the DwarfCompileUnit for the given CU Die.
- DwarfCompileUnit *lookupUnit(const DIE *CU) const {
- return CUDieMap.lookup(CU);
- }
-
void addSubprogramNames(const DISubprogram *SP, DIE &Die);
AddressPool &getAddressPool() { return AddrPool; }
@@ -559,12 +555,6 @@ public:
/// A helper function to check whether the DIE for a given Scope is
/// going to be null.
bool isLexicalScopeDIENull(LexicalScope *Scope);
-
- // FIXME: Sink these functions down into DwarfFile/Dwarf*Unit.
-
- SmallPtrSet<const MDNode *, 16> &getProcessedSPNodes() {
- return ProcessedSPNodes;
- }
};
} // End of namespace llvm
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
index 8287f28..80d5bd2 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfException.h
@@ -28,6 +28,8 @@ protected:
/// Per-function flag to indicate if frame CFI info should be emitted.
bool shouldEmitCFI;
+ /// Per-module flag to indicate if .cfi_section has beeen emitted.
+ bool hasEmittedCFISections;
void markFunctionEnd() override;
void endFragment() override;
@@ -46,8 +48,6 @@ class LLVM_LIBRARY_VISIBILITY DwarfCFIException : public DwarfCFIExceptionBase {
/// Per-function flag to indicate if frame moves info should be emitted.
bool shouldEmitMoves;
- AsmPrinter::CFIMoveType moveTypeModule;
-
public:
//===--------------------------------------------------------------------===//
// Main entry points.
@@ -81,7 +81,7 @@ public:
~ARMException() override;
/// Emit all exception information that should come after the content.
- void endModule() override;
+ void endModule() override {}
/// Gather pre-function exception information. Assumes being emitted
/// immediately after the function entry point.
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp
index 7dbc6cb..61b2c7e6 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.cpp
@@ -46,7 +46,9 @@ void DwarfExpression::AddRegIndirect(int DwarfReg, int Offset, bool Deref) {
}
void DwarfExpression::AddOpPiece(unsigned SizeInBits, unsigned OffsetInBits) {
- assert(SizeInBits > 0 && "piece has size zero");
+ if (!SizeInBits)
+ return;
+
const unsigned SizeOfByte = 8;
if (OffsetInBits > 0 || SizeInBits % SizeOfByte) {
EmitOp(dwarf::DW_OP_bit_piece);
@@ -57,6 +59,7 @@ void DwarfExpression::AddOpPiece(unsigned SizeInBits, unsigned OffsetInBits) {
unsigned ByteSize = SizeInBits / SizeOfByte;
EmitUnsigned(ByteSize);
}
+ this->OffsetInBits += SizeInBits;
}
void DwarfExpression::AddShr(unsigned ShiftBy) {
@@ -82,10 +85,8 @@ bool DwarfExpression::AddMachineRegIndirect(const TargetRegisterInfo &TRI,
return true;
}
-bool DwarfExpression::AddMachineRegPiece(const TargetRegisterInfo &TRI,
- unsigned MachineReg,
- unsigned PieceSizeInBits,
- unsigned PieceOffsetInBits) {
+bool DwarfExpression::AddMachineReg(const TargetRegisterInfo &TRI,
+ unsigned MachineReg, unsigned MaxSize) {
if (!TRI.isPhysicalRegister(MachineReg))
return false;
@@ -94,13 +95,11 @@ bool DwarfExpression::AddMachineRegPiece(const TargetRegisterInfo &TRI,
// If this is a valid register number, emit it.
if (Reg >= 0) {
AddReg(Reg);
- if (PieceSizeInBits)
- AddOpPiece(PieceSizeInBits, PieceOffsetInBits);
return true;
}
// Walk up the super-register chain until we find a valid number.
- // For example, EAX on x86_64 is a 32-bit piece of RAX with offset 0.
+ // For example, EAX on x86_64 is a 32-bit fragment of RAX with offset 0.
for (MCSuperRegIterator SR(MachineReg, &TRI); SR.isValid(); ++SR) {
Reg = TRI.getDwarfRegNum(*SR, false);
if (Reg >= 0) {
@@ -108,27 +107,15 @@ bool DwarfExpression::AddMachineRegPiece(const TargetRegisterInfo &TRI,
unsigned Size = TRI.getSubRegIdxSize(Idx);
unsigned RegOffset = TRI.getSubRegIdxOffset(Idx);
AddReg(Reg, "super-register");
- if (PieceOffsetInBits == RegOffset) {
- AddOpPiece(Size, RegOffset);
- } else {
- // If this is part of a variable in a sub-register at a
- // non-zero offset, we need to manually shift the value into
- // place, since the DW_OP_piece describes the part of the
- // variable, not the position of the subregister.
- if (RegOffset)
- AddShr(RegOffset);
- AddOpPiece(Size, PieceOffsetInBits);
- }
+ // Use a DW_OP_bit_piece to describe the sub-register.
+ setSubRegisterPiece(Size, RegOffset);
return true;
}
}
// Otherwise, attempt to find a covering set of sub-register numbers.
// For example, Q0 on ARM is a composition of D0+D1.
- //
- // Keep track of the current position so we can emit the more
- // efficient DW_OP_piece.
- unsigned CurPos = PieceOffsetInBits;
+ unsigned CurPos = 0;
// The size of the register in bits, assuming 8 bits per byte.
unsigned RegSize = TRI.getMinimalPhysRegClass(MachineReg)->getSize() * 8;
// Keep track of the bits in the register we already emitted, so we
@@ -150,7 +137,12 @@ bool DwarfExpression::AddMachineRegPiece(const TargetRegisterInfo &TRI,
// its range, emit a DWARF piece for it.
if (Reg >= 0 && Intersection.any()) {
AddReg(Reg, "sub-register");
- AddOpPiece(Size, Offset == CurPos ? 0 : Offset);
+ if (Offset >= MaxSize)
+ break;
+ // Emit a piece for the any gap in the coverage.
+ if (Offset > CurPos)
+ AddOpPiece(Offset - CurPos);
+ AddOpPiece(std::min<unsigned>(Size, MaxSize - Offset));
CurPos = Offset + Size;
// Mark it as emitted.
@@ -158,7 +150,7 @@ bool DwarfExpression::AddMachineRegPiece(const TargetRegisterInfo &TRI,
}
}
- return CurPos > PieceOffsetInBits;
+ return CurPos;
}
void DwarfExpression::AddStackValue() {
@@ -194,92 +186,114 @@ void DwarfExpression::AddUnsignedConstant(const APInt &Value) {
}
}
-static unsigned getOffsetOrZero(unsigned OffsetInBits,
- unsigned PieceOffsetInBits) {
- if (OffsetInBits == PieceOffsetInBits)
- return 0;
- assert(OffsetInBits >= PieceOffsetInBits && "overlapping pieces");
- return OffsetInBits;
-}
-
bool DwarfExpression::AddMachineRegExpression(const TargetRegisterInfo &TRI,
- const DIExpression *Expr,
+ DIExpressionCursor &ExprCursor,
unsigned MachineReg,
- unsigned PieceOffsetInBits) {
- auto I = Expr->expr_op_begin();
- auto E = Expr->expr_op_end();
- if (I == E)
- return AddMachineRegPiece(TRI, MachineReg);
+ unsigned FragmentOffsetInBits) {
+ if (!ExprCursor)
+ return AddMachineReg(TRI, MachineReg);
// Pattern-match combinations for which more efficient representations exist
// first.
bool ValidReg = false;
- switch (I->getOp()) {
- case dwarf::DW_OP_bit_piece: {
- unsigned OffsetInBits = I->getArg(0);
- unsigned SizeInBits = I->getArg(1);
- // Piece always comes at the end of the expression.
- return AddMachineRegPiece(TRI, MachineReg, SizeInBits,
- getOffsetOrZero(OffsetInBits, PieceOffsetInBits));
+ auto Op = ExprCursor.peek();
+ switch (Op->getOp()) {
+ default: {
+ auto Fragment = ExprCursor.getFragmentInfo();
+ ValidReg = AddMachineReg(TRI, MachineReg,
+ Fragment ? Fragment->SizeInBits : ~1U);
+ break;
}
case dwarf::DW_OP_plus:
case dwarf::DW_OP_minus: {
// [DW_OP_reg,Offset,DW_OP_plus, DW_OP_deref] --> [DW_OP_breg, Offset].
// [DW_OP_reg,Offset,DW_OP_minus,DW_OP_deref] --> [DW_OP_breg,-Offset].
- auto N = I.getNext();
- if (N != E && N->getOp() == dwarf::DW_OP_deref) {
- unsigned Offset = I->getArg(0);
+ auto N = ExprCursor.peekNext();
+ if (N && N->getOp() == dwarf::DW_OP_deref) {
+ unsigned Offset = Op->getArg(0);
ValidReg = AddMachineRegIndirect(
- TRI, MachineReg, I->getOp() == dwarf::DW_OP_plus ? Offset : -Offset);
- std::advance(I, 2);
- break;
+ TRI, MachineReg, Op->getOp() == dwarf::DW_OP_plus ? Offset : -Offset);
+ ExprCursor.consume(2);
} else
- ValidReg = AddMachineRegPiece(TRI, MachineReg);
- }
- case dwarf::DW_OP_deref: {
- // [DW_OP_reg,DW_OP_deref] --> [DW_OP_breg].
- ValidReg = AddMachineRegIndirect(TRI, MachineReg);
- ++I;
- break;
+ ValidReg = AddMachineReg(TRI, MachineReg);
+ break;
}
- default:
- llvm_unreachable("unsupported operand");
+ case dwarf::DW_OP_deref:
+ // [DW_OP_reg,DW_OP_deref] --> [DW_OP_breg].
+ ValidReg = AddMachineRegIndirect(TRI, MachineReg);
+ ExprCursor.take();
+ break;
}
- if (!ValidReg)
- return false;
-
- // Emit remaining elements of the expression.
- AddExpression(I, E, PieceOffsetInBits);
- return true;
+ return ValidReg;
}
-void DwarfExpression::AddExpression(DIExpression::expr_op_iterator I,
- DIExpression::expr_op_iterator E,
- unsigned PieceOffsetInBits) {
- for (; I != E; ++I) {
- switch (I->getOp()) {
- case dwarf::DW_OP_bit_piece: {
- unsigned OffsetInBits = I->getArg(0);
- unsigned SizeInBits = I->getArg(1);
- AddOpPiece(SizeInBits, getOffsetOrZero(OffsetInBits, PieceOffsetInBits));
+void DwarfExpression::AddExpression(DIExpressionCursor &&ExprCursor,
+ unsigned FragmentOffsetInBits) {
+ while (ExprCursor) {
+ auto Op = ExprCursor.take();
+ switch (Op->getOp()) {
+ case dwarf::DW_OP_LLVM_fragment: {
+ unsigned SizeInBits = Op->getArg(1);
+ unsigned FragmentOffset = Op->getArg(0);
+ // The fragment offset must have already been adjusted by emitting an
+ // empty DW_OP_piece / DW_OP_bit_piece before we emitted the base
+ // location.
+ assert(OffsetInBits >= FragmentOffset && "fragment offset not added?");
+
+ // If \a AddMachineReg already emitted DW_OP_piece operations to represent
+ // a super-register by splicing together sub-registers, subtract the size
+ // of the pieces that was already emitted.
+ SizeInBits -= OffsetInBits - FragmentOffset;
+
+ // If \a AddMachineReg requested a DW_OP_bit_piece to stencil out a
+ // sub-register that is smaller than the current fragment's size, use it.
+ if (SubRegisterSizeInBits)
+ SizeInBits = std::min<unsigned>(SizeInBits, SubRegisterSizeInBits);
+
+ AddOpPiece(SizeInBits, SubRegisterOffsetInBits);
+ setSubRegisterPiece(0, 0);
break;
}
case dwarf::DW_OP_plus:
EmitOp(dwarf::DW_OP_plus_uconst);
- EmitUnsigned(I->getArg(0));
+ EmitUnsigned(Op->getArg(0));
break;
case dwarf::DW_OP_minus:
// There is no OP_minus_uconst.
EmitOp(dwarf::DW_OP_constu);
- EmitUnsigned(I->getArg(0));
+ EmitUnsigned(Op->getArg(0));
EmitOp(dwarf::DW_OP_minus);
break;
case dwarf::DW_OP_deref:
EmitOp(dwarf::DW_OP_deref);
break;
+ case dwarf::DW_OP_constu:
+ EmitOp(dwarf::DW_OP_constu);
+ EmitUnsigned(Op->getArg(0));
+ break;
+ case dwarf::DW_OP_stack_value:
+ AddStackValue();
+ break;
default:
llvm_unreachable("unhandled opcode found in expression");
}
}
}
+
+void DwarfExpression::finalize() {
+ if (SubRegisterSizeInBits)
+ AddOpPiece(SubRegisterSizeInBits, SubRegisterOffsetInBits);
+}
+
+void DwarfExpression::addFragmentOffset(const DIExpression *Expr) {
+ if (!Expr || !Expr->isFragment())
+ return;
+
+ uint64_t FragmentOffset = Expr->getFragmentInfo()->OffsetInBits;
+ assert(FragmentOffset >= OffsetInBits &&
+ "overlapping or duplicate fragments");
+ if (FragmentOffset > OffsetInBits)
+ AddOpPiece(FragmentOffset - OffsetInBits);
+ OffsetInBits = FragmentOffset;
+}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h
index 5fff28d..fd90fa0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfExpression.h
@@ -25,17 +25,86 @@ class TargetRegisterInfo;
class DwarfUnit;
class DIELoc;
+/// Holds a DIExpression and keeps track of how many operands have been consumed
+/// so far.
+class DIExpressionCursor {
+ DIExpression::expr_op_iterator Start, End;
+public:
+ DIExpressionCursor(const DIExpression *Expr) {
+ if (!Expr) {
+ assert(Start == End);
+ return;
+ }
+ Start = Expr->expr_op_begin();
+ End = Expr->expr_op_end();
+ }
+
+ DIExpressionCursor(ArrayRef<uint64_t> Expr)
+ : Start(Expr.begin()), End(Expr.end()) {}
+
+ /// Consume one operation.
+ Optional<DIExpression::ExprOperand> take() {
+ if (Start == End)
+ return None;
+ return *(Start++);
+ }
+
+ /// Consume N operations.
+ void consume(unsigned N) { std::advance(Start, N); }
+
+ /// Return the current operation.
+ Optional<DIExpression::ExprOperand> peek() const {
+ if (Start == End)
+ return None;
+ return *(Start);
+ }
+
+ /// Return the next operation.
+ Optional<DIExpression::ExprOperand> peekNext() const {
+ if (Start == End)
+ return None;
+
+ auto Next = Start.getNext();
+ if (Next == End)
+ return None;
+
+ return *Next;
+ }
+ /// Determine whether there are any operations left in this expression.
+ operator bool() const { return Start != End; }
+
+ /// Retrieve the fragment information, if any.
+ Optional<DIExpression::FragmentInfo> getFragmentInfo() const {
+ return DIExpression::getFragmentInfo(Start, End);
+ }
+};
+
/// Base class containing the logic for constructing DWARF expressions
/// independently of whether they are emitted into a DIE or into a .debug_loc
/// entry.
class DwarfExpression {
protected:
- // Various convenience accessors that extract things out of AsmPrinter.
unsigned DwarfVersion;
+ /// Current Fragment Offset in Bits.
+ uint64_t OffsetInBits = 0;
+
+ /// Sometimes we need to add a DW_OP_bit_piece to describe a subregister.
+ unsigned SubRegisterSizeInBits = 0;
+ unsigned SubRegisterOffsetInBits = 0;
+
+ /// Push a DW_OP_piece / DW_OP_bit_piece for emitting later, if one is needed
+ /// to represent a subregister.
+ void setSubRegisterPiece(unsigned SizeInBits, unsigned OffsetInBits) {
+ SubRegisterSizeInBits = SizeInBits;
+ SubRegisterOffsetInBits = OffsetInBits;
+ }
public:
DwarfExpression(unsigned DwarfVersion) : DwarfVersion(DwarfVersion) {}
- virtual ~DwarfExpression() {}
+ virtual ~DwarfExpression() {};
+
+ /// This needs to be called last to commit any pending changes.
+ void finalize();
/// Output a dwarf operand and an optional assembler comment.
virtual void EmitOp(uint8_t Op, const char *Comment = nullptr) = 0;
@@ -52,24 +121,25 @@ public:
/// Emit an (double-)indirect dwarf register operation.
void AddRegIndirect(int DwarfReg, int Offset, bool Deref = false);
- /// Emit a dwarf register operation for describing
- /// - a small value occupying only part of a register or
- /// - a register representing only part of a value.
+ /// Emit a DW_OP_piece or DW_OP_bit_piece operation for a variable fragment.
+ /// \param OffsetInBits This is an optional offset into the location that
+ /// is at the top of the DWARF stack.
void AddOpPiece(unsigned SizeInBits, unsigned OffsetInBits = 0);
+
/// Emit a shift-right dwarf expression.
void AddShr(unsigned ShiftBy);
+
/// Emit a DW_OP_stack_value, if supported.
///
- /// The proper way to describe a constant value is
- /// DW_OP_constu <const>, DW_OP_stack_value.
- /// Unfortunately, DW_OP_stack_value was not available until DWARF-4,
- /// so we will continue to generate DW_OP_constu <const> for DWARF-2
- /// and DWARF-3. Technically, this is incorrect since DW_OP_const <const>
- /// actually describes a value at a constant addess, not a constant value.
- /// However, in the past there was no better way to describe a constant
- /// value, so the producers and consumers started to rely on heuristics
- /// to disambiguate the value vs. location status of the expression.
- /// See PR21176 for more details.
+ /// The proper way to describe a constant value is DW_OP_constu <const>,
+ /// DW_OP_stack_value. Unfortunately, DW_OP_stack_value was not available
+ /// until DWARF 4, so we will continue to generate DW_OP_constu <const> for
+ /// DWARF 2 and DWARF 3. Technically, this is incorrect since DW_OP_const
+ /// <const> actually describes a value at a constant addess, not a constant
+ /// value. However, in the past there was no better way to describe a
+ /// constant value, so the producers and consumers started to rely on
+ /// heuristics to disambiguate the value vs. location status of the
+ /// expression. See PR21176 for more details.
void AddStackValue();
/// Emit an indirect dwarf register operation for the given machine register.
@@ -77,23 +147,23 @@ public:
bool AddMachineRegIndirect(const TargetRegisterInfo &TRI, unsigned MachineReg,
int Offset = 0);
- /// \brief Emit a partial DWARF register operation.
- /// \param MachineReg the register
- /// \param PieceSizeInBits size and
- /// \param PieceOffsetInBits offset of the piece in bits, if this is one
- /// piece of an aggregate value.
+ /// Emit a partial DWARF register operation.
+ ///
+ /// \param MachineReg The register number.
+ /// \param MaxSize If the register must be composed from
+ /// sub-registers this is an upper bound
+ /// for how many bits the emitted DW_OP_piece
+ /// may cover.
///
- /// If size and offset is zero an operation for the entire
- /// register is emitted: Some targets do not provide a DWARF
- /// register number for every register. If this is the case, this
- /// function will attempt to emit a DWARF register by emitting a
- /// piece of a super-register or by piecing together multiple
- /// subregisters that alias the register.
+ /// If size and offset is zero an operation for the entire register is
+ /// emitted: Some targets do not provide a DWARF register number for every
+ /// register. If this is the case, this function will attempt to emit a DWARF
+ /// register by emitting a fragment of a super-register or by piecing together
+ /// multiple subregisters that alias the register.
///
/// \return false if no DWARF register exists for MachineReg.
- bool AddMachineRegPiece(const TargetRegisterInfo &TRI, unsigned MachineReg,
- unsigned PieceSizeInBits = 0,
- unsigned PieceOffsetInBits = 0);
+ bool AddMachineReg(const TargetRegisterInfo &TRI, unsigned MachineReg,
+ unsigned MaxSize = ~1U);
/// Emit a signed constant.
void AddSignedConstant(int64_t Value);
@@ -102,20 +172,29 @@ public:
/// Emit an unsigned constant.
void AddUnsignedConstant(const APInt &Value);
- /// \brief Emit an entire expression on top of a machine register location.
+ /// Emit a machine register location. As an optimization this may also consume
+ /// the prefix of a DwarfExpression if a more efficient representation for
+ /// combining the register location and the first operation exists.
///
- /// \param PieceOffsetInBits If this is one piece out of a fragmented
- /// location, this is the offset of the piece inside the entire variable.
- /// \return false if no DWARF register exists for MachineReg.
+ /// \param FragmentOffsetInBits If this is one fragment out of a fragmented
+ /// location, this is the offset of the
+ /// fragment inside the entire variable.
+ /// \return false if no DWARF register exists
+ /// for MachineReg.
bool AddMachineRegExpression(const TargetRegisterInfo &TRI,
- const DIExpression *Expr, unsigned MachineReg,
- unsigned PieceOffsetInBits = 0);
- /// Emit a the operations remaining the DIExpressionIterator I.
- /// \param PieceOffsetInBits If this is one piece out of a fragmented
- /// location, this is the offset of the piece inside the entire variable.
- void AddExpression(DIExpression::expr_op_iterator I,
- DIExpression::expr_op_iterator E,
- unsigned PieceOffsetInBits = 0);
+ DIExpressionCursor &Expr, unsigned MachineReg,
+ unsigned FragmentOffsetInBits = 0);
+ /// Emit all remaining operations in the DIExpressionCursor.
+ ///
+ /// \param FragmentOffsetInBits If this is one fragment out of multiple
+ /// locations, this is the offset of the
+ /// fragment inside the entire variable.
+ void AddExpression(DIExpressionCursor &&Expr,
+ unsigned FragmentOffsetInBits = 0);
+
+ /// If applicable, emit an empty DW_OP_piece / DW_OP_bit_piece to advance to
+ /// the fragment described by \c Expr.
+ void addFragmentOffset(const DIExpression *Expr);
};
/// DwarfExpression implementation for .debug_loc entries.
@@ -146,6 +225,10 @@ public:
void EmitUnsigned(uint64_t Value) override;
bool isFrameRegister(const TargetRegisterInfo &TRI,
unsigned MachineReg) override;
+ DIELoc *finalize() {
+ DwarfExpression::finalize();
+ return &DIE;
+ }
};
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
index e9fe98a..595f1d9 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.cpp
@@ -19,37 +19,7 @@
namespace llvm {
DwarfFile::DwarfFile(AsmPrinter *AP, StringRef Pref, BumpPtrAllocator &DA)
- : Asm(AP), StrPool(DA, *Asm, Pref) {}
-
-DwarfFile::~DwarfFile() {
- for (DIEAbbrev *Abbrev : Abbreviations)
- Abbrev->~DIEAbbrev();
-}
-
-// Define a unique number for the abbreviation.
-//
-DIEAbbrev &DwarfFile::assignAbbrevNumber(DIE &Die) {
- FoldingSetNodeID ID;
- DIEAbbrev Abbrev = Die.generateAbbrev();
- Abbrev.Profile(ID);
-
- void *InsertPos;
- if (DIEAbbrev *Existing =
- AbbreviationsSet.FindNodeOrInsertPos(ID, InsertPos)) {
- Die.setAbbrevNumber(Existing->getNumber());
- return *Existing;
- }
-
- // Move the abbreviation to the heap and assign a number.
- DIEAbbrev *New = new (AbbrevAllocator) DIEAbbrev(std::move(Abbrev));
- Abbreviations.push_back(New);
- New->setNumber(Abbreviations.size());
- Die.setAbbrevNumber(Abbreviations.size());
-
- // Store it for lookup.
- AbbreviationsSet.InsertNode(New, InsertPos);
- return *New;
-}
+ : Asm(AP), Abbrevs(AbbrevAllocator), StrPool(DA, *Asm, Pref) {}
void DwarfFile::addUnit(std::unique_ptr<DwarfCompileUnit> U) {
CUs.push_back(std::move(U));
@@ -80,7 +50,7 @@ void DwarfFile::computeSizeAndOffsets() {
// Iterate over each compile unit and set the size and offsets for each
// DIE within each compile unit. All offsets are CU relative.
for (const auto &TheU : CUs) {
- TheU->setDebugInfoOffset(SecOffset);
+ TheU->setDebugSectionOffset(SecOffset);
SecOffset += computeSizeAndOffsetsForUnit(TheU.get());
}
}
@@ -98,44 +68,10 @@ unsigned DwarfFile::computeSizeAndOffsetsForUnit(DwarfUnit *TheU) {
// Compute the size and offset of a DIE. The offset is relative to start of the
// CU. It returns the offset after laying out the DIE.
unsigned DwarfFile::computeSizeAndOffset(DIE &Die, unsigned Offset) {
- // Record the abbreviation.
- const DIEAbbrev &Abbrev = assignAbbrevNumber(Die);
-
- // Set DIE offset
- Die.setOffset(Offset);
-
- // Start the size with the size of abbreviation code.
- Offset += getULEB128Size(Die.getAbbrevNumber());
-
- // Size the DIE attribute values.
- for (const auto &V : Die.values())
- // Size attribute value.
- Offset += V.SizeOf(Asm);
-
- // Size the DIE children if any.
- if (Die.hasChildren()) {
- (void)Abbrev;
- assert(Abbrev.hasChildren() && "Children flag not set");
-
- for (auto &Child : Die.children())
- Offset = computeSizeAndOffset(Child, Offset);
-
- // End of children marker.
- Offset += sizeof(int8_t);
- }
-
- Die.setSize(Offset - Die.getOffset());
- return Offset;
+ return Die.computeOffsetsAndAbbrevs(Asm, Abbrevs, Offset);
}
-void DwarfFile::emitAbbrevs(MCSection *Section) {
- // Check to see if it is worth the effort.
- if (!Abbreviations.empty()) {
- // Start the debug abbrev section.
- Asm->OutStreamer->SwitchSection(Section);
- Asm->emitDwarfAbbrevs(Abbreviations);
- }
-}
+void DwarfFile::emitAbbrevs(MCSection *Section) { Abbrevs.Emit(Asm, Section); }
// Emit strings into a string section.
void DwarfFile::emitStrings(MCSection *StrSection, MCSection *OffsetSection) {
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
index b73d89b..d4d2ed2 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfFile.h
@@ -16,10 +16,10 @@
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/CodeGen/DIE.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include <memory>
-#include <vector>
namespace llvm {
class AsmPrinter;
@@ -41,10 +41,7 @@ class DwarfFile {
BumpPtrAllocator AbbrevAllocator;
// Used to uniquely define abbreviations.
- FoldingSet<DIEAbbrev> AbbreviationsSet;
-
- // A list of all the unique abbreviations in use.
- std::vector<DIEAbbrev *> Abbreviations;
+ DIEAbbrevSet Abbrevs;
// A pointer to all units in the section.
SmallVector<std::unique_ptr<DwarfCompileUnit>, 1> CUs;
@@ -65,8 +62,6 @@ class DwarfFile {
public:
DwarfFile(AsmPrinter *AP, StringRef Pref, BumpPtrAllocator &DA);
- ~DwarfFile();
-
const SmallVectorImpl<std::unique_ptr<DwarfCompileUnit>> &getUnits() {
return CUs;
}
@@ -81,12 +76,6 @@ public:
/// \returns The size of the root DIE.
unsigned computeSizeAndOffsetsForUnit(DwarfUnit *TheU);
- /// Define a unique number for the abbreviation.
- ///
- /// Compute the abbreviation for \c Die, look up its unique number, and
- /// return a reference to it in the uniquing table.
- DIEAbbrev &assignAbbrevNumber(DIE &Die);
-
/// \brief Add a unit to the list of CUs.
void addUnit(std::unique_ptr<DwarfCompileUnit> U);
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
index 4100d72..2a866c0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.cpp
@@ -12,28 +12,33 @@
//===----------------------------------------------------------------------===//
#include "DwarfUnit.h"
-#include "DwarfAccelTable.h"
+#include "AddressPool.h"
#include "DwarfCompileUnit.h"
#include "DwarfDebug.h"
#include "DwarfExpression.h"
#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/None.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/Constants.h"
-#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCContext.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+#include <utility>
using namespace llvm;
@@ -46,18 +51,21 @@ GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
DIEDwarfExpression::DIEDwarfExpression(const AsmPrinter &AP, DwarfUnit &DU,
DIELoc &DIE)
- : DwarfExpression(AP.getDwarfDebug()->getDwarfVersion()), AP(AP), DU(DU),
+ : DwarfExpression(AP.getDwarfVersion()), AP(AP), DU(DU),
DIE(DIE) {}
void DIEDwarfExpression::EmitOp(uint8_t Op, const char* Comment) {
DU.addUInt(DIE, dwarf::DW_FORM_data1, Op);
}
+
void DIEDwarfExpression::EmitSigned(int64_t Value) {
DU.addSInt(DIE, dwarf::DW_FORM_sdata, Value);
}
+
void DIEDwarfExpression::EmitUnsigned(uint64_t Value) {
DU.addUInt(DIE, dwarf::DW_FORM_udata, Value);
}
+
bool DIEDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
unsigned MachineReg) {
return MachineReg == TRI.getFrameRegister(*AP.MF);
@@ -65,10 +73,8 @@ bool DIEDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
DwarfUnit::DwarfUnit(dwarf::Tag UnitTag, const DICompileUnit *Node,
AsmPrinter *A, DwarfDebug *DW, DwarfFile *DWU)
- : CUNode(Node), UnitDie(*DIE::get(DIEValueAllocator, UnitTag)), Asm(A),
- DD(DW), DU(DWU), IndexTyDie(nullptr), Section(nullptr) {
- assert(UnitTag == dwarf::DW_TAG_compile_unit ||
- UnitTag == dwarf::DW_TAG_type_unit);
+ : DIEUnit(A->getDwarfVersion(), A->getPointerSize(), UnitTag), CUNode(Node),
+ Asm(A), DD(DW), DU(DWU), IndexTyDie(nullptr) {
}
DwarfTypeUnit::DwarfTypeUnit(DwarfCompileUnit &CU, AsmPrinter *A,
@@ -77,7 +83,7 @@ DwarfTypeUnit::DwarfTypeUnit(DwarfCompileUnit &CU, AsmPrinter *A,
: DwarfUnit(dwarf::DW_TAG_type_unit, CU.getCUNode(), A, DW, DWU), CU(CU),
SplitLineTable(SplitLineTable) {
if (SplitLineTable)
- addSectionOffset(UnitDie, dwarf::DW_AT_stmt_list, 0);
+ addSectionOffset(getUnitDie(), dwarf::DW_AT_stmt_list, 0);
}
DwarfUnit::~DwarfUnit() {
@@ -194,6 +200,8 @@ void DwarfUnit::addUInt(DIEValueList &Die, dwarf::Attribute Attribute,
Optional<dwarf::Form> Form, uint64_t Integer) {
if (!Form)
Form = DIEInteger::BestForm(false, Integer);
+ assert(Form != dwarf::DW_FORM_implicit_const &&
+ "DW_FORM_implicit_const is used only for signed integers");
Die.addValue(DIEValueAllocator, Attribute, *Form, DIEInteger(Integer));
}
@@ -286,15 +294,15 @@ void DwarfUnit::addDIETypeSignature(DIE &Die, dwarf::Attribute Attribute,
void DwarfUnit::addDIEEntry(DIE &Die, dwarf::Attribute Attribute,
DIEEntry Entry) {
- const DIE *DieCU = Die.getUnitOrNull();
- const DIE *EntryCU = Entry.getEntry().getUnitOrNull();
- if (!DieCU)
+ const DIEUnit *CU = Die.getUnit();
+ const DIEUnit *EntryCU = Entry.getEntry().getUnit();
+ if (!CU)
// We assume that Die belongs to this CU, if it is not linked to any CU yet.
- DieCU = &getUnitDie();
+ CU = getUnitDie().getUnit();
if (!EntryCU)
- EntryCU = &getUnitDie();
+ EntryCU = getUnitDie().getUnit();
Die.addValue(DIEValueAllocator, Attribute,
- EntryCU == DieCU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr,
+ EntryCU == CU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr,
Entry);
}
@@ -365,21 +373,6 @@ void DwarfUnit::addSourceLine(DIE &Die, const DINamespace *NS) {
addSourceLine(Die, NS->getLine(), NS->getFilename(), NS->getDirectory());
}
-bool DwarfUnit::addRegisterOpPiece(DIELoc &TheDie, unsigned Reg,
- unsigned SizeInBits, unsigned OffsetInBits) {
- DIEDwarfExpression Expr(*Asm, *this, TheDie);
- Expr.AddMachineRegPiece(*Asm->MF->getSubtarget().getRegisterInfo(), Reg,
- SizeInBits, OffsetInBits);
- return true;
-}
-
-bool DwarfUnit::addRegisterOffset(DIELoc &TheDie, unsigned Reg,
- int64_t Offset) {
- DIEDwarfExpression Expr(*Asm, *this, TheDie);
- return Expr.AddMachineRegIndirect(*Asm->MF->getSubtarget().getRegisterInfo(),
- Reg, Offset);
-}
-
/* Byref variables, in Blocks, are declared by the programmer as "SomeType
VarName;", but the compiler creates a __Block_byref_x_VarName struct, and
gives the variable VarName either the struct, or a pointer to the struct, as
@@ -472,12 +465,17 @@ void DwarfUnit::addBlockByrefAddress(const DbgVariable &DV, DIE &Die,
// Decode the original location, and use that as the start of the byref
// variable's location.
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
+ SmallVector<uint64_t, 6> DIExpr;
+ DIEDwarfExpression Expr(*Asm, *this, *Loc);
bool validReg;
if (Location.isReg())
- validReg = addRegisterOpPiece(*Loc, Location.getReg());
+ validReg = Expr.AddMachineReg(*Asm->MF->getSubtarget().getRegisterInfo(),
+ Location.getReg());
else
- validReg = addRegisterOffset(*Loc, Location.getReg(), Location.getOffset());
+ validReg =
+ Expr.AddMachineRegIndirect(*Asm->MF->getSubtarget().getRegisterInfo(),
+ Location.getReg(), Location.getOffset());
if (!validReg)
return;
@@ -485,27 +483,29 @@ void DwarfUnit::addBlockByrefAddress(const DbgVariable &DV, DIE &Die,
// If we started with a pointer to the __Block_byref... struct, then
// the first thing we need to do is dereference the pointer (DW_OP_deref).
if (isPointer)
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ DIExpr.push_back(dwarf::DW_OP_deref);
// Next add the offset for the '__forwarding' field:
// DW_OP_plus_uconst ForwardingFieldOffset. Note there's no point in
// adding the offset if it's 0.
if (forwardingFieldOffset > 0) {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(*Loc, dwarf::DW_FORM_udata, forwardingFieldOffset);
+ DIExpr.push_back(dwarf::DW_OP_plus);
+ DIExpr.push_back(forwardingFieldOffset);
}
// Now dereference the __forwarding field to get to the real __Block_byref
// struct: DW_OP_deref.
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ DIExpr.push_back(dwarf::DW_OP_deref);
// Now that we've got the real __Block_byref... struct, add the offset
// for the variable's field to get to the location of the actual variable:
// DW_OP_plus_uconst varFieldOffset. Again, don't add if it's 0.
if (varFieldOffset > 0) {
- addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
- addUInt(*Loc, dwarf::DW_FORM_udata, varFieldOffset);
+ DIExpr.push_back(dwarf::DW_OP_plus);
+ DIExpr.push_back(varFieldOffset);
}
+ Expr.AddExpression(makeArrayRef(DIExpr));
+ Expr.finalize();
// Now attach the location information to the DIE.
addBlock(Die, Attribute, Loc);
@@ -538,7 +538,7 @@ static bool isUnsignedDIType(DwarfDebug *DD, const DIType *Ty) {
return true;
assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
T == dwarf::DW_TAG_volatile_type ||
- T == dwarf::DW_TAG_restrict_type);
+ T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type);
DITypeRef Deriv = DTy->getBaseType();
assert(Deriv && "Expected valid base type");
return isUnsignedDIType(DD, DD->resolve(Deriv));
@@ -699,6 +699,10 @@ DIE *DwarfUnit::getOrCreateTypeDIE(const MDNode *TyNode) {
if (Ty->getTag() == dwarf::DW_TAG_restrict_type && DD->getDwarfVersion() <= 2)
return getOrCreateTypeDIE(resolve(cast<DIDerivedType>(Ty)->getBaseType()));
+ // DW_TAG_atomic_type is not supported in DWARF < 5
+ if (Ty->getTag() == dwarf::DW_TAG_atomic_type && DD->getDwarfVersion() < 5)
+ return getOrCreateTypeDIE(resolve(cast<DIDerivedType>(Ty)->getBaseType()));
+
// Construct the context before querying for the existence of the DIE in case
// such construction creates the DIE.
auto *Context = resolve(Ty->getScope());
@@ -735,7 +739,7 @@ DIE *DwarfUnit::getOrCreateTypeDIE(const MDNode *TyNode) {
void DwarfUnit::updateAcceleratorTables(const DIScope *Context,
const DIType *Ty, const DIE &TyDIE) {
if (!Ty->getName().empty() && !Ty->isForwardDecl()) {
- bool IsImplementation = 0;
+ bool IsImplementation = false;
if (auto *CT = dyn_cast<DICompositeType>(Ty)) {
// A runtime language of 0 actually means C/C++ and that any
// non-negative value is some version of Objective-C/C++.
@@ -999,6 +1003,11 @@ void DwarfUnit::constructTypeDIE(DIE &Buffer, const DICompositeType *CTy) {
if (RLang)
addUInt(Buffer, dwarf::DW_AT_APPLE_runtime_class, dwarf::DW_FORM_data1,
RLang);
+
+ // Add align info if available.
+ if (uint32_t AlignInBytes = CTy->getAlignInBytes())
+ addUInt(Buffer, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
+ AlignInBytes);
}
}
@@ -1066,6 +1075,8 @@ DIE *DwarfUnit::getOrCreateNameSpace(const DINamespace *NS) {
DD->addAccelNamespace(Name, NDie);
addGlobalName(Name, NDie, NS->getScope());
addSourceLine(NDie, NS);
+ if (NS->getExportSymbols())
+ addFlag(NDie, dwarf::DW_AT_export_symbols);
return &NDie;
}
@@ -1133,7 +1144,9 @@ bool DwarfUnit::applySubprogramDefinitionAttributes(const DISubprogram *SP,
assert(DeclDie && "This DIE should've already been constructed when the "
"definition DIE was created in "
"getOrCreateSubprogramDIE");
- DeclLinkageName = SPDecl->getLinkageName();
+ // Look at the Decl's linkage name only if we emitted it.
+ if (DD->useAllLinkageNames())
+ DeclLinkageName = SPDecl->getLinkageName();
unsigned DeclID =
getOrCreateSourceID(SPDecl->getFilename(), SPDecl->getDirectory());
unsigned DefID = getOrCreateSourceID(SP->getFilename(), SP->getDirectory());
@@ -1248,6 +1261,9 @@ void DwarfUnit::applySubprogramAttributes(const DISubprogram *SP, DIE &SPDie,
if (SP->isRValueReference())
addFlag(SPDie, dwarf::DW_AT_rvalue_reference);
+ if (SP->isNoReturn())
+ addFlag(SPDie, dwarf::DW_AT_noreturn);
+
if (SP->isProtected())
addUInt(SPDie, dwarf::DW_AT_accessibility, dwarf::DW_FORM_data1,
dwarf::DW_ACCESS_protected);
@@ -1260,6 +1276,9 @@ void DwarfUnit::applySubprogramAttributes(const DISubprogram *SP, DIE &SPDie,
if (SP->isExplicit())
addFlag(SPDie, dwarf::DW_AT_explicit);
+
+ if (SP->isMainSubprogram())
+ addFlag(SPDie, dwarf::DW_AT_main_subprogram);
}
void DwarfUnit::constructSubrangeDIE(DIE &Buffer, const DISubrange *SR,
@@ -1288,7 +1307,7 @@ DIE *DwarfUnit::getIndexTyDie() {
if (IndexTyDie)
return IndexTyDie;
// Construct an integer type to use for indexes.
- IndexTyDie = &createAndAddDIE(dwarf::DW_TAG_base_type, UnitDie);
+ IndexTyDie = &createAndAddDIE(dwarf::DW_TAG_base_type, getUnitDie());
addString(*IndexTyDie, dwarf::DW_AT_name, "sizetype");
addUInt(*IndexTyDie, dwarf::DW_AT_byte_size, None, sizeof(int64_t));
addUInt(*IndexTyDie, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
@@ -1383,6 +1402,7 @@ void DwarfUnit::constructMemberDIE(DIE &Buffer, const DIDerivedType *DT) {
} else {
uint64_t Size = DT->getSizeInBits();
uint64_t FieldSize = DD->getBaseTypeSize(DT);
+ uint32_t AlignInBytes = DT->getAlignInBytes();
uint64_t OffsetInBytes;
bool IsBitfield = FieldSize && Size != FieldSize;
@@ -1393,8 +1413,11 @@ void DwarfUnit::constructMemberDIE(DIE &Buffer, const DIDerivedType *DT) {
addUInt(MemberDie, dwarf::DW_AT_bit_size, None, Size);
uint64_t Offset = DT->getOffsetInBits();
- uint64_t Align = DT->getAlignInBits() ? DT->getAlignInBits() : FieldSize;
- uint64_t AlignMask = ~(Align - 1);
+ // We can't use DT->getAlignInBits() here: AlignInBits for member type
+ // is non-zero if and only if alignment was forced (e.g. _Alignas()),
+ // which can't be done with bitfields. Thus we use FieldSize here.
+ uint32_t AlignInBits = FieldSize;
+ uint32_t AlignMask = ~(AlignInBits - 1);
// The bits from the start of the storage unit to the start of the field.
uint64_t StartBitOffset = Offset - (Offset & AlignMask);
// The byte offset of the field's aligned storage unit inside the struct.
@@ -1417,6 +1440,9 @@ void DwarfUnit::constructMemberDIE(DIE &Buffer, const DIDerivedType *DT) {
} else {
// This is not a bitfield.
OffsetInBytes = DT->getOffsetInBits() / 8;
+ if (AlignInBytes)
+ addUInt(MemberDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
+ AlignInBytes);
}
if (DD->getDwarfVersion() <= 2) {
@@ -1493,13 +1519,17 @@ DIE *DwarfUnit::getOrCreateStaticMemberDIE(const DIDerivedType *DT) {
if (const ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(DT->getConstant()))
addConstantFPValue(StaticMemberDIE, CFP);
+ if (uint32_t AlignInBytes = DT->getAlignInBytes())
+ addUInt(StaticMemberDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
+ AlignInBytes);
+
return &StaticMemberDIE;
}
void DwarfUnit::emitHeader(bool UseOffsets) {
// Emit size of content not including length itself
Asm->OutStreamer->AddComment("Length of Unit");
- Asm->EmitInt32(getHeaderSize() + UnitDie.getSize());
+ Asm->EmitInt32(getHeaderSize() + getUnitDie().getSize());
Asm->OutStreamer->AddComment("DWARF version number");
Asm->EmitInt16(DD->getDwarfVersion());
@@ -1519,11 +1549,6 @@ void DwarfUnit::emitHeader(bool UseOffsets) {
Asm->EmitInt8(Asm->getDataLayout().getPointerSize());
}
-void DwarfUnit::initSection(MCSection *Section) {
- assert(!this->Section);
- this->Section = Section;
-}
-
void DwarfTypeUnit::emitHeader(bool UseOffsets) {
DwarfUnit::emitHeader(UseOffsets);
Asm->OutStreamer->AddComment("Type Signature");
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
index e225f92..8654d6f 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfUnit.h
@@ -65,7 +65,7 @@ public:
//===----------------------------------------------------------------------===//
/// This dwarf writer support class manages information associated with a
/// source file.
-class DwarfUnit {
+ class DwarfUnit : public DIEUnit {
protected:
/// MDNode for the compile unit.
const DICompileUnit *CUNode;
@@ -73,9 +73,6 @@ protected:
// All DIEValues are allocated through this allocator.
BumpPtrAllocator DIEValueAllocator;
- /// Unit debug information entry.
- DIE &UnitDie;
-
/// Target of Dwarf emission.
AsmPrinter *Asm;
@@ -83,7 +80,7 @@ protected:
DwarfDebug *DD;
DwarfFile *DU;
- /// An anonymous type for index type. Owned by UnitDie.
+ /// An anonymous type for index type. Owned by DIEUnit.
DIE *IndexTyDie;
/// Tracks the mapping of unit level debug information variables to debug
@@ -101,9 +98,6 @@ protected:
/// corresponds to the MDNode mapped with the subprogram DIE.
DenseMap<DIE *, const DINode *> ContainingTypeMap;
- /// The section this unit will be emitted in.
- MCSection *Section;
-
DwarfUnit(dwarf::Tag, const DICompileUnit *CU, AsmPrinter *A, DwarfDebug *DW,
DwarfFile *DWU);
@@ -112,21 +106,13 @@ protected:
public:
virtual ~DwarfUnit();
- void initSection(MCSection *Section);
-
- MCSection *getSection() const {
- assert(Section);
- return Section;
- }
-
// Accessors.
AsmPrinter* getAsmPrinter() const { return Asm; }
uint16_t getLanguage() const { return CUNode->getSourceLanguage(); }
const DICompileUnit *getCUNode() const { return CUNode; }
- DIE &getUnitDie() { return UnitDie; }
/// Return true if this compile unit has something to write out.
- bool hasContent() const { return UnitDie.hasChildren(); }
+ bool hasContent() const { return getUnitDie().hasChildren(); }
/// Get string containing language specific context for a global name.
///
@@ -249,17 +235,6 @@ public:
/// Add template parameters in buffer.
void addTemplateParams(DIE &Buffer, DINodeArray TParams);
- /// Add register operand.
- /// \returns false if the register does not exist, e.g., because it was never
- /// materialized.
- bool addRegisterOpPiece(DIELoc &TheDie, unsigned Reg,
- unsigned SizeInBits = 0, unsigned OffsetInBits = 0);
-
- /// Add register offset.
- /// \returns false if the register does not exist, e.g., because it was never
- /// materialized.
- bool addRegisterOffset(DIELoc &TheDie, unsigned Reg, int64_t Offset);
-
// FIXME: Should be reformulated in terms of addComplexAddress.
/// Start with the address based on the location provided, and generate the
/// DWARF information necessary to find the actual Block variable (navigating
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
index e24dcb1..0a4a7a0 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp
@@ -74,7 +74,7 @@ computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
// output using a fixed width encoding. FilterOffsets[i] holds the byte
// offset corresponding to FilterIds[i].
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
@@ -296,7 +296,7 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
else {
// SjLj EH must maintain the call sites in the order assigned
// to them by the SjLjPrepare pass.
- unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
+ unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
if (CallSites.size() < SiteNo)
CallSites.resize(SiteNo);
CallSites[SiteNo - 1] = Site;
@@ -336,9 +336,10 @@ computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
/// 3. Type ID table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reverse indexed base 1.
void EHStreamer::emitExceptionTable() {
- const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
- const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+ const MachineFunction *MF = Asm->MF;
+ const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MF->getFilterIds();
+ const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
@@ -649,8 +650,9 @@ void EHStreamer::emitExceptionTable() {
}
void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
- const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const MachineFunction *MF = Asm->MF;
+ const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MF->getFilterIds();
bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
index c09ef6a..8baee4d 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
@@ -50,7 +50,7 @@ static void EmitCamlGlobal(const Module &M, AsmPrinter &AP, const char *Id) {
std::string SymName;
SymName += "caml";
size_t Letter = SymName.size();
- SymName.append(MId.begin(), std::find(MId.begin(), MId.end(), '.'));
+ SymName.append(MId.begin(), find(MId, '.'));
SymName += "__";
SymName += Id;
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.cpp
index e5933d8..9d7c96a 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.cpp
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.cpp
@@ -63,8 +63,8 @@ void WinException::beginFunction(const MachineFunction *MF) {
shouldEmitMoves = shouldEmitPersonality = shouldEmitLSDA = false;
// If any landing pads survive, we need an EH table.
- bool hasLandingPads = !MMI->getLandingPads().empty();
- bool hasEHFunclets = MMI->hasEHFunclets();
+ bool hasLandingPads = !MF->getLandingPads().empty();
+ bool hasEHFunclets = MF->hasEHFunclets();
const Function *F = MF->getFunction();
@@ -72,17 +72,21 @@ void WinException::beginFunction(const MachineFunction *MF) {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
unsigned PerEncoding = TLOF.getPersonalityEncoding();
- const Function *Per = nullptr;
- if (F->hasPersonalityFn())
- Per = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
- bool forceEmitPersonality =
- F->hasPersonalityFn() && !isNoOpWithoutInvoke(classifyEHPersonality(Per)) &&
- F->needsUnwindTableEntry();
+ EHPersonality Per = EHPersonality::Unknown;
+ const Function *PerFn = nullptr;
+ if (F->hasPersonalityFn()) {
+ PerFn = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
+ Per = classifyEHPersonality(PerFn);
+ }
+
+ bool forceEmitPersonality = F->hasPersonalityFn() &&
+ !isNoOpWithoutInvoke(Per) &&
+ F->needsUnwindTableEntry();
shouldEmitPersonality =
forceEmitPersonality || ((hasLandingPads || hasEHFunclets) &&
- PerEncoding != dwarf::DW_EH_PE_omit && Per);
+ PerEncoding != dwarf::DW_EH_PE_omit && PerFn);
unsigned LSDAEncoding = TLOF.getLSDAEncoding();
shouldEmitLSDA = shouldEmitPersonality &&
@@ -90,7 +94,16 @@ void WinException::beginFunction(const MachineFunction *MF) {
// If we're not using CFI, we don't want the CFI or the personality, but we
// might want EH tables if we had EH pads.
- if (!Asm->MAI->usesWindowsCFI()) {
+ if (!Asm->MAI->usesWindowsCFI() || (!MF->hasWinCFI() && !PerFn)) {
+ if (Per == EHPersonality::MSVC_X86SEH && !hasEHFunclets) {
+ // If this is 32-bit SEH and we don't have any funclets (really invokes),
+ // make sure we emit the parent offset label. Some unreferenced filter
+ // functions may still refer to it.
+ const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
+ StringRef FLinkageName =
+ GlobalValue::getRealLinkageName(MF->getFunction()->getName());
+ emitEHRegistrationOffsetLabel(FuncInfo, FLinkageName);
+ }
shouldEmitLSDA = hasEHFunclets;
shouldEmitPersonality = false;
return;
@@ -108,18 +121,20 @@ void WinException::endFunction(const MachineFunction *MF) {
const Function *F = MF->getFunction();
EHPersonality Per = EHPersonality::Unknown;
if (F->hasPersonalityFn())
- Per = classifyEHPersonality(F->getPersonalityFn());
+ Per = classifyEHPersonality(F->getPersonalityFn()->stripPointerCasts());
// Get rid of any dead landing pads if we're not using funclets. In funclet
// schemes, the landing pad is not actually reachable. It only exists so
// that we can emit the right table data.
- if (!isFuncletEHPersonality(Per))
- MMI->TidyLandingPads();
+ if (!isFuncletEHPersonality(Per)) {
+ MachineFunction *NonConstMF = const_cast<MachineFunction*>(MF);
+ NonConstMF->tidyLandingPads();
+ }
endFunclet();
// endFunclet will emit the necessary .xdata tables for x64 SEH.
- if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets())
+ if (Per == EHPersonality::MSVC_Win64SEH && MF->hasEHFunclets())
return;
if (shouldEmitPersonality || shouldEmitLSDA) {
@@ -147,7 +162,7 @@ void WinException::endFunction(const MachineFunction *MF) {
}
}
-/// Retreive the MCSymbol for a GlobalValue or MachineBasicBlock.
+/// Retrieve the MCSymbol for a GlobalValue or MachineBasicBlock.
static MCSymbol *getMCSymbolForMBB(AsmPrinter *Asm,
const MachineBasicBlock *MBB) {
if (!MBB)
@@ -193,8 +208,10 @@ void WinException::beginFunclet(const MachineBasicBlock &MBB,
}
// Mark 'Sym' as starting our funclet.
- if (shouldEmitMoves || shouldEmitPersonality)
+ if (shouldEmitMoves || shouldEmitPersonality) {
+ CurrentFuncletTextSection = Asm->OutStreamer->getCurrentSectionOnly();
Asm->OutStreamer->EmitWinCFIStartProc(Sym);
+ }
if (shouldEmitPersonality) {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
@@ -204,16 +221,14 @@ void WinException::beginFunclet(const MachineBasicBlock &MBB,
if (F->hasPersonalityFn())
PerFn = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
const MCSymbol *PersHandlerSym =
- TLOF.getCFIPersonalitySymbol(PerFn, *Asm->Mang, Asm->TM, MMI);
-
- // Classify the personality routine so that we may reason about it.
- EHPersonality Per = EHPersonality::Unknown;
- if (F->hasPersonalityFn())
- Per = classifyEHPersonality(F->getPersonalityFn());
-
- // Do not emit a .seh_handler directive if it is a C++ cleanup funclet.
- if (Per != EHPersonality::MSVC_CXX ||
- !CurrentFuncletEntry->isCleanupFuncletEntry())
+ TLOF.getCFIPersonalitySymbol(PerFn, Asm->TM, MMI);
+
+ // Do not emit a .seh_handler directives for cleanup funclets.
+ // FIXME: This means cleanup funclets cannot handle exceptions. Given that
+ // Clang doesn't produce EH constructs inside cleanup funclets and LLVM's
+ // inliner doesn't allow inlining them, this isn't a major problem in
+ // practice.
+ if (!CurrentFuncletEntry->isCleanupFuncletEntry())
Asm->OutStreamer->EmitWinEHHandler(PersHandlerSym, true, true);
}
}
@@ -223,15 +238,12 @@ void WinException::endFunclet() {
if (!CurrentFuncletEntry)
return;
+ const MachineFunction *MF = Asm->MF;
if (shouldEmitMoves || shouldEmitPersonality) {
- const Function *F = Asm->MF->getFunction();
+ const Function *F = MF->getFunction();
EHPersonality Per = EHPersonality::Unknown;
if (F->hasPersonalityFn())
- Per = classifyEHPersonality(F->getPersonalityFn());
-
- // The .seh_handlerdata directive implicitly switches section, push the
- // current section so that we may return to it.
- Asm->OutStreamer->PushSection();
+ Per = classifyEHPersonality(F->getPersonalityFn()->stripPointerCasts());
// Emit an UNWIND_INFO struct describing the prologue.
Asm->OutStreamer->EmitWinEHHandlerData();
@@ -244,18 +256,17 @@ void WinException::endFunclet() {
MCSymbol *FuncInfoXData = Asm->OutContext.getOrCreateSymbol(
Twine("$cppxdata$", FuncLinkageName));
Asm->OutStreamer->EmitValue(create32bitRef(FuncInfoXData), 4);
- } else if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets() &&
+ } else if (Per == EHPersonality::MSVC_Win64SEH && MF->hasEHFunclets() &&
!CurrentFuncletEntry->isEHFuncletEntry()) {
// If this is the parent function in Win64 SEH, emit the LSDA immediately
// following .seh_handlerdata.
- emitCSpecificHandlerTable(Asm->MF);
+ emitCSpecificHandlerTable(MF);
}
- // Switch back to the previous section now that we are done writing to
- // .xdata.
- Asm->OutStreamer->PopSection();
-
- // Emit a .seh_endproc directive to mark the end of the function.
+ // Switch back to the funclet start .text section now that we are done
+ // writing to .xdata, and emit an .seh_endproc directive to mark the end of
+ // the function.
+ Asm->OutStreamer->SwitchSection(CurrentFuncletTextSection);
Asm->OutStreamer->EmitWinCFIEndProc();
}
@@ -905,15 +916,24 @@ void WinException::emitEHRegistrationOffsetLabel(const WinEHFuncInfo &FuncInfo,
// registration in order to recover the parent frame pointer. Now that we know
// we've code generated the parent, we can emit the label assignment that
// those helpers use to get the offset of the registration node.
+
+ // Compute the parent frame offset. The EHRegNodeFrameIndex will be invalid if
+ // after optimization all the invokes were eliminated. We still need to emit
+ // the parent frame offset label, but it should be garbage and should never be
+ // used.
+ int64_t Offset = 0;
+ int FI = FuncInfo.EHRegNodeFrameIndex;
+ if (FI != INT_MAX) {
+ const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
+ unsigned UnusedReg;
+ Offset = TFI->getFrameIndexReference(*Asm->MF, FI, UnusedReg);
+ }
+
MCContext &Ctx = Asm->OutContext;
MCSymbol *ParentFrameOffset =
Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName);
- unsigned UnusedReg;
- const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
- int64_t Offset = TFI->getFrameIndexReference(
- *Asm->MF, FuncInfo.EHRegNodeFrameIndex, UnusedReg);
- const MCExpr *MCOffset = MCConstantExpr::create(Offset, Ctx);
- Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset);
+ Asm->OutStreamer->EmitAssignment(ParentFrameOffset,
+ MCConstantExpr::create(Offset, Ctx));
}
/// Emit the language-specific data that _except_handler3 and 4 expect. This is
@@ -966,11 +986,11 @@ void WinException::emitExceptHandlerTable(const MachineFunction *MF) {
// Retrieve the Guard Stack slot.
int GSCookieOffset = -2;
- const MachineFrameInfo *MFI = MF->getFrameInfo();
- if (MFI->hasStackProtectorIndex()) {
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ if (MFI.hasStackProtectorIndex()) {
unsigned UnusedReg;
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- int SSPIdx = MFI->getStackProtectorIndex();
+ int SSPIdx = MFI.getStackProtectorIndex();
GSCookieOffset = TFI->getFrameIndexReference(*MF, SSPIdx, UnusedReg);
}
diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.h b/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.h
index acb3010..371061c 100644
--- a/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.h
+++ b/contrib/llvm/lib/CodeGen/AsmPrinter/WinException.h
@@ -21,6 +21,7 @@ class Function;
class GlobalValue;
class MachineFunction;
class MCExpr;
+class MCSection;
class Value;
struct WinEHFuncInfo;
@@ -40,6 +41,9 @@ class LLVM_LIBRARY_VISIBILITY WinException : public EHStreamer {
/// Pointer to the current funclet entry BB.
const MachineBasicBlock *CurrentFuncletEntry = nullptr;
+ /// The section of the last funclet start.
+ MCSection *CurrentFuncletTextSection = nullptr;
+
void emitCSpecificHandlerTable(const MachineFunction *MF);
void emitSEHActionsForRange(const WinEHFuncInfo &FuncInfo,
diff --git a/contrib/llvm/lib/CodeGen/BranchFolding.cpp b/contrib/llvm/lib/CodeGen/BranchFolding.cpp
index 5dacbf9..6fba161 100644
--- a/contrib/llvm/lib/CodeGen/BranchFolding.cpp
+++ b/contrib/llvm/lib/CodeGen/BranchFolding.cpp
@@ -110,9 +110,12 @@ bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
MBFIWrapper &FreqInfo,
- const MachineBranchProbabilityInfo &ProbInfo)
- : EnableHoistCommonCode(CommonHoist), MBBFreqInfo(FreqInfo),
- MBPI(ProbInfo) {
+ const MachineBranchProbabilityInfo &ProbInfo,
+ unsigned MinTailLength)
+ : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
+ MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
+ if (MinCommonTailLength == 0)
+ MinCommonTailLength = TailMergeSize;
switch (FlagEnableTailMerge) {
case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
case cl::BOU_TRUE: EnableTailMerge = true; break;
@@ -141,59 +144,6 @@ void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
MLI->removeBlock(MBB);
}
-/// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def
-/// followed by terminators, and if the implicitly defined registers are not
-/// used by the terminators, remove those implicit_def's. e.g.
-/// BB1:
-/// r0 = implicit_def
-/// r1 = implicit_def
-/// br
-/// This block can be optimized away later if the implicit instructions are
-/// removed.
-bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) {
- SmallSet<unsigned, 4> ImpDefRegs;
- MachineBasicBlock::iterator I = MBB->begin();
- while (I != MBB->end()) {
- if (!I->isImplicitDef())
- break;
- unsigned Reg = I->getOperand(0).getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- ImpDefRegs.insert(*SubRegs);
- } else {
- ImpDefRegs.insert(Reg);
- }
- ++I;
- }
- if (ImpDefRegs.empty())
- return false;
-
- MachineBasicBlock::iterator FirstTerm = I;
- while (I != MBB->end()) {
- if (!TII->isUnpredicatedTerminator(*I))
- return false;
- // See if it uses any of the implicitly defined registers.
- for (const MachineOperand &MO : I->operands()) {
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned Reg = MO.getReg();
- if (ImpDefRegs.count(Reg))
- return false;
- }
- ++I;
- }
-
- I = MBB->begin();
- while (I != FirstTerm) {
- MachineInstr *ImpDefMI = &*I;
- ++I;
- MBB->erase(ImpDefMI);
- }
-
- return true;
-}
-
/// OptimizeFunction - Perhaps branch folding, tail merging and other
/// CFG optimizations on the given function. Block placement changes the layout
/// and may create new tail merging opportunities.
@@ -224,7 +174,6 @@ bool BranchFolder::OptimizeFunction(MachineFunction &MF,
SmallVector<MachineOperand, 4> Cond;
if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
- MadeChange |= OptimizeImpDefsBlock(&MBB);
}
// Recalculate funclet membership.
@@ -399,37 +348,16 @@ static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
return TailLen;
}
-void BranchFolder::computeLiveIns(MachineBasicBlock &MBB) {
- if (!UpdateLiveIns)
- return;
-
- LiveRegs.init(TRI);
- LiveRegs.addLiveOutsNoPristines(MBB);
- for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend()))
- LiveRegs.stepBackward(MI);
-
- for (unsigned Reg : LiveRegs) {
- // Skip the register if we are about to add one of its super registers.
- bool ContainsSuperReg = false;
- for (MCSuperRegIterator SReg(Reg, TRI); SReg.isValid(); ++SReg) {
- if (LiveRegs.contains(*SReg)) {
- ContainsSuperReg = true;
- break;
- }
- }
- if (ContainsSuperReg)
- continue;
- MBB.addLiveIn(Reg);
- }
-}
-
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
MachineBasicBlock *NewDest) {
TII->ReplaceTailWithBranchTo(OldInst, NewDest);
- computeLiveIns(*NewDest);
+ if (UpdateLiveIns) {
+ NewDest->clearLiveIns();
+ computeLiveIns(LiveRegs, *TRI, *NewDest);
+ }
++NumTailMerge;
}
@@ -467,7 +395,8 @@ MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
// NewMBB inherits CurMBB's block frequency.
MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
- computeLiveIns(*NewMBB);
+ if (UpdateLiveIns)
+ computeLiveIns(LiveRegs, *TRI, *NewMBB);
// Add the new block to the funclet.
const auto &FuncletI = FuncletMembership.find(&CurMBB);
@@ -511,14 +440,14 @@ static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
MachineBasicBlock *NextBB = &*I;
if (TBB == NextBB && !Cond.empty() && !FBB) {
- if (!TII->ReverseBranchCondition(Cond)) {
- TII->RemoveBranch(*CurMBB);
- TII->InsertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
+ if (!TII->reverseBranchCondition(Cond)) {
+ TII->removeBranch(*CurMBB);
+ TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
return;
}
}
}
- TII->InsertBranch(*CurMBB, SuccBB, nullptr,
+ TII->insertBranch(*CurMBB, SuccBB, nullptr,
SmallVector<MachineOperand, 0>(), dl);
}
@@ -591,13 +520,26 @@ static unsigned CountTerminators(MachineBasicBlock *MBB,
/// and decide if it would be profitable to merge those tails. Return the
/// length of the common tail and iterators to the first common instruction
/// in each block.
+/// MBB1, MBB2 The blocks to check
+/// MinCommonTailLength Minimum size of tail block to be merged.
+/// CommonTailLen Out parameter to record the size of the shared tail between
+/// MBB1 and MBB2
+/// I1, I2 Iterator references that will be changed to point to the first
+/// instruction in the common tail shared by MBB1,MBB2
+/// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
+/// relative to SuccBB
+/// PredBB The layout predecessor of SuccBB, if any.
+/// FuncletMembership map from block to funclet #.
+/// AfterPlacement True if we are merging blocks after layout. Stricter
+/// thresholds apply to prevent undoing tail-duplication.
static bool
ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
- unsigned minCommonTailLength, unsigned &CommonTailLen,
+ unsigned MinCommonTailLength, unsigned &CommonTailLen,
MachineBasicBlock::iterator &I1,
MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
MachineBasicBlock *PredBB,
- DenseMap<const MachineBasicBlock *, int> &FuncletMembership) {
+ DenseMap<const MachineBasicBlock *, int> &FuncletMembership,
+ bool AfterPlacement) {
// It is never profitable to tail-merge blocks from two different funclets.
if (!FuncletMembership.empty()) {
auto Funclet1 = FuncletMembership.find(MBB1);
@@ -617,7 +559,11 @@ ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
// It's almost always profitable to merge any number of non-terminator
// instructions with the block that falls through into the common successor.
- if (MBB1 == PredBB || MBB2 == PredBB) {
+ // This is true only for a single successor. For multiple successors, we are
+ // trading a conditional branch for an unconditional one.
+ // TODO: Re-visit successor size for non-layout tail merging.
+ if ((MBB1 == PredBB || MBB2 == PredBB) &&
+ (!AfterPlacement || MBB1->succ_size() == 1)) {
MachineBasicBlock::iterator I;
unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
if (CommonTailLen > NumTerms)
@@ -635,15 +581,18 @@ ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
// If both blocks have an unconditional branch temporarily stripped out,
// count that as an additional common instruction for the following
- // heuristics.
+ // heuristics. This heuristic is only accurate for single-succ blocks, so to
+ // make sure that during layout merging and duplicating don't crash, we check
+ // for that when merging during layout.
unsigned EffectiveTailLen = CommonTailLen;
if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
+ (MBB1->succ_size() == 1 || !AfterPlacement) &&
!MBB1->back().isBarrier() &&
!MBB2->back().isBarrier())
++EffectiveTailLen;
// Check if the common tail is long enough to be worthwhile.
- if (EffectiveTailLen >= minCommonTailLength)
+ if (EffectiveTailLen >= MinCommonTailLength)
return true;
// If we are optimizing for code size, 2 instructions in common is enough if
@@ -666,7 +615,7 @@ ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
/// those blocks appear in MergePotentials (where they are not necessarily
/// consecutive).
unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
- unsigned minCommonTailLength,
+ unsigned MinCommonTailLength,
MachineBasicBlock *SuccBB,
MachineBasicBlock *PredBB) {
unsigned maxCommonTailLength = 0U;
@@ -679,10 +628,11 @@ unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
unsigned CommonTailLen;
if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
- minCommonTailLength,
+ MinCommonTailLength,
CommonTailLen, TrialBBI1, TrialBBI2,
SuccBB, PredBB,
- FuncletMembership)) {
+ FuncletMembership,
+ AfterBlockPlacement)) {
if (CommonTailLen > maxCommonTailLength) {
SameTails.clear();
maxCommonTailLength = CommonTailLen;
@@ -749,8 +699,6 @@ bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
SameTails[commonTailIndex].getTailStartPos();
MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
- // If the common tail includes any debug info we will take it pretty
- // randomly from one of the inputs. Might be better to remove it?
DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size "
<< maxCommonTailLength);
@@ -832,14 +780,13 @@ mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
// branch to Succ added (but the predecessor/successor lists need no
// adjustment). The lone predecessor of Succ that falls through into Succ,
// if any, is given in PredBB.
+// MinCommonTailLength - Except for the special cases below, tail-merge if
+// there are at least this many instructions in common.
bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
- MachineBasicBlock *PredBB) {
+ MachineBasicBlock *PredBB,
+ unsigned MinCommonTailLength) {
bool MadeChange = false;
- // Except for the special cases below, tail-merge if there are at least
- // this many instructions in common.
- unsigned minCommonTailLength = TailMergeSize;
-
DEBUG(dbgs() << "\nTryTailMergeBlocks: ";
for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber()
@@ -852,8 +799,8 @@ bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
<< PredBB->getNumber() << "\n";
}
dbgs() << "Looking for common tails of at least "
- << minCommonTailLength << " instruction"
- << (minCommonTailLength == 1 ? "" : "s") << '\n';
+ << MinCommonTailLength << " instruction"
+ << (MinCommonTailLength == 1 ? "" : "s") << '\n';
);
// Sort by hash value so that blocks with identical end sequences sort
@@ -867,10 +814,10 @@ bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
// Build SameTails, identifying the set of blocks with this hash code
// and with the maximum number of instructions in common.
unsigned maxCommonTailLength = ComputeSameTails(CurHash,
- minCommonTailLength,
+ MinCommonTailLength,
SuccBB, PredBB);
- // If we didn't find any pair that has at least minCommonTailLength
+ // If we didn't find any pair that has at least MinCommonTailLength
// instructions in common, remove all blocks with this hash code and retry.
if (SameTails.empty()) {
RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
@@ -928,6 +875,11 @@ bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
// Recompute common tail MBB's edge weights and block frequency.
setCommonTailEdgeWeights(*MBB);
+ // Remove the original debug location from the common tail.
+ for (auto &MI : *MBB)
+ if (!MI.isDebugValue())
+ MI.setDebugLoc(DebugLoc());
+
// MBB is common tail. Adjust all other BB's to jump to this one.
// Traversal must be forwards so erases work.
DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber()
@@ -976,7 +928,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
// See if we can do any tail merging on those.
if (MergePotentials.size() >= 2)
- MadeChange |= TryTailMergeBlocks(nullptr, nullptr);
+ MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
}
// Look at blocks (IBB) with multiple predecessors (PBB).
@@ -1056,7 +1008,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
// branch.
SmallVector<MachineOperand, 4> NewCond(Cond);
if (!Cond.empty() && TBB == IBB) {
- if (TII->ReverseBranchCondition(NewCond))
+ if (TII->reverseBranchCondition(NewCond))
continue;
// This is the QBB case described above
if (!FBB) {
@@ -1092,10 +1044,10 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
// Remove the unconditional branch at the end, if any.
if (TBB && (Cond.empty() || FBB)) {
DebugLoc dl; // FIXME: this is nowhere
- TII->RemoveBranch(*PBB);
+ TII->removeBranch(*PBB);
if (!Cond.empty())
// reinsert conditional branch only, for now
- TII->InsertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
+ TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
NewCond, dl);
}
@@ -1110,7 +1062,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
TriedMerging.insert(MergePotentials[i].getBlock());
if (MergePotentials.size() >= 2)
- MadeChange |= TryTailMergeBlocks(IBB, PredBB);
+ MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
// Reinsert an unconditional branch if needed. The 1 below can occur as a
// result of removing blocks in TryTailMergeBlocks.
@@ -1311,10 +1263,10 @@ ReoptimizeBlock:
// a fall-through.
if (PriorTBB && PriorTBB == PriorFBB) {
DebugLoc dl = getBranchDebugLoc(PrevBB);
- TII->RemoveBranch(PrevBB);
+ TII->removeBranch(PrevBB);
PriorCond.clear();
if (PriorTBB != MBB)
- TII->InsertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
+ TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
MadeChange = true;
++NumBranchOpts;
goto ReoptimizeBlock;
@@ -1359,7 +1311,7 @@ ReoptimizeBlock:
// If the previous branch *only* branches to *this* block (conditional or
// not) remove the branch.
if (PriorTBB == MBB && !PriorFBB) {
- TII->RemoveBranch(PrevBB);
+ TII->removeBranch(PrevBB);
MadeChange = true;
++NumBranchOpts;
goto ReoptimizeBlock;
@@ -1369,8 +1321,8 @@ ReoptimizeBlock:
// the condition is false, remove the uncond second branch.
if (PriorFBB == MBB) {
DebugLoc dl = getBranchDebugLoc(PrevBB);
- TII->RemoveBranch(PrevBB);
- TII->InsertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
MadeChange = true;
++NumBranchOpts;
goto ReoptimizeBlock;
@@ -1381,10 +1333,10 @@ ReoptimizeBlock:
// fall-through.
if (PriorTBB == MBB) {
SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
- if (!TII->ReverseBranchCondition(NewPriorCond)) {
+ if (!TII->reverseBranchCondition(NewPriorCond)) {
DebugLoc dl = getBranchDebugLoc(PrevBB);
- TII->RemoveBranch(PrevBB);
- TII->InsertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
MadeChange = true;
++NumBranchOpts;
goto ReoptimizeBlock;
@@ -1416,13 +1368,13 @@ ReoptimizeBlock:
if (DoTransform) {
// Reverse the branch so we will fall through on the previous true cond.
SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
- if (!TII->ReverseBranchCondition(NewPriorCond)) {
+ if (!TII->reverseBranchCondition(NewPriorCond)) {
DEBUG(dbgs() << "\nMoving MBB: " << *MBB
<< "To make fallthrough to: " << *PriorTBB << "\n");
DebugLoc dl = getBranchDebugLoc(PrevBB);
- TII->RemoveBranch(PrevBB);
- TII->InsertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
// Move this block to the end of the function.
MBB->moveAfter(&MF.back());
@@ -1450,10 +1402,10 @@ ReoptimizeBlock:
// Loop: xxx; jncc Loop; jmp Out
if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
SmallVector<MachineOperand, 4> NewCond(CurCond);
- if (!TII->ReverseBranchCondition(NewCond)) {
+ if (!TII->reverseBranchCondition(NewCond)) {
DebugLoc dl = getBranchDebugLoc(*MBB);
- TII->RemoveBranch(*MBB);
- TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
+ TII->removeBranch(*MBB);
+ TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
MadeChange = true;
++NumBranchOpts;
goto ReoptimizeBlock;
@@ -1469,7 +1421,7 @@ ReoptimizeBlock:
// This block may contain just an unconditional branch. Because there can
// be 'non-branch terminators' in the block, try removing the branch and
// then seeing if the block is empty.
- TII->RemoveBranch(*MBB);
+ TII->removeBranch(*MBB);
// If the only things remaining in the block are debug info, remove these
// as well, so this will behave the same as an empty block in non-debug
// mode.
@@ -1500,8 +1452,8 @@ ReoptimizeBlock:
PriorFBB = MBB;
}
DebugLoc pdl = getBranchDebugLoc(PrevBB);
- TII->RemoveBranch(PrevBB);
- TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
}
// Iterate through all the predecessors, revectoring each in-turn.
@@ -1526,9 +1478,9 @@ ReoptimizeBlock:
*PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
DebugLoc pdl = getBranchDebugLoc(*PMBB);
- TII->RemoveBranch(*PMBB);
+ TII->removeBranch(*PMBB);
NewCurCond.clear();
- TII->InsertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
+ TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
MadeChange = true;
++NumBranchOpts;
PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
@@ -1548,7 +1500,7 @@ ReoptimizeBlock:
}
// Add the branch back if the block is more than just an uncond branch.
- TII->InsertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
+ TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
}
}
@@ -1585,7 +1537,7 @@ ReoptimizeBlock:
if (CurFallsThru) {
MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
CurCond.clear();
- TII->InsertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
+ TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
}
MBB->moveAfter(PredBB);
MadeChange = true;
@@ -1615,18 +1567,22 @@ ReoptimizeBlock:
// Okay, there is no really great place to put this block. If, however,
// the block before this one would be a fall-through if this block were
- // removed, move this block to the end of the function.
+ // removed, move this block to the end of the function. There is no real
+ // advantage in "falling through" to an EH block, so we don't want to
+ // perform this transformation for that case.
+ //
+ // Also, Windows EH introduced the possibility of an arbitrary number of
+ // successors to a given block. The analyzeBranch call does not consider
+ // exception handling and so we can get in a state where a block
+ // containing a call is followed by multiple EH blocks that would be
+ // rotated infinitely at the end of the function if the transformation
+ // below were performed for EH "FallThrough" blocks. Therefore, even if
+ // that appears not to be happening anymore, we should assume that it is
+ // possible and not remove the "!FallThrough()->isEHPad" condition below.
MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
SmallVector<MachineOperand, 4> PrevCond;
- // We're looking for cases where PrevBB could possibly fall through to
- // FallThrough, but if FallThrough is an EH pad that wouldn't be useful
- // so here we skip over any EH pads so we might have a chance to find
- // a branch target from PrevBB.
- while (FallThrough != MF.end() && FallThrough->isEHPad())
- ++FallThrough;
- // Now check to see if the current block is sitting between PrevBB and
- // a block to which it could fall through.
if (FallThrough != MF.end() &&
+ !FallThrough->isEHPad() &&
!TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
PrevBB.isSuccessor(&*FallThrough)) {
MBB->moveAfter(&MF.back());
@@ -1720,10 +1676,8 @@ MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
// The terminator is probably a conditional branch, try not to separate the
// branch from condition setting instruction.
- MachineBasicBlock::iterator PI = Loc;
- --PI;
- while (PI != MBB->begin() && PI->isDebugValue())
- --PI;
+ MachineBasicBlock::iterator PI =
+ skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
bool IsDef = false;
for (const MachineOperand &MO : PI->operands()) {
@@ -1817,18 +1771,11 @@ bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
MachineBasicBlock::iterator FIE = FBB->end();
while (TIB != TIE && FIB != FIE) {
// Skip dbg_value instructions. These do not count.
- if (TIB->isDebugValue()) {
- while (TIB != TIE && TIB->isDebugValue())
- ++TIB;
- if (TIB == TIE)
- break;
- }
- if (FIB->isDebugValue()) {
- while (FIB != FIE && FIB->isDebugValue())
- ++FIB;
- if (FIB == FIE)
- break;
- }
+ TIB = skipDebugInstructionsForward(TIB, TIE);
+ FIB = skipDebugInstructionsForward(FIB, FIE);
+ if (TIB == TIE || FIB == FIE)
+ break;
+
if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
break;
@@ -1929,14 +1876,21 @@ bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
FBB->erase(FBB->begin(), FIB);
// Update livein's.
+ bool AddedLiveIns = false;
for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
unsigned Def = LocalDefs[i];
if (LocalDefsSet.count(Def)) {
TBB->addLiveIn(Def);
FBB->addLiveIn(Def);
+ AddedLiveIns = true;
}
}
+ if (AddedLiveIns) {
+ TBB->sortUniqueLiveIns();
+ FBB->sortUniqueLiveIns();
+ }
+
++NumHoist;
return true;
}
diff --git a/contrib/llvm/lib/CodeGen/BranchFolding.h b/contrib/llvm/lib/CodeGen/BranchFolding.h
index 36a5a2e..fc48e48 100644
--- a/contrib/llvm/lib/CodeGen/BranchFolding.h
+++ b/contrib/llvm/lib/CodeGen/BranchFolding.h
@@ -29,9 +29,13 @@ namespace llvm {
public:
class MBFIWrapper;
- explicit BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
+ explicit BranchFolder(bool defaultEnableTailMerge,
+ bool CommonHoist,
MBFIWrapper &MBFI,
- const MachineBranchProbabilityInfo &MBPI);
+ const MachineBranchProbabilityInfo &MBPI,
+ // Min tail length to merge. Defaults to commandline
+ // flag. Ignored for optsize.
+ unsigned MinCommonTailLength = 0);
bool OptimizeFunction(MachineFunction &MF, const TargetInstrInfo *tii,
const TargetRegisterInfo *tri, MachineModuleInfo *mmi,
@@ -99,6 +103,7 @@ namespace llvm {
bool EnableTailMerge;
bool EnableHoistCommonCode;
bool UpdateLiveIns;
+ unsigned MinCommonTailLength;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineModuleInfo *MMI;
@@ -129,9 +134,9 @@ namespace llvm {
bool TailMergeBlocks(MachineFunction &MF);
bool TryTailMergeBlocks(MachineBasicBlock* SuccBB,
- MachineBasicBlock* PredBB);
+ MachineBasicBlock* PredBB,
+ unsigned MinCommonTailLength);
void setCommonTailEdgeWeights(MachineBasicBlock &TailMBB);
- void computeLiveIns(MachineBasicBlock &MBB);
void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
MachineBasicBlock *NewDest);
MachineBasicBlock *SplitMBBAt(MachineBasicBlock &CurMBB,
@@ -150,7 +155,6 @@ namespace llvm {
bool OptimizeBranches(MachineFunction &MF);
bool OptimizeBlock(MachineBasicBlock *MBB);
void RemoveDeadBlock(MachineBasicBlock *MBB);
- bool OptimizeImpDefsBlock(MachineBasicBlock *MBB);
bool HoistCommonCode(MachineFunction &MF);
bool HoistCommonCodeInSuccs(MachineBasicBlock *MBB);
diff --git a/contrib/llvm/lib/CodeGen/BranchRelaxation.cpp b/contrib/llvm/lib/CodeGen/BranchRelaxation.cpp
new file mode 100644
index 0000000..8b27570
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/BranchRelaxation.cpp
@@ -0,0 +1,510 @@
+//===-- BranchRelaxation.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "branch-relaxation"
+
+STATISTIC(NumSplit, "Number of basic blocks split");
+STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
+STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
+
+#define BRANCH_RELAX_NAME "Branch relaxation pass"
+
+namespace {
+class BranchRelaxation : public MachineFunctionPass {
+ /// BasicBlockInfo - Information about the offset and size of a single
+ /// basic block.
+ struct BasicBlockInfo {
+ /// Offset - Distance from the beginning of the function to the beginning
+ /// of this basic block.
+ ///
+ /// The offset is always aligned as required by the basic block.
+ unsigned Offset;
+
+ /// Size - Size of the basic block in bytes. If the block contains
+ /// inline assembly, this is a worst case estimate.
+ ///
+ /// The size does not include any alignment padding whether from the
+ /// beginning of the block, or from an aligned jump table at the end.
+ unsigned Size;
+
+ BasicBlockInfo() : Offset(0), Size(0) {}
+
+ /// Compute the offset immediately following this block. \p MBB is the next
+ /// block.
+ unsigned postOffset(const MachineBasicBlock &MBB) const {
+ unsigned PO = Offset + Size;
+ unsigned Align = MBB.getAlignment();
+ if (Align == 0)
+ return PO;
+
+ unsigned AlignAmt = 1 << Align;
+ unsigned ParentAlign = MBB.getParent()->getAlignment();
+ if (Align <= ParentAlign)
+ return PO + OffsetToAlignment(PO, AlignAmt);
+
+ // The alignment of this MBB is larger than the function's alignment, so we
+ // can't tell whether or not it will insert nops. Assume that it will.
+ return PO + AlignAmt + OffsetToAlignment(PO, AlignAmt);
+ }
+ };
+
+ SmallVector<BasicBlockInfo, 16> BlockInfo;
+ std::unique_ptr<RegScavenger> RS;
+ LivePhysRegs LiveRegs;
+
+ MachineFunction *MF;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+
+ bool relaxBranchInstructions();
+ void scanFunction();
+
+ MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
+
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
+ MachineBasicBlock *DestBB);
+ void adjustBlockOffsets(MachineBasicBlock &MBB);
+ bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
+
+ bool fixupConditionalBranch(MachineInstr &MI);
+ bool fixupUnconditionalBranch(MachineInstr &MI);
+ uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
+ unsigned getInstrOffset(const MachineInstr &MI) const;
+ void dumpBBs();
+ void verify();
+
+public:
+ static char ID;
+ BranchRelaxation() : MachineFunctionPass(ID) { }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ StringRef getPassName() const override {
+ return BRANCH_RELAX_NAME;
+ }
+};
+
+}
+
+char BranchRelaxation::ID = 0;
+char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
+
+INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
+
+/// verify - check BBOffsets, BBSizes, alignment of islands
+void BranchRelaxation::verify() {
+#ifndef NDEBUG
+ unsigned PrevNum = MF->begin()->getNumber();
+ for (MachineBasicBlock &MBB : *MF) {
+ unsigned Align = MBB.getAlignment();
+ unsigned Num = MBB.getNumber();
+ assert(BlockInfo[Num].Offset % (1u << Align) == 0);
+ assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
+ assert(BlockInfo[Num].Size == computeBlockSize(MBB));
+ PrevNum = Num;
+ }
+#endif
+}
+
+/// print block size and offset information - debugging
+void BranchRelaxation::dumpBBs() {
+ for (auto &MBB : *MF) {
+ const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
+ dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
+ << format("size=%#x\n", BBI.Size);
+ }
+}
+
+/// scanFunction - Do the initial scan of the function, building up
+/// information about each block.
+void BranchRelaxation::scanFunction() {
+ BlockInfo.clear();
+ BlockInfo.resize(MF->getNumBlockIDs());
+
+ // First thing, compute the size of all basic blocks, and see if the function
+ // has any inline assembly in it. If so, we have to be conservative about
+ // alignment assumptions, as we don't know for sure the size of any
+ // instructions in the inline assembly.
+ for (MachineBasicBlock &MBB : *MF)
+ BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
+
+ // Compute block offsets and known bits.
+ adjustBlockOffsets(*MF->begin());
+}
+
+/// computeBlockSize - Compute the size for MBB.
+uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
+ uint64_t Size = 0;
+ for (const MachineInstr &MI : MBB)
+ Size += TII->getInstSizeInBytes(MI);
+ return Size;
+}
+
+/// getInstrOffset - Return the current offset of the specified machine
+/// instruction from the start of the function. This offset changes as stuff is
+/// moved around inside the function.
+unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
+ const MachineBasicBlock *MBB = MI.getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->getInstSizeInBytes(*I);
+ }
+
+ return Offset;
+}
+
+void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
+ unsigned PrevNum = Start.getNumber();
+ for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
+ unsigned Num = MBB.getNumber();
+ if (!Num) // block zero is never changed from offset zero.
+ continue;
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
+
+ PrevNum = Num;
+ }
+}
+
+ /// Insert a new empty basic block and insert it after \BB
+MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(BB.getBasicBlock());
+ MF->insert(++BB.getIterator(), NewBB);
+
+ // Insert an entry into BlockInfo to align it properly with the block numbers.
+ BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ return NewBB;
+}
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
+ MachineBasicBlock *DestBB) {
+ MachineBasicBlock *OrigBB = MI.getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MF->insert(++OrigBB->getIterator(), NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+ TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
+
+ // Insert an entry into BlockInfo to align it properly with the block numbers.
+ BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+
+ NewBB->transferSuccessors(OrigBB);
+ OrigBB->addSuccessor(NewBB);
+ OrigBB->addSuccessor(DestBB);
+
+ // Cleanup potential unconditional branch to successor block.
+ // Note that updateTerminator may change the size of the blocks.
+ NewBB->updateTerminator();
+ OrigBB->updateTerminator();
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBlockOffsets(*OrigBB);
+
+ // Need to fix live-in lists if we track liveness.
+ if (TRI->trackLivenessAfterRegAlloc(*MF))
+ computeLiveIns(LiveRegs, *TRI, *NewBB);
+
+ ++NumSplit;
+
+ return NewBB;
+}
+
+/// isBlockInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool BranchRelaxation::isBlockInRange(
+ const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
+ int64_t BrOffset = getInstrOffset(MI);
+ int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
+
+ if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
+ return true;
+
+ DEBUG(
+ dbgs() << "Out of range branch to destination BB#" << DestBB.getNumber()
+ << " from BB#" << MI.getParent()->getNumber()
+ << " to " << DestOffset
+ << " offset " << DestOffset - BrOffset
+ << '\t' << MI
+ );
+
+ return false;
+}
+
+/// fixupConditionalBranch - Fix up a conditional branch whose destination is
+/// too far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
+ DebugLoc DL = MI.getDebugLoc();
+ MachineBasicBlock *MBB = MI.getParent();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+
+ bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
+ assert(!Fail && "branches to be relaxed must be analyzable");
+ (void)Fail;
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // tbz L1
+ // =>
+ // tbnz L2
+ // b L1
+ // L2:
+
+ if (FBB && isBlockInRange(MI, *FBB)) {
+ // Last MI in the BB is an unconditional branch. We can simply invert the
+ // condition and swap destinations:
+ // beq L1
+ // b L2
+ // =>
+ // bne L2
+ // b L1
+ DEBUG(dbgs() << " Invert condition and swap "
+ "its destination with " << MBB->back());
+
+ TII->reverseBranchCondition(Cond);
+ int OldSize = 0, NewSize = 0;
+ TII->removeBranch(*MBB, &OldSize);
+ TII->insertBranch(*MBB, FBB, TBB, Cond, DL, &NewSize);
+
+ BlockInfo[MBB->getNumber()].Size += (NewSize - OldSize);
+ return true;
+ } else if (FBB) {
+ // We need to split the basic block here to obtain two long-range
+ // unconditional branches.
+ auto &NewBB = *MF->CreateMachineBasicBlock(MBB->getBasicBlock());
+ MF->insert(++MBB->getIterator(), &NewBB);
+
+ // Insert an entry into BlockInfo to align it properly with the block
+ // numbers.
+ BlockInfo.insert(BlockInfo.begin() + NewBB.getNumber(), BasicBlockInfo());
+
+ unsigned &NewBBSize = BlockInfo[NewBB.getNumber()].Size;
+ int NewBrSize;
+ TII->insertUnconditionalBranch(NewBB, FBB, DL, &NewBrSize);
+ NewBBSize += NewBrSize;
+
+ // Update the successor lists according to the transformation to follow.
+ // Do it here since if there's no split, no update is needed.
+ MBB->replaceSuccessor(FBB, &NewBB);
+ NewBB.addSuccessor(FBB);
+ }
+
+ // We now have an appropriate fall-through block in place (either naturally or
+ // just created), so we can invert the condition.
+ MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
+
+ DEBUG(dbgs() << " Insert B to BB#" << TBB->getNumber()
+ << ", invert condition and change dest. to BB#"
+ << NextBB.getNumber() << '\n');
+
+ unsigned &MBBSize = BlockInfo[MBB->getNumber()].Size;
+
+ // Insert a new conditional branch and a new unconditional branch.
+ int RemovedSize = 0;
+ TII->reverseBranchCondition(Cond);
+ TII->removeBranch(*MBB, &RemovedSize);
+ MBBSize -= RemovedSize;
+
+ int AddedSize = 0;
+ TII->insertBranch(*MBB, &NextBB, TBB, Cond, DL, &AddedSize);
+ MBBSize += AddedSize;
+
+ // Finally, keep the block offsets up to date.
+ adjustBlockOffsets(*MBB);
+ return true;
+}
+
+bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
+ MachineBasicBlock *MBB = MI.getParent();
+
+ unsigned OldBrSize = TII->getInstSizeInBytes(MI);
+ MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
+
+ int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
+ int64_t SrcOffset = getInstrOffset(MI);
+
+ assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
+
+ BlockInfo[MBB->getNumber()].Size -= OldBrSize;
+
+ MachineBasicBlock *BranchBB = MBB;
+
+ // If this was an expanded conditional branch, there is already a single
+ // unconditional branch in a block.
+ if (!MBB->empty()) {
+ BranchBB = createNewBlockAfter(*MBB);
+
+ // Add live outs.
+ for (const MachineBasicBlock *Succ : MBB->successors()) {
+ for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
+ BranchBB->addLiveIn(LiveIn);
+ }
+
+ BranchBB->sortUniqueLiveIns();
+ BranchBB->addSuccessor(DestBB);
+ MBB->replaceSuccessor(DestBB, BranchBB);
+ }
+
+ DebugLoc DL = MI.getDebugLoc();
+ MI.eraseFromParent();
+ BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
+ *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
+
+ adjustBlockOffsets(*MBB);
+ return true;
+}
+
+bool BranchRelaxation::relaxBranchInstructions() {
+ bool Changed = false;
+
+ // Relaxing branches involves creating new basic blocks, so re-eval
+ // end() for termination.
+ for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
+ MachineBasicBlock &MBB = *I;
+
+ // Empty block?
+ MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
+ if (Last == MBB.end())
+ continue;
+
+ // Expand the unconditional branch first if necessary. If there is a
+ // conditional branch, this will end up changing the branch destination of
+ // it to be over the newly inserted indirect branch block, which may avoid
+ // the need to try expanding the conditional branch first, saving an extra
+ // jump.
+ if (Last->isUnconditionalBranch()) {
+ // Unconditional branch destination might be unanalyzable, assume these
+ // are OK.
+ if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
+ if (!isBlockInRange(*Last, *DestBB)) {
+ fixupUnconditionalBranch(*Last);
+ ++NumUnconditionalRelaxed;
+ Changed = true;
+ }
+ }
+ }
+
+ // Loop over the conditional branches.
+ MachineBasicBlock::iterator Next;
+ for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
+ J != MBB.end(); J = Next) {
+ Next = std::next(J);
+ MachineInstr &MI = *J;
+
+ if (MI.isConditionalBranch()) {
+ MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
+ if (!isBlockInRange(MI, *DestBB)) {
+ if (Next != MBB.end() && Next->isConditionalBranch()) {
+ // If there are multiple conditional branches, this isn't an
+ // analyzable block. Split later terminators into a new block so
+ // each one will be analyzable.
+
+ splitBlockBeforeInstr(*Next, DestBB);
+ } else {
+ fixupConditionalBranch(MI);
+ ++NumConditionalRelaxed;
+ }
+
+ Changed = true;
+
+ // This may have modified all of the terminators, so start over.
+ Next = MBB.getFirstTerminator();
+ }
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+
+ DEBUG(dbgs() << "***** BranchRelaxation *****\n");
+
+ const TargetSubtargetInfo &ST = MF->getSubtarget();
+ TII = ST.getInstrInfo();
+
+ TRI = ST.getRegisterInfo();
+ if (TRI->trackLivenessAfterRegAlloc(*MF))
+ RS.reset(new RegScavenger());
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block.
+ scanFunction();
+
+ DEBUG(dbgs() << " Basic blocks before relaxation\n"; dumpBBs(););
+
+ bool MadeChange = false;
+ while (relaxBranchInstructions())
+ MadeChange = true;
+
+ // After a while, this might be made debug-only, but it is not expensive.
+ verify();
+
+ DEBUG(dbgs() << " Basic blocks after relaxation\n\n"; dumpBBs());
+
+ BlockInfo.clear();
+
+ return MadeChange;
+}
diff --git a/contrib/llvm/lib/CodeGen/CallingConvLower.cpp b/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
index 7d67bcf..2e33f14 100644
--- a/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
+++ b/contrib/llvm/lib/CodeGen/CallingConvLower.cpp
@@ -23,6 +23,8 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+
using namespace llvm;
CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
@@ -64,6 +66,22 @@ void CCState::MarkAllocated(unsigned Reg) {
UsedRegs[*AI/32] |= 1 << (*AI&31);
}
+bool CCState::IsShadowAllocatedReg(unsigned Reg) const {
+ if (!isAllocated(Reg))
+ return false;
+
+ for (auto const &ValAssign : Locs) {
+ if (ValAssign.isRegLoc()) {
+ for (MCRegAliasIterator AI(ValAssign.getLocReg(), &TRI, true);
+ AI.isValid(); ++AI) {
+ if (*AI == Reg)
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
/// Analyze an array of argument values,
/// incorporating info about the formals into this state.
void
diff --git a/contrib/llvm/lib/CodeGen/CodeGen.cpp b/contrib/llvm/lib/CodeGen/CodeGen.cpp
index 6679819..4cf9b13 100644
--- a/contrib/llvm/lib/CodeGen/CodeGen.cpp
+++ b/contrib/llvm/lib/CodeGen/CodeGen.cpp
@@ -22,7 +22,9 @@ using namespace llvm;
void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeAtomicExpandPass(Registry);
initializeBranchFolderPassPass(Registry);
+ initializeBranchRelaxationPass(Registry);
initializeCodeGenPreparePass(Registry);
+ initializeCountingFunctionInserterPass(Registry);
initializeDeadMachineInstructionElimPass(Registry);
initializeDetectDeadLanesPass(Registry);
initializeDwarfEHPreparePass(Registry);
@@ -53,6 +55,7 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
initializeMachineLICMPass(Registry);
initializeMachineLoopInfoPass(Registry);
initializeMachineModuleInfoPass(Registry);
+ initializeMachinePipelinerPass(Registry);
initializeMachinePostDominatorTreePass(Registry);
initializeMachineSchedulerPass(Registry);
initializeMachineSinkingPass(Registry);
@@ -68,6 +71,7 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
initializePostRASchedulerPass(Registry);
initializePreISelIntrinsicLoweringLegacyPassPass(Registry);
initializeProcessImplicitDefsPass(Registry);
+ initializeRAGreedyPass(Registry);
initializeRegisterCoalescerPass(Registry);
initializeRenameIndependentSubregsPass(Registry);
initializeShrinkWrapPass(Registry);
diff --git a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
index ede4041..934b470 100644
--- a/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/CodeGenPrepare.cpp
@@ -17,12 +17,16 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -118,6 +122,19 @@ static cl::opt<bool> DisablePreheaderProtect(
"disable-preheader-prot", cl::Hidden, cl::init(false),
cl::desc("Disable protection against removing loop preheaders"));
+static cl::opt<bool> ProfileGuidedSectionPrefix(
+ "profile-guided-section-prefix", cl::Hidden, cl::init(true),
+ cl::desc("Use profile info to add section prefix for hot/cold functions"));
+
+static cl::opt<unsigned> FreqRatioToSkipMerge(
+ "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
+ cl::desc("Skip merging empty blocks if (frequency of empty block) / "
+ "(frequency of destination block) is greater than this ratio"));
+
+static cl::opt<bool> ForceSplitStore(
+ "force-split-store", cl::Hidden, cl::init(false),
+ cl::desc("Force store splitting no matter what the target query says."));
+
namespace {
typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
@@ -130,6 +147,8 @@ class TypePromotionTransaction;
const TargetTransformInfo *TTI;
const TargetLibraryInfo *TLInfo;
const LoopInfo *LI;
+ std::unique_ptr<BlockFrequencyInfo> BFI;
+ std::unique_ptr<BranchProbabilityInfo> BPI;
/// As we scan instructions optimizing them, this is the next instruction
/// to optimize. Transforms that can invalidate this should update it.
@@ -163,10 +182,11 @@ class TypePromotionTransaction;
}
bool runOnFunction(Function &F) override;
- const char *getPassName() const override { return "CodeGen Prepare"; }
+ StringRef getPassName() const override { return "CodeGen Prepare"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: When we can selectively preserve passes, preserve the domtree.
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
@@ -175,8 +195,11 @@ class TypePromotionTransaction;
private:
bool eliminateFallThrough(Function &F);
bool eliminateMostlyEmptyBlocks(Function &F);
+ BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
void eliminateMostlyEmptyBlock(BasicBlock *BB);
+ bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
+ bool isPreheader);
bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
bool optimizeInst(Instruction *I, bool& ModifiedDT);
bool optimizeMemoryInst(Instruction *I, Value *Addr,
@@ -199,13 +222,15 @@ class TypePromotionTransaction;
unsigned CreatedInstCost);
bool splitBranchCondition(Function &F);
bool simplifyOffsetableRelocate(Instruction &I);
- void stripInvariantGroupMetadata(Instruction &I);
};
}
char CodeGenPrepare::ID = 0;
-INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
- "Optimize for code generation", false, false)
+INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
+ "Optimize for code generation", false, false)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare",
+ "Optimize for code generation", false, false)
FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
return new CodeGenPrepare(TM);
@@ -221,6 +246,8 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
// Clear per function information.
InsertedInsts.clear();
PromotedInsts.clear();
+ BFI.reset();
+ BPI.reset();
ModifiedDT = false;
if (TM)
@@ -230,6 +257,15 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
OptSize = F.optForSize();
+ if (ProfileGuidedSectionPrefix) {
+ ProfileSummaryInfo *PSI =
+ getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ if (PSI->isFunctionEntryHot(&F))
+ F.setSectionPrefix(".hot");
+ else if (PSI->isFunctionEntryCold(&F))
+ F.setSectionPrefix(".cold");
+ }
+
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
@@ -364,6 +400,38 @@ bool CodeGenPrepare::eliminateFallThrough(Function &F) {
return Changed;
}
+/// Find a destination block from BB if BB is mergeable empty block.
+BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
+ // If this block doesn't end with an uncond branch, ignore it.
+ BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isUnconditional())
+ return nullptr;
+
+ // If the instruction before the branch (skipping debug info) isn't a phi
+ // node, then other stuff is happening here.
+ BasicBlock::iterator BBI = BI->getIterator();
+ if (BBI != BB->begin()) {
+ --BBI;
+ while (isa<DbgInfoIntrinsic>(BBI)) {
+ if (BBI == BB->begin())
+ break;
+ --BBI;
+ }
+ if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
+ return nullptr;
+ }
+
+ // Do not break infinite loops.
+ BasicBlock *DestBB = BI->getSuccessor(0);
+ if (DestBB == BB)
+ return nullptr;
+
+ if (!canMergeBlocks(BB, DestBB))
+ DestBB = nullptr;
+
+ return DestBB;
+}
+
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
@@ -382,46 +450,106 @@ bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
// Note that this intentionally skips the entry block.
for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
BasicBlock *BB = &*I++;
+ BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
+ if (!DestBB ||
+ !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
+ continue;
+
+ eliminateMostlyEmptyBlock(BB);
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
+ BasicBlock *DestBB,
+ bool isPreheader) {
+ // Do not delete loop preheaders if doing so would create a critical edge.
+ // Loop preheaders can be good locations to spill registers. If the
+ // preheader is deleted and we create a critical edge, registers may be
+ // spilled in the loop body instead.
+ if (!DisablePreheaderProtect && isPreheader &&
+ !(BB->getSinglePredecessor() &&
+ BB->getSinglePredecessor()->getSingleSuccessor()))
+ return false;
+
+ // Try to skip merging if the unique predecessor of BB is terminated by a
+ // switch or indirect branch instruction, and BB is used as an incoming block
+ // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
+ // add COPY instructions in the predecessor of BB instead of BB (if it is not
+ // merged). Note that the critical edge created by merging such blocks wont be
+ // split in MachineSink because the jump table is not analyzable. By keeping
+ // such empty block (BB), ISel will place COPY instructions in BB, not in the
+ // predecessor of BB.
+ BasicBlock *Pred = BB->getUniquePredecessor();
+ if (!Pred ||
+ !(isa<SwitchInst>(Pred->getTerminator()) ||
+ isa<IndirectBrInst>(Pred->getTerminator())))
+ return true;
+
+ if (BB->getTerminator() != BB->getFirstNonPHI())
+ return true;
+
+ // We use a simple cost heuristic which determine skipping merging is
+ // profitable if the cost of skipping merging is less than the cost of
+ // merging : Cost(skipping merging) < Cost(merging BB), where the
+ // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
+ // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
+ // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
+ // Freq(Pred) / Freq(BB) > 2.
+ // Note that if there are multiple empty blocks sharing the same incoming
+ // value for the PHIs in the DestBB, we consider them together. In such
+ // case, Cost(merging BB) will be the sum of their frequencies.
+
+ if (!isa<PHINode>(DestBB->begin()))
+ return true;
- // If this block doesn't end with an uncond branch, ignore it.
- BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || !BI->isUnconditional())
+ SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
+
+ // Find all other incoming blocks from which incoming values of all PHIs in
+ // DestBB are the same as the ones from BB.
+ for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
+ ++PI) {
+ BasicBlock *DestBBPred = *PI;
+ if (DestBBPred == BB)
continue;
- // If the instruction before the branch (skipping debug info) isn't a phi
- // node, then other stuff is happening here.
- BasicBlock::iterator BBI = BI->getIterator();
- if (BBI != BB->begin()) {
- --BBI;
- while (isa<DbgInfoIntrinsic>(BBI)) {
- if (BBI == BB->begin())
- break;
- --BBI;
+ bool HasAllSameValue = true;
+ BasicBlock::const_iterator DestBBI = DestBB->begin();
+ while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
+ if (DestPN->getIncomingValueForBlock(BB) !=
+ DestPN->getIncomingValueForBlock(DestBBPred)) {
+ HasAllSameValue = false;
+ break;
}
- if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
- continue;
}
+ if (HasAllSameValue)
+ SameIncomingValueBBs.insert(DestBBPred);
+ }
- // Do not break infinite loops.
- BasicBlock *DestBB = BI->getSuccessor(0);
- if (DestBB == BB)
- continue;
+ // See if all BB's incoming values are same as the value from Pred. In this
+ // case, no reason to skip merging because COPYs are expected to be place in
+ // Pred already.
+ if (SameIncomingValueBBs.count(Pred))
+ return true;
- if (!canMergeBlocks(BB, DestBB))
- continue;
+ if (!BFI) {
+ Function &F = *BB->getParent();
+ LoopInfo LI{DominatorTree(F)};
+ BPI.reset(new BranchProbabilityInfo(F, LI));
+ BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
+ }
- // Do not delete loop preheaders if doing so would create a critical edge.
- // Loop preheaders can be good locations to spill registers. If the
- // preheader is deleted and we create a critical edge, registers may be
- // spilled in the loop body instead.
- if (!DisablePreheaderProtect && Preheaders.count(BB) &&
- !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor()))
- continue;
+ BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
+ BlockFrequency BBFreq = BFI->getBlockFreq(BB);
- eliminateMostlyEmptyBlock(BB);
- MadeChange = true;
- }
- return MadeChange;
+ for (auto SameValueBB : SameIncomingValueBBs)
+ if (SameValueBB->getUniquePredecessor() == Pred &&
+ DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
+ BBFreq += BFI->getBlockFreq(SameValueBB);
+
+ return PredFreq.getFrequency() <=
+ BBFreq.getFrequency() * FreqRatioToSkipMerge;
}
/// Return true if we can merge BB into DestBB if there is a single
@@ -805,6 +933,14 @@ static bool SinkCast(CastInst *CI) {
///
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
const DataLayout &DL) {
+ // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
+ // than sinking only nop casts, but is helpful on some platforms.
+ if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
+ if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
+ ASC->getDestAddressSpace()))
+ return false;
+ }
+
// If this is a noop copy,
EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(DL, CI->getType());
@@ -925,6 +1061,8 @@ static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
InsertedCmp =
CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
+ // Propagate the debug info.
+ InsertedCmp->setDebugLoc(CI->getDebugLoc());
}
// Replace a use of the cmp with a use of the new cmp.
@@ -1814,18 +1952,8 @@ bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
default: break;
case Intrinsic::objectsize: {
// Lower all uses of llvm.objectsize.*
- uint64_t Size;
- Type *ReturnTy = CI->getType();
- Constant *RetVal = nullptr;
- ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1));
- ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min;
- if (getObjectSize(II->getArgOperand(0),
- Size, *DL, TLInfo, false, Mode)) {
- RetVal = ConstantInt::get(ReturnTy, Size);
- } else {
- RetVal = ConstantInt::get(ReturnTy,
- Mode == ObjSizeMode::Min ? 0 : -1ULL);
- }
+ ConstantInt *RetVal =
+ lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
// Substituting this can cause recursive simplifications, which can
// invalidate our iterator. Use a WeakVH to hold onto it in case this
// happens.
@@ -1963,13 +2091,13 @@ bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
if (!TLI)
return false;
- ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
- if (!RI)
+ ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
+ if (!RetI)
return false;
PHINode *PN = nullptr;
BitCastInst *BCI = nullptr;
- Value *V = RI->getReturnValue();
+ Value *V = RetI->getReturnValue();
if (V) {
BCI = dyn_cast<BitCastInst>(V);
if (BCI)
@@ -1983,14 +2111,6 @@ bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
if (PN && PN->getParent() != BB)
return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- // See llvm::isInTailCallPosition().
- const Function *F = BB->getParent();
- AttributeSet CallerAttrs = F->getAttributes();
- if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
- return false;
-
// Make sure there are no instructions between the PHI and return, or that the
// return is the first instruction in the block.
if (PN) {
@@ -1999,24 +2119,26 @@ bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
if (&*BI == BCI)
// Also skip over the bitcast.
++BI;
- if (&*BI != RI)
+ if (&*BI != RetI)
return false;
} else {
BasicBlock::iterator BI = BB->begin();
while (isa<DbgInfoIntrinsic>(BI)) ++BI;
- if (&*BI != RI)
+ if (&*BI != RetI)
return false;
}
/// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
/// call.
+ const Function *F = BB->getParent();
SmallVector<CallInst*, 4> TailCalls;
if (PN) {
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
// Make sure the phi value is indeed produced by the tail call.
if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
- TLI->mayBeEmittedAsTailCall(CI))
+ TLI->mayBeEmittedAsTailCall(CI) &&
+ attributesPermitTailCall(F, CI, RetI, *TLI))
TailCalls.push_back(CI);
}
} else {
@@ -2033,7 +2155,8 @@ bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
continue;
CallInst *CI = dyn_cast<CallInst>(&*RI);
- if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
+ if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
+ attributesPermitTailCall(F, CI, RetI, *TLI))
TailCalls.push_back(CI);
}
}
@@ -2060,7 +2183,7 @@ bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
continue;
// Duplicate the return into CallBB.
- (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
+ (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
ModifiedDT = Changed = true;
++NumRetsDup;
}
@@ -3237,7 +3360,7 @@ bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
int64_t ConstantOffset = 0;
gep_type_iterator GTI = gep_type_begin(AddrInst);
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx =
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
@@ -3665,8 +3788,7 @@ isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
TPT.rollback(LastKnownGood);
// If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
+ if (!is_contained(MatchedAddrModeInsts, I))
return false;
MatchedAddrModeInsts.clear();
@@ -3791,18 +3913,10 @@ bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
}
TPT.commit();
- // Check to see if any of the instructions supersumed by this addr mode are
- // non-local to I's BB.
- bool AnyNonLocal = false;
- for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
- if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
- AnyNonLocal = true;
- break;
- }
- }
-
// If all the instructions matched are already in this BB, don't do anything.
- if (!AnyNonLocal) {
+ if (none_of(AddrModeInsts, [&](Value *V) {
+ return IsNonLocalValue(V, MemoryInst->getParent());
+ })) {
DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
return false;
}
@@ -4217,6 +4331,10 @@ bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
/// promotions apply.
///
bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
+ // ExtLoad formation infrastructure requires TLI to be effective.
+ if (!TLI)
+ return false;
+
// Try to promote a chain of computation if it allows to form
// an extended load.
TypePromotionTransaction TPT;
@@ -4246,7 +4364,7 @@ bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
// If the load has other users and the truncate is not free, this probably
// isn't worthwhile.
- if (!LI->hasOneUse() && TLI &&
+ if (!LI->hasOneUse() &&
(TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
!TLI->isTruncateFree(I->getType(), LI->getType())) {
I = OldExt;
@@ -4262,7 +4380,7 @@ bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
assert(isa<SExtInst>(I) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
- if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
+ if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) {
I = OldExt;
TPT.rollback(LastKnownGood);
return false;
@@ -4273,6 +4391,14 @@ bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
TPT.commit();
I->removeFromParent();
I->insertAfter(LI);
+ // CGP does not check if the zext would be speculatively executed when moved
+ // to the same basic block as the load. Preserving its original location would
+ // pessimize the debugging experience, as well as negatively impact the
+ // quality of sample pgo. We don't want to use "line 0" as that has a
+ // size cost in the line-table section and logically the zext can be seen as
+ // part of the load. Therefore we conservatively reuse the same debug location
+ // for the load and the zext.
+ I->setDebugLoc(LI->getDebugLoc());
++NumExtsMoved;
return true;
}
@@ -4583,10 +4709,45 @@ static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
return false;
}
+/// If \p isTrue is true, return the true value of \p SI, otherwise return
+/// false value of \p SI. If the true/false value of \p SI is defined by any
+/// select instructions in \p Selects, look through the defining select
+/// instruction until the true/false value is not defined in \p Selects.
+static Value *getTrueOrFalseValue(
+ SelectInst *SI, bool isTrue,
+ const SmallPtrSet<const Instruction *, 2> &Selects) {
+ Value *V;
+
+ for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
+ DefSI = dyn_cast<SelectInst>(V)) {
+ assert(DefSI->getCondition() == SI->getCondition() &&
+ "The condition of DefSI does not match with SI");
+ V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
+ }
+ return V;
+}
/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
+ // Find all consecutive select instructions that share the same condition.
+ SmallVector<SelectInst *, 2> ASI;
+ ASI.push_back(SI);
+ for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
+ It != SI->getParent()->end(); ++It) {
+ SelectInst *I = dyn_cast<SelectInst>(&*It);
+ if (I && SI->getCondition() == I->getCondition()) {
+ ASI.push_back(I);
+ } else {
+ break;
+ }
+ }
+
+ SelectInst *LastSI = ASI.back();
+ // Increment the current iterator to skip all the rest of select instructions
+ // because they will be either "not lowered" or "all lowered" to branch.
+ CurInstIterator = std::next(LastSI->getIterator());
+
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
// Can we convert the 'select' to CF ?
@@ -4633,7 +4794,7 @@ bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
// First, we split the block containing the select into 2 blocks.
BasicBlock *StartBlock = SI->getParent();
- BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
+ BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
// Delete the unconditional branch that was just created by the split.
@@ -4643,22 +4804,30 @@ bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr;
BasicBlock *FalseBlock = nullptr;
+ BranchInst *TrueBranch = nullptr;
+ BranchInst *FalseBranch = nullptr;
// Sink expensive instructions into the conditional blocks to avoid executing
// them speculatively.
- if (sinkSelectOperand(TTI, SI->getTrueValue())) {
- TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
- EndBlock->getParent(), EndBlock);
- auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
- auto *TrueInst = cast<Instruction>(SI->getTrueValue());
- TrueInst->moveBefore(TrueBranch);
- }
- if (sinkSelectOperand(TTI, SI->getFalseValue())) {
- FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
- EndBlock->getParent(), EndBlock);
- auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
- auto *FalseInst = cast<Instruction>(SI->getFalseValue());
- FalseInst->moveBefore(FalseBranch);
+ for (SelectInst *SI : ASI) {
+ if (sinkSelectOperand(TTI, SI->getTrueValue())) {
+ if (TrueBlock == nullptr) {
+ TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
+ EndBlock->getParent(), EndBlock);
+ TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
+ }
+ auto *TrueInst = cast<Instruction>(SI->getTrueValue());
+ TrueInst->moveBefore(TrueBranch);
+ }
+ if (sinkSelectOperand(TTI, SI->getFalseValue())) {
+ if (FalseBlock == nullptr) {
+ FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
+ EndBlock->getParent(), EndBlock);
+ FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
+ }
+ auto *FalseInst = cast<Instruction>(SI->getFalseValue());
+ FalseInst->moveBefore(FalseBranch);
+ }
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
@@ -4677,28 +4846,42 @@ bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
+ BasicBlock *TT, *FT;
if (TrueBlock == nullptr) {
- BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
+ TT = EndBlock;
+ FT = FalseBlock;
TrueBlock = StartBlock;
} else if (FalseBlock == nullptr) {
- BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
+ TT = TrueBlock;
+ FT = EndBlock;
FalseBlock = StartBlock;
} else {
- BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
+ TT = TrueBlock;
+ FT = FalseBlock;
+ }
+ IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
+
+ SmallPtrSet<const Instruction *, 2> INS;
+ INS.insert(ASI.begin(), ASI.end());
+ // Use reverse iterator because later select may use the value of the
+ // earlier select, and we need to propagate value through earlier select
+ // to get the PHI operand.
+ for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
+ SelectInst *SI = *It;
+ // The select itself is replaced with a PHI Node.
+ PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
+ PN->takeName(SI);
+ PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
+ PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
+
+ SI->replaceAllUsesWith(PN);
+ SI->eraseFromParent();
+ INS.erase(SI);
+ ++NumSelectsExpanded;
}
-
- // The select itself is replaced with a PHI Node.
- PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
- PN->takeName(SI);
- PN->addIncoming(SI->getTrueValue(), TrueBlock);
- PN->addIncoming(SI->getFalseValue(), FalseBlock);
-
- SI->replaceAllUsesWith(PN);
- SI->eraseFromParent();
// Instruct OptimizeBlock to skip to the next block.
CurInstIterator = StartBlock->end();
- ++NumSelectsExpanded;
return true;
}
@@ -5179,6 +5362,117 @@ bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
return false;
}
+/// For the instruction sequence of store below, F and I values
+/// are bundled together as an i64 value before being stored into memory.
+/// Sometimes it is more efficent to generate separate stores for F and I,
+/// which can remove the bitwise instructions or sink them to colder places.
+///
+/// (store (or (zext (bitcast F to i32) to i64),
+/// (shl (zext I to i64), 32)), addr) -->
+/// (store F, addr) and (store I, addr+4)
+///
+/// Similarly, splitting for other merged store can also be beneficial, like:
+/// For pair of {i32, i32}, i64 store --> two i32 stores.
+/// For pair of {i32, i16}, i64 store --> two i32 stores.
+/// For pair of {i16, i16}, i32 store --> two i16 stores.
+/// For pair of {i16, i8}, i32 store --> two i16 stores.
+/// For pair of {i8, i8}, i16 store --> two i8 stores.
+///
+/// We allow each target to determine specifically which kind of splitting is
+/// supported.
+///
+/// The store patterns are commonly seen from the simple code snippet below
+/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
+/// void goo(const std::pair<int, float> &);
+/// hoo() {
+/// ...
+/// goo(std::make_pair(tmp, ftmp));
+/// ...
+/// }
+///
+/// Although we already have similar splitting in DAG Combine, we duplicate
+/// it in CodeGenPrepare to catch the case in which pattern is across
+/// multiple BBs. The logic in DAG Combine is kept to catch case generated
+/// during code expansion.
+static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
+ const TargetLowering &TLI) {
+ // Handle simple but common cases only.
+ Type *StoreType = SI.getValueOperand()->getType();
+ if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
+ DL.getTypeSizeInBits(StoreType) == 0)
+ return false;
+
+ unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
+ Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
+ if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
+ DL.getTypeSizeInBits(SplitStoreType))
+ return false;
+
+ // Match the following patterns:
+ // (store (or (zext LValue to i64),
+ // (shl (zext HValue to i64), 32)), HalfValBitSize)
+ // or
+ // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
+ // (zext LValue to i64),
+ // Expect both operands of OR and the first operand of SHL have only
+ // one use.
+ Value *LValue, *HValue;
+ if (!match(SI.getValueOperand(),
+ m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
+ m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
+ m_SpecificInt(HalfValBitSize))))))
+ return false;
+
+ // Check LValue and HValue are int with size less or equal than 32.
+ if (!LValue->getType()->isIntegerTy() ||
+ DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
+ !HValue->getType()->isIntegerTy() ||
+ DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
+ return false;
+
+ // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
+ // as the input of target query.
+ auto *LBC = dyn_cast<BitCastInst>(LValue);
+ auto *HBC = dyn_cast<BitCastInst>(HValue);
+ EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
+ : EVT::getEVT(LValue->getType());
+ EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
+ : EVT::getEVT(HValue->getType());
+ if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
+ return false;
+
+ // Start to split store.
+ IRBuilder<> Builder(SI.getContext());
+ Builder.SetInsertPoint(&SI);
+
+ // If LValue/HValue is a bitcast in another BB, create a new one in current
+ // BB so it may be merged with the splitted stores by dag combiner.
+ if (LBC && LBC->getParent() != SI.getParent())
+ LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
+ if (HBC && HBC->getParent() != SI.getParent())
+ HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
+
+ auto CreateSplitStore = [&](Value *V, bool Upper) {
+ V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
+ Value *Addr = Builder.CreateBitCast(
+ SI.getOperand(1),
+ SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
+ if (Upper)
+ Addr = Builder.CreateGEP(
+ SplitStoreType, Addr,
+ ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
+ Builder.CreateAlignedStore(
+ V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
+ };
+
+ CreateSplitStore(LValue, false);
+ CreateSplitStore(HValue, true);
+
+ // Delete the old store.
+ SI.eraseFromParent();
+ return true;
+}
+
bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
// Bail out if we inserted the instruction to prevent optimizations from
// stepping on each other's toes.
@@ -5232,7 +5526,7 @@ bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
return OptimizeCmpExpression(CI, TLI);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- stripInvariantGroupMetadata(*LI);
+ LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
if (TLI) {
bool Modified = optimizeLoadExt(LI);
unsigned AS = LI->getPointerAddressSpace();
@@ -5243,7 +5537,9 @@ bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- stripInvariantGroupMetadata(*SI);
+ if (TLI && splitMergedValStore(*SI, *DL, *TLI))
+ return true;
+ SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
if (TLI) {
unsigned AS = SI->getPointerAddressSpace();
return optimizeMemoryInst(I, SI->getOperand(1),
@@ -5542,7 +5838,7 @@ bool CodeGenPrepare::splitBranchCondition(Function &F) {
// incoming edge to the PHI nodes, because both branch instructions target
// now the same successor. Depending on the original branch condition
// (and/or) we have to swap the successors (TrueDest, FalseDest), so that
- // we perfrom the correct update for the PHI nodes.
+ // we perform the correct update for the PHI nodes.
// This doesn't change the successor order of the just created branch
// instruction (or any other instruction).
if (Opc == Instruction::Or)
@@ -5649,8 +5945,3 @@ bool CodeGenPrepare::splitBranchCondition(Function &F) {
}
return MadeChange;
}
-
-void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
- if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
- I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
-}
diff --git a/contrib/llvm/lib/CodeGen/CountingFunctionInserter.cpp b/contrib/llvm/lib/CodeGen/CountingFunctionInserter.cpp
new file mode 100644
index 0000000..1e46a7a
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/CountingFunctionInserter.cpp
@@ -0,0 +1,62 @@
+//===- CountingFunctionInserter.cpp - Insert mcount-like function calls ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Insert calls to counter functions, such as mcount, intended to be called
+// once per function, at the beginning of each function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+namespace {
+ struct CountingFunctionInserter : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ CountingFunctionInserter() : FunctionPass(ID) {
+ initializeCountingFunctionInserterPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override {
+ std::string CountingFunctionName =
+ F.getFnAttribute("counting-function").getValueAsString();
+ if (CountingFunctionName.empty())
+ return false;
+
+ Type *VoidTy = Type::getVoidTy(F.getContext());
+ Constant *CountingFn =
+ F.getParent()->getOrInsertFunction(CountingFunctionName,
+ VoidTy, nullptr);
+ CallInst::Create(CountingFn, "", &*F.begin()->getFirstInsertionPt());
+ return true;
+ }
+ };
+
+ char CountingFunctionInserter::ID = 0;
+}
+
+INITIALIZE_PASS(CountingFunctionInserter, "cfinserter",
+ "Inserts calls to mcount-like functions", false, false)
+
+//===----------------------------------------------------------------------===//
+//
+// CountingFunctionInserter - Give any unnamed non-void instructions "tmp" names.
+//
+FunctionPass *llvm::createCountingFunctionInserterPass() {
+ return new CountingFunctionInserter();
+}
diff --git a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
index a0189a1..5d60c30 100644
--- a/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
+++ b/contrib/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
@@ -69,8 +69,8 @@ void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
// Mark live-out callee-saved registers. In a return block this is
// all callee-saved registers. In non-return this is any
// callee-saved register that is not saved in the prolog.
- const MachineFrameInfo *MFI = MF.getFrameInfo();
- BitVector Pristine = MFI->getPristineRegs(MF);
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ BitVector Pristine = MFI.getPristineRegs(MF);
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
if (!IsReturnBlock && !Pristine.test(*I)) continue;
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
diff --git a/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp b/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
index 2386af9..7b1b2d6 100644
--- a/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
+++ b/contrib/llvm/lib/CodeGen/DFAPacketizer.cpp
@@ -31,9 +31,14 @@
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/CommandLine.h"
using namespace llvm;
+static cl::opt<unsigned> InstrLimit("dfa-instr-limit", cl::Hidden,
+ cl::init(0), cl::desc("If present, stops packetizing after N instructions"));
+static unsigned InstrCount = 0;
+
// --------------------------------------------------------------------
// Definitions shared between DFAPacketizer.cpp and DFAPacketizerEmitter.cpp
@@ -218,6 +223,13 @@ VLIWPacketizerList::~VLIWPacketizerList() {
// End the current packet, bundle packet instructions and reset DFA state.
void VLIWPacketizerList::endPacket(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI) {
+ DEBUG({
+ if (!CurrentPacketMIs.empty()) {
+ dbgs() << "Finalizing packet:\n";
+ for (MachineInstr *MI : CurrentPacketMIs)
+ dbgs() << " * " << *MI;
+ }
+ });
if (CurrentPacketMIs.size() > 1) {
MachineInstr &MIFirst = *CurrentPacketMIs.front();
finalizeBundle(*MBB, MIFirst.getIterator(), MI.getInstrIterator());
@@ -249,8 +261,17 @@ void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB,
for (SUnit &SU : VLIWScheduler->SUnits)
MIToSUnit[SU.getInstr()] = &SU;
+ bool LimitPresent = InstrLimit.getPosition();
+
// The main packetizer loop.
for (; BeginItr != EndItr; ++BeginItr) {
+ if (LimitPresent) {
+ if (InstrCount >= InstrLimit) {
+ EndItr = BeginItr;
+ break;
+ }
+ InstrCount++;
+ }
MachineInstr &MI = *BeginItr;
initPacketizerState();
diff --git a/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp b/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
index 0b8dc7a..17c229a 100644
--- a/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
+++ b/contrib/llvm/lib/CodeGen/DeadMachineInstructionElim.cpp
@@ -122,7 +122,7 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
// liveness as we go.
for (MachineBasicBlock::reverse_iterator MII = MBB.rbegin(),
MIE = MBB.rend(); MII != MIE; ) {
- MachineInstr *MI = &*MII;
+ MachineInstr *MI = &*MII++;
// If the instruction is dead, delete it!
if (isDead(MI)) {
@@ -133,9 +133,6 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
MI->eraseFromParentAndMarkDBGValuesForRemoval();
AnyChanges = true;
++NumDeletes;
- MIE = MBB.rend();
- // MII is now pointing to the next instruction to process,
- // so don't increment it.
continue;
}
@@ -169,10 +166,6 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
}
}
}
-
- // We didn't delete the current instruction, so increment MII to
- // the next one.
- ++MII;
}
}
diff --git a/contrib/llvm/lib/CodeGen/DetectDeadLanes.cpp b/contrib/llvm/lib/CodeGen/DetectDeadLanes.cpp
index 1d9e79c..a7ba694 100644
--- a/contrib/llvm/lib/CodeGen/DetectDeadLanes.cpp
+++ b/contrib/llvm/lib/CodeGen/DetectDeadLanes.cpp
@@ -63,7 +63,7 @@ public:
static char ID;
DetectDeadLanes() : MachineFunctionPass(ID) {}
- const char *getPassName() const override { return "Detect Dead Lanes"; }
+ StringRef getPassName() const override { return "Detect Dead Lanes"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
@@ -210,7 +210,7 @@ void DetectDeadLanes::addUsedLanesOnOperand(const MachineOperand &MO,
VRegInfo &MORegInfo = VRegInfos[MORegIdx];
LaneBitmask PrevUsedLanes = MORegInfo.UsedLanes;
// Any change at all?
- if ((UsedLanes & ~PrevUsedLanes) == 0)
+ if ((UsedLanes & ~PrevUsedLanes).none())
return;
// Set UsedLanes and remember instruction for further propagation.
@@ -303,7 +303,7 @@ void DetectDeadLanes::transferDefinedLanesStep(const MachineOperand &Use,
VRegInfo &RegInfo = VRegInfos[DefRegIdx];
LaneBitmask PrevDefinedLanes = RegInfo.DefinedLanes;
// Any change at all?
- if ((DefinedLanes & ~PrevDefinedLanes) == 0)
+ if ((DefinedLanes & ~PrevDefinedLanes).none())
return;
RegInfo.DefinedLanes = PrevDefinedLanes | DefinedLanes;
@@ -356,7 +356,7 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
// Live-In or unused registers have no definition but are considered fully
// defined.
if (!MRI->hasOneDef(Reg))
- return ~0u;
+ return LaneBitmask::getAll();
const MachineOperand &Def = *MRI->def_begin(Reg);
const MachineInstr &DefMI = *Def.getParent();
@@ -368,7 +368,7 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
PutInWorklist(RegIdx);
if (Def.isDead())
- return 0;
+ return LaneBitmask::getNone();
// COPY/PHI can copy across unrelated register classes (example: float/int)
// with incompatible subregister structure. Do not include these in the
@@ -376,7 +376,7 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
// Determine initially DefinedLanes.
- LaneBitmask DefinedLanes = 0;
+ LaneBitmask DefinedLanes;
for (const MachineOperand &MO : DefMI.uses()) {
if (!MO.isReg() || !MO.readsReg())
continue;
@@ -386,9 +386,9 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
LaneBitmask MODefinedLanes;
if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
- MODefinedLanes = ~0u;
+ MODefinedLanes = LaneBitmask::getAll();
} else if (isCrossCopy(*MRI, DefMI, DefRC, MO)) {
- MODefinedLanes = ~0u;
+ MODefinedLanes = LaneBitmask::getAll();
} else {
assert(TargetRegisterInfo::isVirtualRegister(MOReg));
if (MRI->hasOneDef(MOReg)) {
@@ -410,7 +410,7 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
return DefinedLanes;
}
if (DefMI.isImplicitDef() || Def.isDead())
- return 0;
+ return LaneBitmask::getNone();
assert(Def.getSubReg() == 0 &&
"Should not have subregister defs in machine SSA phase");
@@ -418,7 +418,7 @@ LaneBitmask DetectDeadLanes::determineInitialDefinedLanes(unsigned Reg) {
}
LaneBitmask DetectDeadLanes::determineInitialUsedLanes(unsigned Reg) {
- LaneBitmask UsedLanes = 0;
+ LaneBitmask UsedLanes = LaneBitmask::getNone();
for (const MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
if (!MO.readsReg())
continue;
@@ -462,7 +462,7 @@ bool DetectDeadLanes::isUndefRegAtInput(const MachineOperand &MO,
const VRegInfo &RegInfo) const {
unsigned SubReg = MO.getSubReg();
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
- return (RegInfo.DefinedLanes & RegInfo.UsedLanes & Mask) == 0;
+ return (RegInfo.DefinedLanes & RegInfo.UsedLanes & Mask).none();
}
bool DetectDeadLanes::isUndefInput(const MachineOperand &MO,
@@ -482,7 +482,7 @@ bool DetectDeadLanes::isUndefInput(const MachineOperand &MO,
const VRegInfo &DefRegInfo = VRegInfos[DefRegIdx];
LaneBitmask UsedLanes = transferUsedLanes(MI, DefRegInfo.UsedLanes, MO);
- if (UsedLanes != 0)
+ if (UsedLanes.any())
return false;
unsigned MOReg = MO.getReg();
@@ -546,7 +546,7 @@ bool DetectDeadLanes::runOnce(MachineFunction &MF) {
continue;
unsigned RegIdx = TargetRegisterInfo::virtReg2Index(Reg);
const VRegInfo &RegInfo = VRegInfos[RegIdx];
- if (MO.isDef() && !MO.isDead() && RegInfo.UsedLanes == 0) {
+ if (MO.isDef() && !MO.isDead() && RegInfo.UsedLanes.none()) {
DEBUG(dbgs() << "Marking operand '" << MO << "' as dead in " << MI);
MO.setIsDead();
}
@@ -577,12 +577,12 @@ bool DetectDeadLanes::runOnMachineFunction(MachineFunction &MF) {
// register coalescer cannot deal with hidden dead defs. However without
// subregister liveness enabled, the expected benefits of this pass are small
// so we safe the compile time.
- if (!MF.getSubtarget().enableSubRegLiveness()) {
+ MRI = &MF.getRegInfo();
+ if (!MRI->subRegLivenessEnabled()) {
DEBUG(dbgs() << "Skipping Detect dead lanes pass\n");
return false;
}
- MRI = &MF.getRegInfo();
TRI = MRI->getTargetRegisterInfo();
unsigned NumVirtRegs = MRI->getNumVirtRegs();
diff --git a/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp b/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
index eae78a9..38af19a 100644
--- a/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/DwarfEHPrepare.cpp
@@ -71,7 +71,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const override;
- const char *getPassName() const override {
+ StringRef getPassName() const override {
return "Exception handling preparation";
}
};
diff --git a/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp b/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
index 8c96124..7291727 100644
--- a/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
+++ b/contrib/llvm/lib/CodeGen/EarlyIfConversion.cpp
@@ -547,7 +547,7 @@ void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock*> &RemovedBlocks) {
// Fix up Head's terminators.
// It should become a single branch or a fallthrough.
DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
- TII->RemoveBranch(*Head);
+ TII->removeBranch(*Head);
// Erase the now empty conditional blocks. It is likely that Head can fall
// through to Tail, and we can join the two blocks.
@@ -574,7 +574,7 @@ void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock*> &RemovedBlocks) {
// We need a branch to Tail, let code placement work it out later.
DEBUG(dbgs() << "Converting to unconditional branch.\n");
SmallVector<MachineOperand, 0> EmptyCond;
- TII->InsertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
+ TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
Head->addSuccessor(Tail);
}
DEBUG(dbgs() << *Head);
@@ -602,7 +602,7 @@ public:
EarlyIfConverter() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
- const char *getPassName() const override { return "Early If-Conversion"; }
+ StringRef getPassName() const override { return "Early If-Conversion"; }
private:
bool tryConvertIf(MachineBasicBlock*);
diff --git a/contrib/llvm/lib/CodeGen/EdgeBundles.cpp b/contrib/llvm/lib/CodeGen/EdgeBundles.cpp
index aea7c31..b3a25544 100644
--- a/contrib/llvm/lib/CodeGen/EdgeBundles.cpp
+++ b/contrib/llvm/lib/CodeGen/EdgeBundles.cpp
@@ -17,6 +17,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -57,8 +58,8 @@ bool EdgeBundles::runOnMachineFunction(MachineFunction &mf) {
Blocks.resize(getNumBundles());
for (unsigned i = 0, e = MF->getNumBlockIDs(); i != e; ++i) {
- unsigned b0 = getBundle(i, 0);
- unsigned b1 = getBundle(i, 1);
+ unsigned b0 = getBundle(i, false);
+ unsigned b1 = getBundle(i, true);
Blocks[b0].push_back(i);
if (b1 != b0)
Blocks[b1].push_back(i);
@@ -69,6 +70,7 @@ bool EdgeBundles::runOnMachineFunction(MachineFunction &mf) {
/// Specialize WriteGraph, the standard implementation won't work.
namespace llvm {
+
template<>
raw_ostream &WriteGraph<>(raw_ostream &O, const EdgeBundles &G,
bool ShortNames,
@@ -89,7 +91,8 @@ raw_ostream &WriteGraph<>(raw_ostream &O, const EdgeBundles &G,
O << "}\n";
return O;
}
-}
+
+} // end namespace llvm
/// view - Visualize the annotated bipartite CFG with Graphviz.
void EdgeBundles::view() const {
diff --git a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
index 566b8d5..32c57e3 100644
--- a/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
+++ b/contrib/llvm/lib/CodeGen/ExecutionDepsFix.cpp
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -137,6 +138,7 @@ class ExeDepsFix : public MachineFunctionPass {
MachineFunction *MF;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
+ RegisterClassInfo RegClassInfo;
std::vector<SmallVector<int, 1>> AliasMap;
const unsigned NumRegs;
LiveReg *LiveRegs;
@@ -170,12 +172,10 @@ public:
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
- const char *getPassName() const override {
- return "Execution dependency fix";
- }
+ StringRef getPassName() const override { return "Execution dependency fix"; }
private:
iterator_range<SmallVectorImpl<int>::const_iterator>
@@ -203,6 +203,8 @@ private:
void processDefs(MachineInstr*, bool Kill);
void visitSoftInstr(MachineInstr*, unsigned mask);
void visitHardInstr(MachineInstr*, unsigned domain);
+ void pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref);
bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
void processUndefReads(MachineBasicBlock*);
};
@@ -473,6 +475,60 @@ void ExeDepsFix::visitInstr(MachineInstr *MI) {
processDefs(MI, !DomP.first);
}
+/// \brief Helps avoid false dependencies on undef registers by updating the
+/// machine instructions' undef operand to use a register that the instruction
+/// is truly dependent on, or use a register with clearance higher than Pref.
+void ExeDepsFix::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx,
+ unsigned Pref) {
+ MachineOperand &MO = MI->getOperand(OpIdx);
+ assert(MO.isUndef() && "Expected undef machine operand");
+
+ unsigned OriginalReg = MO.getReg();
+
+ // Update only undef operands that are mapped to one register.
+ if (AliasMap[OriginalReg].size() != 1)
+ return;
+
+ // Get the undef operand's register class
+ const TargetRegisterClass *OpRC =
+ TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);
+
+ // If the instruction has a true dependency, we can hide the false depdency
+ // behind it.
+ for (MachineOperand &CurrMO : MI->operands()) {
+ if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
+ !OpRC->contains(CurrMO.getReg()))
+ continue;
+ // We found a true dependency - replace the undef register with the true
+ // dependency.
+ MO.setReg(CurrMO.getReg());
+ return;
+ }
+
+ // Go over all registers in the register class and find the register with
+ // max clearance or clearance higher than Pref.
+ unsigned MaxClearance = 0;
+ unsigned MaxClearanceReg = OriginalReg;
+ ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
+ for (auto Reg : Order) {
+ assert(AliasMap[Reg].size() == 1 &&
+ "Reg is expected to be mapped to a single index");
+ int RCrx = *regIndices(Reg).begin();
+ unsigned Clearance = CurInstr - LiveRegs[RCrx].Def;
+ if (Clearance <= MaxClearance)
+ continue;
+ MaxClearance = Clearance;
+ MaxClearanceReg = Reg;
+
+ if (MaxClearance > Pref)
+ break;
+ }
+
+ // Update the operand if we found a register with better clearance.
+ if (MaxClearanceReg != OriginalReg)
+ MO.setReg(MaxClearanceReg);
+}
+
/// \brief Return true to if it makes sense to break dependence on a partial def
/// or undef use.
bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
@@ -510,6 +566,7 @@ void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
unsigned OpNum;
unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
if (Pref) {
+ pickBestRegisterForUndef(MI, OpNum, Pref);
if (shouldBreakDependence(MI, OpNum, Pref))
UndefReads.push_back(std::make_pair(MI, OpNum));
}
@@ -520,8 +577,6 @@ void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
- if (MO.isImplicit())
- break;
if (MO.isUse())
continue;
for (int rx : regIndices(MO.getReg())) {
@@ -557,7 +612,7 @@ void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
return;
// Collect this block's live out register units.
- LiveRegSet.init(TRI);
+ LiveRegSet.init(*TRI);
// We do not need to care about pristine registers as they are just preserved
// but not actually used in the function.
LiveRegSet.addLiveOutsNoPristines(*MBB);
@@ -652,9 +707,8 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Kill off any remaining uses that don't match available, and build a list of
// incoming DomainValues that we want to merge.
- SmallVector<LiveReg, 4> Regs;
- for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
- int rx = *i;
+ SmallVector<const LiveReg *, 4> Regs;
+ for (int rx : used) {
assert(LiveRegs && "no space allocated for live registers");
const LiveReg &LR = LiveRegs[rx];
// This useless DomainValue could have been missed above.
@@ -663,16 +717,11 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
continue;
}
// Sorted insertion.
- bool Inserted = false;
- for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
- i != e && !Inserted; ++i) {
- if (LR.Def < i->Def) {
- Inserted = true;
- Regs.insert(i, LR);
- }
- }
- if (!Inserted)
- Regs.push_back(LR);
+ auto I = std::upper_bound(Regs.begin(), Regs.end(), &LR,
+ [](const LiveReg *LHS, const LiveReg *RHS) {
+ return LHS->Def < RHS->Def;
+ });
+ Regs.insert(I, &LR);
}
// doms are now sorted in order of appearance. Try to merge them all, giving
@@ -680,14 +729,14 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
DomainValue *dv = nullptr;
while (!Regs.empty()) {
if (!dv) {
- dv = Regs.pop_back_val().Value;
+ dv = Regs.pop_back_val()->Value;
// Force the first dv to match the current instruction.
dv->AvailableDomains = dv->getCommonDomains(available);
assert(dv->AvailableDomains && "Domain should have been filtered");
continue;
}
- DomainValue *Latest = Regs.pop_back_val().Value;
+ DomainValue *Latest = Regs.pop_back_val()->Value;
// Skip already merged values.
if (Latest == dv || Latest->Next)
continue;
@@ -731,6 +780,7 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TII = MF->getSubtarget().getInstrInfo();
TRI = MF->getSubtarget().getRegisterInfo();
+ RegClassInfo.runOnMachineFunction(mf);
LiveRegs = nullptr;
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
diff --git a/contrib/llvm/lib/CodeGen/FuncletLayout.cpp b/contrib/llvm/lib/CodeGen/FuncletLayout.cpp
index b16f81c..d61afad 100644
--- a/contrib/llvm/lib/CodeGen/FuncletLayout.cpp
+++ b/contrib/llvm/lib/CodeGen/FuncletLayout.cpp
@@ -30,7 +30,7 @@ public:
bool runOnMachineFunction(MachineFunction &F) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
};
}
diff --git a/contrib/llvm/lib/CodeGen/GCMetadata.cpp b/contrib/llvm/lib/CodeGen/GCMetadata.cpp
index c8116a4..be21c73 100644
--- a/contrib/llvm/lib/CodeGen/GCMetadata.cpp
+++ b/contrib/llvm/lib/CodeGen/GCMetadata.cpp
@@ -32,7 +32,7 @@ class Printer : public FunctionPass {
public:
explicit Printer(raw_ostream &OS) : FunctionPass(ID), OS(OS) {}
- const char *getPassName() const override;
+ StringRef getPassName() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
@@ -87,7 +87,7 @@ FunctionPass *llvm::createGCInfoPrinter(raw_ostream &OS) {
return new Printer(OS);
}
-const char *Printer::getPassName() const {
+StringRef Printer::getPassName() const {
return "Print Garbage Collector Information";
}
diff --git a/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp b/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
index bb8cfa1..d183c7f 100644
--- a/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/GCMetadataPrinter.cpp
@@ -14,6 +14,8 @@
#include "llvm/CodeGen/GCMetadataPrinter.h"
using namespace llvm;
+LLVM_INSTANTIATE_REGISTRY(GCMetadataPrinterRegistry)
+
GCMetadataPrinter::GCMetadataPrinter() {}
GCMetadataPrinter::~GCMetadataPrinter() {}
diff --git a/contrib/llvm/lib/CodeGen/GCRootLowering.cpp b/contrib/llvm/lib/CodeGen/GCRootLowering.cpp
index 326adab..3524654 100644
--- a/contrib/llvm/lib/CodeGen/GCRootLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/GCRootLowering.cpp
@@ -45,7 +45,7 @@ public:
static char ID;
LowerIntrinsics();
- const char *getPassName() const override;
+ StringRef getPassName() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool doInitialization(Module &M) override;
@@ -93,7 +93,7 @@ LowerIntrinsics::LowerIntrinsics() : FunctionPass(ID) {
initializeLowerIntrinsicsPass(*PassRegistry::getPassRegistry());
}
-const char *LowerIntrinsics::getPassName() const {
+StringRef LowerIntrinsics::getPassName() const {
return "Lower Garbage Collection Instructions";
}
@@ -316,7 +316,7 @@ void GCMachineCodeAnalysis::FindStackOffsets(MachineFunction &MF) {
for (GCFunctionInfo::roots_iterator RI = FI->roots_begin();
RI != FI->roots_end();) {
// If the root references a dead object, no need to keep it.
- if (MF.getFrameInfo()->isDeadObjectIndex(RI->Num)) {
+ if (MF.getFrameInfo().isDeadObjectIndex(RI->Num)) {
RI = FI->removeStackRoot(RI);
} else {
unsigned FrameReg; // FIXME: surely GCRoot ought to store the
@@ -338,11 +338,11 @@ bool GCMachineCodeAnalysis::runOnMachineFunction(MachineFunction &MF) {
// Find the size of the stack frame. There may be no correct static frame
// size, we use UINT64_MAX to represent this.
- const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
- const bool DynamicFrameSize = MFI->hasVarSizedObjects() ||
+ const bool DynamicFrameSize = MFI.hasVarSizedObjects() ||
RegInfo->needsStackRealignment(MF);
- FI->setFrameSize(DynamicFrameSize ? UINT64_MAX : MFI->getStackSize());
+ FI->setFrameSize(DynamicFrameSize ? UINT64_MAX : MFI.getStackSize());
// Find all safe points.
if (FI->getStrategy().needsSafePoints())
diff --git a/contrib/llvm/lib/CodeGen/GCStrategy.cpp b/contrib/llvm/lib/CodeGen/GCStrategy.cpp
index 554d326..31ab86f 100644
--- a/contrib/llvm/lib/CodeGen/GCStrategy.cpp
+++ b/contrib/llvm/lib/CodeGen/GCStrategy.cpp
@@ -16,6 +16,8 @@
using namespace llvm;
+LLVM_INSTANTIATE_REGISTRY(GCRegistry)
+
GCStrategy::GCStrategy()
: UseStatepoints(false), NeededSafePoints(0), CustomReadBarriers(false),
CustomWriteBarriers(false), CustomRoots(false), InitRoots(true),
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
new file mode 100644
index 0000000..1321221
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
@@ -0,0 +1,170 @@
+//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements some simple delegations needed for call lowering.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Target/TargetLowering.h"
+
+using namespace llvm;
+
+bool CallLowering::lowerCall(
+ MachineIRBuilder &MIRBuilder, const CallInst &CI, unsigned ResReg,
+ ArrayRef<unsigned> ArgRegs, std::function<unsigned()> GetCalleeReg) const {
+ auto &DL = CI.getParent()->getParent()->getParent()->getDataLayout();
+
+ // First step is to marshall all the function's parameters into the correct
+ // physregs and memory locations. Gather the sequence of argument types that
+ // we'll pass to the assigner function.
+ SmallVector<ArgInfo, 8> OrigArgs;
+ unsigned i = 0;
+ for (auto &Arg : CI.arg_operands()) {
+ ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{}};
+ setArgFlags(OrigArg, i + 1, DL, CI);
+ OrigArgs.push_back(OrigArg);
+ ++i;
+ }
+
+ MachineOperand Callee = MachineOperand::CreateImm(0);
+ if (Function *F = CI.getCalledFunction())
+ Callee = MachineOperand::CreateGA(F, 0);
+ else
+ Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
+
+ ArgInfo OrigRet{ResReg, CI.getType(), ISD::ArgFlagsTy{}};
+ if (!OrigRet.Ty->isVoidTy())
+ setArgFlags(OrigRet, AttributeSet::ReturnIndex, DL, CI);
+
+ return lowerCall(MIRBuilder, Callee, OrigRet, OrigArgs);
+}
+
+template <typename FuncInfoTy>
+void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const FuncInfoTy &FuncInfo) const {
+ const AttributeSet &Attrs = FuncInfo.getAttributes();
+ if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
+ Arg.Flags.setZExt();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
+ Arg.Flags.setSExt();
+ if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
+ Arg.Flags.setInReg();
+ if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
+ Arg.Flags.setSRet();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
+ Arg.Flags.setSwiftSelf();
+ if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
+ Arg.Flags.setSwiftError();
+ if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
+ Arg.Flags.setByVal();
+ if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
+ Arg.Flags.setInAlloca();
+
+ if (Arg.Flags.isByVal() || Arg.Flags.isInAlloca()) {
+ Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
+ Arg.Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ unsigned FrameAlign;
+ if (FuncInfo.getParamAlignment(OpIdx))
+ FrameAlign = FuncInfo.getParamAlignment(OpIdx);
+ else
+ FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
+ Arg.Flags.setByValAlign(FrameAlign);
+ }
+ if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
+ Arg.Flags.setNest();
+ Arg.Flags.setOrigAlign(DL.getABITypeAlignment(Arg.Ty));
+}
+
+template void
+CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const Function &FuncInfo) const;
+
+template void
+CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
+ const DataLayout &DL,
+ const CallInst &FuncInfo) const;
+
+bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
+ CCAssignFn *AssignFn,
+ ArrayRef<ArgInfo> Args,
+ ValueHandler &Handler) const {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const Function &F = *MF.getFunction();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
+
+ unsigned NumArgs = Args.size();
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT CurVT = MVT::getVT(Args[i].Ty);
+ if (AssignFn(i, CurVT, CurVT, CCValAssign::Full, Args[i].Flags, CCInfo))
+ return false;
+ }
+
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (VA.isRegLoc())
+ Handler.assignValueToReg(Args[i].Reg, VA.getLocReg(), VA);
+ else if (VA.isMemLoc()) {
+ unsigned Size = VA.getValVT() == MVT::iPTR
+ ? DL.getPointerSize()
+ : alignTo(VA.getValVT().getSizeInBits(), 8) / 8;
+ unsigned Offset = VA.getLocMemOffset();
+ MachinePointerInfo MPO;
+ unsigned StackAddr = Handler.getStackAddress(Size, Offset, MPO);
+ Handler.assignValueToAddress(Args[i].Reg, StackAddr, Size, MPO, VA);
+ } else {
+ // FIXME: Support byvals and other weirdness
+ return false;
+ }
+ }
+ return true;
+}
+
+unsigned CallLowering::ValueHandler::extendRegister(unsigned ValReg,
+ CCValAssign &VA) {
+ LLT LocTy{VA.getLocVT()};
+ switch (VA.getLocInfo()) {
+ default: break;
+ case CCValAssign::Full:
+ case CCValAssign::BCvt:
+ // FIXME: bitconverting between vector types may or may not be a
+ // nop in big-endian situations.
+ return ValReg;
+ case CCValAssign::AExt:
+ assert(!VA.getLocVT().isVector() && "unexpected vector extend");
+ // Otherwise, it's a nop.
+ return ValReg;
+ case CCValAssign::SExt: {
+ unsigned NewReg = MRI.createGenericVirtualRegister(LocTy);
+ MIRBuilder.buildSExt(NewReg, ValReg);
+ return NewReg;
+ }
+ case CCValAssign::ZExt: {
+ unsigned NewReg = MRI.createGenericVirtualRegister(LocTy);
+ MIRBuilder.buildZExt(NewReg, ValReg);
+ return NewReg;
+ }
+ }
+ llvm_unreachable("unable to extend register");
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp
index 231e5ac..fcd2722 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/GlobalISel.cpp
@@ -25,6 +25,8 @@ void llvm::initializeGlobalISel(PassRegistry &Registry) {
void llvm::initializeGlobalISel(PassRegistry &Registry) {
initializeIRTranslatorPass(Registry);
+ initializeLegalizerPass(Registry);
initializeRegBankSelectPass(Registry);
+ initializeInstructionSelectPass(Registry);
}
#endif // LLVM_BUILD_GLOBAL_ISEL
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
index b8a960c..89a042f 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
@@ -14,12 +14,19 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#define DEBUG_TYPE "irtranslator"
@@ -27,13 +34,29 @@
using namespace llvm;
char IRTranslator::ID = 0;
-INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI",
- false, false);
+INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
+ false, false)
+
+static void reportTranslationError(const Value &V, const Twine &Message) {
+ std::string ErrStorage;
+ raw_string_ostream Err(ErrStorage);
+ Err << Message << ": " << V << '\n';
+ report_fatal_error(Err.str());
+}
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
+void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
unsigned &ValReg = ValToVReg[&Val];
// Check if this is the first time we see Val.
@@ -42,56 +65,132 @@ unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
// we need to concat together to produce the value.
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
- assert(!Val.getType()->isAggregateType() && "Not yet implemented");
- unsigned Size = Val.getType()->getPrimitiveSizeInBits();
- unsigned VReg = MRI->createGenericVirtualRegister(Size);
+ unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL});
ValReg = VReg;
- assert(!isa<Constant>(Val) && "Not yet implemented");
+
+ if (auto CV = dyn_cast<Constant>(&Val)) {
+ bool Success = translate(*CV, VReg);
+ if (!Success) {
+ if (!TPC->isGlobalISelAbortEnabled()) {
+ MF->getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ return VReg;
+ }
+ reportTranslationError(Val, "unable to translate constant");
+ }
+ }
}
return ValReg;
}
+int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
+ if (FrameIndices.find(&AI) != FrameIndices.end())
+ return FrameIndices[&AI];
+
+ unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
+ unsigned Size =
+ ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
+
+ // Always allocate at least one byte.
+ Size = std::max(Size, 1u);
+
+ unsigned Alignment = AI.getAlignment();
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+
+ int &FI = FrameIndices[&AI];
+ FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
+ return FI;
+}
+
+unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
+ unsigned Alignment = 0;
+ Type *ValTy = nullptr;
+ if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ Alignment = SI->getAlignment();
+ ValTy = SI->getValueOperand()->getType();
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ Alignment = LI->getAlignment();
+ ValTy = LI->getType();
+ } else if (!TPC->isGlobalISelAbortEnabled()) {
+ MF->getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ return 1;
+ } else
+ llvm_unreachable("unhandled memory instruction");
+
+ return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
+}
+
MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
if (!MBB) {
- MachineFunction &MF = MIRBuilder.getMF();
- MBB = MF.CreateMachineBasicBlock();
- MF.push_back(MBB);
+ MBB = MF->CreateMachineBasicBlock(&BB);
+ MF->push_back(MBB);
+
+ if (BB.hasAddressTaken())
+ MBB->setHasAddressTaken();
}
return *MBB;
}
-bool IRTranslator::translateBinaryOp(unsigned Opcode, const Instruction &Inst) {
+bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: handle signed/unsigned wrapping flags.
+
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
- unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0));
- unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1));
- unsigned Res = getOrCreateVReg(Inst);
- MIRBuilder.buildInstr(Opcode, Inst.getType(), Res, Op0, Op1);
+ unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
+ unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
+ unsigned Res = getOrCreateVReg(U);
+ MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
return true;
}
-bool IRTranslator::translateReturn(const Instruction &Inst) {
- assert(isa<ReturnInst>(Inst) && "Return expected");
- const Value *Ret = cast<ReturnInst>(Inst).getReturnValue();
+bool IRTranslator::translateCompare(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const CmpInst *CI = dyn_cast<CmpInst>(&U);
+ unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
+ unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
+ unsigned Res = getOrCreateVReg(U);
+ CmpInst::Predicate Pred =
+ CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
+ cast<ConstantExpr>(U).getPredicate());
+
+ if (CmpInst::isIntPredicate(Pred))
+ MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
+ else
+ MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
+
+ return true;
+}
+
+bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
+ const ReturnInst &RI = cast<ReturnInst>(U);
+ const Value *Ret = RI.getReturnValue();
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
-bool IRTranslator::translateBr(const Instruction &Inst) {
- assert(isa<BranchInst>(Inst) && "Branch expected");
- const BranchInst &BrInst = *cast<BranchInst>(&Inst);
- if (BrInst.isUnconditional()) {
- const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getOperand(0));
- MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
- MIRBuilder.buildInstr(TargetOpcode::G_BR, BrTgt.getType(), TgtBB);
- } else {
- assert(0 && "Not yet implemented");
+bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
+ const BranchInst &BrInst = cast<BranchInst>(U);
+ unsigned Succ = 0;
+ if (!BrInst.isUnconditional()) {
+ // We want a G_BRCOND to the true BB followed by an unconditional branch.
+ unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
+ const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
+ MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt);
+ MIRBuilder.buildBrCond(Tst, TrueBB);
}
+
+ const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
+ MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
+ MIRBuilder.buildBr(TgtBB);
+
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : BrInst.successors())
@@ -99,66 +198,694 @@ bool IRTranslator::translateBr(const Instruction &Inst) {
return true;
}
+bool IRTranslator::translateSwitch(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // For now, just translate as a chain of conditional branches.
+ // FIXME: could we share most of the logic/code in
+ // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
+ // At first sight, it seems most of the logic in there is independent of
+ // SelectionDAG-specifics and a lot of work went in to optimize switch
+ // lowering in there.
+
+ const SwitchInst &SwInst = cast<SwitchInst>(U);
+ const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
+
+ LLT LLTi1 = LLT(*Type::getInt1Ty(U.getContext()), *DL);
+ for (auto &CaseIt : SwInst.cases()) {
+ const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
+ const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
+ MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
+ MachineBasicBlock &CurBB = MIRBuilder.getMBB();
+ MachineBasicBlock &TrueBB = getOrCreateBB(*CaseIt.getCaseSuccessor());
+
+ MIRBuilder.buildBrCond(Tst, TrueBB);
+ CurBB.addSuccessor(&TrueBB);
+
+ MachineBasicBlock *FalseBB =
+ MF->CreateMachineBasicBlock(SwInst.getParent());
+ MF->push_back(FalseBB);
+ MIRBuilder.buildBr(*FalseBB);
+ CurBB.addSuccessor(FalseBB);
+
+ MIRBuilder.setMBB(*FalseBB);
+ }
+ // handle default case
+ MachineBasicBlock &DefaultBB = getOrCreateBB(*SwInst.getDefaultDest());
+ MIRBuilder.buildBr(DefaultBB);
+ MIRBuilder.getMBB().addSuccessor(&DefaultBB);
+
+ return true;
+}
+
+bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
+ const LoadInst &LI = cast<LoadInst>(U);
+
+ if (!TPC->isGlobalISelAbortEnabled() && LI.isAtomic())
+ return false;
+
+ assert(!LI.isAtomic() && "only non-atomic loads are supported at the moment");
+ auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOLoad;
+
+ unsigned Res = getOrCreateVReg(LI);
+ unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
+ LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL};
+ MIRBuilder.buildLoad(
+ Res, Addr,
+ *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
+ Flags, DL->getTypeStoreSize(LI.getType()),
+ getMemOpAlignment(LI)));
+ return true;
+}
+
+bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
+ const StoreInst &SI = cast<StoreInst>(U);
+
+ if (!TPC->isGlobalISelAbortEnabled() && SI.isAtomic())
+ return false;
+
+ assert(!SI.isAtomic() && "only non-atomic stores supported at the moment");
+ auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
+ : MachineMemOperand::MONone;
+ Flags |= MachineMemOperand::MOStore;
+
+ unsigned Val = getOrCreateVReg(*SI.getValueOperand());
+ unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
+ LLT VTy{*SI.getValueOperand()->getType(), *DL},
+ PTy{*SI.getPointerOperand()->getType(), *DL};
+
+ MIRBuilder.buildStore(
+ Val, Addr,
+ *MF->getMachineMemOperand(
+ MachinePointerInfo(SI.getPointerOperand()), Flags,
+ DL->getTypeStoreSize(SI.getValueOperand()->getType()),
+ getMemOpAlignment(SI)));
+ return true;
+}
+
+bool IRTranslator::translateExtractValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ Type *Int32Ty = Type::getInt32Ty(U.getContext());
+ SmallVector<Value *, 1> Indices;
+
+ // getIndexedOffsetInType is designed for GEPs, so the first index is the
+ // usual array element rather than looking into the actual aggregate.
+ Indices.push_back(ConstantInt::get(Int32Ty, 0));
+
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
+ for (auto Idx : EVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else {
+ for (unsigned i = 1; i < U.getNumOperands(); ++i)
+ Indices.push_back(U.getOperand(i));
+ }
+
+ uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
+
+ unsigned Res = getOrCreateVReg(U);
+ MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src));
+
+ return true;
+}
+
+bool IRTranslator::translateInsertValue(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const Value *Src = U.getOperand(0);
+ Type *Int32Ty = Type::getInt32Ty(U.getContext());
+ SmallVector<Value *, 1> Indices;
+
+ // getIndexedOffsetInType is designed for GEPs, so the first index is the
+ // usual array element rather than looking into the actual aggregate.
+ Indices.push_back(ConstantInt::get(Int32Ty, 0));
+
+ if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
+ for (auto Idx : IVI->indices())
+ Indices.push_back(ConstantInt::get(Int32Ty, Idx));
+ } else {
+ for (unsigned i = 2; i < U.getNumOperands(); ++i)
+ Indices.push_back(U.getOperand(i));
+ }
+
+ uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
+
+ unsigned Res = getOrCreateVReg(U);
+ const Value &Inserted = *U.getOperand(1);
+ MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted),
+ Offset);
+
+ return true;
+}
+
+bool IRTranslator::translateSelect(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)),
+ getOrCreateVReg(*U.getOperand(1)),
+ getOrCreateVReg(*U.getOperand(2)));
+ return true;
+}
+
+bool IRTranslator::translateBitCast(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) {
+ unsigned &Reg = ValToVReg[&U];
+ if (Reg)
+ MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0)));
+ else
+ Reg = getOrCreateVReg(*U.getOperand(0));
+ return true;
+ }
+ return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
+}
+
+bool IRTranslator::translateCast(unsigned Opcode, const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ unsigned Op = getOrCreateVReg(*U.getOperand(0));
+ unsigned Res = getOrCreateVReg(U);
+ MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
+ return true;
+}
+
+bool IRTranslator::translateGetElementPtr(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ // FIXME: support vector GEPs.
+ if (U.getType()->isVectorTy())
+ return false;
+
+ Value &Op0 = *U.getOperand(0);
+ unsigned BaseReg = getOrCreateVReg(Op0);
+ LLT PtrTy{*Op0.getType(), *DL};
+ unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace());
+ LLT OffsetTy = LLT::scalar(PtrSize);
+
+ int64_t Offset = 0;
+ for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
+ GTI != E; ++GTI) {
+ const Value *Idx = GTI.getOperand();
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
+ unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
+ Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
+ continue;
+ } else {
+ uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
+
+ // If this is a scalar constant or a splat vector of constants,
+ // handle it quickly.
+ if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
+ Offset += ElementSize * CI->getSExtValue();
+ continue;
+ }
+
+ if (Offset != 0) {
+ unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
+ unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
+ MIRBuilder.buildConstant(OffsetReg, Offset);
+ MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
+
+ BaseReg = NewBaseReg;
+ Offset = 0;
+ }
+
+ // N = N + Idx * ElementSize;
+ unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy);
+ MIRBuilder.buildConstant(ElementSizeReg, ElementSize);
+
+ unsigned IdxReg = getOrCreateVReg(*Idx);
+ if (MRI->getType(IdxReg) != OffsetTy) {
+ unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
+ MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
+ IdxReg = NewIdxReg;
+ }
+
+ unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
+ MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg);
+
+ unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
+ MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
+ BaseReg = NewBaseReg;
+ }
+ }
+
+ if (Offset != 0) {
+ unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
+ MIRBuilder.buildConstant(OffsetReg, Offset);
+ MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
+ return true;
+ }
+
+ MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
+ return true;
+}
+
+bool IRTranslator::translateMemcpy(const CallInst &CI,
+ MachineIRBuilder &MIRBuilder) {
+ LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL};
+ if (cast<PointerType>(CI.getArgOperand(0)->getType())->getAddressSpace() !=
+ 0 ||
+ cast<PointerType>(CI.getArgOperand(1)->getType())->getAddressSpace() !=
+ 0 ||
+ SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
+ return false;
+
+ SmallVector<CallLowering::ArgInfo, 8> Args;
+ for (int i = 0; i < 3; ++i) {
+ const auto &Arg = CI.getArgOperand(i);
+ Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
+ }
+
+ MachineOperand Callee = MachineOperand::CreateES("memcpy");
+
+ return CLI->lowerCall(MIRBuilder, Callee,
+ CallLowering::ArgInfo(0, CI.getType()), Args);
+}
+
+void IRTranslator::getStackGuard(unsigned DstReg,
+ MachineIRBuilder &MIRBuilder) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
+ MIB.addDef(DstReg);
+
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent());
+ if (!Global)
+ return;
+
+ MachinePointerInfo MPInfo(Global);
+ MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
+ auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
+ MachineMemOperand::MODereferenceable;
+ *MemRefs =
+ MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
+ DL->getPointerABIAlignment());
+ MIB.setMemRefs(MemRefs, MemRefs + 1);
+}
+
+bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
+ MachineIRBuilder &MIRBuilder) {
+ LLT Ty{*CI.getOperand(0)->getType(), *DL};
+ LLT s1 = LLT::scalar(1);
+ unsigned Width = Ty.getSizeInBits();
+ unsigned Res = MRI->createGenericVirtualRegister(Ty);
+ unsigned Overflow = MRI->createGenericVirtualRegister(s1);
+ auto MIB = MIRBuilder.buildInstr(Op)
+ .addDef(Res)
+ .addDef(Overflow)
+ .addUse(getOrCreateVReg(*CI.getOperand(0)))
+ .addUse(getOrCreateVReg(*CI.getOperand(1)));
+
+ if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
+ unsigned Zero = MRI->createGenericVirtualRegister(s1);
+ EntryBuilder.buildConstant(Zero, 0);
+ MIB.addUse(Zero);
+ }
+
+ MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width);
+ return true;
+}
+
+bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
+ MachineIRBuilder &MIRBuilder) {
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ // FIXME: these obviously need to be supported properly.
+ MF->getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ return true;
+ case Intrinsic::uadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
+ case Intrinsic::sadd_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
+ case Intrinsic::usub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
+ case Intrinsic::ssub_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
+ case Intrinsic::umul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
+ case Intrinsic::smul_with_overflow:
+ return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
+ case Intrinsic::memcpy:
+ return translateMemcpy(CI, MIRBuilder);
+ case Intrinsic::eh_typeid_for: {
+ GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
+ unsigned Reg = getOrCreateVReg(CI);
+ unsigned TypeID = MF->getTypeIDFor(GV);
+ MIRBuilder.buildConstant(Reg, TypeID);
+ return true;
+ }
+ case Intrinsic::objectsize: {
+ // If we don't know by now, we're never going to know.
+ const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
+
+ MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
+ return true;
+ }
+ case Intrinsic::stackguard:
+ getStackGuard(getOrCreateVReg(CI), MIRBuilder);
+ return true;
+ case Intrinsic::stackprotector: {
+ LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL};
+ unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
+ getStackGuard(GuardVal, MIRBuilder);
+
+ AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
+ MIRBuilder.buildStore(
+ GuardVal, getOrCreateVReg(*Slot),
+ *MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*MF,
+ getOrCreateFrameIndex(*Slot)),
+ MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
+ PtrTy.getSizeInBits() / 8, 8));
+ return true;
+ }
+ }
+ return false;
+}
+
+bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
+ const CallInst &CI = cast<CallInst>(U);
+ auto TII = MF->getTarget().getIntrinsicInfo();
+ const Function *F = CI.getCalledFunction();
+
+ if (!F || !F->isIntrinsic()) {
+ unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
+ SmallVector<unsigned, 8> Args;
+ for (auto &Arg: CI.arg_operands())
+ Args.push_back(getOrCreateVReg(*Arg));
+
+ return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() {
+ return getOrCreateVReg(*CI.getCalledValue());
+ });
+ }
+
+ Intrinsic::ID ID = F->getIntrinsicID();
+ if (TII && ID == Intrinsic::not_intrinsic)
+ ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
+
+ assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
+
+ if (translateKnownIntrinsic(CI, ID, MIRBuilder))
+ return true;
+
+ unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
+ MachineInstrBuilder MIB =
+ MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
+
+ for (auto &Arg : CI.arg_operands()) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg))
+ MIB.addImm(CI->getSExtValue());
+ else
+ MIB.addUse(getOrCreateVReg(*Arg));
+ }
+ return true;
+}
+
+bool IRTranslator::translateInvoke(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const InvokeInst &I = cast<InvokeInst>(U);
+ MCContext &Context = MF->getContext();
+
+ const BasicBlock *ReturnBB = I.getSuccessor(0);
+ const BasicBlock *EHPadBB = I.getSuccessor(1);
+
+ const Value *Callee(I.getCalledValue());
+ const Function *Fn = dyn_cast<Function>(Callee);
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // FIXME: support invoking patchpoint and statepoint intrinsics.
+ if (Fn && Fn->isIntrinsic())
+ return false;
+
+ // FIXME: support whatever these are.
+ if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
+ return false;
+
+ // FIXME: support Windows exception handling.
+ if (!isa<LandingPadInst>(EHPadBB->front()))
+ return false;
+
+
+ // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
+ // the region covered by the try.
+ MCSymbol *BeginSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
+
+ unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I);
+ SmallVector<CallLowering::ArgInfo, 8> Args;
+ for (auto &Arg: I.arg_operands())
+ Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
+
+ if (!CLI->lowerCall(MIRBuilder, MachineOperand::CreateGA(Fn, 0),
+ CallLowering::ArgInfo(Res, I.getType()), Args))
+ return false;
+
+ MCSymbol *EndSymbol = Context.createTempSymbol();
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
+
+ // FIXME: track probabilities.
+ MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB),
+ &ReturnMBB = getOrCreateBB(*ReturnBB);
+ MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
+ MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
+ MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
+
+ return true;
+}
+
+bool IRTranslator::translateLandingPad(const User &U,
+ MachineIRBuilder &MIRBuilder) {
+ const LandingPadInst &LP = cast<LandingPadInst>(U);
+
+ MachineBasicBlock &MBB = MIRBuilder.getMBB();
+ addLandingPadInfo(LP, MBB);
+
+ MBB.setIsEHPad();
+
+ // If there aren't registers to copy the values into (e.g., during SjLj
+ // exceptions), then don't bother.
+ auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn();
+ if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
+ TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
+ return true;
+
+ // If landingpad's return type is token type, we don't create DAG nodes
+ // for its exception pointer and selector value. The extraction of exception
+ // pointer or selector value from token type landingpads is not currently
+ // supported.
+ if (LP.getType()->isTokenTy())
+ return true;
+
+ // Add a label to mark the beginning of the landing pad. Deletion of the
+ // landing pad can thus be detected via the MachineModuleInfo.
+ MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
+ .addSym(MF->addLandingPad(&MBB));
+
+ // Mark exception register as live in.
+ SmallVector<unsigned, 2> Regs;
+ SmallVector<uint64_t, 2> Offsets;
+ LLT p0 = LLT::pointer(0, DL->getPointerSizeInBits());
+ if (unsigned Reg = TLI.getExceptionPointerRegister(PersonalityFn)) {
+ unsigned VReg = MRI->createGenericVirtualRegister(p0);
+ MIRBuilder.buildCopy(VReg, Reg);
+ Regs.push_back(VReg);
+ Offsets.push_back(0);
+ }
+
+ if (unsigned Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) {
+ unsigned VReg = MRI->createGenericVirtualRegister(p0);
+ MIRBuilder.buildCopy(VReg, Reg);
+ Regs.push_back(VReg);
+ Offsets.push_back(p0.getSizeInBits());
+ }
+
+ MIRBuilder.buildSequence(getOrCreateVReg(LP), Regs, Offsets);
+ return true;
+}
+
+bool IRTranslator::translateStaticAlloca(const AllocaInst &AI,
+ MachineIRBuilder &MIRBuilder) {
+ if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca())
+ return false;
+
+ assert(AI.isStaticAlloca() && "only handle static allocas now");
+ unsigned Res = getOrCreateVReg(AI);
+ int FI = getOrCreateFrameIndex(AI);
+ MIRBuilder.buildFrameIndex(Res, FI);
+ return true;
+}
+
+bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
+ const PHINode &PI = cast<PHINode>(U);
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI);
+ MIB.addDef(getOrCreateVReg(PI));
+
+ PendingPHIs.emplace_back(&PI, MIB.getInstr());
+ return true;
+}
+
+void IRTranslator::finishPendingPhis() {
+ for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
+ const PHINode *PI = Phi.first;
+ MachineInstrBuilder MIB(*MF, Phi.second);
+
+ // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
+ // won't create extra control flow here, otherwise we need to find the
+ // dominating predecessor here (or perhaps force the weirder IRTranslators
+ // to provide a simple boundary).
+ for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
+ assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) &&
+ "I appear to have misunderstood Machine PHIs");
+ MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i)));
+ MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]);
+ }
+ }
+}
+
bool IRTranslator::translate(const Instruction &Inst) {
- MIRBuilder.setDebugLoc(Inst.getDebugLoc());
+ CurBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
- case Instruction::Add:
- return translateBinaryOp(TargetOpcode::G_ADD, Inst);
- case Instruction::Or:
- return translateBinaryOp(TargetOpcode::G_OR, Inst);
- case Instruction::Br:
- return translateBr(Inst);
- case Instruction::Ret:
- return translateReturn(Inst);
-
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
+#include "llvm/IR/Instruction.def"
default:
- llvm_unreachable("Opcode not supported");
+ if (!TPC->isGlobalISelAbortEnabled())
+ return false;
+ llvm_unreachable("unknown opcode");
}
}
+bool IRTranslator::translate(const Constant &C, unsigned Reg) {
+ if (auto CI = dyn_cast<ConstantInt>(&C))
+ EntryBuilder.buildConstant(Reg, *CI);
+ else if (auto CF = dyn_cast<ConstantFP>(&C))
+ EntryBuilder.buildFConstant(Reg, *CF);
+ else if (isa<UndefValue>(C))
+ EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg);
+ else if (isa<ConstantPointerNull>(C))
+ EntryBuilder.buildConstant(Reg, 0);
+ else if (auto GV = dyn_cast<GlobalValue>(&C))
+ EntryBuilder.buildGlobalValue(Reg, GV);
+ else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
+ switch(CE->getOpcode()) {
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
+#include "llvm/IR/Instruction.def"
+ default:
+ if (!TPC->isGlobalISelAbortEnabled())
+ return false;
+ llvm_unreachable("unknown opcode");
+ }
+ } else if (!TPC->isGlobalISelAbortEnabled())
+ return false;
+ else
+ llvm_unreachable("unhandled constant kind");
+
+ return true;
+}
-void IRTranslator::finalize() {
+void IRTranslator::finalizeFunction() {
// Release the memory used by the different maps we
// needed during the translation.
+ PendingPHIs.clear();
ValToVReg.clear();
+ FrameIndices.clear();
Constants.clear();
}
-bool IRTranslator::runOnMachineFunction(MachineFunction &MF) {
- const Function &F = *MF.getFunction();
+bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
+ MF = &CurMF;
+ const Function &F = *MF->getFunction();
if (F.empty())
return false;
- CLI = MF.getSubtarget().getCallLowering();
- MIRBuilder.setMF(MF);
- MRI = &MF.getRegInfo();
- // Setup the arguments.
- MachineBasicBlock &MBB = getOrCreateBB(F.front());
- MIRBuilder.setMBB(MBB);
+ CLI = MF->getSubtarget().getCallLowering();
+ CurBuilder.setMF(*MF);
+ EntryBuilder.setMF(*MF);
+ MRI = &MF->getRegInfo();
+ DL = &F.getParent()->getDataLayout();
+ TPC = &getAnalysis<TargetPassConfig>();
+
+ assert(PendingPHIs.empty() && "stale PHIs");
+
+ // Setup a separate basic-block for the arguments and constants, falling
+ // through to the IR-level Function's entry block.
+ MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
+ MF->push_back(EntryBB);
+ EntryBB->addSuccessor(&getOrCreateBB(F.front()));
+ EntryBuilder.setMBB(*EntryBB);
+
+ // Lower the actual args into this basic block.
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args())
VRegArgs.push_back(getOrCreateVReg(Arg));
- bool Succeeded =
- CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs);
- if (!Succeeded)
+ bool Succeeded = CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs);
+ if (!Succeeded) {
+ if (!TPC->isGlobalISelAbortEnabled()) {
+ MF->getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ finalizeFunction();
+ return false;
+ }
report_fatal_error("Unable to lower arguments");
+ }
+ // And translate the function!
for (const BasicBlock &BB: F) {
MachineBasicBlock &MBB = getOrCreateBB(BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
- MIRBuilder.setMBB(MBB);
+ CurBuilder.setMBB(MBB);
+
for (const Instruction &Inst: BB) {
- bool Succeeded = translate(Inst);
+ Succeeded &= translate(Inst);
if (!Succeeded) {
- DEBUG(dbgs() << "Cannot translate: " << Inst << '\n');
- report_fatal_error("Unable to translate instruction");
+ if (TPC->isGlobalISelAbortEnabled())
+ reportTranslationError(Inst, "unable to translate instruction");
+ MF->getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ break;
}
}
}
- // Now that the MachineFrameInfo has been configured, no further changes to
- // the reserved registers are possible.
- MRI->freezeReservedRegs(MF);
+ if (Succeeded) {
+ finishPendingPhis();
+
+ // Now that the MachineFrameInfo has been configured, no further changes to
+ // the reserved registers are possible.
+ MRI->freezeReservedRegs(*MF);
+
+ // Merge the argument lowering and constants block with its single
+ // successor, the LLVM-IR entry block. We want the basic block to
+ // be maximal.
+ assert(EntryBB->succ_size() == 1 &&
+ "Custom BB used for lowering should have only one successor");
+ // Get the successor of the current entry block.
+ MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
+ assert(NewEntryBB.pred_size() == 1 &&
+ "LLVM-IR entry block has a predecessor!?");
+ // Move all the instruction from the current entry block to the
+ // new entry block.
+ NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
+ EntryBB->end());
+
+ // Update the live-in information for the new entry block.
+ for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
+ NewEntryBB.addLiveIn(LiveIn);
+ NewEntryBB.sortUniqueLiveIns();
+
+ // Get rid of the now empty basic block.
+ EntryBB->removeSuccessor(&NewEntryBB);
+ MF->remove(EntryBB);
+
+ assert(&MF->front() == &NewEntryBB &&
+ "New entry wasn't next in the list of basic block!");
+ }
+
+ finalizeFunction();
return false;
}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp
new file mode 100644
index 0000000..1d205cd
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelect.cpp
@@ -0,0 +1,175 @@
+//===- llvm/CodeGen/GlobalISel/InstructionSelect.cpp - InstructionSelect ---==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the InstructionSelect class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+#define DEBUG_TYPE "instruction-select"
+
+using namespace llvm;
+
+char InstructionSelect::ID = 0;
+INITIALIZE_PASS_BEGIN(InstructionSelect, DEBUG_TYPE,
+ "Select target instructions out of generic instructions",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(InstructionSelect, DEBUG_TYPE,
+ "Select target instructions out of generic instructions",
+ false, false)
+
+InstructionSelect::InstructionSelect() : MachineFunctionPass(ID) {
+ initializeInstructionSelectPass(*PassRegistry::getPassRegistry());
+}
+
+void InstructionSelect::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+static void reportSelectionError(const MachineInstr *MI, const Twine &Message) {
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ std::string ErrStorage;
+ raw_string_ostream Err(ErrStorage);
+ Err << Message << ":\nIn function: " << MF.getName() << '\n';
+ if (MI)
+ Err << *MI << '\n';
+ report_fatal_error(Err.str());
+}
+
+bool InstructionSelect::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
+ DEBUG(dbgs() << "Selecting function: " << MF.getName() << '\n');
+
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ const InstructionSelector *ISel = MF.getSubtarget().getInstructionSelector();
+ assert(ISel && "Cannot work without InstructionSelector");
+
+ // FIXME: freezeReservedRegs is now done in IRTranslator, but there are many
+ // other MF/MFI fields we need to initialize.
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+#ifndef NDEBUG
+ // Check that our input is fully legal: we require the function to have the
+ // Legalized property, so it should be.
+ // FIXME: This should be in the MachineVerifier, but it can't use the
+ // LegalizerInfo as it's currently in the separate GlobalISel library.
+ // The RegBankSelected property is already checked in the verifier. Note
+ // that it has the same layering problem, but we only use inline methods so
+ // end up not needing to link against the GlobalISel library.
+ if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo())
+ for (const MachineBasicBlock &MBB : MF)
+ for (const MachineInstr &MI : MBB)
+ if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI))
+ reportSelectionError(&MI, "Instruction is not legal");
+
+#endif
+ // FIXME: We could introduce new blocks and will need to fix the outer loop.
+ // Until then, keep track of the number of blocks to assert that we don't.
+ const size_t NumBlocks = MF.size();
+
+ bool Failed = false;
+ for (MachineBasicBlock *MBB : post_order(&MF)) {
+ if (MBB->empty())
+ continue;
+
+ // Select instructions in reverse block order. We permit erasing so have
+ // to resort to manually iterating and recognizing the begin (rend) case.
+ bool ReachedBegin = false;
+ for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
+ !ReachedBegin;) {
+#ifndef NDEBUG
+ // Keep track of the insertion range for debug printing.
+ const auto AfterIt = std::next(MII);
+#endif
+ // Select this instruction.
+ MachineInstr &MI = *MII;
+
+ // And have our iterator point to the next instruction, if there is one.
+ if (MII == Begin)
+ ReachedBegin = true;
+ else
+ --MII;
+
+ DEBUG(dbgs() << "Selecting: \n " << MI);
+
+ if (!ISel->select(MI)) {
+ if (TPC.isGlobalISelAbortEnabled())
+ // FIXME: It would be nice to dump all inserted instructions. It's
+ // not
+ // obvious how, esp. considering select() can insert after MI.
+ reportSelectionError(&MI, "Cannot select");
+ Failed = true;
+ break;
+ }
+
+ // Dump the range of instructions that MI expanded into.
+ DEBUG({
+ auto InsertedBegin = ReachedBegin ? MBB->begin() : std::next(MII);
+ dbgs() << "Into:\n";
+ for (auto &InsertedMI : make_range(InsertedBegin, AfterIt))
+ dbgs() << " " << InsertedMI;
+ dbgs() << '\n';
+ });
+ }
+ }
+
+ // Now that selection is complete, there are no more generic vregs. Verify
+ // that the size of the now-constrained vreg is unchanged and that it has a
+ // register class.
+ for (auto &VRegToType : MRI.getVRegToType()) {
+ unsigned VReg = VRegToType.first;
+ auto *RC = MRI.getRegClassOrNull(VReg);
+ auto *MI = MRI.def_instr_begin(VReg) == MRI.def_instr_end()
+ ? nullptr
+ : &*MRI.def_instr_begin(VReg);
+ if (!RC) {
+ if (TPC.isGlobalISelAbortEnabled())
+ reportSelectionError(MI, "VReg as no regclass after selection");
+ Failed = true;
+ break;
+ }
+
+ if (VRegToType.second.isValid() &&
+ VRegToType.second.getSizeInBits() > (RC->getSize() * 8)) {
+ if (TPC.isGlobalISelAbortEnabled())
+ reportSelectionError(
+ MI, "VReg has explicit size different from class size");
+ Failed = true;
+ break;
+ }
+ }
+
+ MRI.getVRegToType().clear();
+
+ if (!TPC.isGlobalISelAbortEnabled() && (Failed || MF.size() != NumBlocks)) {
+ MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
+ return false;
+ }
+ assert(MF.size() == NumBlocks && "Inserting blocks is not supported yet");
+
+ // FIXME: Should we accurately track changes?
+ return true;
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp
new file mode 100644
index 0000000..5c34da0
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/InstructionSelector.cpp
@@ -0,0 +1,60 @@
+//===- llvm/CodeGen/GlobalISel/InstructionSelector.cpp -----------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the InstructionSelector class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define DEBUG_TYPE "instructionselector"
+
+using namespace llvm;
+
+InstructionSelector::InstructionSelector() {}
+
+bool InstructionSelector::constrainSelectedInstRegOperands(
+ MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
+ const RegisterBankInfo &RBI) const {
+ MachineBasicBlock &MBB = *I.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
+ MachineOperand &MO = I.getOperand(OpI);
+
+ // There's nothing to be done on non-register operands.
+ if (!MO.isReg())
+ continue;
+
+ DEBUG(dbgs() << "Converting operand: " << MO << '\n');
+ assert(MO.isReg() && "Unsupported non-reg operand");
+
+ unsigned Reg = MO.getReg();
+ // Physical registers don't need to be constrained.
+ if (TRI.isPhysicalRegister(Reg))
+ continue;
+
+ // Register operands with a value of 0 (e.g. predicate operands) don't need
+ // to be constrained.
+ if (Reg == 0)
+ continue;
+
+ // If the operand is a vreg, we should constrain its regclass, and only
+ // insert COPYs if that's impossible.
+ // constrainOperandRegClass does that for us.
+ MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
+ Reg, OpI));
+ }
+ return true;
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp
new file mode 100644
index 0000000..e863568
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/Legalizer.cpp
@@ -0,0 +1,180 @@
+//===-- llvm/CodeGen/GlobalISel/Legalizer.cpp -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LegalizerHelper class to legalize individual
+/// instructions and the LegalizePass wrapper pass for the primary
+/// legalization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Legalizer.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/Legalizer.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+#define DEBUG_TYPE "legalizer"
+
+using namespace llvm;
+
+char Legalizer::ID = 0;
+INITIALIZE_PASS_BEGIN(Legalizer, DEBUG_TYPE,
+ "Legalize the Machine IR a function's Machine IR", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(Legalizer, DEBUG_TYPE,
+ "Legalize the Machine IR a function's Machine IR", false,
+ false)
+
+Legalizer::Legalizer() : MachineFunctionPass(ID) {
+ initializeLegalizerPass(*PassRegistry::getPassRegistry());
+}
+
+void Legalizer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void Legalizer::init(MachineFunction &MF) {
+}
+
+bool Legalizer::combineExtracts(MachineInstr &MI, MachineRegisterInfo &MRI,
+ const TargetInstrInfo &TII) {
+ bool Changed = false;
+ if (MI.getOpcode() != TargetOpcode::G_EXTRACT)
+ return Changed;
+
+ unsigned NumDefs = (MI.getNumOperands() - 1) / 2;
+ unsigned SrcReg = MI.getOperand(NumDefs).getReg();
+ MachineInstr &SeqI = *MRI.def_instr_begin(SrcReg);
+ if (SeqI.getOpcode() != TargetOpcode::G_SEQUENCE)
+ return Changed;
+
+ unsigned NumSeqSrcs = (SeqI.getNumOperands() - 1) / 2;
+ bool AllDefsReplaced = true;
+
+ // Try to match each register extracted with a corresponding insertion formed
+ // by the G_SEQUENCE.
+ for (unsigned Idx = 0, SeqIdx = 0; Idx < NumDefs; ++Idx) {
+ MachineOperand &ExtractMO = MI.getOperand(Idx);
+ assert(ExtractMO.isReg() && ExtractMO.isDef() &&
+ "unexpected extract operand");
+
+ unsigned ExtractReg = ExtractMO.getReg();
+ unsigned ExtractPos = MI.getOperand(NumDefs + Idx + 1).getImm();
+
+ while (SeqIdx < NumSeqSrcs &&
+ SeqI.getOperand(2 * SeqIdx + 2).getImm() < ExtractPos)
+ ++SeqIdx;
+
+ if (SeqIdx == NumSeqSrcs) {
+ AllDefsReplaced = false;
+ continue;
+ }
+
+ unsigned OrigReg = SeqI.getOperand(2 * SeqIdx + 1).getReg();
+ if (SeqI.getOperand(2 * SeqIdx + 2).getImm() != ExtractPos ||
+ MRI.getType(OrigReg) != MRI.getType(ExtractReg)) {
+ AllDefsReplaced = false;
+ continue;
+ }
+
+ assert(!TargetRegisterInfo::isPhysicalRegister(OrigReg) &&
+ "unexpected physical register in G_SEQUENCE");
+
+ // Finally we can replace the uses.
+ for (auto &Use : MRI.use_operands(ExtractReg)) {
+ Changed = true;
+ Use.setReg(OrigReg);
+ }
+ }
+
+ if (AllDefsReplaced) {
+ // If SeqI was the next instruction in the BB and we removed it, we'd break
+ // the outer iteration.
+ assert(std::next(MachineBasicBlock::iterator(MI)) != SeqI &&
+ "G_SEQUENCE does not dominate G_EXTRACT");
+
+ MI.eraseFromParent();
+
+ if (MRI.use_empty(SrcReg))
+ SeqI.eraseFromParent();
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+bool Legalizer::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+ DEBUG(dbgs() << "Legalize Machine IR for: " << MF.getName() << '\n');
+ init(MF);
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ const LegalizerInfo &LegalizerInfo = *MF.getSubtarget().getLegalizerInfo();
+ LegalizerHelper Helper(MF);
+
+ // FIXME: an instruction may need more than one pass before it is legal. For
+ // example on most architectures <3 x i3> is doubly-illegal. It would
+ // typically proceed along a path like: <3 x i3> -> <3 x i8> -> <8 x i8>. We
+ // probably want a worklist of instructions rather than naive iterate until
+ // convergence for performance reasons.
+ bool Changed = false;
+ MachineBasicBlock::iterator NextMI;
+ for (auto &MBB : MF)
+ for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
+ // Get the next Instruction before we try to legalize, because there's a
+ // good chance MI will be deleted.
+ NextMI = std::next(MI);
+
+ // Only legalize pre-isel generic instructions: others don't have types
+ // and are assumed to be legal.
+ if (!isPreISelGenericOpcode(MI->getOpcode()))
+ continue;
+
+ auto Res = Helper.legalizeInstr(*MI, LegalizerInfo);
+
+ // Error out if we couldn't legalize this instruction. We may want to fall
+ // back to DAG ISel instead in the future.
+ if (Res == LegalizerHelper::UnableToLegalize) {
+ if (!TPC.isGlobalISelAbortEnabled()) {
+ MF.getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ return false;
+ }
+ std::string Msg;
+ raw_string_ostream OS(Msg);
+ OS << "unable to legalize instruction: ";
+ MI->print(OS);
+ report_fatal_error(OS.str());
+ }
+
+ Changed |= Res == LegalizerHelper::Legalized;
+ }
+
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ for (auto &MBB : MF) {
+ for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
+ // Get the next Instruction before we try to legalize, because there's a
+ // good chance MI will be deleted.
+ NextMI = std::next(MI);
+
+ Changed |= combineExtracts(*MI, MRI, TII);
+ }
+ }
+
+ return Changed;
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
new file mode 100644
index 0000000..eb25b6c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
@@ -0,0 +1,354 @@
+//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LegalizerHelper class to legalize
+/// individual instructions and the LegalizeMachineIR wrapper pass for the
+/// primary legalization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+#include <sstream>
+
+#define DEBUG_TYPE "legalize-mir"
+
+using namespace llvm;
+
+LegalizerHelper::LegalizerHelper(MachineFunction &MF)
+ : MRI(MF.getRegInfo()) {
+ MIRBuilder.setMF(MF);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
+ const LegalizerInfo &LegalizerInfo) {
+ auto Action = LegalizerInfo.getAction(MI, MRI);
+ switch (std::get<0>(Action)) {
+ case LegalizerInfo::Legal:
+ return AlreadyLegal;
+ case LegalizerInfo::Libcall:
+ return libcall(MI);
+ case LegalizerInfo::NarrowScalar:
+ return narrowScalar(MI, std::get<1>(Action), std::get<2>(Action));
+ case LegalizerInfo::WidenScalar:
+ return widenScalar(MI, std::get<1>(Action), std::get<2>(Action));
+ case LegalizerInfo::Lower:
+ return lower(MI, std::get<1>(Action), std::get<2>(Action));
+ case LegalizerInfo::FewerElements:
+ return fewerElementsVector(MI, std::get<1>(Action), std::get<2>(Action));
+ default:
+ return UnableToLegalize;
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::legalizeInstr(MachineInstr &MI,
+ const LegalizerInfo &LegalizerInfo) {
+ SmallVector<MachineInstr *, 4> WorkList;
+ MIRBuilder.recordInsertions(
+ [&](MachineInstr *MI) { WorkList.push_back(MI); });
+ WorkList.push_back(&MI);
+
+ bool Changed = false;
+ LegalizeResult Res;
+ unsigned Idx = 0;
+ do {
+ Res = legalizeInstrStep(*WorkList[Idx], LegalizerInfo);
+ if (Res == UnableToLegalize) {
+ MIRBuilder.stopRecordingInsertions();
+ return UnableToLegalize;
+ }
+ Changed |= Res == Legalized;
+ ++Idx;
+ } while (Idx < WorkList.size());
+
+ MIRBuilder.stopRecordingInsertions();
+
+ return Changed ? Legalized : AlreadyLegal;
+}
+
+void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts,
+ SmallVectorImpl<unsigned> &VRegs) {
+ unsigned Size = Ty.getSizeInBits();
+ SmallVector<uint64_t, 4> Indexes;
+ for (int i = 0; i < NumParts; ++i) {
+ VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
+ Indexes.push_back(i * Size);
+ }
+ MIRBuilder.buildExtract(VRegs, Indexes, Reg);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::libcall(MachineInstr &MI) {
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ unsigned Size = Ty.getSizeInBits();
+ MIRBuilder.setInstr(MI);
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_FREM: {
+ auto &Ctx = MIRBuilder.getMF().getFunction()->getContext();
+ Type *Ty = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
+ auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
+ auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
+ const char *Name =
+ TLI.getLibcallName(Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32);
+
+ CLI.lowerCall(
+ MIRBuilder, MachineOperand::CreateES(Name),
+ {MI.getOperand(0).getReg(), Ty},
+ {{MI.getOperand(1).getReg(), Ty}, {MI.getOperand(2).getReg(), Ty}});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_ADD: {
+ // Expand in terms of carry-setting/consuming G_ADDE instructions.
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ int NumParts = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() /
+ NarrowTy.getSizeInBits();
+
+ MIRBuilder.setInstr(MI);
+
+ SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1));
+ MIRBuilder.buildConstant(CarryIn, 0);
+
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
+ Src2Regs[i], CarryIn);
+
+ DstRegs.push_back(DstReg);
+ Indexes.push_back(i * NarrowSize);
+ CarryIn = CarryOut;
+ }
+ unsigned DstReg = MI.getOperand(0).getReg();
+ MIRBuilder.buildSequence(DstReg, DstRegs, Indexes);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
+ MIRBuilder.setInstr(MI);
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_SUB: {
+ // Perform operation at larger width (any extension is fine here, high bits
+ // don't affect the result) and then truncate the result back to the
+ // original type.
+ unsigned Src1Ext = MRI.createGenericVirtualRegister(WideTy);
+ unsigned Src2Ext = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildAnyExt(Src1Ext, MI.getOperand(1).getReg());
+ MIRBuilder.buildAnyExt(Src2Ext, MI.getOperand(2).getReg());
+
+ unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildInstr(MI.getOpcode())
+ .addDef(DstExt)
+ .addUse(Src1Ext)
+ .addUse(Src2Ext);
+
+ MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UDIV: {
+ unsigned ExtOp = MI.getOpcode() == TargetOpcode::G_SDIV
+ ? TargetOpcode::G_SEXT
+ : TargetOpcode::G_ZEXT;
+
+ unsigned LHSExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildInstr(ExtOp).addDef(LHSExt).addUse(
+ MI.getOperand(1).getReg());
+
+ unsigned RHSExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildInstr(ExtOp).addDef(RHSExt).addUse(
+ MI.getOperand(2).getReg());
+
+ unsigned ResExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildInstr(MI.getOpcode())
+ .addDef(ResExt)
+ .addUse(LHSExt)
+ .addUse(RHSExt);
+
+ MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), ResExt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_LOAD: {
+ assert(alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) ==
+ WideTy.getSizeInBits() &&
+ "illegal to increase number of bytes loaded");
+
+ unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildLoad(DstExt, MI.getOperand(1).getReg(),
+ **MI.memoperands_begin());
+ MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE: {
+ assert(alignTo(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(), 8) ==
+ WideTy.getSizeInBits() &&
+ "illegal to increase number of bytes modified by a store");
+
+ unsigned SrcExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildAnyExt(SrcExt, MI.getOperand(0).getReg());
+ MIRBuilder.buildStore(SrcExt, MI.getOperand(1).getReg(),
+ **MI.memoperands_begin());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildConstant(DstExt, *MI.getOperand(1).getCImm());
+ MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), DstExt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FCONSTANT: {
+ unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildFConstant(DstExt, *MI.getOperand(1).getFPImm());
+ MIRBuilder.buildFPTrunc(MI.getOperand(0).getReg(), DstExt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_BRCOND: {
+ unsigned TstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildAnyExt(TstExt, MI.getOperand(0).getReg());
+ MIRBuilder.buildBrCond(TstExt, *MI.getOperand(1).getMBB());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_ICMP: {
+ assert(TypeIdx == 1 && "unable to legalize predicate");
+ bool IsSigned = CmpInst::isSigned(
+ static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()));
+ unsigned Op0Ext = MRI.createGenericVirtualRegister(WideTy);
+ unsigned Op1Ext = MRI.createGenericVirtualRegister(WideTy);
+ if (IsSigned) {
+ MIRBuilder.buildSExt(Op0Ext, MI.getOperand(2).getReg());
+ MIRBuilder.buildSExt(Op1Ext, MI.getOperand(3).getReg());
+ } else {
+ MIRBuilder.buildZExt(Op0Ext, MI.getOperand(2).getReg());
+ MIRBuilder.buildZExt(Op1Ext, MI.getOperand(3).getReg());
+ }
+ MIRBuilder.buildICmp(
+ static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()),
+ MI.getOperand(0).getReg(), Op0Ext, Op1Ext);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_GEP: {
+ assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
+ unsigned OffsetExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.buildSExt(OffsetExt, MI.getOperand(2).getReg());
+ MI.getOperand(2).setReg(OffsetExt);
+ return Legalized;
+ }
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
+ using namespace TargetOpcode;
+ MIRBuilder.setInstr(MI);
+
+ switch(MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM: {
+ unsigned QuotReg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
+ .addDef(QuotReg)
+ .addUse(MI.getOperand(1).getReg())
+ .addUse(MI.getOperand(2).getReg());
+
+ unsigned ProdReg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
+ MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
+ ProdReg);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_ADD: {
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ unsigned DstReg = MI.getOperand(0).getReg();
+ int NumParts = MRI.getType(DstReg).getSizeInBits() / NarrowSize;
+
+ MIRBuilder.setInstr(MI);
+
+ SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildAdd(DstReg, Src1Regs[i], Src2Regs[i]);
+ DstRegs.push_back(DstReg);
+ Indexes.push_back(i * NarrowSize);
+ }
+
+ MIRBuilder.buildSequence(DstReg, DstRegs, Indexes);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
new file mode 100644
index 0000000..e496620
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/LegalizerInfo.cpp
@@ -0,0 +1,182 @@
+//===---- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer -------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement an interface to specify and query how an illegal operation on a
+// given type should be expanded.
+//
+// Issues to be resolved:
+// + Make it fast.
+// + Support weird types like i3, <7 x i3>, ...
+// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Target/TargetOpcodes.h"
+using namespace llvm;
+
+LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
+ // FIXME: these two can be legalized to the fundamental load/store Jakob
+ // proposed. Once loads & stores are supported.
+ DefaultActions[TargetOpcode::G_ANYEXT] = Legal;
+ DefaultActions[TargetOpcode::G_TRUNC] = Legal;
+
+ DefaultActions[TargetOpcode::G_INTRINSIC] = Legal;
+ DefaultActions[TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS] = Legal;
+
+ DefaultActions[TargetOpcode::G_ADD] = NarrowScalar;
+ DefaultActions[TargetOpcode::G_LOAD] = NarrowScalar;
+ DefaultActions[TargetOpcode::G_STORE] = NarrowScalar;
+
+ DefaultActions[TargetOpcode::G_BRCOND] = WidenScalar;
+}
+
+void LegalizerInfo::computeTables() {
+ for (unsigned Opcode = 0; Opcode <= LastOp - FirstOp; ++Opcode) {
+ for (unsigned Idx = 0; Idx != Actions[Opcode].size(); ++Idx) {
+ for (auto &Action : Actions[Opcode][Idx]) {
+ LLT Ty = Action.first;
+ if (!Ty.isVector())
+ continue;
+
+ auto &Entry = MaxLegalVectorElts[std::make_pair(Opcode + FirstOp,
+ Ty.getElementType())];
+ Entry = std::max(Entry, Ty.getNumElements());
+ }
+ }
+ }
+
+ TablesInitialized = true;
+}
+
+// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
+// probably going to need specialized lookup structures for various types before
+// we have any hope of doing well with something like <13 x i3>. Even the common
+// cases should do better than what we have now.
+std::pair<LegalizerInfo::LegalizeAction, LLT>
+LegalizerInfo::getAction(const InstrAspect &Aspect) const {
+ assert(TablesInitialized && "backend forgot to call computeTables");
+ // These *have* to be implemented for now, they're the fundamental basis of
+ // how everything else is transformed.
+
+ // Nothing is going to go well with types that aren't a power of 2 yet, so
+ // don't even try because we might make things worse.
+ if (!isPowerOf2_64(Aspect.Type.getSizeInBits()))
+ return std::make_pair(Unsupported, LLT());
+
+ // FIXME: the long-term plan calls for expansion in terms of load/store (if
+ // they're not legal).
+ if (Aspect.Opcode == TargetOpcode::G_SEQUENCE ||
+ Aspect.Opcode == TargetOpcode::G_EXTRACT)
+ return std::make_pair(Legal, Aspect.Type);
+
+ LegalizeAction Action = findInActions(Aspect);
+ if (Action != NotFound)
+ return findLegalAction(Aspect, Action);
+
+ unsigned Opcode = Aspect.Opcode;
+ LLT Ty = Aspect.Type;
+ if (!Ty.isVector()) {
+ auto DefaultAction = DefaultActions.find(Aspect.Opcode);
+ if (DefaultAction != DefaultActions.end() && DefaultAction->second == Legal)
+ return std::make_pair(Legal, Ty);
+
+ if (DefaultAction == DefaultActions.end() ||
+ DefaultAction->second != NarrowScalar)
+ return std::make_pair(Unsupported, LLT());
+ return findLegalAction(Aspect, NarrowScalar);
+ }
+
+ LLT EltTy = Ty.getElementType();
+ int NumElts = Ty.getNumElements();
+
+ auto ScalarAction = ScalarInVectorActions.find(std::make_pair(Opcode, EltTy));
+ if (ScalarAction != ScalarInVectorActions.end() &&
+ ScalarAction->second != Legal)
+ return findLegalAction(Aspect, ScalarAction->second);
+
+ // The element type is legal in principle, but the number of elements is
+ // wrong.
+ auto MaxLegalElts = MaxLegalVectorElts.lookup(std::make_pair(Opcode, EltTy));
+ if (MaxLegalElts > NumElts)
+ return findLegalAction(Aspect, MoreElements);
+
+ if (MaxLegalElts == 0) {
+ // Scalarize if there's no legal vector type, which is just a special case
+ // of FewerElements.
+ return std::make_pair(FewerElements, EltTy);
+ }
+
+ return findLegalAction(Aspect, FewerElements);
+}
+
+std::tuple<LegalizerInfo::LegalizeAction, unsigned, LLT>
+LegalizerInfo::getAction(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ SmallBitVector SeenTypes(8);
+ const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
+ for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
+ if (!OpInfo[i].isGenericType())
+ continue;
+
+ // We don't want to repeatedly check the same operand index, that
+ // could get expensive.
+ unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
+ if (SeenTypes[TypeIdx])
+ continue;
+
+ SeenTypes.set(TypeIdx);
+
+ LLT Ty = MRI.getType(MI.getOperand(i).getReg());
+ auto Action = getAction({MI.getOpcode(), TypeIdx, Ty});
+ if (Action.first != Legal)
+ return std::make_tuple(Action.first, TypeIdx, Action.second);
+ }
+ return std::make_tuple(Legal, 0, LLT{});
+}
+
+bool LegalizerInfo::isLegal(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const {
+ return std::get<0>(getAction(MI, MRI)) == Legal;
+}
+
+LLT LegalizerInfo::findLegalType(const InstrAspect &Aspect,
+ LegalizeAction Action) const {
+ switch(Action) {
+ default:
+ llvm_unreachable("Cannot find legal type");
+ case Legal:
+ case Lower:
+ case Libcall:
+ return Aspect.Type;
+ case NarrowScalar: {
+ return findLegalType(Aspect,
+ [&](LLT Ty) -> LLT { return Ty.halfScalarSize(); });
+ }
+ case WidenScalar: {
+ return findLegalType(Aspect, [&](LLT Ty) -> LLT {
+ return Ty.getSizeInBits() < 8 ? LLT::scalar(8) : Ty.doubleScalarSize();
+ });
+ }
+ case FewerElements: {
+ return findLegalType(Aspect,
+ [&](LLT Ty) -> LLT { return Ty.halfElements(); });
+ }
+ case MoreElements: {
+ return findLegalType(Aspect,
+ [&](LLT Ty) -> LLT { return Ty.doubleElements(); });
+ }
+ }
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp
index 2f19bcf..c04f6e4 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp
@@ -14,6 +14,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetSubtargetInfo.h"
@@ -23,82 +24,408 @@ using namespace llvm;
void MachineIRBuilder::setMF(MachineFunction &MF) {
this->MF = &MF;
this->MBB = nullptr;
+ this->MRI = &MF.getRegInfo();
this->TII = MF.getSubtarget().getInstrInfo();
this->DL = DebugLoc();
- this->MI = nullptr;
+ this->II = MachineBasicBlock::iterator();
+ this->InsertedInstr = nullptr;
}
-void MachineIRBuilder::setMBB(MachineBasicBlock &MBB, bool Beginning) {
+void MachineIRBuilder::setMBB(MachineBasicBlock &MBB) {
this->MBB = &MBB;
- Before = Beginning;
+ this->II = MBB.end();
assert(&getMF() == MBB.getParent() &&
"Basic block is in a different function");
}
-void MachineIRBuilder::setInstr(MachineInstr &MI, bool Before) {
+void MachineIRBuilder::setInstr(MachineInstr &MI) {
assert(MI.getParent() && "Instruction is not part of a basic block");
setMBB(*MI.getParent());
- this->MI = &MI;
- this->Before = Before;
+ this->II = MI.getIterator();
}
-MachineBasicBlock::iterator MachineIRBuilder::getInsertPt() {
- if (MI) {
- if (Before)
- return MI;
- if (!MI->getNextNode())
- return getMBB().end();
- return MI->getNextNode();
- }
- return Before ? getMBB().begin() : getMBB().end();
+void MachineIRBuilder::setInsertPt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator II) {
+ assert(MBB.getParent() == &getMF() &&
+ "Basic block is in a different function");
+ this->MBB = &MBB;
+ this->II = II;
+}
+
+void MachineIRBuilder::recordInsertions(
+ std::function<void(MachineInstr *)> Inserted) {
+ InsertedInstr = Inserted;
+}
+
+void MachineIRBuilder::stopRecordingInsertions() {
+ InsertedInstr = nullptr;
}
//------------------------------------------------------------------------------
// Build instruction variants.
//------------------------------------------------------------------------------
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode, Type *Ty) {
- MachineInstr *NewMI = BuildMI(getMF(), DL, getTII().get(Opcode));
- if (Ty) {
- assert(isPreISelGenericOpcode(Opcode) &&
- "Only generic instruction can have a type");
- NewMI->setType(Ty);
- } else
- assert(!isPreISelGenericOpcode(Opcode) &&
- "Generic instruction must have a type");
- getMBB().insert(getInsertPt(), NewMI);
- return NewMI;
+
+MachineInstrBuilder MachineIRBuilder::buildInstr(unsigned Opcode) {
+ return insertInstr(buildInstrNoInsert(Opcode));
}
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode, unsigned Res,
- unsigned Op0, unsigned Op1) {
- return buildInstr(Opcode, nullptr, Res, Op0, Op1);
+MachineInstrBuilder MachineIRBuilder::buildInstrNoInsert(unsigned Opcode) {
+ MachineInstrBuilder MIB = BuildMI(getMF(), DL, getTII().get(Opcode));
+ return MIB;
}
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode, Type *Ty,
- unsigned Res, unsigned Op0,
- unsigned Op1) {
- MachineInstr *NewMI = buildInstr(Opcode, Ty);
- MachineInstrBuilder(getMF(), NewMI)
- .addReg(Res, RegState::Define)
- .addReg(Op0)
- .addReg(Op1);
- return NewMI;
+
+MachineInstrBuilder MachineIRBuilder::insertInstr(MachineInstrBuilder MIB) {
+ getMBB().insert(getInsertPt(), MIB);
+ if (InsertedInstr)
+ InsertedInstr(MIB);
+ return MIB;
}
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode, unsigned Res,
- unsigned Op0) {
- MachineInstr *NewMI = buildInstr(Opcode, nullptr);
- MachineInstrBuilder(getMF(), NewMI).addReg(Res, RegState::Define).addReg(Op0);
- return NewMI;
+MachineInstrBuilder MachineIRBuilder::buildFrameIndex(unsigned Res, int Idx) {
+ assert(MRI->getType(Res).isPointer() && "invalid operand type");
+ return buildInstr(TargetOpcode::G_FRAME_INDEX)
+ .addDef(Res)
+ .addFrameIndex(Idx);
}
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode) {
- return buildInstr(Opcode, nullptr);
+MachineInstrBuilder MachineIRBuilder::buildGlobalValue(unsigned Res,
+ const GlobalValue *GV) {
+ assert(MRI->getType(Res).isPointer() && "invalid operand type");
+ assert(MRI->getType(Res).getAddressSpace() ==
+ GV->getType()->getAddressSpace() &&
+ "address space mismatch");
+
+ return buildInstr(TargetOpcode::G_GLOBAL_VALUE)
+ .addDef(Res)
+ .addGlobalAddress(GV);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAdd(unsigned Res, unsigned Op0,
+ unsigned Op1) {
+ assert((MRI->getType(Res).isScalar() || MRI->getType(Res).isVector()) &&
+ "invalid operand type");
+ assert(MRI->getType(Res) == MRI->getType(Op0) &&
+ MRI->getType(Res) == MRI->getType(Op1) && "type mismatch");
+
+ return buildInstr(TargetOpcode::G_ADD)
+ .addDef(Res)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildGEP(unsigned Res, unsigned Op0,
+ unsigned Op1) {
+ assert(MRI->getType(Res).isPointer() &&
+ MRI->getType(Res) == MRI->getType(Op0) && "type mismatch");
+ assert(MRI->getType(Op1).isScalar() && "invalid offset type");
+
+ return buildInstr(TargetOpcode::G_GEP)
+ .addDef(Res)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSub(unsigned Res, unsigned Op0,
+ unsigned Op1) {
+ assert((MRI->getType(Res).isScalar() || MRI->getType(Res).isVector()) &&
+ "invalid operand type");
+ assert(MRI->getType(Res) == MRI->getType(Op0) &&
+ MRI->getType(Res) == MRI->getType(Op1) && "type mismatch");
+
+ return buildInstr(TargetOpcode::G_SUB)
+ .addDef(Res)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildMul(unsigned Res, unsigned Op0,
+ unsigned Op1) {
+ assert((MRI->getType(Res).isScalar() || MRI->getType(Res).isVector()) &&
+ "invalid operand type");
+ assert(MRI->getType(Res) == MRI->getType(Op0) &&
+ MRI->getType(Res) == MRI->getType(Op1) && "type mismatch");
+
+ return buildInstr(TargetOpcode::G_MUL)
+ .addDef(Res)
+ .addUse(Op0)
+ .addUse(Op1);
}
-MachineInstr *MachineIRBuilder::buildInstr(unsigned Opcode, Type *Ty,
- MachineBasicBlock &BB) {
- MachineInstr *NewMI = buildInstr(Opcode, Ty);
- MachineInstrBuilder(getMF(), NewMI).addMBB(&BB);
- return NewMI;
+MachineInstrBuilder MachineIRBuilder::buildBr(MachineBasicBlock &Dest) {
+ return buildInstr(TargetOpcode::G_BR).addMBB(&Dest);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildCopy(unsigned Res, unsigned Op) {
+ return buildInstr(TargetOpcode::COPY).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstant(unsigned Res,
+ const ConstantInt &Val) {
+ LLT Ty = MRI->getType(Res);
+
+ assert((Ty.isScalar() || Ty.isPointer()) && "invalid operand type");
+
+ const ConstantInt *NewVal = &Val;
+ if (Ty.getSizeInBits() != Val.getBitWidth())
+ NewVal = ConstantInt::get(MF->getFunction()->getContext(),
+ Val.getValue().sextOrTrunc(Ty.getSizeInBits()));
+
+ return buildInstr(TargetOpcode::G_CONSTANT).addDef(Res).addCImm(NewVal);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildConstant(unsigned Res,
+ int64_t Val) {
+ auto IntN = IntegerType::get(MF->getFunction()->getContext(),
+ MRI->getType(Res).getSizeInBits());
+ ConstantInt *CI = ConstantInt::get(IntN, Val, true);
+ return buildConstant(Res, *CI);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFConstant(unsigned Res,
+ const ConstantFP &Val) {
+ assert(MRI->getType(Res).isScalar() && "invalid operand type");
+
+ return buildInstr(TargetOpcode::G_FCONSTANT).addDef(Res).addFPImm(&Val);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildBrCond(unsigned Tst,
+ MachineBasicBlock &Dest) {
+ assert(MRI->getType(Tst).isScalar() && "invalid operand type");
+
+ return buildInstr(TargetOpcode::G_BRCOND).addUse(Tst).addMBB(&Dest);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildLoad(unsigned Res, unsigned Addr,
+ MachineMemOperand &MMO) {
+ assert(MRI->getType(Res).isValid() && "invalid operand type");
+ assert(MRI->getType(Addr).isPointer() && "invalid operand type");
+
+ return buildInstr(TargetOpcode::G_LOAD)
+ .addDef(Res)
+ .addUse(Addr)
+ .addMemOperand(&MMO);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildStore(unsigned Val, unsigned Addr,
+ MachineMemOperand &MMO) {
+ assert(MRI->getType(Val).isValid() && "invalid operand type");
+ assert(MRI->getType(Addr).isPointer() && "invalid operand type");
+
+ return buildInstr(TargetOpcode::G_STORE)
+ .addUse(Val)
+ .addUse(Addr)
+ .addMemOperand(&MMO);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildUAdde(unsigned Res,
+ unsigned CarryOut,
+ unsigned Op0, unsigned Op1,
+ unsigned CarryIn) {
+ assert(MRI->getType(Res).isScalar() && "invalid operand type");
+ assert(MRI->getType(Res) == MRI->getType(Op0) &&
+ MRI->getType(Res) == MRI->getType(Op1) && "type mismatch");
+ assert(MRI->getType(CarryOut).isScalar() && "invalid operand type");
+ assert(MRI->getType(CarryOut) == MRI->getType(CarryIn) && "type mismatch");
+
+ return buildInstr(TargetOpcode::G_UADDE)
+ .addDef(Res)
+ .addDef(CarryOut)
+ .addUse(Op0)
+ .addUse(Op1)
+ .addUse(CarryIn);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildAnyExt(unsigned Res, unsigned Op) {
+ validateTruncExt(Res, Op, true);
+ return buildInstr(TargetOpcode::G_ANYEXT).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSExt(unsigned Res, unsigned Op) {
+ validateTruncExt(Res, Op, true);
+ return buildInstr(TargetOpcode::G_SEXT).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildZExt(unsigned Res, unsigned Op) {
+ validateTruncExt(Res, Op, true);
+ return buildInstr(TargetOpcode::G_ZEXT).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSExtOrTrunc(unsigned Res,
+ unsigned Op) {
+ unsigned Opcode = TargetOpcode::COPY;
+ if (MRI->getType(Res).getSizeInBits() > MRI->getType(Op).getSizeInBits())
+ Opcode = TargetOpcode::G_SEXT;
+ else if (MRI->getType(Res).getSizeInBits() < MRI->getType(Op).getSizeInBits())
+ Opcode = TargetOpcode::G_TRUNC;
+
+ return buildInstr(Opcode).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildExtract(ArrayRef<unsigned> Results,
+ ArrayRef<uint64_t> Indices,
+ unsigned Src) {
+#ifndef NDEBUG
+ assert(Results.size() == Indices.size() && "inconsistent number of regs");
+ assert(!Results.empty() && "invalid trivial extract");
+ assert(std::is_sorted(Indices.begin(), Indices.end()) &&
+ "extract offsets must be in ascending order");
+
+ assert(MRI->getType(Src).isValid() && "invalid operand type");
+ for (auto Res : Results)
+ assert(MRI->getType(Res).isValid() && "invalid operand type");
+#endif
+
+ auto MIB = BuildMI(getMF(), DL, getTII().get(TargetOpcode::G_EXTRACT));
+ for (auto Res : Results)
+ MIB.addDef(Res);
+
+ MIB.addUse(Src);
+
+ for (auto Idx : Indices)
+ MIB.addImm(Idx);
+
+ getMBB().insert(getInsertPt(), MIB);
+ if (InsertedInstr)
+ InsertedInstr(MIB);
+
+ return MIB;
+}
+
+MachineInstrBuilder
+MachineIRBuilder::buildSequence(unsigned Res,
+ ArrayRef<unsigned> Ops,
+ ArrayRef<uint64_t> Indices) {
+#ifndef NDEBUG
+ assert(Ops.size() == Indices.size() && "incompatible args");
+ assert(!Ops.empty() && "invalid trivial sequence");
+ assert(std::is_sorted(Indices.begin(), Indices.end()) &&
+ "sequence offsets must be in ascending order");
+
+ assert(MRI->getType(Res).isValid() && "invalid operand type");
+ for (auto Op : Ops)
+ assert(MRI->getType(Op).isValid() && "invalid operand type");
+#endif
+
+ MachineInstrBuilder MIB = buildInstr(TargetOpcode::G_SEQUENCE);
+ MIB.addDef(Res);
+ for (unsigned i = 0; i < Ops.size(); ++i) {
+ MIB.addUse(Ops[i]);
+ MIB.addImm(Indices[i]);
+ }
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID,
+ unsigned Res,
+ bool HasSideEffects) {
+ auto MIB =
+ buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
+ : TargetOpcode::G_INTRINSIC);
+ if (Res)
+ MIB.addDef(Res);
+ MIB.addIntrinsicID(ID);
+ return MIB;
+}
+
+MachineInstrBuilder MachineIRBuilder::buildTrunc(unsigned Res, unsigned Op) {
+ validateTruncExt(Res, Op, false);
+ return buildInstr(TargetOpcode::G_TRUNC).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFPTrunc(unsigned Res, unsigned Op) {
+ validateTruncExt(Res, Op, false);
+ return buildInstr(TargetOpcode::G_FPTRUNC).addDef(Res).addUse(Op);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildICmp(CmpInst::Predicate Pred,
+ unsigned Res, unsigned Op0,
+ unsigned Op1) {
+#ifndef NDEBUG
+ assert(MRI->getType(Op0) == MRI->getType(Op0) && "type mismatch");
+ assert(CmpInst::isIntPredicate(Pred) && "invalid predicate");
+ if (MRI->getType(Op0).isScalar() || MRI->getType(Op0).isPointer())
+ assert(MRI->getType(Res).isScalar() && "type mismatch");
+ else
+ assert(MRI->getType(Res).isVector() &&
+ MRI->getType(Res).getNumElements() ==
+ MRI->getType(Op0).getNumElements() &&
+ "type mismatch");
+#endif
+
+ return buildInstr(TargetOpcode::G_ICMP)
+ .addDef(Res)
+ .addPredicate(Pred)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildFCmp(CmpInst::Predicate Pred,
+ unsigned Res, unsigned Op0,
+ unsigned Op1) {
+#ifndef NDEBUG
+ assert((MRI->getType(Op0).isScalar() || MRI->getType(Op0).isVector()) &&
+ "invalid operand type");
+ assert(MRI->getType(Op0) == MRI->getType(Op1) && "type mismatch");
+ assert(CmpInst::isFPPredicate(Pred) && "invalid predicate");
+ if (MRI->getType(Op0).isScalar())
+ assert(MRI->getType(Res).isScalar() && "type mismatch");
+ else
+ assert(MRI->getType(Res).isVector() &&
+ MRI->getType(Res).getNumElements() ==
+ MRI->getType(Op0).getNumElements() &&
+ "type mismatch");
+#endif
+
+ return buildInstr(TargetOpcode::G_FCMP)
+ .addDef(Res)
+ .addPredicate(Pred)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+MachineInstrBuilder MachineIRBuilder::buildSelect(unsigned Res, unsigned Tst,
+ unsigned Op0, unsigned Op1) {
+#ifndef NDEBUG
+ LLT ResTy = MRI->getType(Res);
+ assert((ResTy.isScalar() || ResTy.isVector() || ResTy.isPointer()) &&
+ "invalid operand type");
+ assert(ResTy == MRI->getType(Op0) && ResTy == MRI->getType(Op1) &&
+ "type mismatch");
+ if (ResTy.isScalar() || ResTy.isPointer())
+ assert(MRI->getType(Tst).isScalar() && "type mismatch");
+ else
+ assert(MRI->getType(Tst).isVector() &&
+ MRI->getType(Tst).getNumElements() ==
+ MRI->getType(Op0).getNumElements() &&
+ "type mismatch");
+#endif
+
+ return buildInstr(TargetOpcode::G_SELECT)
+ .addDef(Res)
+ .addUse(Tst)
+ .addUse(Op0)
+ .addUse(Op1);
+}
+
+void MachineIRBuilder::validateTruncExt(unsigned Dst, unsigned Src,
+ bool IsExtend) {
+#ifndef NDEBUG
+ LLT SrcTy = MRI->getType(Src);
+ LLT DstTy = MRI->getType(Dst);
+
+ if (DstTy.isVector()) {
+ assert(SrcTy.isVector() && "mismatched cast between vecot and non-vector");
+ assert(SrcTy.getNumElements() == DstTy.getNumElements() &&
+ "different number of elements in a trunc/ext");
+ } else
+ assert(DstTy.isScalar() && SrcTy.isScalar() && "invalid extend/trunc");
+
+ if (IsExtend)
+ assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() &&
+ "invalid narrowing extend");
+ else
+ assert(DstTy.getSizeInBits() < SrcTy.getSizeInBits() &&
+ "invalid widening trunc");
+#endif
}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
index 419e270..cc026ef 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
@@ -12,10 +12,12 @@
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/CommandLine.h"
@@ -31,18 +33,18 @@ static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
"Run the Fast mode (default mapping)"),
clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
- "Use the Greedy mode (best local mapping)"),
- clEnumValEnd));
+ "Use the Greedy mode (best local mapping)")));
char RegBankSelect::ID = 0;
-INITIALIZE_PASS_BEGIN(RegBankSelect, "regbankselect",
+INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
"Assign register bank of generic virtual registers",
false, false);
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
-INITIALIZE_PASS_END(RegBankSelect, "regbankselect",
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
"Assign register bank of generic virtual registers", false,
- false);
+ false)
RegBankSelect::RegBankSelect(Mode RunningMode)
: MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
@@ -60,6 +62,7 @@ void RegBankSelect::init(MachineFunction &MF) {
assert(RBI && "Cannot work without RegisterBankInfo");
MRI = &MF.getRegInfo();
TRI = MF.getSubtarget().getRegisterInfo();
+ TPC = &getAnalysis<TargetPassConfig>();
if (OptMode != Mode::Fast) {
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
@@ -77,6 +80,7 @@ void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineBranchProbabilityInfo>();
}
+ AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -87,7 +91,7 @@ bool RegBankSelect::assignmentMatch(
OnlyAssign = false;
// Each part of a break down needs to end up in a different register.
// In other word, Reg assignement does not match.
- if (ValMapping.BreakDown.size() > 1)
+ if (ValMapping.NumBreakDowns > 1)
return false;
const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
@@ -103,11 +107,13 @@ bool RegBankSelect::assignmentMatch(
return CurRegBank == DesiredRegBrank;
}
-void RegBankSelect::repairReg(
+bool RegBankSelect::repairReg(
MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
RegBankSelect::RepairingPlacement &RepairPt,
const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
- assert(ValMapping.BreakDown.size() == 1 && "Not yet implemented");
+ if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
+ return false;
+ assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
// An empty range of new register means no repairing.
assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
@@ -126,7 +132,7 @@ void RegBankSelect::repairReg(
"We are about to create several defs for Dst");
// Build the instruction used to repair, then clone it at the right places.
- MachineInstr *MI = MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src);
+ MachineInstr *MI = MIRBuilder.buildCopy(Dst, Src);
MI->removeFromParent();
DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
<< '\n');
@@ -149,15 +155,16 @@ void RegBankSelect::repairReg(
}
// TODO:
// Legalize NewInstrs if need be.
+ return true;
}
uint64_t RegBankSelect::getRepairCost(
const MachineOperand &MO,
const RegisterBankInfo::ValueMapping &ValMapping) const {
assert(MO.isReg() && "We should only repair register operand");
- assert(!ValMapping.BreakDown.empty() && "Nothing to map??");
+ assert(ValMapping.NumBreakDowns && "Nothing to map??");
- bool IsSameNumOfValues = ValMapping.BreakDown.size() == 1;
+ bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
// If MO does not have a register bank, we should have just been
// able to set one unless we have to break the value down.
@@ -195,16 +202,20 @@ uint64_t RegBankSelect::getRepairCost(
// TODO: use a dedicated constant for ImpossibleCost.
if (Cost != UINT_MAX)
return Cost;
- assert(false && "Legalization not available yet");
+ assert(!TPC->isGlobalISelAbortEnabled() &&
+ "Legalization not available yet");
// Return the legalization cost of that repairing.
}
- assert(false && "Complex repairing not implemented yet");
- return 1;
+ assert(!TPC->isGlobalISelAbortEnabled() &&
+ "Complex repairing not implemented yet");
+ return UINT_MAX;
}
RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
SmallVectorImpl<RepairingPlacement> &RepairPts) {
+ assert(!PossibleMappings.empty() &&
+ "Do not know how to map this instruction");
RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
MappingCost Cost = MappingCost::ImpossibleCost();
@@ -212,6 +223,7 @@ RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
if (CurCost < Cost) {
+ DEBUG(dbgs() << "New best: " << CurCost << '\n');
Cost = CurCost;
BestMapping = &CurMapping;
RepairPts.clear();
@@ -219,7 +231,15 @@ RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
RepairPts.emplace_back(std::move(RepairPt));
}
}
- assert(BestMapping && "No suitable mapping for instruction");
+ if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
+ // If none of the mapping worked that means they are all impossible.
+ // Thus, pick the first one and set an impossible repairing point.
+ // It will trigger the failed isel mode.
+ BestMapping = &(*PossibleMappings.begin());
+ RepairPts.emplace_back(
+ RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
+ } else
+ assert(BestMapping && "No suitable mapping for instruction");
return *BestMapping;
}
@@ -250,7 +270,7 @@ void RegBankSelect::tryAvoidingSplit(
// For the PHI case, the split may not be actually required.
// In the copy case, a phi is already a copy on the incoming edge,
// therefore there is no need to split.
- if (ValMapping.BreakDown.size() == 1)
+ if (ValMapping.NumBreakDowns == 1)
// This is a already a copy, there is nothing to do.
RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
}
@@ -327,7 +347,7 @@ void RegBankSelect::tryAvoidingSplit(
// We will split all the edges and repair there.
} else {
// This is a virtual register defined by a terminator.
- if (ValMapping.BreakDown.size() == 1) {
+ if (ValMapping.NumBreakDowns == 1) {
// There is nothing to repair, but we may actually lie on
// the repairing cost because of the PHIs already proceeded
// as already stated.
@@ -348,6 +368,9 @@ RegBankSelect::MappingCost RegBankSelect::computeMapping(
const RegBankSelect::MappingCost *BestCost) {
assert((MBFI || !BestCost) && "Costs comparison require MBFI");
+ if (!InstrMapping.isValid())
+ return MappingCost::ImpossibleCost();
+
// If mapped with InstrMapping, MI will have the recorded cost.
MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
@@ -355,32 +378,34 @@ RegBankSelect::MappingCost RegBankSelect::computeMapping(
DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
DEBUG(dbgs() << "With: " << InstrMapping << '\n');
RepairPts.clear();
- if (BestCost && Cost > *BestCost)
+ if (BestCost && Cost > *BestCost) {
+ DEBUG(dbgs() << "Mapping is too expensive from the start\n");
return Cost;
+ }
// Moreover, to realize this mapping, the register bank of each operand must
// match this mapping. In other words, we may need to locally reassign the
// register banks. Account for that repairing cost as well.
// In this context, local means in the surrounding of MI.
- for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
- ++OpIdx) {
+ for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
+ OpIdx != EndOpIdx; ++OpIdx) {
const MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
- DEBUG(dbgs() << "Opd" << OpIdx);
+ DEBUG(dbgs() << "Opd" << OpIdx << '\n');
const RegisterBankInfo::ValueMapping &ValMapping =
InstrMapping.getOperandMapping(OpIdx);
// If Reg is already properly mapped, this is free.
bool Assign;
if (assignmentMatch(Reg, ValMapping, Assign)) {
- DEBUG(dbgs() << " is free (match).\n");
+ DEBUG(dbgs() << "=> is free (match).\n");
continue;
}
if (Assign) {
- DEBUG(dbgs() << " is free (simple assignment).\n");
+ DEBUG(dbgs() << "=> is free (simple assignment).\n");
RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
RepairingPlacement::Reassign));
continue;
@@ -398,8 +423,10 @@ RegBankSelect::MappingCost RegBankSelect::computeMapping(
tryAvoidingSplit(RepairPt, MO, ValMapping);
// Check that the materialization of the repairing is possible.
- if (!RepairPt.canMaterialize())
+ if (!RepairPt.canMaterialize()) {
+ DEBUG(dbgs() << "Mapping involves impossible repairing\n");
return MappingCost::ImpossibleCost();
+ }
// Account for the split cost and repair cost.
// Unless the cost is already saturated or we do not care about the cost.
@@ -454,8 +481,10 @@ RegBankSelect::MappingCost RegBankSelect::computeMapping(
// Stop looking into what it takes to repair, this is already
// too expensive.
- if (BestCost && Cost > *BestCost)
+ if (BestCost && Cost > *BestCost) {
+ DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
return Cost;
+ }
// No need to accumulate more cost information.
// We need to still gather the repairing information though.
@@ -463,10 +492,11 @@ RegBankSelect::MappingCost RegBankSelect::computeMapping(
break;
}
}
+ DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
return Cost;
}
-void RegBankSelect::applyMapping(
+bool RegBankSelect::applyMapping(
MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
// OpdMapper will hold all the information needed for the rewritting.
@@ -474,28 +504,27 @@ void RegBankSelect::applyMapping(
// First, place the repairing code.
for (RepairingPlacement &RepairPt : RepairPts) {
- assert(RepairPt.canMaterialize() &&
- RepairPt.getKind() != RepairingPlacement::Impossible &&
- "This mapping is impossible");
+ if (!RepairPt.canMaterialize() ||
+ RepairPt.getKind() == RepairingPlacement::Impossible)
+ return false;
assert(RepairPt.getKind() != RepairingPlacement::None &&
"This should not make its way in the list");
unsigned OpIdx = RepairPt.getOpIdx();
MachineOperand &MO = MI.getOperand(OpIdx);
const RegisterBankInfo::ValueMapping &ValMapping =
InstrMapping.getOperandMapping(OpIdx);
- unsigned BreakDownSize = ValMapping.BreakDown.size();
- (void)BreakDownSize;
unsigned Reg = MO.getReg();
switch (RepairPt.getKind()) {
case RepairingPlacement::Reassign:
- assert(BreakDownSize == 1 &&
+ assert(ValMapping.NumBreakDowns == 1 &&
"Reassignment should only be for simple mapping");
MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
break;
case RepairingPlacement::Insert:
OpdMapper.createVRegs(OpIdx);
- repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx));
+ if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
+ return false;
break;
default:
llvm_unreachable("Other kind should not happen");
@@ -504,9 +533,10 @@ void RegBankSelect::applyMapping(
// Second, rewrite the instruction.
DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
RBI->applyMapping(OpdMapper);
+ return true;
}
-void RegBankSelect::assignInstr(MachineInstr &MI) {
+bool RegBankSelect::assignInstr(MachineInstr &MI) {
DEBUG(dbgs() << "Assign: " << MI);
// Remember the repairing placement for all the operands.
SmallVector<RepairingPlacement, 4> RepairPts;
@@ -516,32 +546,63 @@ void RegBankSelect::assignInstr(MachineInstr &MI) {
BestMapping = RBI->getInstrMapping(MI);
MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
(void)DefaultCost;
- assert(DefaultCost != MappingCost::ImpossibleCost() &&
- "Default mapping is not suited");
+ if (DefaultCost == MappingCost::ImpossibleCost())
+ return false;
} else {
RegisterBankInfo::InstructionMappings PossibleMappings =
RBI->getInstrPossibleMappings(MI);
- assert(!PossibleMappings.empty() &&
- "Do not know how to map this instruction");
+ if (PossibleMappings.empty())
+ return false;
BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
}
// Make sure the mapping is valid for MI.
assert(BestMapping.verify(MI) && "Invalid instruction mapping");
- DEBUG(dbgs() << "Mapping: " << BestMapping << '\n');
+ DEBUG(dbgs() << "Best Mapping: " << BestMapping << '\n');
// After this call, MI may not be valid anymore.
// Do not use it.
- applyMapping(MI, BestMapping, RepairPts);
+ return applyMapping(MI, BestMapping, RepairPts);
}
bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
+ // If the ISel pipeline failed, do not bother running that pass.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+
DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
const Function *F = MF.getFunction();
Mode SaveOptMode = OptMode;
if (F->hasFnAttribute(Attribute::OptimizeNone))
OptMode = Mode::Fast;
init(MF);
+
+#ifndef NDEBUG
+ // Check that our input is fully legal: we require the function to have the
+ // Legalized property, so it should be.
+ // FIXME: This should be in the MachineVerifier, but it can't use the
+ // LegalizerInfo as it's currently in the separate GlobalISel library.
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI)) {
+ if (!TPC->isGlobalISelAbortEnabled()) {
+ MF.getProperties().set(
+ MachineFunctionProperties::Property::FailedISel);
+ return false;
+ }
+ std::string ErrStorage;
+ raw_string_ostream Err(ErrStorage);
+ Err << "Instruction is not legal: " << MI << '\n';
+ report_fatal_error(Err.str());
+ }
+ }
+ }
+ }
+#endif
+
// Walk the function and assign register banks to all operands.
// Use a RPOT to make sure all registers are assigned before we choose
// the best mapping of the current instruction.
@@ -554,7 +615,18 @@ bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
MII != End;) {
// MI might be invalidated by the assignment, so move the
// iterator before hand.
- assignInstr(*MII++);
+ MachineInstr &MI = *MII++;
+
+ // Ignore target-specific instructions: they should use proper regclasses.
+ if (isTargetSpecificOpcode(MI.getOpcode()))
+ continue;
+
+ if (!assignInstr(MI)) {
+ if (TPC->isGlobalISelAbortEnabled())
+ report_fatal_error("Unable to map instruction");
+ MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
+ return false;
+ }
}
}
OptMode = SaveOptMode;
@@ -895,3 +967,20 @@ bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
LocalFreq == Cost.LocalFreq;
}
+
+void RegBankSelect::MappingCost::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+
+void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
+ if (*this == ImpossibleCost()) {
+ OS << "impossible";
+ return;
+ }
+ if (isSaturated()) {
+ OS << "saturated";
+ return;
+ }
+ OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp
index a911225..49d676f 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBank.cpp
@@ -19,12 +19,15 @@ using namespace llvm;
const unsigned RegisterBank::InvalidID = UINT_MAX;
-RegisterBank::RegisterBank() : ID(InvalidID), Name(nullptr), Size(0) {}
+RegisterBank::RegisterBank(unsigned ID, const char *Name, unsigned Size,
+ const uint32_t *CoveredClasses)
+ : ID(ID), Name(Name), Size(Size) {
+ ContainedRegClasses.resize(200);
+ ContainedRegClasses.setBitsInMask(CoveredClasses);
+}
bool RegisterBank::verify(const TargetRegisterInfo &TRI) const {
assert(isValid() && "Invalid register bank");
- assert(ContainedRegClasses.size() == TRI.getNumRegClasses() &&
- "TRI does not match the initialization process?");
for (unsigned RCId = 0, End = TRI.getNumRegClasses(); RCId != End; ++RCId) {
const TargetRegisterClass &RC = *TRI.getRegClass(RCId);
@@ -72,7 +75,7 @@ bool RegisterBank::operator==(const RegisterBank &OtherRB) const {
return &OtherRB == this;
}
-void RegisterBank::dump(const TargetRegisterInfo *TRI) const {
+LLVM_DUMP_METHOD void RegisterBank::dump(const TargetRegisterInfo *TRI) const {
print(dbgs(), /* IsForDebug */ true, TRI);
}
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp
index ef8e4f6..da5ab0b 100644
--- a/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/RegisterBankInfo.cpp
@@ -13,6 +13,7 @@
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@@ -32,139 +33,56 @@
using namespace llvm;
+STATISTIC(NumPartialMappingsCreated,
+ "Number of partial mappings dynamically created");
+STATISTIC(NumPartialMappingsAccessed,
+ "Number of partial mappings dynamically accessed");
+STATISTIC(NumValueMappingsCreated,
+ "Number of value mappings dynamically created");
+STATISTIC(NumValueMappingsAccessed,
+ "Number of value mappings dynamically accessed");
+STATISTIC(NumOperandsMappingsCreated,
+ "Number of operands mappings dynamically created");
+STATISTIC(NumOperandsMappingsAccessed,
+ "Number of operands mappings dynamically accessed");
+
const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
//------------------------------------------------------------------------------
// RegisterBankInfo implementation.
//------------------------------------------------------------------------------
-RegisterBankInfo::RegisterBankInfo(unsigned NumRegBanks)
- : NumRegBanks(NumRegBanks) {
- RegBanks.reset(new RegisterBank[NumRegBanks]);
+RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
+ unsigned NumRegBanks)
+ : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+ assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
+ assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
+ }
+#endif // NDEBUG
+}
+
+RegisterBankInfo::~RegisterBankInfo() {
+ for (auto It : MapOfPartialMappings)
+ delete It.second;
+ for (auto It : MapOfValueMappings)
+ delete It.second;
}
bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
- DEBUG(for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
const RegisterBank &RegBank = getRegBank(Idx);
assert(Idx == RegBank.getID() &&
"ID does not match the index in the array");
- dbgs() << "Verify " << RegBank << '\n';
+ DEBUG(dbgs() << "Verify " << RegBank << '\n');
assert(RegBank.verify(TRI) && "RegBank is invalid");
- });
+ }
+#endif // NDEBUG
return true;
}
-void RegisterBankInfo::createRegisterBank(unsigned ID, const char *Name) {
- DEBUG(dbgs() << "Create register bank: " << ID << " with name \"" << Name
- << "\"\n");
- RegisterBank &RegBank = getRegBank(ID);
- assert(RegBank.getID() == RegisterBank::InvalidID &&
- "A register bank should be created only once");
- RegBank.ID = ID;
- RegBank.Name = Name;
-}
-
-void RegisterBankInfo::addRegBankCoverage(unsigned ID, unsigned RCId,
- const TargetRegisterInfo &TRI,
- bool AddTypeMapping) {
- RegisterBank &RB = getRegBank(ID);
- unsigned NbOfRegClasses = TRI.getNumRegClasses();
-
- DEBUG(dbgs() << "Add coverage for: " << RB << '\n');
-
- // Check if RB is underconstruction.
- if (!RB.isValid())
- RB.ContainedRegClasses.resize(NbOfRegClasses);
- else if (RB.covers(*TRI.getRegClass(RCId)))
- // If RB already covers this register class, there is nothing
- // to do.
- return;
-
- BitVector &Covered = RB.ContainedRegClasses;
- SmallVector<unsigned, 8> WorkList;
-
- WorkList.push_back(RCId);
- Covered.set(RCId);
-
- unsigned &MaxSize = RB.Size;
- do {
- unsigned RCId = WorkList.pop_back_val();
-
- const TargetRegisterClass &CurRC = *TRI.getRegClass(RCId);
-
- DEBUG(dbgs() << "Examine: " << TRI.getRegClassName(&CurRC)
- << "(Size*8: " << (CurRC.getSize() * 8) << ")\n");
-
- // Remember the biggest size in bits.
- MaxSize = std::max(MaxSize, CurRC.getSize() * 8);
-
- // If we have been asked to record the type supported by this
- // register bank, do it now.
- if (AddTypeMapping)
- for (MVT::SimpleValueType SVT :
- make_range(CurRC.vt_begin(), CurRC.vt_end()))
- recordRegBankForType(getRegBank(ID), SVT);
-
- // Walk through all sub register classes and push them into the worklist.
- bool First = true;
- for (BitMaskClassIterator It(CurRC.getSubClassMask(), TRI); It.isValid();
- ++It) {
- unsigned SubRCId = It.getID();
- if (!Covered.test(SubRCId)) {
- if (First)
- DEBUG(dbgs() << " Enqueue sub-class: ");
- DEBUG(dbgs() << TRI.getRegClassName(TRI.getRegClass(SubRCId)) << ", ");
- WorkList.push_back(SubRCId);
- // Remember that we saw the sub class.
- Covered.set(SubRCId);
- First = false;
- }
- }
- if (!First)
- DEBUG(dbgs() << '\n');
-
- // Push also all the register classes that can be accessed via a
- // subreg index, i.e., its subreg-class (which is different than
- // its subclass).
- //
- // Note: It would probably be faster to go the other way around
- // and have this method add only super classes, since this
- // information is available in a more efficient way. However, it
- // feels less natural for the client of this APIs plus we will
- // TableGen the whole bitset at some point, so compile time for
- // the initialization is not very important.
- First = true;
- for (unsigned SubRCId = 0; SubRCId < NbOfRegClasses; ++SubRCId) {
- if (Covered.test(SubRCId))
- continue;
- bool Pushed = false;
- const TargetRegisterClass *SubRC = TRI.getRegClass(SubRCId);
- for (SuperRegClassIterator SuperRCIt(SubRC, &TRI); SuperRCIt.isValid();
- ++SuperRCIt) {
- if (Pushed)
- break;
- for (BitMaskClassIterator It(SuperRCIt.getMask(), TRI); It.isValid();
- ++It) {
- unsigned SuperRCId = It.getID();
- if (SuperRCId == RCId) {
- if (First)
- DEBUG(dbgs() << " Enqueue subreg-class: ");
- DEBUG(dbgs() << TRI.getRegClassName(SubRC) << ", ");
- WorkList.push_back(SubRCId);
- // Remember that we saw the sub class.
- Covered.set(SubRCId);
- Pushed = true;
- First = false;
- break;
- }
- }
- }
- }
- if (!First)
- DEBUG(dbgs() << '\n');
- } while (!WorkList.empty());
-}
-
const RegisterBank *
RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
@@ -173,11 +91,9 @@ RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
assert(Reg && "NoRegister does not have a register bank");
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
- if (RegClassOrBank.is<const RegisterBank *>())
- return RegClassOrBank.get<const RegisterBank *>();
- const TargetRegisterClass *RC =
- RegClassOrBank.get<const TargetRegisterClass *>();
- if (RC)
+ if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
+ return RB;
+ if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
return &getRegBankFromRegClass(*RC);
return nullptr;
}
@@ -199,10 +115,37 @@ const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
return &RegBank;
}
+const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
+ unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
+
+ // If the register already has a class, fallback to MRI::constrainRegClass.
+ auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
+ if (RegClassOrBank.is<const TargetRegisterClass *>())
+ return MRI.constrainRegClass(Reg, &RC);
+
+ const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
+ // Otherwise, all we can do is ensure the bank covers the class, and set it.
+ if (RB && !RB->covers(RC))
+ return nullptr;
+
+ // If nothing was set or the class is simply compatible, set it.
+ MRI.setRegClass(Reg, &RC);
+ return &RC;
+}
+
RegisterBankInfo::InstructionMapping
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
+ // For copies we want to walk over the operands and try to find one
+ // that has a register bank since the instruction itself will not get
+ // us any constraint.
+ bool isCopyLike = MI.isCopy() || MI.isPHI();
+ // For copy like instruction, only the mapping of the definition
+ // is important. The rest is not constrained.
+ unsigned NumOperandsForMapping = isCopyLike ? 1 : MI.getNumOperands();
+
RegisterBankInfo::InstructionMapping Mapping(DefaultMappingID, /*Cost*/ 1,
- MI.getNumOperands());
+ /*OperandsMapping*/ nullptr,
+ NumOperandsForMapping);
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
@@ -213,14 +156,10 @@ RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
// Before doing anything complicated check if the mapping is not
// directly available.
bool CompleteMapping = true;
- // For copies we want to walk over the operands and try to find one
- // that has a register bank.
- bool isCopyLike = MI.isCopy() || MI.isPHI();
- // Remember the register bank for reuse for copy-like instructions.
- const RegisterBank *RegBank = nullptr;
- // Remember the size of the register for reuse for copy-like instructions.
- unsigned RegSize = 0;
- for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
+
+ SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
+ for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
+ ++OpIdx) {
const MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg())
continue;
@@ -242,71 +181,147 @@ RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
// the register bank from the encoding constraints.
CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
if (!CurRegBank) {
- // Check if we can deduce the register bank from the type of
- // the instruction.
- Type *MITy = MI.getType();
- if (MITy)
- CurRegBank = getRegBankForType(
- MVT::getVT(MITy, /*HandleUnknown*/ true).SimpleTy);
- if (!CurRegBank)
- // Use the current assigned register bank.
- // That may not make much sense though.
- CurRegBank = AltRegBank;
- if (!CurRegBank) {
- // All our attempts failed, give up.
- CompleteMapping = false;
-
- if (!isCopyLike)
- // MI does not carry enough information to guess the mapping.
- return InstructionMapping();
-
- // For copies, we want to keep interating to find a register
- // bank for the other operands if we did not find one yet.
- if (RegBank)
- break;
- continue;
- }
+ // All our attempts failed, give up.
+ CompleteMapping = false;
+
+ if (!isCopyLike)
+ // MI does not carry enough information to guess the mapping.
+ return InstructionMapping();
+ continue;
}
}
- RegBank = CurRegBank;
- RegSize = getSizeInBits(Reg, MRI, TRI);
- Mapping.setOperandMapping(OpIdx, RegSize, *CurRegBank);
+ const ValueMapping *ValMapping =
+ &getValueMapping(0, getSizeInBits(Reg, MRI, TRI), *CurRegBank);
+ if (isCopyLike) {
+ OperandsMapping[0] = ValMapping;
+ CompleteMapping = true;
+ break;
+ }
+ OperandsMapping[OpIdx] = ValMapping;
}
- if (CompleteMapping)
- return Mapping;
-
- assert(isCopyLike && "We should have bailed on non-copies at this point");
- // For copy like instruction, if none of the operand has a register
- // bank avialable, there is nothing we can propagate.
- if (!RegBank)
+ if (isCopyLike && !CompleteMapping)
+ // No way to deduce the type from what we have.
return InstructionMapping();
- // This is a copy-like instruction.
- // Propagate RegBank to all operands that do not have a
- // mapping yet.
- for (unsigned OpIdx = 0, End = MI.getNumOperands(); OpIdx != End; ++OpIdx) {
- const MachineOperand &MO = MI.getOperand(OpIdx);
- // Don't assign a mapping for non-reg operands.
- if (!MO.isReg())
- continue;
+ assert(CompleteMapping && "Setting an uncomplete mapping");
+ Mapping.setOperandsMapping(getOperandsMapping(OperandsMapping));
+ return Mapping;
+}
- // If a mapping already exists, do not touch it.
- if (!static_cast<const InstructionMapping *>(&Mapping)
- ->getOperandMapping(OpIdx)
- .BreakDown.empty())
- continue;
+/// Hashing function for PartialMapping.
+static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank *RegBank) {
+ return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
+}
+
+/// Overloaded version of hash_value for a PartialMapping.
+hash_code
+llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
+ return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
+ PartMapping.RegBank);
+}
+
+const RegisterBankInfo::PartialMapping &
+RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ ++NumPartialMappingsAccessed;
+
+ hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
+ const auto &It = MapOfPartialMappings.find(Hash);
+ if (It != MapOfPartialMappings.end())
+ return *It->second;
+
+ ++NumPartialMappingsCreated;
+
+ const PartialMapping *&PartMapping = MapOfPartialMappings[Hash];
+ PartMapping = new PartialMapping{StartIdx, Length, RegBank};
+ return *PartMapping;
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
+}
+
+static hash_code
+hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
+ unsigned NumBreakDowns) {
+ if (LLVM_LIKELY(NumBreakDowns == 1))
+ return hash_value(*BreakDown);
+ SmallVector<size_t, 8> Hashes(NumBreakDowns);
+ for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
+ Hashes.push_back(hash_value(BreakDown[Idx]));
+ return hash_combine_range(Hashes.begin(), Hashes.end());
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
+ unsigned NumBreakDowns) const {
+ ++NumValueMappingsAccessed;
+
+ hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
+ const auto &It = MapOfValueMappings.find(Hash);
+ if (It != MapOfValueMappings.end())
+ return *It->second;
+
+ ++NumValueMappingsCreated;
+
+ const ValueMapping *&ValMapping = MapOfValueMappings[Hash];
+ ValMapping = new ValueMapping{BreakDown, NumBreakDowns};
+ return *ValMapping;
+}
- Mapping.setOperandMapping(OpIdx, RegSize, *RegBank);
+template <typename Iterator>
+const RegisterBankInfo::ValueMapping *
+RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
+
+ ++NumOperandsMappingsAccessed;
+
+ // The addresses of the value mapping are unique.
+ // Therefore, we can use them directly to hash the operand mapping.
+ hash_code Hash = hash_combine_range(Begin, End);
+ const auto &It = MapOfOperandsMappings.find(Hash);
+ if (It != MapOfOperandsMappings.end())
+ return It->second;
+
+ ++NumOperandsMappingsCreated;
+
+ // Create the array of ValueMapping.
+ // Note: this array will not hash to this instance of operands
+ // mapping, because we use the pointer of the ValueMapping
+ // to hash and we expect them to uniquely identify an instance
+ // of value mapping.
+ ValueMapping *&Res = MapOfOperandsMappings[Hash];
+ Res = new ValueMapping[std::distance(Begin, End)];
+ unsigned Idx = 0;
+ for (Iterator It = Begin; It != End; ++It, ++Idx) {
+ const ValueMapping *ValMap = *It;
+ if (!ValMap)
+ continue;
+ Res[Idx] = *ValMap;
}
- return Mapping;
+ return Res;
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
}
RegisterBankInfo::InstructionMapping
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
- RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI);
- if (Mapping.isValid())
- return Mapping;
+ RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI);
+ if (Mapping.isValid())
+ return Mapping;
llvm_unreachable("The target must implement this");
}
@@ -335,18 +350,18 @@ RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
MachineInstr &MI = OpdMapper.getMI();
DEBUG(dbgs() << "Applying default-like mapping\n");
- for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
- ++OpIdx) {
+ for (unsigned OpIdx = 0,
+ EndIdx = OpdMapper.getInstrMapping().getNumOperands();
+ OpIdx != EndIdx; ++OpIdx) {
DEBUG(dbgs() << "OpIdx " << OpIdx);
MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
DEBUG(dbgs() << " is not a register, nothing to be done\n");
continue;
}
- assert(
- OpdMapper.getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() ==
- 1 &&
- "This mapping is too complex for this function");
+ assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
+ 1 &&
+ "This mapping is too complex for this function");
iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
OpdMapper.getVRegs(OpIdx);
if (NewRegs.begin() == NewRegs.end()) {
@@ -369,7 +384,8 @@ unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
// get the size of that register class.
RC = TRI.getMinimalPhysRegClass(Reg);
} else {
- unsigned RegSize = MRI.getSize(Reg);
+ LLT Ty = MRI.getType(Reg);
+ unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
// If Reg is not a generic register, query the register class to
// get its size.
if (RegSize)
@@ -384,7 +400,7 @@ unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
//------------------------------------------------------------------------------
// Helper classes implementation.
//------------------------------------------------------------------------------
-void RegisterBankInfo::PartialMapping::dump() const {
+LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
@@ -392,7 +408,7 @@ void RegisterBankInfo::PartialMapping::dump() const {
bool RegisterBankInfo::PartialMapping::verify() const {
assert(RegBank && "Register bank not set");
assert(Length && "Empty mapping");
- assert((StartIdx < getHighBitIdx()) && "Overflow, switch to APInt?");
+ assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
// Check if the minimum width fits into RegBank.
assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
return true;
@@ -406,10 +422,10 @@ void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
OS << "nullptr";
}
-bool RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const {
- assert(!BreakDown.empty() && "Value mapped nowhere?!");
+bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
+ assert(NumBreakDowns && "Value mapped nowhere?!");
unsigned OrigValueBitWidth = 0;
- for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
// Check that each register bank is big enough to hold the partial value:
// this check is done by PartialMapping::verify
assert(PartMap.verify() && "Partial mapping is invalid");
@@ -418,9 +434,10 @@ bool RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const {
OrigValueBitWidth =
std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
}
- assert(OrigValueBitWidth == ExpectedBitWidth && "BitWidth does not match");
+ assert(OrigValueBitWidth >= MeaningfulBitWidth &&
+ "Meaningful bits not covered by the mapping");
APInt ValueMask(OrigValueBitWidth, 0);
- for (const RegisterBankInfo::PartialMapping &PartMap : BreakDown) {
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
// Check that the union of the partial mappings covers the whole value,
// without overlaps.
// The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
@@ -434,15 +451,15 @@ bool RegisterBankInfo::ValueMapping::verify(unsigned ExpectedBitWidth) const {
return true;
}
-void RegisterBankInfo::ValueMapping::dump() const {
+LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
- OS << "#BreakDown: " << BreakDown.size() << " ";
+ OS << "#BreakDown: " << NumBreakDowns << " ";
bool IsFirst = true;
- for (const PartialMapping &PartMap : BreakDown) {
+ for (const PartialMapping &PartMap : *this) {
if (!IsFirst)
OS << ", ";
OS << '[' << PartMap << ']';
@@ -450,21 +467,13 @@ void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
}
}
-void RegisterBankInfo::InstructionMapping::setOperandMapping(
- unsigned OpIdx, unsigned MaskSize, const RegisterBank &RegBank) {
- // Build the value mapping.
- assert(MaskSize <= RegBank.getSize() && "Register bank is too small");
-
- // Create the mapping object.
- getOperandMapping(OpIdx).BreakDown.push_back(
- PartialMapping(0, MaskSize, RegBank));
-}
-
bool RegisterBankInfo::InstructionMapping::verify(
const MachineInstr &MI) const {
// Check that all the register operands are properly mapped.
// Check the constructor invariant.
- assert(NumOperands == MI.getNumOperands() &&
+ // For PHI, we only care about mapping the definition.
+ assert(NumOperands ==
+ ((MI.isCopy() || MI.isPHI()) ? 1 : MI.getNumOperands()) &&
"NumOperands must match, see constructor");
assert(MI.getParent() && MI.getParent()->getParent() &&
"MI must be connected to a MachineFunction");
@@ -473,16 +482,18 @@ bool RegisterBankInfo::InstructionMapping::verify(
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
const MachineOperand &MO = MI.getOperand(Idx);
- const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
- (void)MOMapping;
if (!MO.isReg()) {
- assert(MOMapping.BreakDown.empty() &&
+ assert(!getOperandMapping(Idx).isValid() &&
"We should not care about non-reg mapping");
continue;
}
unsigned Reg = MO.getReg();
if (!Reg)
continue;
+ assert(getOperandMapping(Idx).isValid() &&
+ "We must have a mapping for reg operands");
+ const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
+ (void)MOMapping;
// Register size in bits.
// This size must match what the mapping expects.
assert(MOMapping.verify(getSizeInBits(
@@ -492,7 +503,7 @@ bool RegisterBankInfo::InstructionMapping::verify(
return true;
}
-void RegisterBankInfo::InstructionMapping::dump() const {
+LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
@@ -514,18 +525,16 @@ RegisterBankInfo::OperandsMapper::OperandsMapper(
MachineInstr &MI, const InstructionMapping &InstrMapping,
MachineRegisterInfo &MRI)
: MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
- unsigned NumOpds = MI.getNumOperands();
- OpToNewVRegIdx.reset(new int[NumOpds]);
- std::fill(&OpToNewVRegIdx[0], &OpToNewVRegIdx[NumOpds],
- OperandsMapper::DontKnowIdx);
+ unsigned NumOpds = InstrMapping.getNumOperands();
+ OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
}
iterator_range<SmallVectorImpl<unsigned>::iterator>
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
- assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
unsigned NumPartialVal =
- getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx) {
@@ -559,16 +568,15 @@ RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
}
void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
- assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
getVRegsMem(OpIdx);
- const SmallVectorImpl<PartialMapping> &PartMapList =
- getInstrMapping().getOperandMapping(OpIdx).BreakDown;
- SmallVectorImpl<PartialMapping>::const_iterator PartMap = PartMapList.begin();
+ const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
+ const PartialMapping *PartMap = ValMapping.begin();
for (unsigned &NewVReg : NewVRegsForOpIdx) {
- assert(PartMap != PartMapList.end() && "Out-of-bound access");
+ assert(PartMap != ValMapping.end() && "Out-of-bound access");
assert(NewVReg == 0 && "Register has already been created");
- NewVReg = MRI.createGenericVirtualRegister(PartMap->Length);
+ NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
MRI.setRegBank(NewVReg, *PartMap->RegBank);
++PartMap;
}
@@ -577,8 +585,8 @@ void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
unsigned PartialMapIdx,
unsigned NewVReg) {
- assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
- assert(getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() >
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
PartialMapIdx &&
"Out-of-bound access for partial mapping");
// Make sure the memory is initialized for that operand.
@@ -592,14 +600,14 @@ iterator_range<SmallVectorImpl<unsigned>::const_iterator>
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
bool ForDebug) const {
(void)ForDebug;
- assert(OpIdx < getMI().getNumOperands() && "Out-of-bound access");
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx)
return make_range(NewVRegs.end(), NewVRegs.end());
unsigned PartMapSize =
- getInstrMapping().getOperandMapping(OpIdx).BreakDown.size();
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
SmallVectorImpl<unsigned>::const_iterator End =
getNewVRegsEnd(StartIdx, PartMapSize);
iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
@@ -611,14 +619,14 @@ RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
return Res;
}
-void RegisterBankInfo::OperandsMapper::dump() const {
+LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
print(dbgs(), true);
dbgs() << '\n';
}
void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
bool ForDebug) const {
- unsigned NumOpds = getMI().getNumOperands();
+ unsigned NumOpds = getInstrMapping().getNumOperands();
if (ForDebug) {
OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
// Print out the internal state of the index table.
diff --git a/contrib/llvm/lib/CodeGen/GlobalISel/Utils.cpp b/contrib/llvm/lib/CodeGen/GlobalISel/Utils.cpp
new file mode 100644
index 0000000..e500918
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/GlobalISel/Utils.cpp
@@ -0,0 +1,45 @@
+//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file This file implements the utility functions used by the GlobalISel
+/// pipeline.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define DEBUG_TYPE "globalisel-utils"
+
+using namespace llvm;
+
+unsigned llvm::constrainOperandRegClass(
+ const MachineFunction &MF, const TargetRegisterInfo &TRI,
+ MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
+ const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
+ unsigned Reg, unsigned OpIdx) {
+ // Assume physical registers are properly constrained.
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+ "PhysReg not implemented");
+
+ const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
+
+ if (!RBI.constrainGenericRegister(Reg, *RegClass, MRI)) {
+ unsigned NewReg = MRI.createVirtualRegister(RegClass);
+ BuildMI(*InsertPt.getParent(), InsertPt, InsertPt.getDebugLoc(),
+ TII.get(TargetOpcode::COPY), NewReg)
+ .addReg(Reg);
+ return NewReg;
+ }
+
+ return Reg;
+}
diff --git a/contrib/llvm/lib/CodeGen/GlobalMerge.cpp b/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
index 8c760b7..1ea5349 100644
--- a/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
+++ b/contrib/llvm/lib/CodeGen/GlobalMerge.cpp
@@ -182,9 +182,7 @@ namespace {
bool runOnFunction(Function &F) override;
bool doFinalization(Module &M) override;
- const char *getPassName() const override {
- return "Merge internal globals";
- }
+ StringRef getPassName() const override { return "Merge internal globals"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
@@ -434,6 +432,8 @@ bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
std::vector<Type*> Tys;
std::vector<Constant*> Inits;
+ bool HasExternal = false;
+ StringRef FirstExternalName;
for (j = i; j != -1; j = GlobalSet.find_next(j)) {
Type *Ty = Globals[j]->getValueType();
MergedSize += DL.getTypeAllocSize(Ty);
@@ -442,19 +442,46 @@ bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
}
Tys.push_back(Ty);
Inits.push_back(Globals[j]->getInitializer());
+
+ if (Globals[j]->hasExternalLinkage() && !HasExternal) {
+ HasExternal = true;
+ FirstExternalName = Globals[j]->getName();
+ }
}
+ // If merged variables doesn't have external linkage, we needn't to expose
+ // the symbol after merging.
+ GlobalValue::LinkageTypes Linkage = HasExternal
+ ? GlobalValue::ExternalLinkage
+ : GlobalValue::InternalLinkage;
StructType *MergedTy = StructType::get(M.getContext(), Tys);
Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
- GlobalVariable *MergedGV = new GlobalVariable(
- M, MergedTy, isConst, GlobalValue::PrivateLinkage, MergedInit,
- "_MergedGlobals", nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
+ // On Darwin external linkage needs to be preserved, otherwise
+ // dsymutil cannot preserve the debug info for the merged
+ // variables. If they have external linkage, use the symbol name
+ // of the first variable merged as the suffix of global symbol
+ // name. This avoids a link-time naming conflict for the
+ // _MergedGlobals symbols.
+ Twine MergedName =
+ (IsMachO && HasExternal)
+ ? "_MergedGlobals_" + FirstExternalName
+ : "_MergedGlobals";
+ auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage;
+ auto *MergedGV = new GlobalVariable(
+ M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr,
+ GlobalVariable::NotThreadLocal, AddrSpace);
+
+ const StructLayout *MergedLayout = DL.getStructLayout(MergedTy);
for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) {
GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
std::string Name = Globals[k]->getName();
+ // Copy metadata while adjusting any debug info metadata by the original
+ // global's offset within the merged global.
+ MergedGV->copyMetadata(Globals[k], MergedLayout->getElementOffset(idx));
+
Constant *Idx[2] = {
ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, idx),
@@ -498,22 +525,18 @@ void GlobalMerge::collectUsedGlobalVariables(Module &M) {
void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
collectUsedGlobalVariables(M);
- for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
- ++IFn) {
- for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
- IBB != IEndBB; ++IBB) {
- // Follow the invoke link to find the landing pad instruction
- const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
- if (!II) continue;
-
- const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
- // Look for globals in the clauses of the landing pad instruction
- for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
- Idx != NumClauses; ++Idx)
+ for (Function &F : M) {
+ for (BasicBlock &BB : F) {
+ Instruction *Pad = BB.getFirstNonPHI();
+ if (!Pad->isEHPad())
+ continue;
+
+ // Keep globals used by landingpads and catchpads.
+ for (const Use &U : Pad->operands()) {
if (const GlobalVariable *GV =
- dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
- ->stripPointerCasts()))
+ dyn_cast<GlobalVariable>(U->stripPointerCasts()))
MustKeepGlobalVariables.insert(GV);
+ }
}
}
}
diff --git a/contrib/llvm/lib/CodeGen/IfConversion.cpp b/contrib/llvm/lib/CodeGen/IfConversion.cpp
index d225162..b9f3d86 100644
--- a/contrib/llvm/lib/CodeGen/IfConversion.cpp
+++ b/contrib/llvm/lib/CodeGen/IfConversion.cpp
@@ -15,6 +15,7 @@
#include "llvm/CodeGen/Passes.h"
#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
@@ -58,6 +59,8 @@ static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
+ cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
cl::init(true), cl::Hidden);
@@ -68,6 +71,7 @@ STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
+STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
STATISTIC(NumDupBBs, "Number of duplicated blocks");
STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
@@ -82,10 +86,12 @@ namespace {
ICTriangleRev, // Same as ICTriangle, but true path rev condition.
ICTriangleFalse, // Same as ICTriangle, but on the false path.
ICTriangle, // BB is entry of a triangle sub-CFG.
- ICDiamond // BB is entry of a diamond sub-CFG.
+ ICDiamond, // BB is entry of a diamond sub-CFG.
+ ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
+ // common tail that can be shared.
};
- /// BBInfo - One per MachineBasicBlock, this is used to cache the result
+ /// One per MachineBasicBlock, this is used to cache the result
/// if-conversion feasibility analysis. This includes results from
/// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
/// classification, and common tail block of its successors (if it's a
@@ -114,6 +120,7 @@ namespace {
bool IsAnalyzed : 1;
bool IsEnqueued : 1;
bool IsBrAnalyzable : 1;
+ bool IsBrReversible : 1;
bool HasFallThrough : 1;
bool IsUnpredicable : 1;
bool CannotBeCopied : 1;
@@ -128,13 +135,14 @@ namespace {
SmallVector<MachineOperand, 4> Predicate;
BBInfo() : IsDone(false), IsBeingAnalyzed(false),
IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
- HasFallThrough(false), IsUnpredicable(false),
- CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
- ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
+ IsBrReversible(false), HasFallThrough(false),
+ IsUnpredicable(false), CannotBeCopied(false),
+ ClobbersPred(false), NonPredSize(0), ExtraCost(0),
+ ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
FalseBB(nullptr) {}
};
- /// IfcvtToken - Record information about pending if-conversions to attempt:
+ /// Record information about pending if-conversions to attempt:
/// BBI - Corresponding BBInfo.
/// Kind - Type of block. See IfcvtKind.
/// NeedSubsumption - True if the to-be-predicated BB has already been
@@ -148,15 +156,19 @@ namespace {
struct IfcvtToken {
BBInfo &BBI;
IfcvtKind Kind;
- bool NeedSubsumption;
unsigned NumDups;
unsigned NumDups2;
- IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
- : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
+ bool NeedSubsumption : 1;
+ bool TClobbersPred : 1;
+ bool FClobbersPred : 1;
+ IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
+ bool tc = false, bool fc = false)
+ : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
+ TClobbersPred(tc), FClobbersPred(fc) {}
};
- /// BBAnalysis - Results of if-conversion feasibility analysis indexed by
- /// basic block number.
+ /// Results of if-conversion feasibility analysis indexed by basic block
+ /// number.
std::vector<BBInfo> BBAnalysis;
TargetSchedModel SchedModel;
@@ -172,11 +184,11 @@ namespace {
bool PreRegAlloc;
bool MadeChange;
int FnNum;
- std::function<bool(const Function &)> PredicateFtor;
+ std::function<bool(const MachineFunction &)> PredicateFtor;
public:
static char ID;
- IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
+ IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
: MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) {
initializeIfConverterPass(*PassRegistry::getPassRegistry());
}
@@ -191,31 +203,58 @@ namespace {
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
private:
- bool ReverseBranchCondition(BBInfo &BBI);
+ bool reverseBranchCondition(BBInfo &BBI) const;
bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const;
bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const;
+ bool CountDuplicatedInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ unsigned &Dups1, unsigned &Dups2,
+ MachineBasicBlock &TBB, MachineBasicBlock &FBB,
+ bool SkipUnconditionalBranches) const;
bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
- unsigned &Dups1, unsigned &Dups2) const;
- void ScanInstructions(BBInfo &BBI);
- void AnalyzeBlock(MachineBasicBlock *MBB,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
+ bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
+ void AnalyzeBranches(BBInfo &BBI);
+ void ScanInstructions(BBInfo &BBI,
+ MachineBasicBlock::iterator &Begin,
+ MachineBasicBlock::iterator &End,
+ bool BranchUnpredicable = false) const;
+ bool RescanInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ BBInfo &TrueBBI, BBInfo &FalseBBI) const;
+ void AnalyzeBlock(MachineBasicBlock &MBB,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
- bool isTriangle = false, bool RevBranch = false);
+ bool isTriangle = false, bool RevBranch = false,
+ bool hasCommonTail = false);
void AnalyzeBlocks(MachineFunction &MF,
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
- void InvalidatePreds(MachineBasicBlock *BB);
+ void InvalidatePreds(MachineBasicBlock &MBB);
void RemoveExtraEdges(BBInfo &BBI);
bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
+ bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred,
+ bool RemoveBranch, bool MergeAddEdges);
bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
- unsigned NumDups1, unsigned NumDups2);
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbers, bool FClobbers);
+ bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbers, bool FClobbers);
void PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
@@ -242,12 +281,12 @@ namespace {
Prediction);
}
- // blockAlwaysFallThrough - Block ends without a terminator.
+ /// Returns true if Block ends without a terminator.
bool blockAlwaysFallThrough(BBInfo &BBI) const {
return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
}
- // IfcvtTokenCmp - Used to sort if-conversion candidates.
+ /// Used to sort if-conversion candidates.
static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
const std::unique_ptr<IfcvtToken> &C2) {
int Incr1 = (C1->Kind == ICDiamond)
@@ -282,8 +321,7 @@ INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
- if (skipFunction(*MF.getFunction()) ||
- (PredicateFtor && !PredicateFtor(*MF.getFunction())))
+ if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
return false;
const TargetSubtargetInfo &ST = MF.getSubtarget();
@@ -402,11 +440,26 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
- RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
+ RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
+ Token->TClobbersPred,
+ Token->FClobbersPred);
DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) ++NumDiamonds;
break;
}
+ case ICForkedDiamond: {
+ if (DisableForkedDiamond) break;
+ DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#"
+ << BBI.BB->getNumber() << " (T:"
+ << BBI.TrueBB->getNumber() << ",F:"
+ << BBI.FalseBB->getNumber() << ") ");
+ RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
+ Token->TClobbersPred,
+ Token->FClobbersPred);
+ DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ if (RetVal) ++NumForkedDiamonds;
+ break;
+ }
}
Change |= RetVal;
@@ -435,46 +488,42 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
return MadeChange;
}
-/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
-/// its 'true' successor.
+/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
MachineBasicBlock *TrueBB) {
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- E = BB->succ_end(); SI != E; ++SI) {
- MachineBasicBlock *SuccBB = *SI;
+ for (MachineBasicBlock *SuccBB : BB->successors()) {
if (SuccBB != TrueBB)
return SuccBB;
}
return nullptr;
}
-/// ReverseBranchCondition - Reverse the condition of the end of the block
-/// branch. Swap block's 'true' and 'false' successors.
-bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
+/// Reverse the condition of the end of the block branch. Swap block's 'true'
+/// and 'false' successors.
+bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
DebugLoc dl; // FIXME: this is nowhere
- if (!TII->ReverseBranchCondition(BBI.BrCond)) {
- TII->RemoveBranch(*BBI.BB);
- TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
+ if (!TII->reverseBranchCondition(BBI.BrCond)) {
+ TII->removeBranch(*BBI.BB);
+ TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
std::swap(BBI.TrueBB, BBI.FalseBB);
return true;
}
return false;
}
-/// getNextBlock - Returns the next block in the function blocks ordering. If
-/// it is the end, returns NULL.
-static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
- MachineFunction::iterator I = BB->getIterator();
- MachineFunction::iterator E = BB->getParent()->end();
+/// Returns the next block in the function blocks ordering. If it is the end,
+/// returns NULL.
+static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
+ MachineFunction::iterator I = MBB.getIterator();
+ MachineFunction::iterator E = MBB.getParent()->end();
if (++I == E)
return nullptr;
return &*I;
}
-/// ValidSimple - Returns true if the 'true' block (along with its
-/// predecessor) forms a valid simple shape for ifcvt. It also returns the
-/// number of instructions that the ifcvt would need to duplicate if performed
-/// in Dups.
+/// Returns true if the 'true' block (along with its predecessor) forms a valid
+/// simple shape for ifcvt. It also returns the number of instructions that the
+/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
BranchProbability Prediction) const {
Dups = 0;
@@ -495,12 +544,11 @@ bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
return true;
}
-/// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
-/// with their common predecessor) forms a valid triangle shape for ifcvt.
-/// If 'FalseBranch' is true, it checks if 'true' block's false branch
-/// branches to the 'false' block rather than the other way around. It also
-/// returns the number of instructions that the ifcvt would need to duplicate
-/// if performed in 'Dups'.
+/// Returns true if the 'true' and 'false' blocks (along with their common
+/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
+/// true, it checks if 'true' block's false branch branches to the 'false' block
+/// rather than the other way around. It also returns the number of instructions
+/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups,
BranchProbability Prediction) const {
@@ -540,122 +588,353 @@ bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
return TExit && TExit == FalseBBI.BB;
}
-/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
-/// with their common predecessor) forms a valid diamond shape for ifcvt.
-bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
- unsigned &Dups1, unsigned &Dups2) const {
- Dups1 = Dups2 = 0;
- if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
- FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
- return false;
-
- MachineBasicBlock *TT = TrueBBI.TrueBB;
- MachineBasicBlock *FT = FalseBBI.TrueBB;
-
- if (!TT && blockAlwaysFallThrough(TrueBBI))
- TT = getNextBlock(TrueBBI.BB);
- if (!FT && blockAlwaysFallThrough(FalseBBI))
- FT = getNextBlock(FalseBBI.BB);
- if (TT != FT)
- return false;
- if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
- return false;
- if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
- return false;
+/// Shrink the provided inclusive range by one instruction.
+/// If the range was one instruction (\p It == \p Begin), It is not modified,
+/// but \p Empty is set to true.
+static inline void shrinkInclusiveRange(
+ MachineBasicBlock::iterator &Begin,
+ MachineBasicBlock::iterator &It,
+ bool &Empty) {
+ if (It == Begin)
+ Empty = true;
+ else
+ It--;
+}
- // FIXME: Allow true block to have an early exit?
- if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
- (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
- return false;
+/// Count duplicated instructions and move the iterators to show where they
+/// are.
+/// @param TIB True Iterator Begin
+/// @param FIB False Iterator Begin
+/// These two iterators initially point to the first instruction of the two
+/// blocks, and finally point to the first non-shared instruction.
+/// @param TIE True Iterator End
+/// @param FIE False Iterator End
+/// These two iterators initially point to End() for the two blocks() and
+/// finally point to the first shared instruction in the tail.
+/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
+/// two blocks.
+/// @param Dups1 count of duplicated instructions at the beginning of the 2
+/// blocks.
+/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
+/// @param SkipUnconditionalBranches if true, Don't make sure that
+/// unconditional branches at the end of the blocks are the same. True is
+/// passed when the blocks are analyzable to allow for fallthrough to be
+/// handled.
+/// @return false if the shared portion prevents if conversion.
+bool IfConverter::CountDuplicatedInstructions(
+ MachineBasicBlock::iterator &TIB,
+ MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE,
+ MachineBasicBlock::iterator &FIE,
+ unsigned &Dups1, unsigned &Dups2,
+ MachineBasicBlock &TBB, MachineBasicBlock &FBB,
+ bool SkipUnconditionalBranches) const {
- // Count duplicate instructions at the beginning of the true and false blocks.
- MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
- MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
- MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
- MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
while (TIB != TIE && FIB != FIE) {
// Skip dbg_value instructions. These do not count.
- if (TIB->isDebugValue()) {
- while (TIB != TIE && TIB->isDebugValue())
- ++TIB;
- if (TIB == TIE)
- break;
- }
- if (FIB->isDebugValue()) {
- while (FIB != FIE && FIB->isDebugValue())
- ++FIB;
- if (FIB == FIE)
- break;
- }
+ TIB = skipDebugInstructionsForward(TIB, TIE);
+ if(TIB == TIE)
+ break;
+ FIB = skipDebugInstructionsForward(FIB, FIE);
+ if(FIB == FIE)
+ break;
if (!TIB->isIdenticalTo(*FIB))
break;
- ++Dups1;
+ // A pred-clobbering instruction in the shared portion prevents
+ // if-conversion.
+ std::vector<MachineOperand> PredDefs;
+ if (TII->DefinesPredicate(*TIB, PredDefs))
+ return false;
+ // If we get all the way to the branch instructions, don't count them.
+ if (!TIB->isBranch())
+ ++Dups1;
++TIB;
++FIB;
}
- // Now, in preparation for counting duplicate instructions at the ends of the
- // blocks, move the end iterators up past any branch instructions.
- // If both blocks are returning don't skip the branches, since they will
- // likely be both identical return instructions. In such cases the return
- // can be left unpredicated.
// Check for already containing all of the block.
if (TIB == TIE || FIB == FIE)
return true;
+ // Now, in preparation for counting duplicate instructions at the ends of the
+ // blocks, move the end iterators up past any branch instructions.
--TIE;
--FIE;
- if (!TrueBBI.BB->succ_empty() || !FalseBBI.BB->succ_empty()) {
- while (TIE != TIB && TIE->isBranch())
- --TIE;
- while (FIE != FIB && FIE->isBranch())
- --FIE;
+
+ // After this point TIB and TIE define an inclusive range, which means that
+ // TIB == TIE is true when there is one more instruction to consider, not at
+ // the end. Because we may not be able to go before TIB, we need a flag to
+ // indicate a completely empty range.
+ bool TEmpty = false, FEmpty = false;
+
+ // Upon exit TIE and FIE will both point at the last non-shared instruction.
+ // They need to be moved forward to point past the last non-shared
+ // instruction if the range they delimit is non-empty.
+ auto IncrementEndIteratorsOnExit = make_scope_exit([&]() {
+ if (!TEmpty)
+ ++TIE;
+ if (!FEmpty)
+ ++FIE;
+ });
+
+ if (!TBB.succ_empty() || !FBB.succ_empty()) {
+ if (SkipUnconditionalBranches) {
+ while (!TEmpty && TIE->isUnconditionalBranch())
+ shrinkInclusiveRange(TIB, TIE, TEmpty);
+ while (!FEmpty && FIE->isUnconditionalBranch())
+ shrinkInclusiveRange(FIB, FIE, FEmpty);
+ }
}
// If Dups1 includes all of a block, then don't count duplicate
// instructions at the end of the blocks.
- if (TIB == TIE || FIB == FIE)
+ if (TEmpty || FEmpty)
return true;
// Count duplicate instructions at the ends of the blocks.
- while (TIE != TIB && FIE != FIB) {
+ while (!TEmpty && !FEmpty) {
// Skip dbg_value instructions. These do not count.
- if (TIE->isDebugValue()) {
- while (TIE != TIB && TIE->isDebugValue())
- --TIE;
- if (TIE == TIB)
- break;
+ TIE = skipDebugInstructionsBackward(TIE, TIB);
+ FIE = skipDebugInstructionsBackward(FIE, FIB);
+ TEmpty = TIE == TIB && TIE->isDebugValue();
+ FEmpty = FIE == FIB && FIE->isDebugValue();
+ if (TEmpty || FEmpty)
+ break;
+ if (!TIE->isIdenticalTo(*FIE))
+ break;
+ // We have to verify that any branch instructions are the same, and then we
+ // don't count them toward the # of duplicate instructions.
+ if (!TIE->isBranch())
+ ++Dups2;
+ shrinkInclusiveRange(TIB, TIE, TEmpty);
+ shrinkInclusiveRange(FIB, FIE, FEmpty);
+ }
+ return true;
+}
+
+/// RescanInstructions - Run ScanInstructions on a pair of blocks.
+/// @param TIB - True Iterator Begin, points to first non-shared instruction
+/// @param FIB - False Iterator Begin, points to first non-shared instruction
+/// @param TIE - True Iterator End, points past last non-shared instruction
+/// @param FIE - False Iterator End, points past last non-shared instruction
+/// @param TrueBBI - BBInfo to update for the true block.
+/// @param FalseBBI - BBInfo to update for the false block.
+/// @returns - false if either block cannot be predicated or if both blocks end
+/// with a predicate-clobbering instruction.
+bool IfConverter::RescanInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ BBInfo &TrueBBI, BBInfo &FalseBBI) const {
+ bool BranchUnpredicable = true;
+ TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
+ ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
+ if (TrueBBI.IsUnpredicable)
+ return false;
+ ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
+ if (FalseBBI.IsUnpredicable)
+ return false;
+ if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
+ return false;
+ return true;
+}
+
+#ifndef NDEBUG
+static void verifySameBranchInstructions(
+ MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2) {
+ MachineBasicBlock::iterator B1 = MBB1->begin();
+ MachineBasicBlock::iterator B2 = MBB2->begin();
+ MachineBasicBlock::iterator E1 = std::prev(MBB1->end());
+ MachineBasicBlock::iterator E2 = std::prev(MBB2->end());
+ bool Empty1 = false, Empty2 = false;
+ while (!Empty1 && !Empty2) {
+ E1 = skipDebugInstructionsBackward(E1, B1);
+ E2 = skipDebugInstructionsBackward(E2, B2);
+ Empty1 = E1 == B1 && E1->isDebugValue();
+ Empty2 = E2 == B2 && E2->isDebugValue();
+
+ if (Empty1 && Empty2)
+ break;
+
+ if (Empty1) {
+ assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
+ break;
}
- if (FIE->isDebugValue()) {
- while (FIE != FIB && FIE->isDebugValue())
- --FIE;
- if (FIE == FIB)
- break;
+ if (Empty2) {
+ assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
+ break;
}
- if (!TIE->isIdenticalTo(*FIE))
+
+ if (E1->isBranch() || E2->isBranch())
+ assert(E1->isIdenticalTo(*E2) &&
+ "Branch mis-match, branch instructions don't match.");
+ else
break;
- ++Dups2;
- --TIE;
- --FIE;
+ shrinkInclusiveRange(B1, E1, Empty1);
+ shrinkInclusiveRange(B2, E2, Empty2);
+ }
+}
+#endif
+
+/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
+/// with their common predecessor) form a diamond if a common tail block is
+/// extracted.
+/// While not strictly a diamond, this pattern would form a diamond if
+/// tail-merging had merged the shared tails.
+/// EBB
+/// _/ \_
+/// | |
+/// TBB FBB
+/// / \ / \
+/// FalseBB TrueBB FalseBB
+/// Currently only handles analyzable branches.
+/// Specifically excludes actual diamonds to avoid overlap.
+bool IfConverter::ValidForkedDiamond(
+ BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
+ Dups1 = Dups2 = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
+ FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
+ return false;
+
+ if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
+ return false;
+ // Don't IfConvert blocks that can't be folded into their predecessor.
+ if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
+ return false;
+
+ // This function is specifically looking for conditional tails, as
+ // unconditional tails are already handled by the standard diamond case.
+ if (TrueBBI.BrCond.size() == 0 ||
+ FalseBBI.BrCond.size() == 0)
+ return false;
+
+ MachineBasicBlock *TT = TrueBBI.TrueBB;
+ MachineBasicBlock *TF = TrueBBI.FalseBB;
+ MachineBasicBlock *FT = FalseBBI.TrueBB;
+ MachineBasicBlock *FF = FalseBBI.FalseBB;
+
+ if (!TT)
+ TT = getNextBlock(*TrueBBI.BB);
+ if (!TF)
+ TF = getNextBlock(*TrueBBI.BB);
+ if (!FT)
+ FT = getNextBlock(*FalseBBI.BB);
+ if (!FF)
+ FF = getNextBlock(*FalseBBI.BB);
+
+ if (!TT || !TF)
+ return false;
+
+ // Check successors. If they don't match, bail.
+ if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
+ return false;
+
+ bool FalseReversed = false;
+ if (TF == FT && TT == FF) {
+ // If the branches are opposing, but we can't reverse, don't do it.
+ if (!FalseBBI.IsBrReversible)
+ return false;
+ FalseReversed = true;
+ reverseBranchCondition(FalseBBI);
}
+ auto UnReverseOnExit = make_scope_exit([&]() {
+ if (FalseReversed)
+ reverseBranchCondition(FalseBBI);
+ });
+
+ // Count duplicate instructions at the beginning of the true and false blocks.
+ MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
+ MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
+ MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
+ if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
+ *TrueBBI.BB, *FalseBBI.BB,
+ /* SkipUnconditionalBranches */ true))
+ return false;
+
+ TrueBBICalc.BB = TrueBBI.BB;
+ FalseBBICalc.BB = FalseBBI.BB;
+ if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
+ return false;
+ // The size is used to decide whether to if-convert, and the shared portions
+ // are subtracted off. Because of the subtraction, we just use the size that
+ // was calculated by the original ScanInstructions, as it is correct.
+ TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
+ FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
return true;
}
-/// ScanInstructions - Scan all the instructions in the block to determine if
-/// the block is predicable. In most cases, that means all the instructions
-/// in the block are isPredicable(). Also checks if the block contains any
-/// instruction which can clobber a predicate (e.g. condition code register).
-/// If so, the block is not predicable unless it's the last instruction.
-void IfConverter::ScanInstructions(BBInfo &BBI) {
+/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
+/// with their common predecessor) forms a valid diamond shape for ifcvt.
+bool IfConverter::ValidDiamond(
+ BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
+ Dups1 = Dups2 = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
+ FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
+ return false;
+
+ MachineBasicBlock *TT = TrueBBI.TrueBB;
+ MachineBasicBlock *FT = FalseBBI.TrueBB;
+
+ if (!TT && blockAlwaysFallThrough(TrueBBI))
+ TT = getNextBlock(*TrueBBI.BB);
+ if (!FT && blockAlwaysFallThrough(FalseBBI))
+ FT = getNextBlock(*FalseBBI.BB);
+ if (TT != FT)
+ return false;
+ if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
+ return false;
+ if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
+ return false;
+
+ // FIXME: Allow true block to have an early exit?
+ if (TrueBBI.FalseBB || FalseBBI.FalseBB)
+ return false;
+
+ // Count duplicate instructions at the beginning and end of the true and
+ // false blocks.
+ // Skip unconditional branches only if we are considering an analyzable
+ // diamond. Otherwise the branches must be the same.
+ bool SkipUnconditionalBranches =
+ TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
+ MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
+ MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
+ MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
+ if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
+ *TrueBBI.BB, *FalseBBI.BB,
+ SkipUnconditionalBranches))
+ return false;
+
+ TrueBBICalc.BB = TrueBBI.BB;
+ FalseBBICalc.BB = FalseBBI.BB;
+ if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
+ return false;
+ // The size is used to decide whether to if-convert, and the shared portions
+ // are subtracted off. Because of the subtraction, we just use the size that
+ // was calculated by the original ScanInstructions, as it is correct.
+ TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
+ FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
+ return true;
+}
+
+/// AnalyzeBranches - Look at the branches at the end of a block to determine if
+/// the block is predicable.
+void IfConverter::AnalyzeBranches(BBInfo &BBI) {
if (BBI.IsDone)
return;
- bool AlreadyPredicated = !BBI.Predicate.empty();
- // First analyze the end of BB branches.
BBI.TrueBB = BBI.FalseBB = nullptr;
BBI.BrCond.clear();
BBI.IsBrAnalyzable =
!TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
+ SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
+ BBI.IsBrReversible = (RevCond.size() == 0) ||
+ !TII->reverseBranchCondition(RevCond);
BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
if (BBI.BrCond.size()) {
@@ -666,16 +945,29 @@ void IfConverter::ScanInstructions(BBInfo &BBI) {
if (!BBI.FalseBB) {
// Malformed bcc? True and false blocks are the same?
BBI.IsUnpredicable = true;
- return;
}
}
+}
+
+/// ScanInstructions - Scan all the instructions in the block to determine if
+/// the block is predicable. In most cases, that means all the instructions
+/// in the block are isPredicable(). Also checks if the block contains any
+/// instruction which can clobber a predicate (e.g. condition code register).
+/// If so, the block is not predicable unless it's the last instruction.
+void IfConverter::ScanInstructions(BBInfo &BBI,
+ MachineBasicBlock::iterator &Begin,
+ MachineBasicBlock::iterator &End,
+ bool BranchUnpredicable) const {
+ if (BBI.IsDone || BBI.IsUnpredicable)
+ return;
+
+ bool AlreadyPredicated = !BBI.Predicate.empty();
- // Then scan all the instructions.
BBI.NonPredSize = 0;
BBI.ExtraCost = 0;
BBI.ExtraCost2 = 0;
BBI.ClobbersPred = false;
- for (auto &MI : *BBI.BB) {
+ for (MachineInstr &MI : make_range(Begin, End)) {
if (MI.isDebugValue())
continue;
@@ -715,6 +1007,11 @@ void IfConverter::ScanInstructions(BBInfo &BBI) {
bool isPredicated = TII->isPredicated(MI);
bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
+ if (BranchUnpredicable && MI.isBranch()) {
+ BBI.IsUnpredicable = true;
+ return;
+ }
+
// A conditional branch is not predicable, but it may be eliminated.
if (isCondBr)
continue;
@@ -756,13 +1053,24 @@ void IfConverter::ScanInstructions(BBInfo &BBI) {
}
}
-/// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
-/// predicated by the specified predicate.
+/// Determine if the block is a suitable candidate to be predicated by the
+/// specified predicate.
+/// @param BBI BBInfo for the block to check
+/// @param Pred Predicate array for the branch that leads to BBI
+/// @param isTriangle true if the Analysis is for a triangle
+/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
+/// case
+/// @param hasCommonTail true if BBI shares a tail with a sibling block that
+/// contains any instruction that would make the block unpredicable.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
SmallVectorImpl<MachineOperand> &Pred,
- bool isTriangle, bool RevBranch) {
+ bool isTriangle, bool RevBranch,
+ bool hasCommonTail) {
// If the block is dead or unpredicable, then it cannot be predicated.
- if (BBI.IsDone || BBI.IsUnpredicable)
+ // Two blocks may share a common unpredicable tail, but this doesn't prevent
+ // them from being if-converted. The non-shared portion is assumed to have
+ // been checked
+ if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
return false;
// If it is already predicated but we couldn't analyze its terminator, the
@@ -776,7 +1084,7 @@ bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
return false;
- if (BBI.BrCond.size()) {
+ if (!hasCommonTail && BBI.BrCond.size()) {
if (!isTriangle)
return false;
@@ -784,10 +1092,10 @@ bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (RevBranch) {
- if (TII->ReverseBranchCondition(Cond))
+ if (TII->reverseBranchCondition(Cond))
return false;
}
- if (TII->ReverseBranchCondition(RevPred) ||
+ if (TII->reverseBranchCondition(RevPred) ||
!TII->SubsumesPredicate(Cond, RevPred))
return false;
}
@@ -795,13 +1103,12 @@ bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
return true;
}
-/// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
-/// the specified block. Record its successors and whether it looks like an
-/// if-conversion candidate.
+/// Analyze the structure of the sub-CFG starting from the specified block.
+/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
- MachineBasicBlock *MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
+ MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
struct BBState {
- BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {}
+ BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
MachineBasicBlock *MBB;
/// This flag is true if MBB's successors have been analyzed.
@@ -825,7 +1132,10 @@ void IfConverter::AnalyzeBlock(
BBI.BB = BB;
BBI.IsBeingAnalyzed = true;
- ScanInstructions(BBI);
+ AnalyzeBranches(BBI);
+ MachineBasicBlock::iterator Begin = BBI.BB->begin();
+ MachineBasicBlock::iterator End = BBI.BB->end();
+ ScanInstructions(BBI, Begin, End);
// Unanalyzable or ends with fallthrough or unconditional branch, or if is
// not considered for ifcvt anymore.
@@ -854,8 +1164,8 @@ void IfConverter::AnalyzeBlock(
// Push the False and True blocks to the stack.
State.SuccsAnalyzed = true;
- BBStack.push_back(BBI.FalseBB);
- BBStack.push_back(BBI.TrueBB);
+ BBStack.push_back(*BBI.FalseBB);
+ BBStack.push_back(*BBI.TrueBB);
continue;
}
@@ -871,7 +1181,7 @@ void IfConverter::AnalyzeBlock(
SmallVector<MachineOperand, 4>
RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
- bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
+ bool CanRevCond = !TII->reverseBranchCondition(RevCond);
unsigned Dups = 0;
unsigned Dups2 = 0;
@@ -881,25 +1191,59 @@ void IfConverter::AnalyzeBlock(
BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
- if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
- MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
- TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
- *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
- FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
- Prediction) &&
- FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
- FeasibilityAnalysis(FalseBBI, RevCond)) {
- // Diamond:
- // EBB
- // / \_
- // | |
- // TBB FBB
- // \ /
- // TailBB
- // Note TailBB can be empty.
- Tokens.push_back(llvm::make_unique<IfcvtToken>(
- BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2));
- Enqueued = true;
+ if (CanRevCond) {
+ BBInfo TrueBBICalc, FalseBBICalc;
+ auto feasibleDiamond = [&]() {
+ bool MeetsSize = MeetIfcvtSizeLimit(
+ *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
+ TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
+ *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
+ FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
+ Prediction);
+ bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
+ /* IsTriangle */ false, /* RevCond */ false,
+ /* hasCommonTail */ true);
+ bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
+ /* IsTriangle */ false, /* RevCond */ false,
+ /* hasCommonTail */ true);
+ return MeetsSize && TrueFeasible && FalseFeasible;
+ };
+
+ if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
+ TrueBBICalc, FalseBBICalc)) {
+ if (feasibleDiamond()) {
+ // Diamond:
+ // EBB
+ // / \_
+ // | |
+ // TBB FBB
+ // \ /
+ // TailBB
+ // Note TailBB can be empty.
+ Tokens.push_back(llvm::make_unique<IfcvtToken>(
+ BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
+ (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
+ Enqueued = true;
+ }
+ } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
+ TrueBBICalc, FalseBBICalc)) {
+ if (feasibleDiamond()) {
+ // ForkedDiamond:
+ // if TBB and FBB have a common tail that includes their conditional
+ // branch instructions, then we can If Convert this pattern.
+ // EBB
+ // _/ \_
+ // | |
+ // TBB FBB
+ // / \ / \
+ // FalseBB TrueBB FalseBB
+ //
+ Tokens.push_back(llvm::make_unique<IfcvtToken>(
+ BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
+ (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
+ Enqueued = true;
+ }
+ }
}
if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
@@ -985,25 +1329,23 @@ void IfConverter::AnalyzeBlock(
}
}
-/// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
-/// candidates.
+/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
- for (auto &BB : MF)
- AnalyzeBlock(&BB, Tokens);
+ for (MachineBasicBlock &MBB : MF)
+ AnalyzeBlock(MBB, Tokens);
// Sort to favor more complex ifcvt scheme.
std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
}
-/// canFallThroughTo - Returns true either if ToBB is the next block after BB or
-/// that all the intervening blocks are empty (given BB can fall through to its
-/// next block).
-static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
- MachineFunction::iterator PI = BB->getIterator();
+/// Returns true either if ToMBB is the next block after MBB or that all the
+/// intervening blocks are empty (given MBB can fall through to its next block).
+static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
+ MachineFunction::iterator PI = MBB.getIterator();
MachineFunction::iterator I = std::next(PI);
- MachineFunction::iterator TI = ToBB->getIterator();
- MachineFunction::iterator E = BB->getParent()->end();
+ MachineFunction::iterator TI = ToMBB.getIterator();
+ MachineFunction::iterator E = MBB.getParent()->end();
while (I != TI) {
// Check isSuccessor to avoid case where the next block is empty, but
// it's not a successor.
@@ -1014,30 +1356,27 @@ static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
return true;
}
-/// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
-/// to determine if it can be if-converted. If predecessor is already enqueued,
-/// dequeue it!
-void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
- for (const auto &Predecessor : BB->predecessors()) {
+/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
+/// can be if-converted. If predecessor is already enqueued, dequeue it!
+void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
+ for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
- if (PBBI.IsDone || PBBI.BB == BB)
+ if (PBBI.IsDone || PBBI.BB == &MBB)
continue;
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
-/// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
-///
-static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
+/// Inserts an unconditional branch from \p MBB to \p ToMBB.
+static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
const TargetInstrInfo *TII) {
DebugLoc dl; // FIXME: this is nowhere
SmallVector<MachineOperand, 0> NoCond;
- TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl);
+ TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}
-/// RemoveExtraEdges - Remove true / false edges if either / both are no longer
-/// successors.
+/// Remove true / false edges if either / both are no longer successors.
void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
@@ -1046,29 +1385,42 @@ void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
}
/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
-/// values defined in MI which are not live/used by MI.
+/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
+ const TargetRegisterInfo *TRI = MI.getParent()->getParent()
+ ->getSubtarget().getRegisterInfo();
+
+ // Before stepping forward past MI, remember which regs were live
+ // before MI. This is needed to set the Undef flag only when reg is
+ // dead.
+ SparseSet<unsigned> LiveBeforeMI;
+ LiveBeforeMI.setUniverse(TRI->getNumRegs());
+ for (unsigned Reg : Redefs)
+ LiveBeforeMI.insert(Reg);
+
SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
Redefs.stepForward(MI, Clobbers);
// Now add the implicit uses for each of the clobbered values.
- for (auto Reg : Clobbers) {
+ for (auto Clobber : Clobbers) {
// FIXME: Const cast here is nasty, but better than making StepForward
// take a mutable instruction instead of const.
- MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second);
+ unsigned Reg = Clobber.first;
+ MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
MachineInstr *OpMI = Op.getParent();
MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
if (Op.isRegMask()) {
// First handle regmasks. They clobber any entries in the mask which
// means that we need a def for those registers.
- MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
+ if (LiveBeforeMI.count(Reg))
+ MIB.addReg(Reg, RegState::Implicit);
// We also need to add an implicit def of this register for the later
// use to read from.
// For the register allocator to have allocated a register clobbered
// by the call which is used later, it must be the case that
// the call doesn't return.
- MIB.addReg(Reg.first, RegState::Implicit | RegState::Define);
+ MIB.addReg(Reg, RegState::Implicit | RegState::Define);
continue;
}
assert(Op.isReg() && "Register operand required");
@@ -1078,13 +1430,23 @@ static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
if (Redefs.contains(Op.getReg()))
Op.setIsDead(false);
}
- MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
+ if (LiveBeforeMI.count(Reg))
+ MIB.addReg(Reg, RegState::Implicit);
+ else {
+ bool HasLiveSubReg = false;
+ for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
+ if (!LiveBeforeMI.count(*S))
+ continue;
+ HasLiveSubReg = true;
+ break;
+ }
+ if (HasLiveSubReg)
+ MIB.addReg(Reg, RegState::Implicit);
+ }
}
}
-/**
- * Remove kill flags from operands with a registers in the @p DontKill set.
- */
+/// Remove kill flags from operands with a registers in the \p DontKill set.
static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
for (MIBundleOperands O(MI); O.isValid(); ++O) {
if (!O->isReg() || !O->isKill())
@@ -1094,20 +1456,17 @@ static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
}
}
-/**
- * Walks a range of machine instructions and removes kill flags for registers
- * in the @p DontKill set.
- */
+/// Walks a range of machine instructions and removes kill flags for registers
+/// in the \p DontKill set.
static void RemoveKills(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
const LivePhysRegs &DontKill,
const MCRegisterInfo &MCRI) {
- for ( ; I != E; ++I)
- RemoveKills(*I, DontKill);
+ for (MachineInstr &MI : make_range(I, E))
+ RemoveKills(MI, DontKill);
}
-/// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
-///
+/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
@@ -1118,54 +1477,58 @@ bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
if (Kind == ICSimpleFalse)
std::swap(CvtBBI, NextBBI);
+ MachineBasicBlock &CvtMBB = *CvtBBI->BB;
+ MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
- (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
+ (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
- if (CvtBBI->BB->hasAddressTaken())
+ if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICSimpleFalse)
- if (TII->ReverseBranchCondition(Cond))
+ if (TII->reverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
- // Initialize liveins to the first BB. These are potentiall redefined by
- // predicated instructions.
- Redefs.init(TRI);
- Redefs.addLiveIns(*CvtBBI->BB);
- Redefs.addLiveIns(*NextBBI->BB);
-
- // Compute a set of registers which must not be killed by instructions in
- // BB1: This is everything live-in to BB2.
- DontKill.init(TRI);
- DontKill.addLiveIns(*NextBBI->BB);
+ Redefs.init(*TRI);
+ DontKill.init(*TRI);
+
+ if (MRI->tracksLiveness()) {
+ // Initialize liveins to the first BB. These are potentiall redefined by
+ // predicated instructions.
+ Redefs.addLiveIns(CvtMBB);
+ Redefs.addLiveIns(NextMBB);
+ // Compute a set of registers which must not be killed by instructions in
+ // BB1: This is everything live-in to BB2.
+ DontKill.addLiveIns(NextMBB);
+ }
- if (CvtBBI->BB->pred_size() > 1) {
- BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
+ if (CvtMBB.pred_size() > 1) {
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB, true);
+ BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
- RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
- PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
+ RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI);
+ PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Merge converted block into entry block.
- BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI);
}
bool IterIfcvt = true;
- if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
- InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
+ if (!canFallThroughTo(*BBI.BB, NextMBB)) {
+ InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
// Now ifcvt'd block will look like this:
// BB:
@@ -1185,15 +1548,14 @@ bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
- InvalidatePreds(BBI.BB);
+ InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
-/// IfConvertTriangle - If convert a triangle sub-CFG.
-///
+/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
@@ -1205,29 +1567,29 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
std::swap(CvtBBI, NextBBI);
+ MachineBasicBlock &CvtMBB = *CvtBBI->BB;
+ MachineBasicBlock &NextMBB = *NextBBI->BB;
if (CvtBBI->IsDone ||
- (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
+ (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
- if (CvtBBI->BB->hasAddressTaken())
+ if (CvtMBB.hasAddressTaken())
// Conservatively abort if-conversion if BB's address is taken.
return false;
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
- if (TII->ReverseBranchCondition(Cond))
+ if (TII->reverseBranchCondition(Cond))
llvm_unreachable("Unable to reverse branch condition!");
if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
- if (ReverseBranchCondition(*CvtBBI)) {
+ if (reverseBranchCondition(*CvtBBI)) {
// BB has been changed, modify its predecessors (except for this
// one) so they don't get ifcvt'ed based on bad intel.
- for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
- E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
- MachineBasicBlock *PBB = *PI;
+ for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
if (PBB == BBI.BB)
continue;
BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
@@ -1241,9 +1603,11 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
// Initialize liveins to the first BB. These are potentially redefined by
// predicated instructions.
- Redefs.init(TRI);
- Redefs.addLiveIns(*CvtBBI->BB);
- Redefs.addLiveIns(*NextBBI->BB);
+ Redefs.init(*TRI);
+ if (MRI->tracksLiveness()) {
+ Redefs.addLiveIns(CvtMBB);
+ Redefs.addLiveIns(NextMBB);
+ }
DontKill.clear();
@@ -1251,29 +1615,29 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
if (HasEarlyExit) {
- // Get probabilities before modifying CvtBBI->BB and BBI.BB.
- CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB);
- CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB);
- BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB);
- BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB);
+ // Get probabilities before modifying CvtMBB and BBI.BB.
+ CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
+ CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
+ BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
+ BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
}
- if (CvtBBI->BB->pred_size() > 1) {
- BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
+ if (CvtMBB.pred_size() > 1) {
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
// Copy instructions in the true block, predicate them, and add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
// RemoveExtraEdges won't work if the block has an unanalyzable branch, so
// explicitly remove CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB, true);
+ BBI.BB->removeSuccessor(&CvtMBB, true);
} else {
// Predicate the 'true' block after removing its branch.
- CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
- PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
+ CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
+ PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
// Now merge the entry of the triangle with the true block.
- BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI, false);
}
@@ -1281,24 +1645,23 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
if (HasEarlyExit) {
SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
CvtBBI->BrCond.end());
- if (TII->ReverseBranchCondition(RevCond))
+ if (TII->reverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
// Update the edge probability for both CvtBBI->FalseBB and NextBBI.
- // NewNext = New_Prob(BBI.BB, NextBBI->BB) =
- // Prob(BBI.BB, NextBBI->BB) +
- // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB)
+ // NewNext = New_Prob(BBI.BB, NextMBB) =
+ // Prob(BBI.BB, NextMBB) +
+ // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
// NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
- // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB)
- auto NewTrueBB = getNextBlock(BBI.BB);
+ // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
+ auto NewTrueBB = getNextBlock(*BBI.BB);
auto NewNext = BBNext + BBCvt * CvtNext;
- auto NewTrueBBIter =
- std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB);
+ auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
if (NewTrueBBIter != BBI.BB->succ_end())
BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
auto NewFalse = BBCvt * CvtFalse;
- TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
+ TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
}
@@ -1306,18 +1669,18 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
// predecessors. Otherwise, add an unconditional branch to 'false'.
bool FalseBBDead = false;
bool IterIfcvt = true;
- bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
+ bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
if (!isFallThrough) {
// Only merge them if the true block does not fallthrough to the false
// block. By not merging them, we make it possible to iteratively
// ifcvt the blocks.
if (!HasEarlyExit &&
- NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough &&
- !NextBBI->BB->hasAddressTaken()) {
+ NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
+ !NextMBB.hasAddressTaken()) {
MergeBlocks(BBI, *NextBBI);
FalseBBDead = true;
} else {
- InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
+ InsertUncondBranch(*BBI.BB, NextMBB, TII);
BBI.HasFallThrough = false;
}
// Mixed predicated and unpredicated code. This cannot be iteratively
@@ -1330,7 +1693,7 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
- InvalidatePreds(BBI.BB);
+ InvalidatePreds(*BBI.BB);
CvtBBI->IsDone = true;
if (FalseBBDead)
NextBBI->IsDone = true;
@@ -1339,23 +1702,25 @@ bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
return true;
}
-/// IfConvertDiamond - If convert a diamond sub-CFG.
-///
-bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
- unsigned NumDups1, unsigned NumDups2) {
- BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
- BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
- MachineBasicBlock *TailBB = TrueBBI.TrueBB;
- // True block must fall through or end with an unanalyzable terminator.
- if (!TailBB) {
- if (blockAlwaysFallThrough(TrueBBI))
- TailBB = FalseBBI.TrueBB;
- assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
- }
+/// Common code shared between diamond conversions.
+/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
+/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
+/// and FalseBBI
+/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
+/// and \p FalseBBI
+/// \p RemoveBranch - Remove the common branch of the two blocks before
+/// predicating. Only false for unanalyzable fallthrough
+/// cases. The caller will replace the branch if necessary.
+/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
+/// unanalyzable fallthrough
+bool IfConverter::IfConvertDiamondCommon(
+ BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred,
+ bool RemoveBranch, bool MergeAddEdges) {
if (TrueBBI.IsDone || FalseBBI.IsDone ||
- TrueBBI.BB->pred_size() > 1 ||
- FalseBBI.BB->pred_size() > 1) {
+ TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
// Something has changed. It's no longer safe to predicate these blocks.
BBI.IsAnalyzed = false;
TrueBBI.IsAnalyzed = false;
@@ -1373,36 +1738,47 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
BBInfo *BBI1 = &TrueBBI;
BBInfo *BBI2 = &FalseBBI;
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
- if (TII->ReverseBranchCondition(RevCond))
+ if (TII->reverseBranchCondition(RevCond))
llvm_unreachable("Unable to reverse branch condition!");
SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
// Figure out the more profitable ordering.
bool DoSwap = false;
- if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
+ if (TClobbersPred && !FClobbersPred)
DoSwap = true;
- else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
+ else if (!TClobbersPred && !FClobbersPred) {
if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
DoSwap = true;
- }
+ } else if (TClobbersPred && FClobbersPred)
+ llvm_unreachable("Predicate info cannot be clobbered by both sides.");
if (DoSwap) {
std::swap(BBI1, BBI2);
std::swap(Cond1, Cond2);
}
// Remove the conditional branch from entry to the blocks.
- BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
-
- // Initialize liveins to the first BB. These are potentially redefined by
- // predicated instructions.
- Redefs.init(TRI);
- Redefs.addLiveIns(*BBI1->BB);
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
+
+ MachineBasicBlock &MBB1 = *BBI1->BB;
+ MachineBasicBlock &MBB2 = *BBI2->BB;
+
+ // Initialize the Redefs:
+ // - BB2 live-in regs need implicit uses before being redefined by BB1
+ // instructions.
+ // - BB1 live-out regs need implicit uses before being redefined by BB2
+ // instructions. We start with BB1 live-ins so we have the live-out regs
+ // after tracking the BB1 instructions.
+ Redefs.init(*TRI);
+ if (MRI->tracksLiveness()) {
+ Redefs.addLiveIns(MBB1);
+ Redefs.addLiveIns(MBB2);
+ }
// Remove the duplicated instructions at the beginnings of both paths.
// Skip dbg_value instructions
- MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr();
- MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr();
+ MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
+ MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
BBI1->NonPredSize -= NumDups1;
BBI2->NonPredSize -= NumDups1;
@@ -1421,52 +1797,60 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
// Compute a set of registers which must not be killed by instructions in BB1:
// This is everything used+live in BB2 after the duplicated instructions. We
// can compute this set by simulating liveness backwards from the end of BB2.
- DontKill.init(TRI);
- for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
- E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
- DontKill.stepBackward(*I);
+ DontKill.init(*TRI);
+ if (MRI->tracksLiveness()) {
+ for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse()))
+ DontKill.stepBackward(MI);
+
+ for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
+ SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
+ Redefs.stepForward(MI, Dummy);
+ }
}
+ BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
+ MBB2.erase(MBB2.begin(), DI2);
- for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
- ++I) {
- SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
- Redefs.stepForward(*I, IgnoredClobbers);
- }
- BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
- BBI2->BB->erase(BBI2->BB->begin(), DI2);
-
- // Remove branch from the 'true' block, unless it was not analyzable.
- // Non-analyzable branches need to be preserved, since in such cases,
- // the CFG structure is not an actual diamond (the join block may not
- // be present).
- if (BBI1->IsBrAnalyzable)
- BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
+ // The branches have been checked to match, so it is safe to remove the branch
+ // in BB1 and rely on the copy in BB2
+#ifndef NDEBUG
+ // Unanalyzable branches must match exactly. Check that now.
+ if (!BBI1->IsBrAnalyzable)
+ verifySameBranchInstructions(&MBB1, &MBB2);
+#endif
+ BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
// Remove duplicated instructions.
- DI1 = BBI1->BB->end();
+ DI1 = MBB1.end();
for (unsigned i = 0; i != NumDups2; ) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
- assert (DI1 != BBI1->BB->begin());
+ assert(DI1 != MBB1.begin());
--DI1;
// skip dbg_value instructions
if (!DI1->isDebugValue())
++i;
}
- BBI1->BB->erase(DI1, BBI1->BB->end());
+ MBB1.erase(DI1, MBB1.end());
// Kill flags in the true block for registers living into the false block
// must be removed.
- RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
+ RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI);
- // Remove 'false' block branch (unless it was not analyzable), and find
- // the last instruction to predicate.
- if (BBI2->IsBrAnalyzable)
- BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
DI2 = BBI2->BB->end();
+ // The branches have been checked to match. Skip over the branch in the false
+ // block so that we don't try to predicate it.
+ if (RemoveBranch)
+ BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
+ else {
+ do {
+ assert(DI2 != MBB2.begin());
+ DI2--;
+ } while (DI2->isBranch() || DI2->isDebugValue());
+ DI2++;
+ }
while (NumDups2 != 0) {
// NumDups2 only counted non-dbg_value instructions, so this won't
// run off the head of the list.
- assert (DI2 != BBI2->BB->begin());
+ assert(DI2 != MBB2.begin());
--DI2;
// skip dbg_value instructions
if (!DI2->isDebugValue())
@@ -1483,13 +1867,12 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
// addne r0, r1, #1
SmallSet<unsigned, 4> RedefsByFalse;
SmallSet<unsigned, 4> ExtUses;
- if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) {
- for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) {
- if (FI->isDebugValue())
+ if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
+ for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
+ if (FI.isDebugValue())
continue;
SmallVector<unsigned, 4> Defs;
- for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = FI->getOperand(i);
+ for (const MachineOperand &MO : FI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
@@ -1506,8 +1889,7 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
}
}
- for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
- unsigned Reg = Defs[i];
+ for (unsigned Reg : Defs) {
if (!ExtUses.count(Reg)) {
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
@@ -1518,17 +1900,17 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
}
// Predicate the 'true' block.
- PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
+ PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
// After predicating BBI1, if there is a predicated terminator in BBI1 and
// a non-predicated in BBI2, then we don't want to predicate the one from
// BBI2. The reason is that if we merged these blocks, we would end up with
// two predicated terminators in the same block.
- if (!BBI2->BB->empty() && (DI2 == BBI2->BB->end())) {
- MachineBasicBlock::iterator BBI1T = BBI1->BB->getFirstTerminator();
- MachineBasicBlock::iterator BBI2T = BBI2->BB->getFirstTerminator();
- if (BBI1T != BBI1->BB->end() && TII->isPredicated(*BBI1T) &&
- BBI2T != BBI2->BB->end() && !TII->isPredicated(*BBI2T))
+ if (!MBB2.empty() && (DI2 == MBB2.end())) {
+ MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
+ MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
+ if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) &&
+ BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T))
--DI2;
}
@@ -1536,8 +1918,72 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
PredicateBlock(*BBI2, DI2, *Cond2);
// Merge the true block into the entry of the diamond.
- MergeBlocks(BBI, *BBI1, TailBB == nullptr);
- MergeBlocks(BBI, *BBI2, TailBB == nullptr);
+ MergeBlocks(BBI, *BBI1, MergeAddEdges);
+ MergeBlocks(BBI, *BBI2, MergeAddEdges);
+ return true;
+}
+
+/// If convert an almost-diamond sub-CFG where the true
+/// and false blocks share a common tail.
+bool IfConverter::IfConvertForkedDiamond(
+ BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+
+ // Save the debug location for later.
+ DebugLoc dl;
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
+ if (TIE != TrueBBI.BB->end())
+ dl = TIE->getDebugLoc();
+ // Removing branches from both blocks is safe, because we have already
+ // determined that both blocks have the same branch instructions. The branch
+ // will be added back at the end, unpredicated.
+ if (!IfConvertDiamondCommon(
+ BBI, TrueBBI, FalseBBI,
+ NumDups1, NumDups2,
+ TClobbersPred, FClobbersPred,
+ /* RemoveBranch */ true, /* MergeAddEdges */ true))
+ return false;
+
+ // Add back the branch.
+ // Debug location saved above when removing the branch from BBI2
+ TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
+ TrueBBI.BrCond, dl);
+
+ RemoveExtraEdges(BBI);
+
+ // Update block info.
+ BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
+ InvalidatePreds(*BBI.BB);
+
+ // FIXME: Must maintain LiveIns.
+ return true;
+}
+
+/// If convert a diamond sub-CFG.
+bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+ MachineBasicBlock *TailBB = TrueBBI.TrueBB;
+
+ // True block must fall through or end with an unanalyzable terminator.
+ if (!TailBB) {
+ if (blockAlwaysFallThrough(TrueBBI))
+ TailBB = FalseBBI.TrueBB;
+ assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
+ }
+
+ if (!IfConvertDiamondCommon(
+ BBI, TrueBBI, FalseBBI,
+ NumDups1, NumDups2,
+ TClobbersPred, FClobbersPred,
+ /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
+ /* MergeAddEdges */ TailBB == nullptr))
+ return false;
// If the if-converted block falls through or unconditionally branches into
// the tail block, and the tail block does not have other predecessors, then
@@ -1560,7 +2006,7 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
CanMergeTail = false;
else if (NumPreds == 1 && CanMergeTail) {
MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
- if (*PI != BBI1->BB && *PI != BBI2->BB)
+ if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
CanMergeTail = false;
}
if (CanMergeTail) {
@@ -1568,7 +2014,7 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
TailBBI.IsDone = true;
} else {
BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
- InsertUncondBranch(BBI.BB, TailBB, TII);
+ InsertUncondBranch(*BBI.BB, *TailBB, TII);
BBI.HasFallThrough = false;
}
}
@@ -1576,13 +2022,13 @@ bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
// RemoveExtraEdges won't work if the block has an unanalyzable branch,
// which can happen here if TailBB is unanalyzable and is merged, so
// explicitly remove BBI1 and BBI2 as successors.
- BBI.BB->removeSuccessor(BBI1->BB);
- BBI.BB->removeSuccessor(BBI2->BB, true);
+ BBI.BB->removeSuccessor(TrueBBI.BB);
+ BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true);
RemoveExtraEdges(BBI);
// Update block info.
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
- InvalidatePreds(BBI.BB);
+ InvalidatePreds(*BBI.BB);
// FIXME: Must maintain LiveIns.
return true;
@@ -1594,8 +2040,7 @@ static bool MaySpeculate(const MachineInstr &MI,
if (!MI.isSafeToMove(nullptr, SawStore))
return false;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
+ for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
@@ -1608,15 +2053,15 @@ static bool MaySpeculate(const MachineInstr &MI,
return true;
}
-/// PredicateBlock - Predicate instructions from the start of the block to the
-/// specified end with the specified condition.
+/// Predicate instructions from the start of the block to the specified end with
+/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond,
SmallSet<unsigned, 4> *LaterRedefs) {
bool AnyUnpred = false;
bool MaySpec = LaterRedefs != nullptr;
- for (MachineInstr &I : llvm::make_range(BBI.BB->begin(), E)) {
+ for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
if (I.isDebugValue() || TII->isPredicated(I))
continue;
// It may be possible not to predicate an instruction if it's the 'true'
@@ -1651,14 +2096,15 @@ void IfConverter::PredicateBlock(BBInfo &BBI,
++NumUnpred;
}
-/// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
-/// the destination block. Skip end of block branches if IgnoreBr is true.
+/// Copy and predicate instructions from source BB to the destination block.
+/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr) {
MachineFunction &MF = *ToBBI.BB->getParent();
- for (auto &I : *FromBBI.BB) {
+ MachineBasicBlock &FromMBB = *FromBBI.BB;
+ for (MachineInstr &I : FromMBB) {
// Do not copy the end of the block branches.
if (IgnoreBr && I.isBranch())
break;
@@ -1691,13 +2137,12 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
}
if (!IgnoreBr) {
- std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
- FromBBI.BB->succ_end());
- MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
+ std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
+ FromMBB.succ_end());
+ MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
- for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
- MachineBasicBlock *Succ = Succs[i];
+ for (MachineBasicBlock *Succ : Succs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
@@ -1714,25 +2159,25 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
++NumDupBBs;
}
-/// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
-/// This will leave FromBB as an empty block, so remove all of its
-/// successor edges except for the fall-through edge. If AddEdges is true,
-/// i.e., when FromBBI's branch is being moved, add those successor edges to
-/// ToBBI.
+/// Move all instructions from FromBB to the end of ToBB. This will leave
+/// FromBB as an empty block, so remove all of its successor edges except for
+/// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
+/// being moved, add those successor edges to ToBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
- assert(!FromBBI.BB->hasAddressTaken() &&
+ MachineBasicBlock &FromMBB = *FromBBI.BB;
+ assert(!FromMBB.hasAddressTaken() &&
"Removing a BB whose address is taken!");
- // In case FromBBI.BB contains terminators (e.g. return instruction),
+ // In case FromMBB contains terminators (e.g. return instruction),
// first move the non-terminator instructions, then the terminators.
- MachineBasicBlock::iterator FromTI = FromBBI.BB->getFirstTerminator();
+ MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
- ToBBI.BB->splice(ToTI, FromBBI.BB, FromBBI.BB->begin(), FromTI);
+ ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
// If FromBB has non-predicated terminator we should copy it at the end.
- if (FromTI != FromBBI.BB->end() && !TII->isPredicated(*FromTI))
+ if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
ToTI = ToBBI.BB->end();
- ToBBI.BB->splice(ToTI, FromBBI.BB, FromTI, FromBBI.BB->end());
+ ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
// Force normalizing the successors' probabilities of ToBBI.BB to convert all
// unknown probabilities into known ones.
@@ -1740,25 +2185,23 @@ void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
// eliminate all unknown probabilities in MBB.
ToBBI.BB->normalizeSuccProbs();
- SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(),
- FromBBI.BB->succ_end());
- MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
+ SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
+ FromMBB.succ_end());
+ MachineBasicBlock *NBB = getNextBlock(FromMBB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
- // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when
- // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB.
+ // The edge probability from ToBBI.BB to FromMBB, which is only needed when
+ // AddEdges is true and FromMBB is a successor of ToBBI.BB.
auto To2FromProb = BranchProbability::getZero();
- if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) {
- To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB);
- // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the
+ if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
+ To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
+ // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the
// edge probability being merged to other edges when this edge is removed
// later.
- ToBBI.BB->setSuccProbability(
- std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB),
- BranchProbability::getZero());
+ ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB),
+ BranchProbability::getZero());
}
- for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) {
- MachineBasicBlock *Succ = FromSuccs[i];
+ for (MachineBasicBlock *Succ : FromSuccs) {
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
@@ -1766,26 +2209,26 @@ void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
auto NewProb = BranchProbability::getZero();
if (AddEdges) {
// Calculate the edge probability for the edge from ToBBI.BB to Succ,
- // which is a portion of the edge probability from FromBBI.BB to Succ. The
- // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if
+ // which is a portion of the edge probability from FromMBB to Succ. The
+ // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
// FromBBI is a successor of ToBBI.BB. See comment below for excepion).
- NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ);
+ NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
- // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This
- // only happens when if-converting a diamond CFG and FromBBI.BB is the
- // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we
- // could just use the probabilities on FromBBI.BB's out-edges when adding
+ // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
+ // only happens when if-converting a diamond CFG and FromMBB is the
+ // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
+ // could just use the probabilities on FromMBB's out-edges when adding
// new successors.
if (!To2FromProb.isZero())
NewProb *= To2FromProb;
}
- FromBBI.BB->removeSuccessor(Succ);
+ FromMBB.removeSuccessor(Succ);
if (AddEdges) {
// If the edge from ToBBI.BB to Succ already exists, update the
// probability of this edge by adding NewProb to it. An example is shown
- // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we
+ // below, in which A is ToBBI.BB and B is FromMBB. In this case we
// don't have to set C as A's successor as it already is. We only need to
// update the edge probability on A->C. Note that B will not be
// immediately removed from A's successors. It is possible that B->D is
@@ -1807,7 +2250,7 @@ void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
//
if (ToBBI.BB->isSuccessor(Succ))
ToBBI.BB->setSuccProbability(
- std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ),
+ find(ToBBI.BB->successors(), Succ),
MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
else
ToBBI.BB->addSuccessor(Succ, NewProb);
@@ -1815,8 +2258,8 @@ void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
}
// Now FromBBI always falls through to the next block!
- if (NBB && !FromBBI.BB->isSuccessor(NBB))
- FromBBI.BB->addSuccessor(NBB);
+ if (NBB && !FromMBB.isSuccessor(NBB))
+ FromMBB.addSuccessor(NBB);
// Normalize the probabilities of ToBBI.BB's successors with all adjustment
// we've done above.
@@ -1839,6 +2282,6 @@ void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
}
FunctionPass *
-llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
+llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
return new IfConverter(std::move(Ftor));
}
diff --git a/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp
index 31d6bd0..9588dfb 100644
--- a/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp
+++ b/contrib/llvm/lib/CodeGen/ImplicitNullChecks.cpp
@@ -51,6 +51,12 @@ static cl::opt<int> PageSize("imp-null-check-page-size",
cl::desc("The page size of the target in bytes"),
cl::init(4096));
+static cl::opt<unsigned> MaxInstsToConsider(
+ "imp-null-max-insts-to-consider",
+ cl::desc("The max number of instructions to consider hoisting loads over "
+ "(the algorithm is quadratic over this number)"),
+ cl::init(8));
+
#define DEBUG_TYPE "implicit-null-checks"
STATISTIC(NumImplicitNullChecks,
@@ -59,6 +65,44 @@ STATISTIC(NumImplicitNullChecks,
namespace {
class ImplicitNullChecks : public MachineFunctionPass {
+ /// Return true if \c computeDependence can process \p MI.
+ static bool canHandle(const MachineInstr *MI);
+
+ /// Helper function for \c computeDependence. Return true if \p A
+ /// and \p B do not have any dependences between them, and can be
+ /// re-ordered without changing program semantics.
+ bool canReorder(const MachineInstr *A, const MachineInstr *B);
+
+ /// A data type for representing the result computed by \c
+ /// computeDependence. States whether it is okay to reorder the
+ /// instruction passed to \c computeDependence with at most one
+ /// depednency.
+ struct DependenceResult {
+ /// Can we actually re-order \p MI with \p Insts (see \c
+ /// computeDependence).
+ bool CanReorder;
+
+ /// If non-None, then an instruction in \p Insts that also must be
+ /// hoisted.
+ Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
+
+ /*implicit*/ DependenceResult(
+ bool CanReorder,
+ Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
+ : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
+ assert((!PotentialDependence || CanReorder) &&
+ "!CanReorder && PotentialDependence.hasValue() not allowed!");
+ }
+ };
+
+ /// Compute a result for the following question: can \p MI be
+ /// re-ordered from after \p Insts to before it.
+ ///
+ /// \c canHandle should return true for all instructions in \p
+ /// Insts.
+ DependenceResult computeDependence(const MachineInstr *MI,
+ ArrayRef<MachineInstr *> Insts);
+
/// Represents one null check that can be made implicit.
class NullCheck {
// The memory operation the null check can be folded into.
@@ -114,6 +158,19 @@ class ImplicitNullChecks : public MachineFunctionPass {
MachineBasicBlock *HandlerMBB);
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
+ /// Is \p MI a memory operation that can be used to implicitly null check the
+ /// value in \p PointerReg? \p PrevInsts is the set of instruction seen since
+ /// the explicit null check on \p PointerReg.
+ bool isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
+ ArrayRef<MachineInstr *> PrevInsts);
+
+ /// Return true if \p FaultingMI can be hoisted from after the the
+ /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
+ /// non-null value if we also need to (and legally can) hoist a depedency.
+ bool canHoistLoadInst(MachineInstr *FaultingMI, unsigned PointerReg,
+ ArrayRef<MachineInstr *> InstsSeenSoFar,
+ MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
+
public:
static char ID;
@@ -129,160 +186,70 @@ public:
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
};
-/// \brief Detect re-ordering hazards and dependencies.
-///
-/// This class keeps track of defs and uses, and can be queried if a given
-/// machine instruction can be re-ordered from after the machine instructions
-/// seen so far to before them.
-class HazardDetector {
- static MachineInstr *getUnknownMI() {
- return DenseMapInfo<MachineInstr *>::getTombstoneKey();
- }
-
- // Maps physical registers to the instruction defining them. If there has
- // been more than one def of an specific register, that register is mapped to
- // getUnknownMI().
- DenseMap<unsigned, MachineInstr *> RegDefs;
- DenseSet<unsigned> RegUses;
- const TargetRegisterInfo &TRI;
- bool hasSeenClobber;
- AliasAnalysis &AA;
-
-public:
- explicit HazardDetector(const TargetRegisterInfo &TRI, AliasAnalysis &AA)
- : TRI(TRI), hasSeenClobber(false), AA(AA) {}
+}
- /// \brief Make a note of \p MI for later queries to isSafeToHoist.
- ///
- /// May clobber this HazardDetector instance. \see isClobbered.
- void rememberInstruction(MachineInstr *MI);
+bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
+ if (MI->isCall() || MI->mayStore() || MI->hasUnmodeledSideEffects())
+ return false;
+ auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
+ (void)IsRegMask;
- /// \brief Return true if it is safe to hoist \p MI from after all the
- /// instructions seen so far (via rememberInstruction) to before it. If \p MI
- /// has one and only one transitive dependency, set \p Dependency to that
- /// instruction. If there are more dependencies, return false.
- bool isSafeToHoist(MachineInstr *MI, MachineInstr *&Dependency);
+ assert(!llvm::any_of(MI->operands(), IsRegMask) &&
+ "Calls were filtered out above!");
- /// \brief Return true if this instance of HazardDetector has been clobbered
- /// (i.e. has no more useful information).
- ///
- /// A HazardDetecter is clobbered when it sees a construct it cannot
- /// understand, and it would have to return a conservative answer for all
- /// future queries. Having a separate clobbered state lets the client code
- /// bail early, without making queries about all of the future instructions
- /// (which would have returned the most conservative answer anyway).
- ///
- /// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
- /// is an error.
- bool isClobbered() { return hasSeenClobber; }
-};
+ auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
+ return llvm::all_of(MI->memoperands(), IsUnordered);
}
+ImplicitNullChecks::DependenceResult
+ImplicitNullChecks::computeDependence(const MachineInstr *MI,
+ ArrayRef<MachineInstr *> Block) {
+ assert(llvm::all_of(Block, canHandle) && "Check this first!");
+ assert(!llvm::is_contained(Block, MI) && "Block must be exclusive of MI!");
-void HazardDetector::rememberInstruction(MachineInstr *MI) {
- assert(!isClobbered() &&
- "Don't add instructions to a clobbered hazard detector");
+ Optional<ArrayRef<MachineInstr *>::iterator> Dep;
- if (MI->mayStore() || MI->hasUnmodeledSideEffects()) {
- hasSeenClobber = true;
- return;
- }
+ for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
+ if (canReorder(*I, MI))
+ continue;
- for (auto *MMO : MI->memoperands()) {
- // Right now we don't want to worry about LLVM's memory model.
- if (!MMO->isUnordered()) {
- hasSeenClobber = true;
- return;
+ if (Dep == None) {
+ // Found one possible dependency, keep track of it.
+ Dep = I;
+ } else {
+ // We found two dependencies, so bail out.
+ return {false, None};
}
}
- for (auto &MO : MI->operands()) {
- if (!MO.isReg() || !MO.getReg())
- continue;
-
- if (MO.isDef()) {
- auto It = RegDefs.find(MO.getReg());
- if (It == RegDefs.end())
- RegDefs.insert({MO.getReg(), MI});
- else {
- assert(It->second && "Found null MI?");
- It->second = getUnknownMI();
- }
- } else
- RegUses.insert(MO.getReg());
- }
+ return {true, Dep};
}
-bool HazardDetector::isSafeToHoist(MachineInstr *MI,
- MachineInstr *&Dependency) {
- assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
- Dependency = nullptr;
+bool ImplicitNullChecks::canReorder(const MachineInstr *A,
+ const MachineInstr *B) {
+ assert(canHandle(A) && canHandle(B) && "Precondition!");
- // Right now we don't want to worry about LLVM's memory model. This can be
- // made more precise later.
- for (auto *MMO : MI->memoperands())
- if (!MMO->isUnordered())
- return false;
+ // canHandle makes sure that we _can_ correctly analyze the dependencies
+ // between A and B here -- for instance, we should not be dealing with heap
+ // load-store dependencies here.
- for (auto &MO : MI->operands()) {
- if (MO.isReg() && MO.getReg()) {
- for (auto &RegDef : RegDefs) {
- unsigned Reg = RegDef.first;
- MachineInstr *MI = RegDef.second;
- if (!TRI.regsOverlap(Reg, MO.getReg()))
- continue;
+ for (auto MOA : A->operands()) {
+ if (!(MOA.isReg() && MOA.getReg()))
+ continue;
- // We found a write-after-write or read-after-write, see if the
- // instruction causing this dependency can be hoisted too.
-
- if (MI == getUnknownMI())
- // We don't have precise dependency information.
- return false;
-
- if (Dependency) {
- if (Dependency == MI)
- continue;
- // We already have one dependency, and we can track only one.
- return false;
- }
-
- // Now check if MI is actually a dependency that can be hoisted.
-
- // We don't want to track transitive dependencies. We already know that
- // MI is the only instruction that defines Reg, but we need to be sure
- // that it does not use any registers that have been defined (trivially
- // checked below by ensuring that there are no register uses), and that
- // it is the only def for every register it defines (otherwise we could
- // violate a write after write hazard).
- auto IsMIOperandSafe = [&](MachineOperand &MO) {
- if (!MO.isReg() || !MO.getReg())
- return true;
- if (MO.isUse())
- return false;
- assert((!MO.isDef() || RegDefs.count(MO.getReg())) &&
- "All defs must be tracked in RegDefs by now!");
- return !MO.isDef() || RegDefs.find(MO.getReg())->second == MI;
- };
-
- if (!all_of(MI->operands(), IsMIOperandSafe))
- return false;
-
- // Now check for speculation safety:
- bool SawStore = true;
- if (!MI->isSafeToMove(&AA, SawStore) || MI->mayLoad())
- return false;
-
- Dependency = MI;
- }
+ unsigned RegA = MOA.getReg();
+ for (auto MOB : B->operands()) {
+ if (!(MOB.isReg() && MOB.getReg()))
+ continue;
- if (MO.isDef())
- for (unsigned Reg : RegUses)
- if (TRI.regsOverlap(Reg, MO.getReg()))
- return false; // We found a write-after-read
+ unsigned RegB = MOB.getReg();
+
+ if (TRI->regsOverlap(RegA, RegB))
+ return false;
}
}
@@ -316,6 +283,96 @@ static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
return false;
}
+bool ImplicitNullChecks::isSuitableMemoryOp(
+ MachineInstr &MI, unsigned PointerReg, ArrayRef<MachineInstr *> PrevInsts) {
+ int64_t Offset;
+ unsigned BaseReg;
+
+ if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
+ BaseReg != PointerReg)
+ return false;
+
+ // We want the load to be issued at a sane offset from PointerReg, so that
+ // if PointerReg is null then the load reliably page faults.
+ if (!(MI.mayLoad() && !MI.isPredicable() && Offset < PageSize))
+ return false;
+
+ // Finally, we need to make sure that the load instruction actually is
+ // loading from PointerReg, and there isn't some re-definition of PointerReg
+ // between the compare and the load.
+ for (auto *PrevMI : PrevInsts)
+ for (auto &PrevMO : PrevMI->operands())
+ if (PrevMO.isReg() && PrevMO.getReg() &&
+ TRI->regsOverlap(PrevMO.getReg(), PointerReg))
+ return false;
+
+ return true;
+}
+
+bool ImplicitNullChecks::canHoistLoadInst(
+ MachineInstr *FaultingMI, unsigned PointerReg,
+ ArrayRef<MachineInstr *> InstsSeenSoFar, MachineBasicBlock *NullSucc,
+ MachineInstr *&Dependence) {
+ auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
+ if (!DepResult.CanReorder)
+ return false;
+
+ if (!DepResult.PotentialDependence) {
+ Dependence = nullptr;
+ return true;
+ }
+
+ auto DependenceItr = *DepResult.PotentialDependence;
+ auto *DependenceMI = *DependenceItr;
+
+ // We don't want to reason about speculating loads. Note -- at this point
+ // we should have already filtered out all of the other non-speculatable
+ // things, like calls and stores.
+ assert(canHandle(DependenceMI) && "Should never have reached here!");
+ if (DependenceMI->mayLoad())
+ return false;
+
+ for (auto &DependenceMO : DependenceMI->operands()) {
+ if (!(DependenceMO.isReg() && DependenceMO.getReg()))
+ continue;
+
+ // Make sure that we won't clobber any live ins to the sibling block by
+ // hoisting Dependency. For instance, we can't hoist INST to before the
+ // null check (even if it safe, and does not violate any dependencies in
+ // the non_null_block) if %rdx is live in to _null_block.
+ //
+ // test %rcx, %rcx
+ // je _null_block
+ // _non_null_block:
+ // %rdx<def> = INST
+ // ...
+ //
+ // This restriction does not apply to the faulting load inst because in
+ // case the pointer loaded from is in the null page, the load will not
+ // semantically execute, and affect machine state. That is, if the load
+ // was loading into %rax and it faults, the value of %rax should stay the
+ // same as it would have been had the load not have executed and we'd have
+ // branched to NullSucc directly.
+ if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
+ return false;
+
+ // The Dependency can't be re-defining the base register -- then we won't
+ // get the memory operation on the address we want. This is already
+ // checked in \c IsSuitableMemoryOp.
+ assert(!TRI->regsOverlap(DependenceMO.getReg(), PointerReg) &&
+ "Should have been checked before!");
+ }
+
+ auto DepDepResult =
+ computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
+
+ if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
+ return false;
+
+ Dependence = DependenceMI;
+ return true;
+}
+
/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check. If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
@@ -415,63 +472,24 @@ bool ImplicitNullChecks::analyzeBlockForNullChecks(
// ptr could be some non-null invalid reference that never gets loaded from
// because some_cond is always true.
- unsigned PointerReg = MBP.LHS.getReg();
-
- HazardDetector HD(*TRI, *AA);
-
- for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
- ++MII) {
- MachineInstr &MI = *MII;
- unsigned BaseReg;
- int64_t Offset;
- MachineInstr *Dependency = nullptr;
- if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
- if (MI.mayLoad() && !MI.isPredicable() && BaseReg == PointerReg &&
- Offset < PageSize && MI.getDesc().getNumDefs() <= 1 &&
- HD.isSafeToHoist(&MI, Dependency)) {
-
- auto DependencyOperandIsOk = [&](MachineOperand &MO) {
- assert(!(MO.isReg() && MO.isUse()) &&
- "No transitive dependendencies please!");
- if (!MO.isReg() || !MO.getReg() || !MO.isDef())
- return true;
-
- // Make sure that we won't clobber any live ins to the sibling block
- // by hoisting Dependency. For instance, we can't hoist INST to
- // before the null check (even if it safe, and does not violate any
- // dependencies in the non_null_block) if %rdx is live in to
- // _null_block.
- //
- // test %rcx, %rcx
- // je _null_block
- // _non_null_block:
- // %rdx<def> = INST
- // ...
- if (AnyAliasLiveIn(TRI, NullSucc, MO.getReg()))
- return false;
-
- // Make sure Dependency isn't re-defining the base register. Then we
- // won't get the memory operation on the address we want.
- if (TRI->regsOverlap(MO.getReg(), BaseReg))
- return false;
-
- return true;
- };
-
- bool DependencyOperandsAreOk =
- !Dependency ||
- all_of(Dependency->operands(), DependencyOperandIsOk);
-
- if (DependencyOperandsAreOk) {
- NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
- NullSucc, Dependency);
- return true;
- }
- }
+ const unsigned PointerReg = MBP.LHS.getReg();
- HD.rememberInstruction(&MI);
- if (HD.isClobbered())
+ SmallVector<MachineInstr *, 8> InstsSeenSoFar;
+
+ for (auto &MI : *NotNullSucc) {
+ if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
return false;
+
+ MachineInstr *Dependence;
+ if (isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar) &&
+ canHoistLoadInst(&MI, PointerReg, InstsSeenSoFar, NullSucc,
+ Dependence)) {
+ NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
+ NullSucc, Dependence);
+ return true;
+ }
+
+ InstsSeenSoFar.push_back(&MI);
}
return false;
@@ -518,7 +536,7 @@ void ImplicitNullChecks::rewriteNullChecks(
for (auto &NC : NullCheckList) {
// Remove the conditional branch dependent on the null check.
- unsigned BranchesRemoved = TII->RemoveBranch(*NC.getCheckBlock());
+ unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
(void)BranchesRemoved;
assert(BranchesRemoved > 0 && "expected at least one branch!");
@@ -560,13 +578,14 @@ void ImplicitNullChecks::rewriteNullChecks(
NC.getCheckOperation()->eraseFromParent();
// Insert an *unconditional* branch to not-null successor.
- TII->InsertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
+ TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
/*Cond=*/None, DL);
NumImplicitNullChecks++;
}
}
+
char ImplicitNullChecks::ID = 0;
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
diff --git a/contrib/llvm/lib/CodeGen/InlineSpiller.cpp b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
index 197db77..3d81184 100644
--- a/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
+++ b/contrib/llvm/lib/CodeGen/InlineSpiller.cpp
@@ -114,7 +114,7 @@ public:
AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
MDT(pass.getAnalysis<MachineDominatorTree>()),
Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
- MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
+ MFI(mf.getFrameInfo()), MRI(mf.getRegInfo()),
TII(*mf.getSubtarget().getInstrInfo()),
TRI(*mf.getSubtarget().getRegisterInfo()),
MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
@@ -172,7 +172,7 @@ public:
AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
MDT(pass.getAnalysis<MachineDominatorTree>()),
Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
- MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
+ MFI(mf.getFrameInfo()), MRI(mf.getRegInfo()),
TII(*mf.getSubtarget().getInstrInfo()),
TRI(*mf.getSubtarget().getRegisterInfo()),
MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
@@ -185,10 +185,7 @@ private:
bool isSnippet(const LiveInterval &SnipLI);
void collectRegsToSpill();
- bool isRegToSpill(unsigned Reg) {
- return std::find(RegsToSpill.begin(),
- RegsToSpill.end(), Reg) != RegsToSpill.end();
- }
+ bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
bool isSibling(unsigned Reg);
bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
@@ -380,7 +377,7 @@ bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
MachineBasicBlock::iterator MII;
if (SrcVNI->isPHIDef())
- MII = MBB->SkipPHIsAndLabels(MBB->begin());
+ MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
else {
MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
assert(DefMI && "Defining instruction disappeared");
@@ -553,12 +550,18 @@ bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
return true;
}
- // Alocate a new register for the remat.
+ // Allocate a new register for the remat.
unsigned NewVReg = Edit->createFrom(Original);
// Finally we can rematerialize OrigMI before MI.
SlotIndex DefIdx =
Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
+
+ // We take the DebugLoc from MI, since OrigMI may be attributed to a
+ // different source location.
+ auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
+ NewMI->setDebugLoc(MI.getDebugLoc());
+
(void)DefIdx;
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
<< *LIS.getInstructionFromIndex(DefIdx));
@@ -736,9 +739,12 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
bool WasCopy = MI->isCopy();
unsigned ImpReg = 0;
- bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
- MI->getOpcode() == TargetOpcode::PATCHPOINT ||
- MI->getOpcode() == TargetOpcode::STACKMAP);
+ // Spill subregs if the target allows it.
+ // We always want to spill subregs for stackmap/patchpoint pseudos.
+ bool SpillSubRegs = TII.isSubregFoldable() ||
+ MI->getOpcode() == TargetOpcode::STATEPOINT ||
+ MI->getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI->getOpcode() == TargetOpcode::STACKMAP;
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
// operands.
@@ -751,7 +757,7 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
ImpReg = MO.getReg();
continue;
}
- // FIXME: Teach targets to deal with subregs.
+
if (!SpillSubRegs && MO.getSubReg())
return false;
// We cannot fold a load instruction into a def.
@@ -762,6 +768,11 @@ foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
FoldOps.push_back(Idx);
}
+ // If we only have implicit uses, we won't be able to fold that.
+ // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
+ if (FoldOps.empty())
+ return false;
+
MachineInstrSpan MIS(MI);
MachineInstr *FoldMI =
@@ -1113,7 +1124,7 @@ void HoistSpillHelper::rmRedundantSpills(
// earlier spill with smaller SlotIndex.
for (const auto CurrentSpill : Spills) {
MachineBasicBlock *Block = CurrentSpill->getParent();
- MachineDomTreeNode *Node = MDT.DT->getNode(Block);
+ MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
MachineInstr *PrevSpill = SpillBBToSpill[Node];
if (PrevSpill) {
SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
@@ -1121,9 +1132,9 @@ void HoistSpillHelper::rmRedundantSpills(
MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
SpillsToRm.push_back(SpillToRm);
- SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep;
+ SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
} else {
- SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill;
+ SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
}
}
for (const auto SpillToRm : SpillsToRm)
@@ -1198,7 +1209,7 @@ void HoistSpillHelper::getVisitOrders(
// Sort the nodes in WorkSet in top-down order and save the nodes
// in Orders. Orders will be used for hoisting in runHoistSpills.
unsigned idx = 0;
- Orders.push_back(MDT.DT->getNode(Root));
+ Orders.push_back(MDT.getBase().getNode(Root));
do {
MachineDomTreeNode *Node = Orders[idx++];
const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
diff --git a/contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp
index 3f11119..ec35b3f 100644
--- a/contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp
+++ b/contrib/llvm/lib/CodeGen/InterleavedAccessPass.cpp
@@ -29,6 +29,9 @@
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
// intrinsic in ARM backend.
//
+// In X86, this can be further optimized into a set of target
+// specific loads followed by an optimized sequence of shuffles.
+//
// E.g. An interleaved store (Factor = 3):
// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
@@ -37,6 +40,8 @@
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
// intrinsic in ARM backend.
//
+// Similarly, a set of interleaved stores can be transformed into an optimized
+// sequence of shuffles followed by a set of target specific stores for X86.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
@@ -57,8 +62,6 @@ static cl::opt<bool> LowerInterleavedAccesses(
cl::desc("Enable lowering interleaved accesses to intrinsics"),
cl::init(true), cl::Hidden);
-static unsigned MaxFactor; // The maximum supported interleave factor.
-
namespace {
class InterleavedAccess : public FunctionPass {
@@ -70,7 +73,7 @@ public:
initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
}
- const char *getPassName() const override { return "Interleaved Access Pass"; }
+ StringRef getPassName() const override { return "Interleaved Access Pass"; }
bool runOnFunction(Function &F) override;
@@ -84,6 +87,9 @@ private:
const TargetMachine *TM;
const TargetLowering *TLI;
+ /// The maximum supported interleave factor.
+ unsigned MaxFactor;
+
/// \brief Transform an interleaved load into target specific intrinsics.
bool lowerInterleavedLoad(LoadInst *LI,
SmallVector<Instruction *, 32> &DeadInsts);
@@ -144,7 +150,7 @@ static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned &Index) {
+ unsigned &Index, unsigned MaxFactor) {
if (Mask.size() < 2)
return false;
@@ -156,13 +162,19 @@ static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
return false;
}
-/// \brief Check if the mask is RE-interleave mask for an interleaved store.
-///
-/// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
+/// \brief Check if the mask can be used in an interleaved store.
+//
+/// It checks for a more general pattern than the RE-interleave mask.
+/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
+/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
+/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
///
-/// E.g. The RE-interleave mask (Factor = 2) could be:
-/// <0, 4, 1, 5, 2, 6, 3, 7>
-static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
+/// The particular case of an RE-interleave mask is:
+/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
+static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
+ unsigned MaxFactor, unsigned OpNumElts) {
unsigned NumElts = Mask.size();
if (NumElts < 4)
return false;
@@ -172,21 +184,75 @@ static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
if (NumElts % Factor)
continue;
- unsigned NumSubElts = NumElts / Factor;
- if (!isPowerOf2_32(NumSubElts))
+ unsigned LaneLen = NumElts / Factor;
+ if (!isPowerOf2_32(LaneLen))
continue;
- // Check whether each element matchs the RE-interleaved rule. Ignore undef
- // elements.
- unsigned i = 0;
- for (; i < NumElts; i++)
- if (Mask[i] >= 0 &&
- static_cast<unsigned>(Mask[i]) !=
- (i % Factor) * NumSubElts + i / Factor)
+ // Check whether each element matches the general interleaved rule.
+ // Ignore undef elements, as long as the defined elements match the rule.
+ // Outer loop processes all factors (x, y, z in the above example)
+ unsigned I = 0, J;
+ for (; I < Factor; I++) {
+ unsigned SavedLaneValue;
+ unsigned SavedNoUndefs = 0;
+
+ // Inner loop processes consecutive accesses (x, x+1... in the example)
+ for (J = 0; J < LaneLen - 1; J++) {
+ // Lane computes x's position in the Mask
+ unsigned Lane = J * Factor + I;
+ unsigned NextLane = Lane + Factor;
+ int LaneValue = Mask[Lane];
+ int NextLaneValue = Mask[NextLane];
+
+ // If both are defined, values must be sequential
+ if (LaneValue >= 0 && NextLaneValue >= 0 &&
+ LaneValue + 1 != NextLaneValue)
+ break;
+
+ // If the next value is undef, save the current one as reference
+ if (LaneValue >= 0 && NextLaneValue < 0) {
+ SavedLaneValue = LaneValue;
+ SavedNoUndefs = 1;
+ }
+
+ // Undefs are allowed, but defined elements must still be consecutive:
+ // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
+ // Verify this by storing the last non-undef followed by an undef
+ // Check that following non-undef masks are incremented with the
+ // corresponding distance.
+ if (SavedNoUndefs > 0 && LaneValue < 0) {
+ SavedNoUndefs++;
+ if (NextLaneValue >= 0 &&
+ SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
+ break;
+ }
+ }
+
+ if (J < LaneLen - 1)
break;
- // Find a RE-interleaved mask of current factor.
- if (i == NumElts)
+ int StartMask = 0;
+ if (Mask[I] >= 0) {
+ // Check that the start of the I range (J=0) is greater than 0
+ StartMask = Mask[I];
+ } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
+ // StartMask defined by the last value in lane
+ StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
+ } else if (SavedNoUndefs > 0) {
+ // StartMask defined by some non-zero value in the j loop
+ StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
+ }
+ // else StartMask remains set to 0, i.e. all elements are undefs
+
+ if (StartMask < 0)
+ break;
+ // We must stay within the vectors; This case can happen with undefs.
+ if (StartMask + LaneLen > OpNumElts*2)
+ break;
+ }
+
+ // Found an interleaved mask of current factor.
+ if (I == Factor)
return true;
}
@@ -224,7 +290,8 @@ bool InterleavedAccess::lowerInterleavedLoad(
unsigned Factor, Index;
// Check if the first shufflevector is DE-interleave shuffle.
- if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
+ if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
+ MaxFactor))
return false;
// Holds the corresponding index for each DE-interleave shuffle.
@@ -342,7 +409,8 @@ bool InterleavedAccess::lowerInterleavedStore(
// Check if the shufflevector is RE-interleave shuffle.
unsigned Factor;
- if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
+ unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
+ if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
return false;
DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
diff --git a/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp b/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
index 2962f87..afd2406 100644
--- a/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/IntrinsicLowering.cpp
@@ -436,8 +436,14 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
errs() << "WARNING: this target does not support the llvm."
<< (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
"return" : "frame") << "address intrinsic.\n";
- CI->replaceAllUsesWith(ConstantPointerNull::get(
- cast<PointerType>(CI->getType())));
+ CI->replaceAllUsesWith(
+ ConstantPointerNull::get(cast<PointerType>(CI->getType())));
+ break;
+ case Intrinsic::addressofreturnaddress:
+ errs() << "WARNING: this target does not support the "
+ "llvm.addressofreturnaddress intrinsic.\n";
+ CI->replaceAllUsesWith(
+ ConstantPointerNull::get(cast<PointerType>(CI->getType())));
break;
case Intrinsic::prefetch:
diff --git a/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp b/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
index 9eb43d2..26794e2 100644
--- a/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/contrib/llvm/lib/CodeGen/LLVMTargetMachine.cpp
@@ -15,7 +15,6 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
-#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
@@ -102,25 +101,12 @@ TargetIRAnalysis LLVMTargetMachine::getTargetIRAnalysis() {
});
}
-MachineModuleInfo &
-LLVMTargetMachine::addMachineModuleInfo(PassManagerBase &PM) const {
- MachineModuleInfo *MMI = new MachineModuleInfo(*getMCAsmInfo(),
- *getMCRegisterInfo(),
- getObjFileLowering());
- PM.add(MMI);
- return *MMI;
-}
-
-void LLVMTargetMachine::addMachineFunctionAnalysis(PassManagerBase &PM,
- MachineFunctionInitializer *MFInitializer) const {
- PM.add(new MachineFunctionAnalysis(*this, MFInitializer));
-}
-
/// addPassesToX helper drives creation and initialization of TargetPassConfig.
static MCContext *
addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
bool DisableVerify, AnalysisID StartBefore,
- AnalysisID StartAfter, AnalysisID StopAfter,
+ AnalysisID StartAfter, AnalysisID StopBefore,
+ AnalysisID StopAfter,
MachineFunctionInitializer *MFInitializer = nullptr) {
// When in emulated TLS mode, add the LowerEmuTLS pass.
@@ -135,7 +121,8 @@ addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
// Targets may override createPassConfig to provide a target-specific
// subclass.
TargetPassConfig *PassConfig = TM->createPassConfig(PM);
- PassConfig->setStartStopPasses(StartBefore, StartAfter, StopAfter);
+ PassConfig->setStartStopPasses(StartBefore, StartAfter, StopBefore,
+ StopAfter);
// Set PassConfig options provided by TargetMachine.
PassConfig->setDisableVerify(DisableVerify);
@@ -150,8 +137,9 @@ addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
PassConfig->addISelPrepare();
- MachineModuleInfo &MMI = TM->addMachineModuleInfo(PM);
- TM->addMachineFunctionAnalysis(PM, MFInitializer);
+ MachineModuleInfo *MMI = new MachineModuleInfo(TM);
+ MMI->setMachineFunctionInitializer(MFInitializer);
+ PM.add(MMI);
// Enable FastISel with -fast, but allow that to be overridden.
TM->setO0WantsFastISel(EnableFastISelOption != cl::BOU_FALSE);
@@ -165,6 +153,11 @@ addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
if (PassConfig->addIRTranslator())
return nullptr;
+ PassConfig->addPreLegalizeMachineIR();
+
+ if (PassConfig->addLegalizeMachineIR())
+ return nullptr;
+
// Before running the register bank selector, ask the target if it
// wants to run some passes.
PassConfig->addPreRegBankSelect();
@@ -172,6 +165,21 @@ addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
if (PassConfig->addRegBankSelect())
return nullptr;
+ PassConfig->addPreGlobalInstructionSelect();
+
+ if (PassConfig->addGlobalInstructionSelect())
+ return nullptr;
+
+ // Pass to reset the MachineFunction if the ISel failed.
+ PM.add(createResetMachineFunctionPass(
+ PassConfig->reportDiagnosticWhenGlobalISelFallback()));
+
+ // Provide a fallback path when we do not want to abort on
+ // not-yet-supported input.
+ if (LLVM_UNLIKELY(!PassConfig->isGlobalISelAbortEnabled()) &&
+ PassConfig->addInstSelector())
+ return nullptr;
+
} else if (PassConfig->addInstSelector())
return nullptr;
@@ -179,21 +187,22 @@ addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM,
PassConfig->setInitialized();
- return &MMI.getContext();
+ return &MMI->getContext();
}
bool LLVMTargetMachine::addPassesToEmitFile(
PassManagerBase &PM, raw_pwrite_stream &Out, CodeGenFileType FileType,
bool DisableVerify, AnalysisID StartBefore, AnalysisID StartAfter,
- AnalysisID StopAfter, MachineFunctionInitializer *MFInitializer) {
+ AnalysisID StopBefore, AnalysisID StopAfter,
+ MachineFunctionInitializer *MFInitializer) {
// Add common CodeGen passes.
MCContext *Context =
addPassesToGenerateCode(this, PM, DisableVerify, StartBefore, StartAfter,
- StopAfter, MFInitializer);
+ StopBefore, StopAfter, MFInitializer);
if (!Context)
return true;
- if (StopAfter) {
+ if (StopBefore || StopAfter) {
PM.add(createPrintMIRPass(Out));
return false;
}
@@ -219,7 +228,8 @@ bool LLVMTargetMachine::addPassesToEmitFile(
MCE = getTarget().createMCCodeEmitter(MII, MRI, *Context);
MCAsmBackend *MAB =
- getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU);
+ getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU,
+ Options.MCOptions);
auto FOut = llvm::make_unique<formatted_raw_ostream>(Out);
MCStreamer *S = getTarget().createAsmStreamer(
*Context, std::move(FOut), Options.MCOptions.AsmVerbose,
@@ -233,7 +243,8 @@ bool LLVMTargetMachine::addPassesToEmitFile(
// emission fails.
MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(MII, MRI, *Context);
MCAsmBackend *MAB =
- getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU);
+ getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU,
+ Options.MCOptions);
if (!MCE || !MAB)
return true;
@@ -261,6 +272,7 @@ bool LLVMTargetMachine::addPassesToEmitFile(
return true;
PM.add(Printer);
+ PM.add(createFreeMachineFunctionPass());
return false;
}
@@ -275,7 +287,7 @@ bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
bool DisableVerify) {
// Add common CodeGen passes.
Ctx = addPassesToGenerateCode(this, PM, DisableVerify, nullptr, nullptr,
- nullptr);
+ nullptr, nullptr);
if (!Ctx)
return true;
@@ -288,7 +300,8 @@ bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
MCCodeEmitter *MCE =
getTarget().createMCCodeEmitter(*getMCInstrInfo(), MRI, *Ctx);
MCAsmBackend *MAB =
- getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU);
+ getTarget().createMCAsmBackend(MRI, getTargetTriple().str(), TargetCPU,
+ Options.MCOptions);
if (!MCE || !MAB)
return true;
@@ -306,6 +319,7 @@ bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
return true;
PM.add(Printer);
+ PM.add(createFreeMachineFunctionPass());
return false; // success!
}
diff --git a/contrib/llvm/lib/CodeGen/LatencyPriorityQueue.cpp b/contrib/llvm/lib/CodeGen/LatencyPriorityQueue.cpp
index 4321849..86ef898 100644
--- a/contrib/llvm/lib/CodeGen/LatencyPriorityQueue.cpp
+++ b/contrib/llvm/lib/CodeGen/LatencyPriorityQueue.cpp
@@ -133,7 +133,7 @@ SUnit *LatencyPriorityQueue::pop() {
void LatencyPriorityQueue::remove(SUnit *SU) {
assert(!Queue.empty() && "Queue is empty!");
- std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
+ std::vector<SUnit *>::iterator I = find(Queue, SU);
if (I != std::prev(Queue.end()))
std::swap(*I, Queue.back());
Queue.pop_back();
diff --git a/contrib/llvm/lib/CodeGen/LexicalScopes.cpp b/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
index b810176..834ed5f 100644
--- a/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
+++ b/contrib/llvm/lib/CodeGen/LexicalScopes.cpp
@@ -222,17 +222,13 @@ void LexicalScopes::constructScopeNest(LexicalScope *Scope) {
LexicalScope *WS = WorkStack.back();
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
bool visitedChildren = false;
- for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(),
- SE = Children.end();
- SI != SE; ++SI) {
- LexicalScope *ChildScope = *SI;
+ for (auto &ChildScope : Children)
if (!ChildScope->getDFSOut()) {
WorkStack.push_back(ChildScope);
visitedChildren = true;
ChildScope->setDFSIn(++Counter);
break;
}
- }
if (!visitedChildren) {
WorkStack.pop_back();
WS->setDFSOut(++Counter);
@@ -247,10 +243,7 @@ void LexicalScopes::assignInstructionRanges(
DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
LexicalScope *PrevLexicalScope = nullptr;
- for (SmallVectorImpl<InsnRange>::const_iterator RI = MIRanges.begin(),
- RE = MIRanges.end();
- RI != RE; ++RI) {
- const InsnRange &R = *RI;
+ for (const auto &R : MIRanges) {
LexicalScope *S = MI2ScopeMap.lookup(R.first);
assert(S && "Lost LexicalScope for a machine instruction!");
if (PrevLexicalScope && !PrevLexicalScope->dominates(S))
@@ -281,12 +274,8 @@ void LexicalScopes::getMachineBasicBlocks(
}
SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges();
- for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(),
- E = InsnRanges.end();
- I != E; ++I) {
- InsnRange &R = *I;
+ for (auto &R : InsnRanges)
MBBs.insert(R.first->getParent());
- }
}
/// dominates - Return true if DebugLoc's lexical scope dominates at least one
@@ -301,9 +290,8 @@ bool LexicalScopes::dominates(const DILocation *DL, MachineBasicBlock *MBB) {
return true;
bool Result = false;
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
- ++I) {
- if (const DILocation *IDL = I->getDebugLoc())
+ for (auto &I : *MBB) {
+ if (const DILocation *IDL = I.getDebugLoc())
if (LexicalScope *IScope = getOrCreateLexicalScope(IDL))
if (Scope->dominates(IScope))
return true;
diff --git a/contrib/llvm/lib/CodeGen/LiveDebugValues.cpp b/contrib/llvm/lib/CodeGen/LiveDebugValues.cpp
index 4ff88d5..c945376 100644
--- a/contrib/llvm/lib/CodeGen/LiveDebugValues.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveDebugValues.cpp
@@ -23,6 +23,7 @@
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -60,6 +61,26 @@ class LiveDebugValues : public MachineFunctionPass {
private:
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
+ LexicalScopes LS;
+
+ /// Keeps track of lexical scopes associated with a user value's source
+ /// location.
+ class UserValueScopes {
+ DebugLoc DL;
+ LexicalScopes &LS;
+ SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
+
+ public:
+ UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
+
+ /// Return true if current scope dominates at least one machine
+ /// instruction in a given machine basic block.
+ bool dominates(MachineBasicBlock *MBB) {
+ if (LBlocks.empty())
+ LS.getMachineBasicBlocks(DL, LBlocks);
+ return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
+ }
+ };
/// Based on std::pair so it can be used as an index into a DenseMap.
typedef std::pair<const DILocalVariable *, const DILocation *>
@@ -83,7 +104,7 @@ private:
struct VarLoc {
const DebugVariable Var;
const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
-
+ mutable UserValueScopes UVS;
enum { InvalidKind = 0, RegisterKind } Kind;
/// The value location. Stored separately to avoid repeatedly
@@ -96,9 +117,9 @@ private:
uint64_t Hash;
} Loc;
- VarLoc(const MachineInstr &MI)
+ VarLoc(const MachineInstr &MI, LexicalScopes &LS)
: Var(MI.getDebugVariable(), MI.getDebugLoc()->getInlinedAt()), MI(MI),
- Kind(InvalidKind) {
+ UVS(MI.getDebugLoc(), LS), Kind(InvalidKind) {
static_assert((sizeof(Loc) == sizeof(uint64_t)),
"hash does not cover all members of Loc");
assert(MI.isDebugValue() && "not a DBG_VALUE");
@@ -125,6 +146,10 @@ private:
return 0;
}
+ /// Determine whether the lexical scope of this value's debug location
+ /// dominates MBB.
+ bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
+
void dump() const { MI.dump(); }
bool operator==(const VarLoc &Other) const {
@@ -201,7 +226,8 @@ private:
VarLocInMBB &OutLocs, VarLocMap &VarLocIDs);
bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
- const VarLocMap &VarLocIDs);
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited);
bool ExtendRanges(MachineFunction &MF);
@@ -217,7 +243,7 @@ public:
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
/// Print to ostream with a message.
@@ -228,6 +254,7 @@ public:
/// Calculate the liveness information for the given machine function.
bool runOnMachineFunction(MachineFunction &MF) override;
};
+
} // namespace
//===----------------------------------------------------------------------===//
@@ -260,6 +287,7 @@ void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
const VarLocMap &VarLocIDs,
const char *msg,
raw_ostream &Out) const {
+ Out << '\n' << msg << '\n';
for (const MachineBasicBlock &BB : MF) {
const auto &L = V.lookup(&BB);
Out << "MBB: " << BB.getName() << ":\n";
@@ -268,7 +296,6 @@ void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
Out << " Var: " << VL.Var.getVar()->getName();
Out << " MI: ";
VL.dump();
- Out << "\n";
}
}
Out << "\n";
@@ -294,7 +321,7 @@ void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
// Add the VarLoc to OpenRanges from this DBG_VALUE.
// TODO: Currently handles DBG_VALUE which has only reg as location.
if (isDbgValueDescribedByReg(MI)) {
- VarLoc VL(MI);
+ VarLoc VL(MI, LS);
unsigned ID = VarLocIDs.insert(VL);
OpenRanges.insert(ID, VL.Var);
}
@@ -368,7 +395,8 @@ bool LiveDebugValues::transfer(MachineInstr &MI, OpenRangesSet &OpenRanges,
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
/// source variable in all the predecessors of @MBB reside in the same location.
bool LiveDebugValues::join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs,
- VarLocInMBB &InLocs, const VarLocMap &VarLocIDs) {
+ VarLocInMBB &InLocs, const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited) {
DEBUG(dbgs() << "join MBB: " << MBB.getName() << "\n");
bool Changed = false;
@@ -376,21 +404,39 @@ bool LiveDebugValues::join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs,
// For all predecessors of this MBB, find the set of VarLocs that
// can be joined.
+ int NumVisited = 0;
for (auto p : MBB.predecessors()) {
+ // Ignore unvisited predecessor blocks. As we are processing
+ // the blocks in reverse post-order any unvisited block can
+ // be considered to not remove any incoming values.
+ if (!Visited.count(p))
+ continue;
auto OL = OutLocs.find(p);
// Join is null in case of empty OutLocs from any of the pred.
if (OL == OutLocs.end())
return false;
- // Just copy over the Out locs to incoming locs for the first predecessor.
- if (p == *MBB.pred_begin()) {
+ // Just copy over the Out locs to incoming locs for the first visited
+ // predecessor, and for all other predecessors join the Out locs.
+ if (!NumVisited)
InLocsT = OL->second;
- continue;
- }
- // Join with this predecessor.
- InLocsT &= OL->second;
+ else
+ InLocsT &= OL->second;
+ NumVisited++;
}
+ // Filter out DBG_VALUES that are out of scope.
+ VarLocSet KillSet;
+ for (auto ID : InLocsT)
+ if (!VarLocIDs[ID].dominates(MBB))
+ KillSet.set(ID);
+ InLocsT.intersectWithComplement(KillSet);
+
+ // As we are processing blocks in reverse post-order we
+ // should have processed at least one predecessor, unless it
+ // is the entry block which has no predecessor.
+ assert((NumVisited || MBB.pred_empty()) &&
+ "Should have processed at least one predecessor");
if (InLocsT.empty())
return false;
@@ -463,16 +509,18 @@ bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
// To solve it, we perform join() and transfer() using the two worklist method
// until the ranges converge.
// Ranges have converged when both worklists are empty.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
while (!Worklist.empty() || !Pending.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice. We could avoid this with a custom priority queue, but this
// is probably not worth it.
SmallPtrSet<MachineBasicBlock *, 16> OnPending;
+ DEBUG(dbgs() << "Processing Worklist\n");
while (!Worklist.empty()) {
MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
Worklist.pop();
- MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs);
-
+ MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited);
+ Visited.insert(MBB);
if (MBBJoined) {
MBBJoined = false;
Changed = true;
@@ -505,12 +553,14 @@ bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
}
bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
+ if (!MF.getFunction()->getSubprogram())
+ // LiveDebugValues will already have removed all DBG_VALUEs.
+ return false;
+
TRI = MF.getSubtarget().getRegisterInfo();
TII = MF.getSubtarget().getInstrInfo();
+ LS.initialize(MF);
- bool Changed = false;
-
- Changed |= ExtendRanges(MF);
-
+ bool Changed = ExtendRanges(MF);
return Changed;
}
diff --git a/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp b/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
index 966b4f1..0934d8c 100644
--- a/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveDebugVariables.cpp
@@ -22,7 +22,6 @@
#include "LiveDebugVariables.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -76,27 +75,6 @@ LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(nullpt
/// LocMap - Map of where a user value is live, and its location.
typedef IntervalMap<SlotIndex, unsigned, 4> LocMap;
-namespace {
-/// UserValueScopes - Keeps track of lexical scopes associated with a
-/// user value's source location.
-class UserValueScopes {
- DebugLoc DL;
- LexicalScopes &LS;
- SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
-
-public:
- UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
-
- /// dominates - Return true if current scope dominates at least one machine
- /// instruction in a given machine basic block.
- bool dominates(MachineBasicBlock *MBB) {
- if (LBlocks.empty())
- LS.getMachineBasicBlocks(DL, LBlocks);
- return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
- }
-};
-} // end anonymous namespace
-
/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
@@ -221,8 +199,8 @@ public:
I.setValue(getLocationNo(LocMO));
}
- /// extendDef - Extend the current definition as far as possible down the
- /// dominator tree. Stop when meeting an existing def or when leaving the live
+ /// extendDef - Extend the current definition as far as possible down.
+ /// Stop when meeting an existing def or when leaving the live
/// range of VNI.
/// End points where VNI is no longer live are added to Kills.
/// @param Idx Starting point for the definition.
@@ -231,12 +209,10 @@ public:
/// @param VNI When LR is not null, this is the value to restrict to.
/// @param Kills Append end points of VNI's live range to Kills.
/// @param LIS Live intervals analysis.
- /// @param MDT Dominator tree.
void extendDef(SlotIndex Idx, unsigned LocNo,
LiveRange *LR, const VNInfo *VNI,
SmallVectorImpl<SlotIndex> *Kills,
- LiveIntervals &LIS, MachineDominatorTree &MDT,
- UserValueScopes &UVS);
+ LiveIntervals &LIS);
/// addDefsFromCopies - The value in LI/LocNo may be copies to other
/// registers. Determine if any of the copies are available at the kill
@@ -254,8 +230,7 @@ public:
/// computeIntervals - Compute the live intervals of all locations after
/// collecting all their def points.
void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
- LiveIntervals &LIS, MachineDominatorTree &MDT,
- UserValueScopes &UVS);
+ LiveIntervals &LIS);
/// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
/// live. Returns true if any changes were made.
@@ -283,8 +258,6 @@ class LDVImpl {
LocMap::Allocator allocator;
MachineFunction *MF;
LiveIntervals *LIS;
- LexicalScopes LS;
- MachineDominatorTree *MDT;
const TargetRegisterInfo *TRI;
/// Whether emitDebugValues is called.
@@ -342,7 +315,6 @@ public:
"Dbg values are not emitted in LDV");
EmitDone = false;
ModifiedMF = false;
- LS.reset();
}
/// mapVirtReg - Map virtual register to an equivalence class.
@@ -541,8 +513,7 @@ bool LDVImpl::collectDebugValues(MachineFunction &mf) {
/// data-flow analysis to propagate them beyond basic block boundaries.
void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR,
const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
- LiveIntervals &LIS, MachineDominatorTree &MDT,
- UserValueScopes &UVS) {
+ LiveIntervals &LIS) {
SlotIndex Start = Idx;
MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
SlotIndex Stop = LIS.getMBBEndIdx(MBB);
@@ -660,9 +631,7 @@ UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo,
void
UserValue::computeIntervals(MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
- LiveIntervals &LIS,
- MachineDominatorTree &MDT,
- UserValueScopes &UVS) {
+ LiveIntervals &LIS) {
SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;
// Collect all defs to be extended (Skipping undefs).
@@ -677,7 +646,7 @@ UserValue::computeIntervals(MachineRegisterInfo &MRI,
const MachineOperand &Loc = locations[LocNo];
if (!Loc.isReg()) {
- extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS, MDT, UVS);
+ extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS);
continue;
}
@@ -690,7 +659,7 @@ UserValue::computeIntervals(MachineRegisterInfo &MRI,
VNI = LI->getVNInfoAt(Idx);
}
SmallVector<SlotIndex, 16> Kills;
- extendDef(Idx, LocNo, LI, VNI, &Kills, LIS, MDT, UVS);
+ extendDef(Idx, LocNo, LI, VNI, &Kills, LIS);
if (LI)
addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS);
continue;
@@ -701,7 +670,7 @@ UserValue::computeIntervals(MachineRegisterInfo &MRI,
LiveRange *LR = &LIS.getRegUnit(Unit);
const VNInfo *VNI = LR->getVNInfoAt(Idx);
// Don't track copies from physregs, it is too expensive.
- extendDef(Idx, LocNo, LR, VNI, nullptr, LIS, MDT, UVS);
+ extendDef(Idx, LocNo, LR, VNI, nullptr, LIS);
}
// Finally, erase all the undefs.
@@ -714,8 +683,7 @@ UserValue::computeIntervals(MachineRegisterInfo &MRI,
void LDVImpl::computeIntervals() {
for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
- UserValueScopes UVS(userValues[i]->getDebugLoc(), LS);
- userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, *MDT, UVS);
+ userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS);
userValues[i]->mapVirtRegs(this);
}
}
@@ -724,9 +692,7 @@ bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
clear();
MF = &mf;
LIS = &pass.getAnalysis<LiveIntervals>();
- MDT = &pass.getAnalysis<MachineDominatorTree>();
TRI = mf.getSubtarget().getRegisterInfo();
- LS.initialize(mf);
DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
<< mf.getName() << " **********\n");
@@ -951,7 +917,7 @@ findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
while (!(MI = LIS.getInstructionFromIndex(Idx))) {
// We've reached the beginning of MBB.
if (Idx == Start) {
- MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin());
+ MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
return I;
}
Idx = Idx.getPrevIndex();
diff --git a/contrib/llvm/lib/CodeGen/LiveInterval.cpp b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
index 93c5ca7..623af49 100644
--- a/contrib/llvm/lib/CodeGen/LiveInterval.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveInterval.cpp
@@ -59,18 +59,32 @@ public:
typedef LiveRange::Segment Segment;
typedef IteratorT iterator;
- VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
+ /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
+ /// value defined at @p Def.
+ /// If @p ForVNI is null, and there is no value defined at @p Def, a new
+ /// value will be allocated using @p VNInfoAllocator.
+ /// If @p ForVNI is null, the return value is the value defined at @p Def,
+ /// either a pre-existing one, or the one newly created.
+ /// If @p ForVNI is not null, then @p Def should be the location where
+ /// @p ForVNI is defined. If the range does not have a value defined at
+ /// @p Def, the value @p ForVNI will be used instead of allocating a new
+ /// one. If the range already has a value defined at @p Def, it must be
+ /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
+ VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
+ VNInfo *ForVNI) {
assert(!Def.isDead() && "Cannot define a value at the dead slot");
-
+ assert((!ForVNI || ForVNI->def == Def) &&
+ "If ForVNI is specified, it must match Def");
iterator I = impl().find(Def);
if (I == segments().end()) {
- VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
+ VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
Segment *S = segmentAt(I);
if (SlotIndex::isSameInstr(Def, S->start)) {
+ assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
assert(S->valno->def == S->start && "Inconsistent existing value def");
// It is possible to have both normal and early-clobber defs of the same
@@ -84,7 +98,7 @@ public:
return S->valno;
}
assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
- VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
+ VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
return VNI;
}
@@ -93,7 +107,7 @@ public:
if (segments().empty())
return nullptr;
iterator I =
- impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
+ impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
if (I == segments().begin())
return nullptr;
--I;
@@ -104,6 +118,25 @@ public:
return I->valno;
}
+ std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
+ SlotIndex StartIdx, SlotIndex Use) {
+ if (segments().empty())
+ return std::make_pair(nullptr, false);
+ SlotIndex BeforeUse = Use.getPrevSlot();
+ iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
+ if (I == segments().begin())
+ return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
+ --I;
+ if (I->end <= StartIdx)
+ return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
+ if (I->end < Use) {
+ if (LR->isUndefIn(Undefs, I->end, BeforeUse))
+ return std::make_pair(nullptr, true);
+ extendSegmentEndTo(I, Use);
+ }
+ return std::make_pair(I->valno, false);
+ }
+
/// This method is used when we want to extend the segment specified
/// by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all segments that this will overlap
@@ -320,13 +353,20 @@ LiveRange::iterator LiveRange::find(SlotIndex Pos) {
return I;
}
-VNInfo *LiveRange::createDeadDef(SlotIndex Def,
- VNInfo::Allocator &VNInfoAllocator) {
+VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
+ // Use the segment set, if it is available.
+ if (segmentSet != nullptr)
+ return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
+ // Otherwise use the segment vector.
+ return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
+}
+
+VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
// Use the segment set, if it is available.
if (segmentSet != nullptr)
- return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
+ return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
// Otherwise use the segment vector.
- return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
+ return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
}
// overlaps - Return true if the intersection of the two live ranges is
@@ -507,9 +547,15 @@ void LiveRange::append(const Segment S) {
segments.push_back(S);
}
-/// extendInBlock - If this range is live before Kill in the basic
-/// block that starts at StartIdx, extend it to be live up to Kill and return
-/// the value. If there is no live range before Kill, return NULL.
+std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
+ SlotIndex StartIdx, SlotIndex Kill) {
+ // Use the segment set, if it is available.
+ if (segmentSet != nullptr)
+ return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
+ // Otherwise use the segment vector.
+ return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
+}
+
VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
// Use the segment set, if it is available.
if (segmentSet != nullptr)
@@ -571,7 +617,7 @@ void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
/// Also remove the value# from value# list.
void LiveRange::removeValNo(VNInfo *ValNo) {
if (empty()) return;
- segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
+ segments.erase(remove_if(*this, [ValNo](const Segment &S) {
return S.valno == ValNo;
}), end());
// Now that ValNo is dead, remove it.
@@ -824,6 +870,30 @@ unsigned LiveInterval::getSize() const {
return Sum;
}
+void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
+ LaneBitmask LaneMask,
+ const MachineRegisterInfo &MRI,
+ const SlotIndexes &Indexes) const {
+ assert(TargetRegisterInfo::isVirtualRegister(reg));
+ LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
+ assert((VRegMask & LaneMask).any());
+ const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
+ for (const MachineOperand &MO : MRI.def_operands(reg)) {
+ if (!MO.isUndef())
+ continue;
+ unsigned SubReg = MO.getSubReg();
+ assert(SubReg != 0 && "Undef should only be set on subreg defs");
+ LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
+ LaneBitmask UndefMask = VRegMask & ~DefMask;
+ if ((UndefMask & LaneMask).any()) {
+ const MachineInstr &MI = *MO.getParent();
+ bool EarlyClobber = MO.isEarlyClobber();
+ SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
+ Undefs.push_back(Pos);
+ }
+ }
+}
+
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
}
@@ -912,15 +982,16 @@ void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
super::verify();
// Make sure SubRanges are fine and LaneMasks are disjunct.
- LaneBitmask Mask = 0;
- LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
+ LaneBitmask Mask;
+ LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
+ : LaneBitmask::getAll();
for (const SubRange &SR : subranges()) {
// Subrange lanemask should be disjunct to any previous subrange masks.
- assert((Mask & SR.LaneMask) == 0);
+ assert((Mask & SR.LaneMask).none());
Mask |= SR.LaneMask;
// subrange mask should not contained in maximum lane mask for the vreg.
- assert((Mask & ~MaxMask) == 0);
+ assert((Mask & ~MaxMask).none());
// empty subranges must be removed.
assert(!SR.empty());
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
index 5f3281f..70d3483 100644
--- a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -58,10 +58,6 @@ static cl::opt<bool> EnablePrecomputePhysRegs(
static bool EnablePrecomputePhysRegs = false;
#endif // NDEBUG
-static cl::opt<bool> EnableSubRegLiveness(
- "enable-subreg-liveness", cl::Hidden, cl::init(true),
- cl::desc("Enable subregister liveness tracking."));
-
namespace llvm {
cl::opt<bool> UseSegmentSetForPhysRegs(
"use-segment-set-for-physregs", cl::Hidden, cl::init(true),
@@ -119,9 +115,6 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
- if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
- MRI->enableSubRegLiveness(true);
-
if (!LRCalc)
LRCalc = new LiveRangeCalc();
@@ -504,8 +497,7 @@ bool LiveIntervals::computeDeadValues(LiveInterval &LI,
return MayHaveSplitComponents;
}
-void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
-{
+void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
DEBUG(dbgs() << "Shrink: " << SR << '\n');
assert(TargetRegisterInfo::isVirtualRegister(Reg)
&& "Can only shrink virtual registers");
@@ -514,18 +506,19 @@ void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
// Visit all instructions reading Reg.
SlotIndex LastIdx;
- for (MachineOperand &MO : MRI->reg_operands(Reg)) {
- MachineInstr *UseMI = MO.getParent();
- if (UseMI->isDebugValue())
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ // Skip "undef" uses.
+ if (!MO.readsReg())
continue;
// Maybe the operand is for a subregister we don't care about.
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
- if ((LaneMask & SR.LaneMask) == 0)
+ if ((LaneMask & SR.LaneMask).none())
continue;
}
// We only need to visit each instruction once.
+ MachineInstr *UseMI = MO.getParent();
SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
if (Idx == LastIdx)
continue;
@@ -574,11 +567,12 @@ void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
}
void LiveIntervals::extendToIndices(LiveRange &LR,
- ArrayRef<SlotIndex> Indices) {
+ ArrayRef<SlotIndex> Indices,
+ ArrayRef<SlotIndex> Undefs) {
assert(LRCalc && "LRCalc not initialized.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
- LRCalc->extend(LR, Indices[i]);
+ LRCalc->extend(LR, Indices[i], /*PhysReg=*/0, Undefs);
}
void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
@@ -605,7 +599,7 @@ void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
// Find all blocks that are reachable from KillMBB without leaving VNI's live
// range. It is possible that KillMBB itself is reachable, so start a DFS
// from each successor.
- typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
+ typedef df_iterator_default_set<MachineBasicBlock*,9> VisitedTy;
VisitedTy Visited;
for (MachineBasicBlock::succ_iterator
SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
@@ -724,7 +718,7 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
LaneBitmask DefinedLanesMask;
if (!SRs.empty()) {
// Compute a mask of lanes that are defined.
- DefinedLanesMask = 0;
+ DefinedLanesMask = LaneBitmask::getNone();
for (auto &SRP : SRs) {
const LiveInterval::SubRange &SR = *SRP.first;
LiveRange::const_iterator &I = SRP.second;
@@ -737,7 +731,7 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
DefinedLanesMask |= SR.LaneMask;
}
} else
- DefinedLanesMask = ~0u;
+ DefinedLanesMask = LaneBitmask::getAll();
bool IsFullWrite = false;
for (const MachineOperand &MO : MI->operands()) {
@@ -746,7 +740,7 @@ void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
if (MO.isUse()) {
// Reading any undefined lanes?
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
- if ((UseMask & ~DefinedLanesMask) != 0)
+ if ((UseMask & ~DefinedLanesMask).any())
goto CancelKill;
} else if (MO.getSubReg() == 0) {
// Writing to the full register?
@@ -954,14 +948,15 @@ public:
LiveInterval &LI = LIS.getInterval(Reg);
if (LI.hasSubRanges()) {
unsigned SubReg = MO.getSubReg();
- LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
+ LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI.getMaxLaneMaskForVReg(Reg);
for (LiveInterval::SubRange &S : LI.subranges()) {
- if ((S.LaneMask & LaneMask) == 0)
+ if ((S.LaneMask & LaneMask).none())
continue;
updateRange(S, Reg, S.LaneMask);
}
}
- updateRange(LI, Reg, 0);
+ updateRange(LI, Reg, LaneBitmask::getNone());
continue;
}
@@ -969,7 +964,7 @@ public:
// precomputed live range.
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
if (LiveRange *LR = getRegUnitLI(*Units))
- updateRange(*LR, *Units, 0);
+ updateRange(*LR, *Units, LaneBitmask::getNone());
}
if (hasRegMask)
updateRegMaskSlots();
@@ -985,7 +980,7 @@ private:
dbgs() << " ";
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
dbgs() << PrintReg(Reg);
- if (LaneMask != 0)
+ if (LaneMask.any())
dbgs() << " L" << PrintLaneMask(LaneMask);
} else {
dbgs() << PrintRegUnit(Reg, &TRI);
@@ -1039,6 +1034,8 @@ private:
LiveRange::iterator Prev = std::prev(NewIdxIn);
Prev->end = NewIdx.getRegSlot();
}
+ // Extend OldIdxIn.
+ OldIdxIn->end = Next->start;
return;
}
@@ -1317,8 +1314,8 @@ private:
if (MO.isUndef())
continue;
unsigned SubReg = MO.getSubReg();
- if (SubReg != 0 && LaneMask != 0
- && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
+ if (SubReg != 0 && LaneMask.any()
+ && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
continue;
const MachineInstr &MI = *MO.getParent();
@@ -1394,6 +1391,11 @@ void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
LaneBitmask LaneMask) {
LiveInterval::iterator LII = LR.find(endIdx);
SlotIndex lastUseIdx;
+ if (LII == LR.begin()) {
+ // This happens when the function is called for a subregister that only
+ // occurs _after_ the range that is to be repaired.
+ return;
+ }
if (LII != LR.end() && LII->start < endIdx)
lastUseIdx = LII->end;
else
@@ -1420,7 +1422,7 @@ void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
unsigned SubReg = MO.getSubReg();
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
- if ((Mask & LaneMask) == 0)
+ if ((Mask & LaneMask).none())
continue;
if (MO.isDef()) {
@@ -1538,15 +1540,19 @@ void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
}
void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
+ // LI may not have the main range computed yet, but its subranges may
+ // be present.
VNInfo *VNI = LI.getVNInfoAt(Pos);
- if (VNI == nullptr)
- return;
- LI.removeValNo(VNI);
+ if (VNI != nullptr) {
+ assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
+ LI.removeValNo(VNI);
+ }
- // Also remove the value in subranges.
+ // Also remove the value defined in subranges.
for (LiveInterval::SubRange &S : LI.subranges()) {
if (VNInfo *SVNI = S.getVNInfoAt(Pos))
- S.removeValNo(SVNI);
+ if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
+ S.removeValNo(SVNI);
}
LI.removeEmptySubRanges();
}
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
index 025d99c..fc2f233 100644
--- a/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalUnion.cpp
@@ -14,6 +14,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveIntervalUnion.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -102,9 +103,7 @@ void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) {
// Scan the vector of interfering virtual registers in this union. Assume it's
// quite small.
bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const {
- SmallVectorImpl<LiveInterval*>::const_iterator I =
- std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg);
- return I != InterferingVRegs.end();
+ return is_contained(InterferingVRegs, VirtReg);
}
// Collect virtual registers in this union that interfere with this
diff --git a/contrib/llvm/lib/CodeGen/LivePhysRegs.cpp b/contrib/llvm/lib/CodeGen/LivePhysRegs.cpp
index 4e2528f..dcc41c1 100644
--- a/contrib/llvm/lib/CodeGen/LivePhysRegs.cpp
+++ b/contrib/llvm/lib/CodeGen/LivePhysRegs.cpp
@@ -49,7 +49,7 @@ void LivePhysRegs::stepBackward(const MachineInstr &MI) {
if (!O->isDef())
continue;
unsigned Reg = O->getReg();
- if (Reg == 0)
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
removeReg(Reg);
} else if (O->isRegMask())
@@ -61,7 +61,7 @@ void LivePhysRegs::stepBackward(const MachineInstr &MI) {
if (!O->isReg() || !O->readsReg())
continue;
unsigned Reg = O->getReg();
- if (Reg == 0)
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
addReg(Reg);
}
@@ -77,7 +77,7 @@ void LivePhysRegs::stepForward(const MachineInstr &MI,
for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
if (O->isReg()) {
unsigned Reg = O->getReg();
- if (Reg == 0)
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (O->isDef()) {
// Note, dead defs are still recorded. The caller should decide how to
@@ -141,9 +141,19 @@ bool LivePhysRegs::available(const MachineRegisterInfo &MRI,
}
/// Add live-in registers of basic block \p MBB to \p LiveRegs.
-static void addLiveIns(LivePhysRegs &LiveRegs, const MachineBasicBlock &MBB) {
- for (const auto &LI : MBB.liveins())
- LiveRegs.addReg(LI.PhysReg);
+void LivePhysRegs::addBlockLiveIns(const MachineBasicBlock &MBB) {
+ for (const auto &LI : MBB.liveins()) {
+ MCSubRegIndexIterator S(LI.PhysReg, TRI);
+ if (LI.LaneMask.all() || (LI.LaneMask.any() && !S.isValid())) {
+ addReg(LI.PhysReg);
+ continue;
+ }
+ for (; S.isValid(); ++S) {
+ unsigned SI = S.getSubRegIndex();
+ if ((LI.LaneMask & TRI->getSubRegIndexLaneMask(SI)).any())
+ addReg(S.getSubReg());
+ }
+ }
}
/// Add pristine registers to the given \p LiveRegs. This function removes
@@ -160,12 +170,12 @@ static void addPristines(LivePhysRegs &LiveRegs, const MachineFunction &MF,
void LivePhysRegs::addLiveOutsNoPristines(const MachineBasicBlock &MBB) {
// To get the live-outs we simply merge the live-ins of all successors.
for (const MachineBasicBlock *Succ : MBB.successors())
- ::addLiveIns(*this, *Succ);
+ addBlockLiveIns(*Succ);
}
void LivePhysRegs::addLiveOuts(const MachineBasicBlock &MBB) {
const MachineFunction &MF = *MBB.getParent();
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
if (MFI.isCalleeSavedInfoValid()) {
if (MBB.isReturnBlock()) {
// The return block has no successors whose live-ins we could merge
@@ -182,8 +192,31 @@ void LivePhysRegs::addLiveOuts(const MachineBasicBlock &MBB) {
void LivePhysRegs::addLiveIns(const MachineBasicBlock &MBB) {
const MachineFunction &MF = *MBB.getParent();
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
if (MFI.isCalleeSavedInfoValid())
addPristines(*this, MF, MFI, *TRI);
- ::addLiveIns(*this, MBB);
+ addBlockLiveIns(MBB);
+}
+
+void llvm::computeLiveIns(LivePhysRegs &LiveRegs, const TargetRegisterInfo &TRI,
+ MachineBasicBlock &MBB) {
+ assert(MBB.livein_empty());
+ LiveRegs.init(TRI);
+ LiveRegs.addLiveOutsNoPristines(MBB);
+ for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend()))
+ LiveRegs.stepBackward(MI);
+
+ for (unsigned Reg : LiveRegs) {
+ // Skip the register if we are about to add one of its super registers.
+ bool ContainsSuperReg = false;
+ for (MCSuperRegIterator SReg(Reg, &TRI); SReg.isValid(); ++SReg) {
+ if (LiveRegs.contains(*SReg)) {
+ ContainsSuperReg = true;
+ break;
+ }
+ }
+ if (ContainsSuperReg)
+ continue;
+ MBB.addLiveIn(Reg);
+ }
}
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
index db91ca1..0128376 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "LiveRangeCalc.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@@ -23,6 +24,7 @@ void LiveRangeCalc::resetLiveOutMap() {
unsigned NumBlocks = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(NumBlocks);
+ EntryInfoMap.clear();
Map.resize(NumBlocks);
}
@@ -64,9 +66,8 @@ void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
unsigned SubReg = MO.getSubReg();
if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
- LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
- : MRI->getMaxLaneMaskForVReg(Reg);
-
+ LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI->getMaxLaneMaskForVReg(Reg);
// If this is the first time we see a subregister def, initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges() && !LI.empty()) {
@@ -74,17 +75,19 @@ void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
}
+ LaneBitmask Mask = SubMask;
for (LiveInterval::SubRange &S : LI.subranges()) {
// A Mask for subregs common to the existing subrange and current def.
LaneBitmask Common = S.LaneMask & Mask;
- if (Common == 0)
+ if (Common.none())
continue;
- // A Mask for subregs covered by the subrange but not the current def.
- LaneBitmask LRest = S.LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
- if (LRest != 0) {
- // Split current subrange into Common and LRest ranges.
- S.LaneMask = LRest;
+ // A Mask for subregs covered by the subrange but not the current def.
+ LaneBitmask RM = S.LaneMask & ~Mask;
+ if (RM.any()) {
+ // Split the subrange S into two parts: one covered by the current
+ // def (CommonRange), and the one not affected by it (updated S).
+ S.LaneMask = RM;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
} else {
assert(Common == S.LaneMask);
@@ -95,7 +98,7 @@ void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
Mask &= ~Common;
}
// Create a new SubRange for subregs we did not cover yet.
- if (Mask != 0) {
+ if (Mask.any()) {
LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
if (MO.isDef())
createDeadDef(*Indexes, *Alloc, *NewRange, MO);
@@ -116,14 +119,15 @@ void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
// necessary.
if (LI.hasSubRanges()) {
for (LiveInterval::SubRange &S : LI.subranges()) {
- resetLiveOutMap();
- extendToUses(S, Reg, S.LaneMask);
+ LiveRangeCalc SubLRC;
+ SubLRC.reset(MF, Indexes, DomTree, Alloc);
+ SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
}
LI.clear();
constructMainRangeFromSubranges(LI);
} else {
resetLiveOutMap();
- extendToUses(LI, Reg, ~0u);
+ extendToUses(LI, Reg, LaneBitmask::getAll());
}
}
@@ -139,9 +143,8 @@ void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
MainRange.createDeadDef(VNI->def, *Alloc);
}
}
-
resetLiveOutMap();
- extendToUses(MainRange, LI.reg);
+ extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
}
void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
@@ -154,29 +157,34 @@ void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
}
-void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
- LaneBitmask Mask) {
+void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
+ LiveInterval *LI) {
+ SmallVector<SlotIndex, 4> Undefs;
+ if (LI != nullptr)
+ LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
+
// Visit all operands that read Reg. This may include partial defs.
+ bool IsSubRange = !Mask.all();
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
- else {
- // We only care about uses, but on the main range (mask ~0u) this includes
- // the "virtual" reads happening for subregister defs.
- if (Mask != ~0u)
- continue;
- }
-
- if (!MO.readsReg())
+ // MO::readsReg returns "true" for subregister defs. This is for keeping
+ // liveness of the entire register (i.e. for the main range of the live
+ // interval). For subranges, definitions of non-overlapping subregisters
+ // do not count as uses.
+ if (!MO.readsReg() || (IsSubRange && MO.isDef()))
continue;
+
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
- LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
- // Ignore uses not covering the current subrange.
- if ((SubRegMask & Mask) == 0)
+ LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
+ if (MO.isDef())
+ SLM = ~SLM;
+ // Ignore uses not reading the current (sub)range.
+ if ((SLM & Mask).none())
continue;
}
@@ -205,7 +213,7 @@ void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
// MI is reading Reg. We may have visited MI before if it happens to be
// reading Reg multiple times. That is OK, extend() is idempotent.
- extend(LR, UseIdx, Reg);
+ extend(LR, UseIdx, Reg, Undefs);
}
}
@@ -235,8 +243,8 @@ void LiveRangeCalc::updateFromLiveIns() {
LiveIn.clear();
}
-
-void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
+void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs) {
assert(Use.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
@@ -245,14 +253,15 @@ void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
assert(UseMBB && "No MBB at Use");
// Is there a def in the same MBB we can extend?
- if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
+ auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
+ if (EP.first != nullptr || EP.second)
return;
// Find the single reaching def, or determine if Use is jointly dominated by
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
- if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
+ if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
return;
// When there were multiple different values, we may need new PHIs.
@@ -271,8 +280,72 @@ void LiveRangeCalc::calculateValues() {
}
+bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
+ MachineBasicBlock &MBB, BitVector &DefOnEntry,
+ BitVector &UndefOnEntry) {
+ unsigned BN = MBB.getNumber();
+ if (DefOnEntry[BN])
+ return true;
+ if (UndefOnEntry[BN])
+ return false;
+
+ auto MarkDefined =
+ [this,BN,&DefOnEntry,&UndefOnEntry] (MachineBasicBlock &B) -> bool {
+ for (MachineBasicBlock *S : B.successors())
+ DefOnEntry[S->getNumber()] = true;
+ DefOnEntry[BN] = true;
+ return true;
+ };
+
+ SetVector<unsigned> WorkList;
+ // Checking if the entry of MBB is reached by some def: add all predecessors
+ // that are potentially defined-on-exit to the work list.
+ for (MachineBasicBlock *P : MBB.predecessors())
+ WorkList.insert(P->getNumber());
+
+ for (unsigned i = 0; i != WorkList.size(); ++i) {
+ // Determine if the exit from the block is reached by some def.
+ unsigned N = WorkList[i];
+ MachineBasicBlock &B = *MF->getBlockNumbered(N);
+ if (Seen[N] && Map[&B].first != nullptr)
+ return MarkDefined(B);
+ SlotIndex Begin, End;
+ std::tie(Begin, End) = Indexes->getMBBRange(&B);
+ LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End);
+ if (UB != LR.begin()) {
+ LiveRange::Segment &Seg = *std::prev(UB);
+ if (Seg.end > Begin) {
+ // There is a segment that overlaps B. If the range is not explicitly
+ // undefined between the end of the segment and the end of the block,
+ // treat the block as defined on exit. If it is, go to the next block
+ // on the work list.
+ if (LR.isUndefIn(Undefs, Seg.end, End))
+ continue;
+ return MarkDefined(B);
+ }
+ }
+
+ // No segment overlaps with this block. If this block is not defined on
+ // entry, or it undefines the range, do not process its predecessors.
+ if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
+ UndefOnEntry[N] = true;
+ continue;
+ }
+ if (DefOnEntry[N])
+ return MarkDefined(B);
+
+ // Still don't know: add all predecessors to the work list.
+ for (MachineBasicBlock *P : B.predecessors())
+ WorkList.insert(P->getNumber());
+ }
+
+ UndefOnEntry[BN] = true;
+ return false;
+}
+
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
- SlotIndex Use, unsigned PhysReg) {
+ SlotIndex Use, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs) {
unsigned UseMBBNum = UseMBB.getNumber();
// Block numbers where LR should be live-in.
@@ -282,6 +355,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
bool UniqueVNI = true;
VNInfo *TheVNI = nullptr;
+ bool FoundUndef = false;
+
// Using Seen as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
@@ -294,18 +369,20 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
if (MI != nullptr)
errs() << Use << " " << *MI;
- llvm_unreachable("Use not jointly dominated by defs.");
+ report_fatal_error("Use not jointly dominated by defs.");
}
if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
!MBB->isLiveIn(PhysReg)) {
MBB->getParent()->verify();
- errs() << "The register " << PrintReg(PhysReg)
+ const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
+ errs() << "The register " << PrintReg(PhysReg, TRI)
<< " needs to be live in to BB#" << MBB->getNumber()
<< ", but is missing from the live-in list.\n";
- llvm_unreachable("Invalid global physical register");
+ report_fatal_error("Invalid global physical register");
}
#endif
+ FoundUndef |= MBB->pred_empty();
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
@@ -326,18 +403,21 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
- VNInfo *VNI = LR.extendInBlock(Start, End);
+ auto EP = LR.extendInBlock(Undefs, Start, End);
+ VNInfo *VNI = EP.first;
+ FoundUndef |= EP.second;
setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
- continue;
}
+ if (VNI || EP.second)
+ continue;
// No, we need a live-in value for Pred as well
if (Pred != &UseMBB)
- WorkList.push_back(Pred->getNumber());
+ WorkList.push_back(Pred->getNumber());
else
// Loopback to UseMBB, so value is really live through.
Use = SlotIndex();
@@ -345,6 +425,9 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
}
LiveIn.clear();
+ FoundUndef |= (TheVNI == nullptr);
+ if (Undefs.size() > 0 && FoundUndef)
+ UniqueVNI = false;
// Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
// neither require it. Skip the sorting overhead for small updates.
@@ -353,27 +436,39 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
// If a unique reaching def was found, blit in the live ranges immediately.
if (UniqueVNI) {
+ assert(TheVNI != nullptr);
LiveRangeUpdater Updater(&LR);
- for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
- E = WorkList.end(); I != E; ++I) {
- SlotIndex Start, End;
- std::tie(Start, End) = Indexes->getMBBRange(*I);
- // Trim the live range in UseMBB.
- if (*I == UseMBBNum && Use.isValid())
- End = Use;
- else
- Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
- Updater.add(Start, End, TheVNI);
+ for (unsigned BN : WorkList) {
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(BN);
+ // Trim the live range in UseMBB.
+ if (BN == UseMBBNum && Use.isValid())
+ End = Use;
+ else
+ Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
+ Updater.add(Start, End, TheVNI);
}
return true;
}
+ // Prepare the defined/undefined bit vectors.
+ auto EF = EntryInfoMap.find(&LR);
+ if (EF == EntryInfoMap.end()) {
+ unsigned N = MF->getNumBlockIDs();
+ EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first;
+ EF->second.first.resize(N);
+ EF->second.second.resize(N);
+ }
+ BitVector &DefOnEntry = EF->second.first;
+ BitVector &UndefOnEntry = EF->second.second;
+
// Multiple values were found, so transfer the work list to the LiveIn array
// where UpdateSSA will use it as a work list.
LiveIn.reserve(WorkList.size());
- for (SmallVectorImpl<unsigned>::const_iterator
- I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
- MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
+ for (unsigned BN : WorkList) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
+ if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
+ continue;
addLiveInBlock(LR, DomTree->getNode(MBB));
if (MBB == &UseMBB)
LiveIn.back().Kill = Use;
@@ -458,10 +553,12 @@ void LiveRangeCalc::updateSSA() {
I.DomNode = nullptr;
// Add liveness since updateFromLiveIns now skips this node.
- if (I.Kill.isValid())
- LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
- else {
- LR.addSegment(LiveInterval::Segment(Start, End, VNI));
+ if (I.Kill.isValid()) {
+ if (VNI)
+ LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
+ } else {
+ if (VNI)
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeCalc.h b/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
index 9de48b7..1a7598f 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
+++ b/contrib/llvm/lib/CodeGen/LiveRangeCalc.h
@@ -22,6 +22,7 @@
#ifndef LLVM_LIB_CODEGEN_LIVERANGECALC_H
#define LLVM_LIB_CODEGEN_LIVERANGECALC_H
+#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/CodeGen/LiveInterval.h"
@@ -53,6 +54,19 @@ class LiveRangeCalc {
/// when switching live ranges.
BitVector Seen;
+ /// Map LiveRange to sets of blocks (represented by bit vectors) that
+ /// in the live range are defined on entry and undefined on entry.
+ /// A block is defined on entry if there is a path from at least one of
+ /// the defs in the live range to the entry of the block, and conversely,
+ /// a block is undefined on entry, if there is no such path (i.e. no
+ /// definition reaches the entry of the block). A single LiveRangeCalc
+ /// object is used to track live-out information for multiple registers
+ /// in live range splitting (which is ok, since the live ranges of these
+ /// registers do not overlap), but the defined/undefined information must
+ /// be kept separate for each individual range.
+ /// By convention, EntryInfoMap[&LR] = { Defined, Undefined }.
+ std::map<LiveRange*,std::pair<BitVector,BitVector>> EntryInfoMap;
+
/// Map each basic block where a live range is live out to the live-out value
/// and its defining block.
///
@@ -101,18 +115,31 @@ class LiveRangeCalc {
/// used to add entries directly.
SmallVector<LiveInBlock, 16> LiveIn;
- /// Assuming that @p LR is live-in to @p UseMBB, find the set of defs that can
- /// reach it.
+ /// Check if the entry to block @p MBB can be reached by any of the defs
+ /// in @p LR. Return true if none of the defs reach the entry to @p MBB.
+ bool isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
+ MachineBasicBlock &MBB, BitVector &DefOnEntry,
+ BitVector &UndefOnEntry);
+
+ /// Find the set of defs that can reach @p Kill. @p Kill must belong to
+ /// @p UseMBB.
///
- /// If only one def can reach @p UseMBB, all paths from the def to @p UseMBB
- /// are added to @p LR, and the function returns true.
+ /// If exactly one def can reach @p UseMBB, and the def dominates @p Kill,
+ /// all paths from the def to @p UseMBB are added to @p LR, and the function
+ /// returns true.
///
/// If multiple values can reach @p UseMBB, the blocks that need @p LR to be
/// live in are added to the LiveIn array, and the function returns false.
///
+ /// The array @p Undef provides the locations where the range @p LR becomes
+ /// undefined by <def,read-undef> operands on other subranges. If @p Undef
+ /// is non-empty and @p Kill is jointly dominated only by the entries of
+ /// @p Undef, the function returns false.
+ ///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
bool findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
- SlotIndex Kill, unsigned PhysReg);
+ SlotIndex Kill, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs);
/// updateSSA - Compute the values that will be live in to all requested
/// blocks in LiveIn. Create PHI-def values as required to preserve SSA form.
@@ -127,9 +154,16 @@ class LiveRangeCalc {
/// Extend the live range of @p LR to reach all uses of Reg.
///
- /// All uses must be jointly dominated by existing liveness. PHI-defs are
- /// inserted as needed to preserve SSA form.
- void extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask);
+ /// If @p LR is a main range, or if @p LI is null, then all uses must be
+ /// jointly dominated by the definitions from @p LR. If @p LR is a subrange
+ /// of the live interval @p LI, corresponding to lane mask @p LaneMask,
+ /// all uses must be jointly dominated by the definitions from @p LR
+ /// together with definitions of other lanes where @p LR becomes undefined
+ /// (via <def,read-undef> operands).
+ /// If @p LR is a main range, the @p LaneMask should be set to ~0, i.e.
+ /// LaneBitmask::getAll().
+ void extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask,
+ LiveInterval *LI = nullptr);
/// Reset Map and Seen fields.
void resetLiveOutMap();
@@ -169,7 +203,8 @@ public:
/// inserted as required to preserve SSA form.
///
/// PhysReg, when set, is used to verify live-in lists on basic blocks.
- void extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg = 0);
+ void extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
+ ArrayRef<SlotIndex> Undefs);
/// createDeadDefs - Create a dead def in LI for every def operand of Reg.
/// Each instruction defining Reg gets a new VNInfo with a corresponding
@@ -181,7 +216,7 @@ public:
/// All uses must be jointly dominated by existing liveness. PHI-defs are
/// inserted as needed to preserve SSA form.
void extendToUses(LiveRange &LR, unsigned PhysReg) {
- extendToUses(LR, PhysReg, ~0u);
+ extendToUses(LR, PhysReg, LaneBitmask::getAll());
}
/// Calculates liveness for the register specified in live interval @p LI.
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
index b35c0ad..7f1c69c 100644
--- a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
@@ -37,6 +37,13 @@ LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
LiveInterval &LI = LIS.createEmptyInterval(VReg);
+ // Create empty subranges if the OldReg's interval has them. Do not create
+ // the main range here---it will be constructed later after the subranges
+ // have been finalized.
+ LiveInterval &OldLI = LIS.getInterval(OldReg);
+ VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
+ for (LiveInterval::SubRange &S : OldLI.subranges())
+ LI.createSubRange(Alloc, S.LaneMask);
return LI;
}
@@ -66,6 +73,8 @@ void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
unsigned Original = VRM->getOriginal(getReg());
LiveInterval &OrigLI = LIS.getInterval(Original);
VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
+ if (!OrigVNI)
+ continue;
MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
if (!DefMI)
continue;
@@ -94,7 +103,7 @@ bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
// We can't remat physreg uses, unless it is a constant.
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
- if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
+ if (MRI.isConstantPhysReg(MO.getReg()))
continue;
return false;
}
@@ -227,7 +236,7 @@ bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
unsigned SubReg = MO.getSubReg();
LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
for (const LiveInterval::SubRange &S : LI.subranges()) {
- if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill())
+ if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
return true;
}
return false;
@@ -263,7 +272,11 @@ void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
bool ReadsPhysRegs = false;
bool isOrigDef = false;
unsigned Dest;
- if (VRM && MI->getOperand(0).isReg()) {
+ // Only optimize rematerialize case when the instruction has one def, since
+ // otherwise we could leave some dead defs in the code. This case is
+ // extremely rare.
+ if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
+ MI->getDesc().getNumDefs() == 1) {
Dest = MI->getOperand(0).getReg();
unsigned Original = VRM->getOriginal(Dest);
LiveInterval &OrigLI = LIS.getInterval(Original);
@@ -335,6 +348,7 @@ void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
// allocations of the func are done.
if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
LiveInterval &NewLI = createEmptyIntervalFrom(Dest);
+ NewLI.removeEmptySubRanges();
VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
pop_back();
@@ -428,6 +442,9 @@ LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
if (VRM)
VRM->grow();
+ if (Parent && !Parent->isSpillable())
+ LIS.getInterval(VReg).markNotSpillable();
+
NewRegs.push_back(VReg);
}
diff --git a/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp b/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
index 7ee87c1..7a51386 100644
--- a/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveRegMatrix.cpp
@@ -70,15 +70,16 @@ void LiveRegMatrix::releaseMemory() {
}
}
-template<typename Callable>
-bool foreachUnit(const TargetRegisterInfo *TRI, LiveInterval &VRegInterval,
- unsigned PhysReg, Callable Func) {
+template <typename Callable>
+static bool foreachUnit(const TargetRegisterInfo *TRI,
+ LiveInterval &VRegInterval, unsigned PhysReg,
+ Callable Func) {
if (VRegInterval.hasSubRanges()) {
for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
unsigned Unit = (*Units).first;
LaneBitmask Mask = (*Units).second;
for (LiveInterval::SubRange &S : VRegInterval.subranges()) {
- if (S.LaneMask & Mask) {
+ if ((S.LaneMask & Mask).any()) {
if (Func(Unit, S))
return true;
break;
diff --git a/contrib/llvm/lib/CodeGen/LiveVariables.cpp b/contrib/llvm/lib/CodeGen/LiveVariables.cpp
index dd87216..269b990a31 100644
--- a/contrib/llvm/lib/CodeGen/LiveVariables.cpp
+++ b/contrib/llvm/lib/CodeGen/LiveVariables.cpp
@@ -643,7 +643,7 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
// register before its uses due to dominance properties of SSA (except for PHI
// nodes, which are treated as a special case).
MachineBasicBlock *Entry = &MF->front();
- SmallPtrSet<MachineBasicBlock*,16> Visited;
+ df_iterator_default_set<MachineBasicBlock*,16> Visited;
for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
runOnBlock(MBB, NumRegs);
diff --git a/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp b/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
index af7392f..e189fb0 100644
--- a/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
+++ b/contrib/llvm/lib/CodeGen/LocalStackSlotAllocation.cpp
@@ -51,12 +51,21 @@ namespace {
MachineBasicBlock::iterator MI; // Instr referencing the frame
int64_t LocalOffset; // Local offset of the frame idx referenced
int FrameIdx; // The frame index
+
+ // Order reference instruction appears in program. Used to ensure
+ // deterministic order when multiple instructions may reference the same
+ // location.
+ unsigned Order;
+
public:
- FrameRef(MachineBasicBlock::iterator I, int64_t Offset, int Idx) :
- MI(I), LocalOffset(Offset), FrameIdx(Idx) {}
+ FrameRef(MachineInstr *I, int64_t Offset, int Idx, unsigned Ord) :
+ MI(I), LocalOffset(Offset), FrameIdx(Idx), Order(Ord) {}
+
bool operator<(const FrameRef &RHS) const {
- return LocalOffset < RHS.LocalOffset;
+ return std::tie(LocalOffset, FrameIdx, Order) <
+ std::tie(RHS.LocalOffset, RHS.FrameIdx, RHS.Order);
}
+
MachineBasicBlock::iterator getMachineInstr() const { return MI; }
int64_t getLocalOffset() const { return LocalOffset; }
int getFrameIndex() const { return FrameIdx; }
@@ -67,17 +76,17 @@ namespace {
/// StackObjSet - A set of stack object indexes
typedef SmallSetVector<int, 8> StackObjSet;
- void AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx, int64_t &Offset,
+ void AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx, int64_t &Offset,
bool StackGrowsDown, unsigned &MaxAlign);
void AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
- MachineFrameInfo *MFI, bool StackGrowsDown,
+ MachineFrameInfo &MFI, bool StackGrowsDown,
int64_t &Offset, unsigned &MaxAlign);
void calculateFrameObjectOffsets(MachineFunction &Fn);
bool insertFrameReferenceRegisters(MachineFunction &Fn);
public:
static char ID; // Pass identification, replacement for typeid
- explicit LocalStackSlotPass() : MachineFunctionPass(ID) {
+ explicit LocalStackSlotPass() : MachineFunctionPass(ID) {
initializeLocalStackSlotPassPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
@@ -102,9 +111,9 @@ INITIALIZE_PASS_END(LocalStackSlotPass, "localstackalloc",
bool LocalStackSlotPass::runOnMachineFunction(MachineFunction &MF) {
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- unsigned LocalObjectCount = MFI->getObjectIndexEnd();
+ unsigned LocalObjectCount = MFI.getObjectIndexEnd();
// If the target doesn't want/need this pass, or if there are no locals
// to consider, early exit.
@@ -112,7 +121,7 @@ bool LocalStackSlotPass::runOnMachineFunction(MachineFunction &MF) {
return true;
// Make sure we have enough space to store the local offsets.
- LocalOffsets.resize(MFI->getObjectIndexEnd());
+ LocalOffsets.resize(MFI.getObjectIndexEnd());
// Lay out the local blob.
calculateFrameObjectOffsets(MF);
@@ -125,21 +134,21 @@ bool LocalStackSlotPass::runOnMachineFunction(MachineFunction &MF) {
// Otherwise, PEI can do a bit better job of getting the alignment right
// without a hole at the start since it knows the alignment of the stack
// at the start of local allocation, and this pass doesn't.
- MFI->setUseLocalStackAllocationBlock(UsedBaseRegs);
+ MFI.setUseLocalStackAllocationBlock(UsedBaseRegs);
return true;
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
-void LocalStackSlotPass::AdjustStackOffset(MachineFrameInfo *MFI,
+void LocalStackSlotPass::AdjustStackOffset(MachineFrameInfo &MFI,
int FrameIdx, int64_t &Offset,
bool StackGrowsDown,
unsigned &MaxAlign) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
- Offset += MFI->getObjectSize(FrameIdx);
+ Offset += MFI.getObjectSize(FrameIdx);
- unsigned Align = MFI->getObjectAlignment(FrameIdx);
+ unsigned Align = MFI.getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
@@ -154,10 +163,10 @@ void LocalStackSlotPass::AdjustStackOffset(MachineFrameInfo *MFI,
// Keep the offset available for base register allocation
LocalOffsets[FrameIdx] = LocalOffset;
// And tell MFI about it for PEI to use later
- MFI->mapLocalFrameObject(FrameIdx, LocalOffset);
+ MFI.mapLocalFrameObject(FrameIdx, LocalOffset);
if (!StackGrowsDown)
- Offset += MFI->getObjectSize(FrameIdx);
+ Offset += MFI.getObjectSize(FrameIdx);
++NumAllocations;
}
@@ -166,7 +175,7 @@ void LocalStackSlotPass::AdjustStackOffset(MachineFrameInfo *MFI,
/// those required to be close to the Stack Protector) to stack offsets.
void LocalStackSlotPass::AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
- MachineFrameInfo *MFI,
+ MachineFrameInfo &MFI,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign) {
@@ -183,7 +192,7 @@ void LocalStackSlotPass::AssignProtectedObjSet(const StackObjSet &UnassignedObjs
///
void LocalStackSlotPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Loop over all of the stack objects, assigning sequential addresses...
- MachineFrameInfo *MFI = Fn.getFrameInfo();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
@@ -194,22 +203,22 @@ void LocalStackSlotPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
- if (MFI->getStackProtectorIndex() >= 0) {
+ if (MFI.getStackProtectorIndex() >= 0) {
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
- AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), Offset,
+ AdjustStackOffset(MFI, MFI.getStackProtectorIndex(), Offset,
StackGrowsDown, MaxAlign);
// Assign large stack objects first.
- for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
- if (MFI->isDeadObjectIndex(i))
+ for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
+ if (MFI.isDeadObjectIndex(i))
continue;
- if (MFI->getStackProtectorIndex() == (int)i)
+ if (MFI.getStackProtectorIndex() == (int)i)
continue;
- switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) {
+ switch (SP->getSSPLayout(MFI.getObjectAllocation(i))) {
case StackProtector::SSPLK_None:
continue;
case StackProtector::SSPLK_SmallArray:
@@ -235,10 +244,10 @@ void LocalStackSlotPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Then assign frame offsets to stack objects that are not used to spill
// callee saved registers.
- for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
- if (MFI->isDeadObjectIndex(i))
+ for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
+ if (MFI.isDeadObjectIndex(i))
continue;
- if (MFI->getStackProtectorIndex() == (int)i)
+ if (MFI.getStackProtectorIndex() == (int)i)
continue;
if (ProtectedObjs.count(i))
continue;
@@ -247,8 +256,8 @@ void LocalStackSlotPass::calculateFrameObjectOffsets(MachineFunction &Fn) {
}
// Remember how big this blob of stack space is
- MFI->setLocalFrameSize(Offset);
- MFI->setLocalFrameMaxAlign(MaxAlign);
+ MFI.setLocalFrameSize(Offset);
+ MFI.setLocalFrameMaxAlign(MaxAlign);
}
static inline bool
@@ -273,7 +282,7 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
// and ask the target to create a defining instruction for it.
bool UsedBaseReg = false;
- MachineFrameInfo *MFI = Fn.getFrameInfo();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
const TargetFrameLowering &TFI = *Fn.getSubtarget().getFrameLowering();
bool StackGrowsDown =
@@ -285,6 +294,8 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
// choose the first one).
SmallVector<FrameRef, 64> FrameReferenceInsns;
+ unsigned Order = 0;
+
for (MachineBasicBlock &BB : Fn) {
for (MachineInstr &MI : BB) {
// Debug value, stackmap and patchpoint instructions can't be out of
@@ -305,21 +316,22 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
// an object allocated in the local block.
if (MI.getOperand(i).isFI()) {
// Don't try this with values not in the local block.
- if (!MFI->isObjectPreAllocated(MI.getOperand(i).getIndex()))
+ if (!MFI.isObjectPreAllocated(MI.getOperand(i).getIndex()))
break;
int Idx = MI.getOperand(i).getIndex();
int64_t LocalOffset = LocalOffsets[Idx];
if (!TRI->needsFrameBaseReg(&MI, LocalOffset))
break;
- FrameReferenceInsns.push_back(FrameRef(&MI, LocalOffset, Idx));
+ FrameReferenceInsns.push_back(FrameRef(&MI, LocalOffset, Idx, Order++));
break;
}
}
}
}
- // Sort the frame references by local offset
- array_pod_sort(FrameReferenceInsns.begin(), FrameReferenceInsns.end());
+ // Sort the frame references by local offset.
+ // Use frame index as a tie-breaker in case MI's have the same offset.
+ std::sort(FrameReferenceInsns.begin(), FrameReferenceInsns.end());
MachineBasicBlock *Entry = &Fn.front();
@@ -332,7 +344,7 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
MachineInstr &MI = *FR.getMachineInstr();
int64_t LocalOffset = FR.getLocalOffset();
int FrameIdx = FR.getFrameIndex();
- assert(MFI->isObjectPreAllocated(FrameIdx) &&
+ assert(MFI.isObjectPreAllocated(FrameIdx) &&
"Only pre-allocated locals expected!");
DEBUG(dbgs() << "Considering: " << MI);
@@ -349,7 +361,7 @@ bool LocalStackSlotPass::insertFrameReferenceRegisters(MachineFunction &Fn) {
assert(idx < MI.getNumOperands() && "Cannot find FI operand");
int64_t Offset = 0;
- int64_t FrameSizeAdjust = StackGrowsDown ? MFI->getLocalFrameSize() : 0;
+ int64_t FrameSizeAdjust = StackGrowsDown ? MFI.getLocalFrameSize() : 0;
DEBUG(dbgs() << " Replacing FI in: " << MI);
diff --git a/contrib/llvm/lib/CodeGen/LowLevelType.cpp b/contrib/llvm/lib/CodeGen/LowLevelType.cpp
new file mode 100644
index 0000000..d74b730
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LowLevelType.cpp
@@ -0,0 +1,71 @@
+//===-- llvm/CodeGen/GlobalISel/LowLevelType.cpp --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the more header-heavy bits of the LLT class to
+/// avoid polluting users' namespaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LowLevelType.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+LLT::LLT(Type &Ty, const DataLayout &DL) {
+ if (auto VTy = dyn_cast<VectorType>(&Ty)) {
+ SizeInBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ ElementsOrAddrSpace = VTy->getNumElements();
+ Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
+ } else if (auto PTy = dyn_cast<PointerType>(&Ty)) {
+ Kind = Pointer;
+ SizeInBits = DL.getTypeSizeInBits(&Ty);
+ ElementsOrAddrSpace = PTy->getAddressSpace();
+ } else if (Ty.isSized()) {
+ // Aggregates are no different from real scalars as far as GlobalISel is
+ // concerned.
+ Kind = Scalar;
+ SizeInBits = DL.getTypeSizeInBits(&Ty);
+ ElementsOrAddrSpace = 1;
+ assert(SizeInBits != 0 && "invalid zero-sized type");
+ } else {
+ Kind = Invalid;
+ SizeInBits = ElementsOrAddrSpace = 0;
+ }
+}
+
+LLT::LLT(MVT VT) {
+ if (VT.isVector()) {
+ SizeInBits = VT.getVectorElementType().getSizeInBits();
+ ElementsOrAddrSpace = VT.getVectorNumElements();
+ Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
+ } else if (VT.isValid()) {
+ // Aggregates are no different from real scalars as far as GlobalISel is
+ // concerned.
+ Kind = Scalar;
+ SizeInBits = VT.getSizeInBits();
+ ElementsOrAddrSpace = 1;
+ assert(SizeInBits != 0 && "invalid zero-sized type");
+ } else {
+ Kind = Invalid;
+ SizeInBits = ElementsOrAddrSpace = 0;
+ }
+}
+
+void LLT::print(raw_ostream &OS) const {
+ if (isVector())
+ OS << "<" << ElementsOrAddrSpace << " x s" << SizeInBits << ">";
+ else if (isPointer())
+ OS << "p" << getAddressSpace();
+ else if (isValid()) {
+ assert(isScalar() && "unexpected type");
+ OS << "s" << getScalarSizeInBits();
+ } else
+ llvm_unreachable("trying to print an invalid type");
+}
diff --git a/contrib/llvm/lib/CodeGen/MIRParser/MILexer.cpp b/contrib/llvm/lib/CodeGen/MIRParser/MILexer.cpp
index 6e3de52..1f1ce6e 100644
--- a/contrib/llvm/lib/CodeGen/MIRParser/MILexer.cpp
+++ b/contrib/llvm/lib/CodeGen/MIRParser/MILexer.cpp
@@ -173,14 +173,20 @@ static Cursor lexName(Cursor C, MIToken &Token, MIToken::TokenKind Type,
return C;
}
-static Cursor maybeLexIntegerType(Cursor C, MIToken &Token) {
- if (C.peek() != 'i' || !isdigit(C.peek(1)))
+static Cursor maybeLexIntegerOrScalarType(Cursor C, MIToken &Token) {
+ if ((C.peek() != 'i' && C.peek() != 's' && C.peek() != 'p') ||
+ !isdigit(C.peek(1)))
return None;
+ char Kind = C.peek();
auto Range = C;
- C.advance(); // Skip 'i'
+ C.advance(); // Skip 'i', 's', or 'p'
while (isdigit(C.peek()))
C.advance();
- Token.reset(MIToken::IntegerType, Range.upto(C));
+
+ Token.reset(Kind == 'i'
+ ? MIToken::IntegerType
+ : (Kind == 's' ? MIToken::ScalarType : MIToken::PointerType),
+ Range.upto(C));
return C;
}
@@ -199,12 +205,13 @@ static MIToken::TokenKind getIdentifierKind(StringRef Identifier) {
.Case("tied-def", MIToken::kw_tied_def)
.Case("frame-setup", MIToken::kw_frame_setup)
.Case("debug-location", MIToken::kw_debug_location)
- .Case(".cfi_same_value", MIToken::kw_cfi_same_value)
- .Case(".cfi_offset", MIToken::kw_cfi_offset)
- .Case(".cfi_def_cfa_register", MIToken::kw_cfi_def_cfa_register)
- .Case(".cfi_def_cfa_offset", MIToken::kw_cfi_def_cfa_offset)
- .Case(".cfi_def_cfa", MIToken::kw_cfi_def_cfa)
+ .Case("same_value", MIToken::kw_cfi_same_value)
+ .Case("offset", MIToken::kw_cfi_offset)
+ .Case("def_cfa_register", MIToken::kw_cfi_def_cfa_register)
+ .Case("def_cfa_offset", MIToken::kw_cfi_def_cfa_offset)
+ .Case("def_cfa", MIToken::kw_cfi_def_cfa)
.Case("blockaddress", MIToken::kw_blockaddress)
+ .Case("intrinsic", MIToken::kw_intrinsic)
.Case("target-index", MIToken::kw_target_index)
.Case("half", MIToken::kw_half)
.Case("float", MIToken::kw_float)
@@ -215,6 +222,7 @@ static MIToken::TokenKind getIdentifierKind(StringRef Identifier) {
.Case("target-flags", MIToken::kw_target_flags)
.Case("volatile", MIToken::kw_volatile)
.Case("non-temporal", MIToken::kw_non_temporal)
+ .Case("dereferenceable", MIToken::kw_dereferenceable)
.Case("invariant", MIToken::kw_invariant)
.Case("align", MIToken::kw_align)
.Case("stack", MIToken::kw_stack)
@@ -227,11 +235,13 @@ static MIToken::TokenKind getIdentifierKind(StringRef Identifier) {
.Case("landing-pad", MIToken::kw_landing_pad)
.Case("liveins", MIToken::kw_liveins)
.Case("successors", MIToken::kw_successors)
+ .Case("floatpred", MIToken::kw_floatpred)
+ .Case("intpred", MIToken::kw_intpred)
.Default(MIToken::Identifier);
}
static Cursor maybeLexIdentifier(Cursor C, MIToken &Token) {
- if (!isalpha(C.peek()) && C.peek() != '_' && C.peek() != '.')
+ if (!isalpha(C.peek()) && C.peek() != '_')
return None;
auto Range = C;
while (isIdentifierChar(C.peek()))
@@ -366,6 +376,11 @@ static Cursor lexVirtualRegister(Cursor C, MIToken &Token) {
return C;
}
+/// Returns true for a character allowed in a register name.
+static bool isRegisterChar(char C) {
+ return isIdentifierChar(C) && C != '.';
+}
+
static Cursor maybeLexRegister(Cursor C, MIToken &Token) {
if (C.peek() != '%')
return None;
@@ -373,7 +388,7 @@ static Cursor maybeLexRegister(Cursor C, MIToken &Token) {
return lexVirtualRegister(C, Token);
auto Range = C;
C.advance(); // Skip '%'
- while (isIdentifierChar(C.peek()))
+ while (isRegisterChar(C.peek()))
C.advance();
Token.reset(MIToken::NamedRegister, Range.upto(C))
.setStringValue(Range.upto(C).drop_front(1)); // Drop the '%'
@@ -409,19 +424,6 @@ static bool isValidHexFloatingPointPrefix(char C) {
return C == 'H' || C == 'K' || C == 'L' || C == 'M';
}
-static Cursor maybeLexHexFloatingPointLiteral(Cursor C, MIToken &Token) {
- if (C.peek() != '0' || C.peek(1) != 'x')
- return None;
- Cursor Range = C;
- C.advance(2); // Skip '0x'
- if (isValidHexFloatingPointPrefix(C.peek()))
- C.advance();
- while (isxdigit(C.peek()))
- C.advance();
- Token.reset(MIToken::FloatingPointLiteral, Range.upto(C));
- return C;
-}
-
static Cursor lexFloatingPointLiteral(Cursor Range, Cursor C, MIToken &Token) {
C.advance();
// Skip over [0-9]*([eE][-+]?[0-9]+)?
@@ -438,6 +440,28 @@ static Cursor lexFloatingPointLiteral(Cursor Range, Cursor C, MIToken &Token) {
return C;
}
+static Cursor maybeLexHexadecimalLiteral(Cursor C, MIToken &Token) {
+ if (C.peek() != '0' || (C.peek(1) != 'x' && C.peek(1) != 'X'))
+ return None;
+ Cursor Range = C;
+ C.advance(2);
+ unsigned PrefLen = 2;
+ if (isValidHexFloatingPointPrefix(C.peek())) {
+ C.advance();
+ PrefLen++;
+ }
+ while (isxdigit(C.peek()))
+ C.advance();
+ StringRef StrVal = Range.upto(C);
+ if (StrVal.size() <= PrefLen)
+ return None;
+ if (PrefLen == 2)
+ Token.reset(MIToken::HexLiteral, Range.upto(C));
+ else // It must be 3, which means that there was a floating-point prefix.
+ Token.reset(MIToken::FloatingPointLiteral, Range.upto(C));
+ return C;
+}
+
static Cursor maybeLexNumericalLiteral(Cursor C, MIToken &Token) {
if (!isdigit(C.peek()) && (C.peek() != '-' || !isdigit(C.peek(1))))
return None;
@@ -485,6 +509,8 @@ static MIToken::TokenKind symbolToken(char C) {
switch (C) {
case ',':
return MIToken::comma;
+ case '.':
+ return MIToken::dot;
case '=':
return MIToken::equal;
case ':':
@@ -566,7 +592,7 @@ StringRef llvm::lexMIToken(StringRef Source, MIToken &Token,
return C.remaining();
}
- if (Cursor R = maybeLexIntegerType(C, Token))
+ if (Cursor R = maybeLexIntegerOrScalarType(C, Token))
return R.remaining();
if (Cursor R = maybeLexMachineBasicBlock(C, Token, ErrorCallback))
return R.remaining();
@@ -592,7 +618,7 @@ StringRef llvm::lexMIToken(StringRef Source, MIToken &Token,
return R.remaining();
if (Cursor R = maybeLexExternalSymbol(C, Token, ErrorCallback))
return R.remaining();
- if (Cursor R = maybeLexHexFloatingPointLiteral(C, Token))
+ if (Cursor R = maybeLexHexadecimalLiteral(C, Token))
return R.remaining();
if (Cursor R = maybeLexNumericalLiteral(C, Token))
return R.remaining();
diff --git a/contrib/llvm/lib/CodeGen/MIRParser/MILexer.h b/contrib/llvm/lib/CodeGen/MIRParser/MILexer.h
index 32fc8ab..edba749 100644
--- a/contrib/llvm/lib/CodeGen/MIRParser/MILexer.h
+++ b/contrib/llvm/lib/CodeGen/MIRParser/MILexer.h
@@ -38,6 +38,7 @@ struct MIToken {
underscore,
colon,
coloncolon,
+ dot,
exclaim,
lparen,
rparen,
@@ -53,6 +54,7 @@ struct MIToken {
kw_implicit_define,
kw_def,
kw_dead,
+ kw_dereferenceable,
kw_killed,
kw_undef,
kw_internal,
@@ -67,6 +69,7 @@ struct MIToken {
kw_cfi_def_cfa_offset,
kw_cfi_def_cfa,
kw_blockaddress,
+ kw_intrinsic,
kw_target_index,
kw_half,
kw_float,
@@ -89,6 +92,8 @@ struct MIToken {
kw_landing_pad,
kw_liveins,
kw_successors,
+ kw_floatpred,
+ kw_intpred,
// Named metadata keywords
md_tbaa,
@@ -102,6 +107,8 @@ struct MIToken {
NamedRegister,
MachineBasicBlockLabel,
MachineBasicBlock,
+ PointerType,
+ ScalarType,
StackObject,
FixedStackObject,
NamedGlobalValue,
@@ -111,6 +118,7 @@ struct MIToken {
// Other tokens
IntegerLiteral,
FloatingPointLiteral,
+ HexLiteral,
VirtualRegister,
ConstantPoolItem,
JumpTableIndex,
@@ -160,7 +168,7 @@ public:
bool isMemoryOperandFlag() const {
return Kind == kw_volatile || Kind == kw_non_temporal ||
- Kind == kw_invariant;
+ Kind == kw_dereferenceable || Kind == kw_invariant;
}
bool is(TokenKind K) const { return Kind == K; }
diff --git a/contrib/llvm/lib/CodeGen/MIRParser/MIParser.cpp b/contrib/llvm/lib/CodeGen/MIRParser/MIParser.cpp
index b3fd16f..c8bed08 100644
--- a/contrib/llvm/lib/CodeGen/MIRParser/MIParser.cpp
+++ b/contrib/llvm/lib/CodeGen/MIRParser/MIParser.cpp
@@ -14,6 +14,7 @@
#include "MIParser.h"
#include "MILexer.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringSwitch.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@@ -26,13 +27,16 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cctype>
using namespace llvm;
@@ -41,6 +45,17 @@ PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
: MF(MF), SM(&SM), IRSlots(IRSlots) {
}
+VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
+ auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
+ if (I.second) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ VRegInfo *Info = new (Allocator) VRegInfo;
+ Info->VReg = MRI.createIncompleteVirtualRegister();
+ I.first->second = Info;
+ }
+ return *I.first->second;
+}
+
namespace {
/// A wrapper struct around the 'MachineOperand' struct that includes a source
@@ -65,7 +80,7 @@ class MIParser {
SMDiagnostic &Error;
StringRef Source, CurrentSource;
MIToken Token;
- const PerFunctionMIParsingState &PFS;
+ PerFunctionMIParsingState &PFS;
/// Maps from instruction names to op codes.
StringMap<unsigned> Names2InstrOpCodes;
/// Maps from register names to registers.
@@ -86,7 +101,7 @@ class MIParser {
StringMap<unsigned> Names2BitmaskTargetFlags;
public:
- MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
+ MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
StringRef Source);
/// \p SkipChar gives the number of characters to skip before looking
@@ -109,7 +124,8 @@ public:
bool parse(MachineInstr *&MI);
bool parseStandaloneMBB(MachineBasicBlock *&MBB);
bool parseStandaloneNamedRegister(unsigned &Reg);
- bool parseStandaloneVirtualRegister(unsigned &Reg);
+ bool parseStandaloneVirtualRegister(VRegInfo *&Info);
+ bool parseStandaloneRegister(unsigned &Reg);
bool parseStandaloneStackObject(int &FI);
bool parseStandaloneMDNode(MDNode *&Node);
@@ -119,21 +135,19 @@ public:
bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
- bool parseRegister(unsigned &Reg);
+ bool parseNamedRegister(unsigned &Reg);
+ bool parseVirtualRegister(VRegInfo *&Info);
+ bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
bool parseRegisterFlag(unsigned &Flags);
bool parseSubRegisterIndex(unsigned &SubReg);
bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
- bool parseSize(unsigned &Size);
bool parseRegisterOperand(MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx, bool IsDef = false);
bool parseImmediateOperand(MachineOperand &Dest);
bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
const Constant *&C);
bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
- bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
- Type *&Ty);
- // \p MustBeSized defines whether or not \p Ty must be sized.
- bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
+ bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
bool parseTypedImmediateOperand(MachineOperand &Dest);
bool parseFPImmediateOperand(MachineOperand &Dest);
bool parseMBBReference(MachineBasicBlock *&MBB);
@@ -155,6 +169,8 @@ public:
bool parseCFIOperand(MachineOperand &Dest);
bool parseIRBlock(BasicBlock *&BB, const Function &F);
bool parseBlockAddressOperand(MachineOperand &Dest);
+ bool parseIntrinsicOperand(MachineOperand &Dest);
+ bool parsePredicateOperand(MachineOperand &Dest);
bool parseTargetIndexOperand(MachineOperand &Dest);
bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
bool parseMachineOperand(MachineOperand &Dest,
@@ -181,6 +197,12 @@ private:
/// Return true if an error occurred.
bool getUint64(uint64_t &Result);
+ /// Convert the hexadecimal literal in the current token into an unsigned
+ /// APInt with a minimum bitwidth required to represent the value.
+ ///
+ /// Return true if the literal does not represent an integer value.
+ bool getHexUint(APInt &Result);
+
/// If the current token is of the given kind, consume it and return false.
/// Otherwise report an error and return true.
bool expectAndConsume(MIToken::TokenKind TokenKind);
@@ -254,7 +276,7 @@ private:
} // end anonymous namespace
-MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
+MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
StringRef Source)
: MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
{}
@@ -362,7 +384,7 @@ bool MIParser::parseBasicBlockDefinition(
if (!Name.empty()) {
BB = dyn_cast_or_null<BasicBlock>(
- MF.getFunction()->getValueSymbolTable().lookup(Name));
+ MF.getFunction()->getValueSymbolTable()->lookup(Name));
if (!BB)
return error(Loc, Twine("basic block '") + Name +
"' is not defined in the function '" +
@@ -437,10 +459,24 @@ bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
unsigned Reg = 0;
- if (parseRegister(Reg))
+ if (parseNamedRegister(Reg))
return true;
- MBB.addLiveIn(Reg);
lex();
+ LaneBitmask Mask = LaneBitmask::getAll();
+ if (consumeIfPresent(MIToken::colon)) {
+ // Parse lane mask.
+ if (Token.isNot(MIToken::IntegerLiteral) &&
+ Token.isNot(MIToken::HexLiteral))
+ return error("expected a lane mask");
+ static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
+ "Use correct get-function for lane mask");
+ LaneBitmask::Type V;
+ if (getUnsigned(V))
+ return error("invalid lane mask value");
+ Mask = LaneBitmask(V);
+ lex();
+ }
+ MBB.addLiveIn(Reg, Mask);
} while (consumeIfPresent(MIToken::comma));
return false;
}
@@ -461,7 +497,8 @@ bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
lex();
unsigned Weight = 0;
if (consumeIfPresent(MIToken::lparen)) {
- if (Token.isNot(MIToken::IntegerLiteral))
+ if (Token.isNot(MIToken::IntegerLiteral) &&
+ Token.isNot(MIToken::HexLiteral))
return error("expected an integer literal after '('");
if (getUnsigned(Weight))
return true;
@@ -597,14 +634,6 @@ bool MIParser::parse(MachineInstr *&MI) {
if (Token.isError() || parseInstruction(OpCode, Flags))
return true;
- Type *Ty = nullptr;
- if (isPreISelGenericOpcode(OpCode)) {
- // For generic opcode, a type is mandatory.
- auto Loc = Token.location();
- if (parseIRType(Loc, Ty))
- return true;
- }
-
// Parse the remaining machine operands.
while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
@@ -660,8 +689,6 @@ bool MIParser::parse(MachineInstr *&MI) {
// TODO: Check for extraneous machine operands.
MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
MI->setFlags(Flags);
- if (Ty)
- MI->setType(Ty);
for (const auto &Operand : Operands)
MI->addOperand(MF, Operand.Operand);
if (assignRegisterTies(*MI, Operands))
@@ -692,7 +719,7 @@ bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
lex();
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
- if (parseRegister(Reg))
+ if (parseNamedRegister(Reg))
return true;
lex();
if (Token.isNot(MIToken::Eof))
@@ -700,12 +727,28 @@ bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
return false;
}
-bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
+bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
lex();
if (Token.isNot(MIToken::VirtualRegister))
return error("expected a virtual register");
- if (parseRegister(Reg))
+ if (parseVirtualRegister(Info))
+ return true;
+ lex();
+ if (Token.isNot(MIToken::Eof))
+ return error("expected end of string after the register reference");
+ return false;
+}
+
+bool MIParser::parseStandaloneRegister(unsigned &Reg) {
+ lex();
+ if (Token.isNot(MIToken::NamedRegister) &&
+ Token.isNot(MIToken::VirtualRegister))
+ return error("expected either a named or virtual register");
+
+ VRegInfo *Info;
+ if (parseRegister(Reg, Info))
return true;
+
lex();
if (Token.isNot(MIToken::Eof))
return error("expected end of string after the register reference");
@@ -800,33 +843,39 @@ bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
return false;
}
-bool MIParser::parseRegister(unsigned &Reg) {
+bool MIParser::parseNamedRegister(unsigned &Reg) {
+ assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
+ StringRef Name = Token.stringValue();
+ if (getRegisterByName(Name, Reg))
+ return error(Twine("unknown register name '") + Name + "'");
+ return false;
+}
+
+bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
+ assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
+ unsigned ID;
+ if (getUnsigned(ID))
+ return true;
+ Info = &PFS.getVRegInfo(ID);
+ return false;
+}
+
+bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
switch (Token.kind()) {
case MIToken::underscore:
Reg = 0;
- break;
- case MIToken::NamedRegister: {
- StringRef Name = Token.stringValue();
- if (getRegisterByName(Name, Reg))
- return error(Twine("unknown register name '") + Name + "'");
- break;
- }
- case MIToken::VirtualRegister: {
- unsigned ID;
- if (getUnsigned(ID))
+ return false;
+ case MIToken::NamedRegister:
+ return parseNamedRegister(Reg);
+ case MIToken::VirtualRegister:
+ if (parseVirtualRegister(Info))
return true;
- const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
- if (RegInfo == PFS.VirtualRegisterSlots.end())
- return error(Twine("use of undefined virtual register '%") + Twine(ID) +
- "'");
- Reg = RegInfo->second;
- break;
- }
+ Reg = Info->VReg;
+ return false;
// TODO: Parse other register kinds.
default:
llvm_unreachable("The current token should be a register");
}
- return false;
}
bool MIParser::parseRegisterFlag(unsigned &Flags) {
@@ -871,10 +920,10 @@ bool MIParser::parseRegisterFlag(unsigned &Flags) {
}
bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
- assert(Token.is(MIToken::colon));
+ assert(Token.is(MIToken::dot));
lex();
if (Token.isNot(MIToken::Identifier))
- return error("expected a subregister index after ':'");
+ return error("expected a subregister index after '.'");
auto Name = Token.stringValue();
SubReg = getSubRegIndex(Name);
if (!SubReg)
@@ -885,7 +934,7 @@ bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
if (!consumeIfPresent(MIToken::kw_tied_def))
- return error("expected 'tied-def' after '('");
+ return true;
if (Token.isNot(MIToken::IntegerLiteral))
return error("expected an integer literal after 'tied-def'");
if (getUnsigned(TiedDefIdx))
@@ -896,17 +945,6 @@ bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
return false;
}
-bool MIParser::parseSize(unsigned &Size) {
- if (Token.isNot(MIToken::IntegerLiteral))
- return error("expected an integer literal for the size");
- if (getUnsigned(Size))
- return true;
- lex();
- if (expectAndConsume(MIToken::rparen))
- return true;
- return false;
-}
-
bool MIParser::assignRegisterTies(MachineInstr &MI,
ArrayRef<ParsedMachineOperand> Operands) {
SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
@@ -947,7 +985,6 @@ bool MIParser::assignRegisterTies(MachineInstr &MI,
bool MIParser::parseRegisterOperand(MachineOperand &Dest,
Optional<unsigned> &TiedDefIdx,
bool IsDef) {
- unsigned Reg;
unsigned Flags = IsDef ? RegState::Define : 0;
while (Token.isRegisterFlag()) {
if (parseRegisterFlag(Flags))
@@ -955,38 +992,62 @@ bool MIParser::parseRegisterOperand(MachineOperand &Dest,
}
if (!Token.isRegister())
return error("expected a register after register flags");
- if (parseRegister(Reg))
+ unsigned Reg;
+ VRegInfo *RegInfo;
+ if (parseRegister(Reg, RegInfo))
return true;
lex();
unsigned SubReg = 0;
- if (Token.is(MIToken::colon)) {
+ if (Token.is(MIToken::dot)) {
if (parseSubRegisterIndex(SubReg))
return true;
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return error("subregister index expects a virtual register");
}
+ MachineRegisterInfo &MRI = MF.getRegInfo();
if ((Flags & RegState::Define) == 0) {
if (consumeIfPresent(MIToken::lparen)) {
unsigned Idx;
- if (parseRegisterTiedDefIndex(Idx))
- return true;
- TiedDefIdx = Idx;
+ if (!parseRegisterTiedDefIndex(Idx))
+ TiedDefIdx = Idx;
+ else {
+ // Try a redundant low-level type.
+ LLT Ty;
+ if (parseLowLevelType(Token.location(), Ty))
+ return error("expected tied-def or low-level type after '('");
+
+ if (expectAndConsume(MIToken::rparen))
+ return true;
+
+ if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
+ return error("inconsistent type for generic virtual register");
+
+ MRI.setType(Reg, Ty);
+ }
}
} else if (consumeIfPresent(MIToken::lparen)) {
- // Virtual registers may have a size with GlobalISel.
+ // Virtual registers may have a tpe with GlobalISel.
if (!TargetRegisterInfo::isVirtualRegister(Reg))
- return error("unexpected size on physical register");
- unsigned Size;
- if (parseSize(Size))
+ return error("unexpected type on physical register");
+
+ LLT Ty;
+ if (parseLowLevelType(Token.location(), Ty))
return true;
- MachineRegisterInfo &MRI = MF.getRegInfo();
- MRI.setSize(Reg, Size);
- } else if (PFS.GenericVRegs.count(Reg)) {
- // Generic virtual registers must have a size.
- // If we end up here this means the size hasn't been specified and
+ if (expectAndConsume(MIToken::rparen))
+ return true;
+
+ if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
+ return error("inconsistent type for generic virtual register");
+
+ MRI.setType(Reg, Ty);
+ } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Generic virtual registers must have a type.
+ // If we end up here this means the type hasn't been specified and
// this is bad!
- return error("generic virtual registers must have a size");
+ if (RegInfo->Kind == VRegInfo::GENERIC ||
+ RegInfo->Kind == VRegInfo::REGBANK)
+ return error("generic virtual registers must have a type");
}
Dest = MachineOperand::CreateReg(
Reg, Flags & RegState::Define, Flags & RegState::Implicit,
@@ -1010,7 +1071,7 @@ bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
const Constant *&C) {
auto Source = StringValue.str(); // The source has to be null terminated.
SMDiagnostic Err;
- C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
+ C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
&PFS.IRSlots);
if (!C)
return error(Loc + Err.getColumnNo(), Err.getMessage());
@@ -1024,35 +1085,45 @@ bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
return false;
}
-bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
- unsigned &Read, Type *&Ty) {
- auto Source = StringValue.str(); // The source has to be null terminated.
- SMDiagnostic Err;
- Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
- *MF.getFunction()->getParent(), &PFS.IRSlots);
- if (!Ty)
- return error(Loc + Err.getColumnNo(), Err.getMessage());
- return false;
-}
+bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
+ if (Token.is(MIToken::ScalarType)) {
+ Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
+ lex();
+ return false;
+ } else if (Token.is(MIToken::PointerType)) {
+ const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
+ unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
+ Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
+ lex();
+ return false;
+ }
-bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
- bool MustBeSized) {
- // At this point we enter in the IR world, i.e., to get the correct type,
- // we need to hand off the whole string, not just the current token.
- // E.g., <4 x i64> would give '<' as a token and there is not much
- // the IR parser can do with that.
- unsigned Read = 0;
- if (parseIRType(Loc, StringRef(Loc), Read, Ty))
- return true;
- // The type must be sized, otherwise there is not much the backend
- // can do with it.
- if (MustBeSized && !Ty->isSized())
- return error("expected a sized type");
- // The next token is Read characters from the Loc.
- // However, the current location is not Loc, but Loc + the length of Token.
- // Therefore, subtract the length of Token (range().end() - Loc) to the
- // number of characters to skip before the next token.
- lex(Read - (Token.range().end() - Loc));
+ // Now we're looking for a vector.
+ if (Token.isNot(MIToken::less))
+ return error(Loc,
+ "expected unsized, pN, sN or <N x sM> for GlobalISel type");
+
+ lex();
+
+ if (Token.isNot(MIToken::IntegerLiteral))
+ return error(Loc, "expected <N x sM> for vctor type");
+ uint64_t NumElements = Token.integerValue().getZExtValue();
+ lex();
+
+ if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
+ return error(Loc, "expected '<N x sM>' for vector type");
+ lex();
+
+ if (Token.isNot(MIToken::ScalarType))
+ return error(Loc, "expected '<N x sM>' for vector type");
+ uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
+ lex();
+
+ if (Token.isNot(MIToken::greater))
+ return error(Loc, "expected '<N x sM>' for vector type");
+ lex();
+
+ Ty = LLT::vector(NumElements, ScalarSize);
return false;
}
@@ -1072,7 +1143,8 @@ bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
auto Loc = Token.location();
lex();
- if (Token.isNot(MIToken::FloatingPointLiteral))
+ if (Token.isNot(MIToken::FloatingPointLiteral) &&
+ Token.isNot(MIToken::HexLiteral))
return error("expected a floating point literal");
const Constant *C = nullptr;
if (parseIRConstant(Loc, C))
@@ -1082,13 +1154,24 @@ bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
}
bool MIParser::getUnsigned(unsigned &Result) {
- assert(Token.hasIntegerValue() && "Expected a token with an integer value");
- const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
- uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
- if (Val64 == Limit)
- return error("expected 32-bit integer (too large)");
- Result = Val64;
- return false;
+ if (Token.hasIntegerValue()) {
+ const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
+ uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
+ if (Val64 == Limit)
+ return error("expected 32-bit integer (too large)");
+ Result = Val64;
+ return false;
+ }
+ if (Token.is(MIToken::HexLiteral)) {
+ APInt A;
+ if (getHexUint(A))
+ return true;
+ if (A.getBitWidth() > 32)
+ return error("expected 32-bit integer (too large)");
+ Result = A.getZExtValue();
+ return false;
+ }
+ return true;
}
bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
@@ -1128,7 +1211,7 @@ bool MIParser::parseStackFrameIndex(int &FI) {
"'");
StringRef Name;
if (const auto *Alloca =
- MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
+ MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
Name = Alloca->getName();
if (!Token.stringValue().empty() && Token.stringValue() != Name)
return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
@@ -1293,7 +1376,7 @@ bool MIParser::parseCFIRegister(unsigned &Reg) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a cfi register");
unsigned LLVMReg;
- if (parseRegister(LLVMReg))
+ if (parseNamedRegister(LLVMReg))
return true;
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
@@ -1308,7 +1391,6 @@ bool MIParser::parseCFIRegister(unsigned &Reg) {
bool MIParser::parseCFIOperand(MachineOperand &Dest) {
auto Kind = Token.kind();
lex();
- auto &MMI = MF.getMMI();
int Offset;
unsigned Reg;
unsigned CFIIndex;
@@ -1316,27 +1398,26 @@ bool MIParser::parseCFIOperand(MachineOperand &Dest) {
case MIToken::kw_cfi_same_value:
if (parseCFIRegister(Reg))
return true;
- CFIIndex =
- MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
break;
case MIToken::kw_cfi_offset:
if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
parseCFIOffset(Offset))
return true;
CFIIndex =
- MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
+ MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
break;
case MIToken::kw_cfi_def_cfa_register:
if (parseCFIRegister(Reg))
return true;
CFIIndex =
- MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
+ MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
break;
case MIToken::kw_cfi_def_cfa_offset:
if (parseCFIOffset(Offset))
return true;
// NB: MCCFIInstruction::createDefCfaOffset negates the offset.
- CFIIndex = MMI.addFrameInst(
+ CFIIndex = MF.addFrameInst(
MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
break;
case MIToken::kw_cfi_def_cfa:
@@ -1345,7 +1426,7 @@ bool MIParser::parseCFIOperand(MachineOperand &Dest) {
return true;
// NB: MCCFIInstruction::createDefCfa negates the offset.
CFIIndex =
- MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
+ MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
break;
default:
// TODO: Parse the other CFI operands.
@@ -1359,7 +1440,7 @@ bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
switch (Token.kind()) {
case MIToken::NamedIRBlock: {
BB = dyn_cast_or_null<BasicBlock>(
- F.getValueSymbolTable().lookup(Token.stringValue()));
+ F.getValueSymbolTable()->lookup(Token.stringValue()));
if (!BB)
return error(Twine("use of undefined IR block '") + Token.range() + "'");
break;
@@ -1411,6 +1492,93 @@ bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
return false;
}
+bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
+ assert(Token.is(MIToken::kw_intrinsic));
+ lex();
+ if (expectAndConsume(MIToken::lparen))
+ return error("expected syntax intrinsic(@llvm.whatever)");
+
+ if (Token.isNot(MIToken::NamedGlobalValue))
+ return error("expected syntax intrinsic(@llvm.whatever)");
+
+ std::string Name = Token.stringValue();
+ lex();
+
+ if (expectAndConsume(MIToken::rparen))
+ return error("expected ')' to terminate intrinsic name");
+
+ // Find out what intrinsic we're dealing with, first try the global namespace
+ // and then the target's private intrinsics if that fails.
+ const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
+ Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
+ if (ID == Intrinsic::not_intrinsic && TII)
+ ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
+
+ if (ID == Intrinsic::not_intrinsic)
+ return error("unknown intrinsic name");
+ Dest = MachineOperand::CreateIntrinsicID(ID);
+
+ return false;
+}
+
+bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
+ assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
+ bool IsFloat = Token.is(MIToken::kw_floatpred);
+ lex();
+
+ if (expectAndConsume(MIToken::lparen))
+ return error("expected syntax intpred(whatever) or floatpred(whatever");
+
+ if (Token.isNot(MIToken::Identifier))
+ return error("whatever");
+
+ CmpInst::Predicate Pred;
+ if (IsFloat) {
+ Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
+ .Case("false", CmpInst::FCMP_FALSE)
+ .Case("oeq", CmpInst::FCMP_OEQ)
+ .Case("ogt", CmpInst::FCMP_OGT)
+ .Case("oge", CmpInst::FCMP_OGE)
+ .Case("olt", CmpInst::FCMP_OLT)
+ .Case("ole", CmpInst::FCMP_OLE)
+ .Case("one", CmpInst::FCMP_ONE)
+ .Case("ord", CmpInst::FCMP_ORD)
+ .Case("uno", CmpInst::FCMP_UNO)
+ .Case("ueq", CmpInst::FCMP_UEQ)
+ .Case("ugt", CmpInst::FCMP_UGT)
+ .Case("uge", CmpInst::FCMP_UGE)
+ .Case("ult", CmpInst::FCMP_ULT)
+ .Case("ule", CmpInst::FCMP_ULE)
+ .Case("une", CmpInst::FCMP_UNE)
+ .Case("true", CmpInst::FCMP_TRUE)
+ .Default(CmpInst::BAD_FCMP_PREDICATE);
+ if (!CmpInst::isFPPredicate(Pred))
+ return error("invalid floating-point predicate");
+ } else {
+ Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
+ .Case("eq", CmpInst::ICMP_EQ)
+ .Case("ne", CmpInst::ICMP_NE)
+ .Case("sgt", CmpInst::ICMP_SGT)
+ .Case("sge", CmpInst::ICMP_SGE)
+ .Case("slt", CmpInst::ICMP_SLT)
+ .Case("sle", CmpInst::ICMP_SLE)
+ .Case("ugt", CmpInst::ICMP_UGT)
+ .Case("uge", CmpInst::ICMP_UGE)
+ .Case("ult", CmpInst::ICMP_ULT)
+ .Case("ule", CmpInst::ICMP_ULE)
+ .Default(CmpInst::BAD_ICMP_PREDICATE);
+ if (!CmpInst::isIntPredicate(Pred))
+ return error("invalid integer predicate");
+ }
+
+ lex();
+ Dest = MachineOperand::CreatePredicate(Pred);
+ if (expectAndConsume(MIToken::rparen))
+ return error("predicate should be terminated by ')'.");
+
+ return false;
+}
+
bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::kw_target_index));
lex();
@@ -1441,8 +1609,8 @@ bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
while (true) {
if (Token.isNot(MIToken::NamedRegister))
return error("expected a named register");
- unsigned Reg = 0;
- if (parseRegister(Reg))
+ unsigned Reg;
+ if (parseNamedRegister(Reg))
return true;
lex();
Mask[Reg / 32] |= 1U << (Reg % 32);
@@ -1511,10 +1679,15 @@ bool MIParser::parseMachineOperand(MachineOperand &Dest,
return parseCFIOperand(Dest);
case MIToken::kw_blockaddress:
return parseBlockAddressOperand(Dest);
+ case MIToken::kw_intrinsic:
+ return parseIntrinsicOperand(Dest);
case MIToken::kw_target_index:
return parseTargetIndexOperand(Dest);
case MIToken::kw_liveout:
return parseLiveoutRegisterMaskOperand(Dest);
+ case MIToken::kw_floatpred:
+ case MIToken::kw_intpred:
+ return parsePredicateOperand(Dest);
case MIToken::Error:
return true;
case MIToken::Identifier:
@@ -1523,7 +1696,7 @@ bool MIParser::parseMachineOperand(MachineOperand &Dest,
lex();
break;
}
- // fallthrough
+ LLVM_FALLTHROUGH;
default:
// FIXME: Parse the MCSymbol machine operand.
return error("expected a machine operand");
@@ -1613,7 +1786,7 @@ bool MIParser::parseOperandsOffset(MachineOperand &Op) {
bool MIParser::parseIRValue(const Value *&V) {
switch (Token.kind()) {
case MIToken::NamedIRValue: {
- V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
+ V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
break;
}
case MIToken::IRValue: {
@@ -1647,10 +1820,35 @@ bool MIParser::parseIRValue(const Value *&V) {
}
bool MIParser::getUint64(uint64_t &Result) {
- assert(Token.hasIntegerValue());
- if (Token.integerValue().getActiveBits() > 64)
- return error("expected 64-bit integer (too large)");
- Result = Token.integerValue().getZExtValue();
+ if (Token.hasIntegerValue()) {
+ if (Token.integerValue().getActiveBits() > 64)
+ return error("expected 64-bit integer (too large)");
+ Result = Token.integerValue().getZExtValue();
+ return false;
+ }
+ if (Token.is(MIToken::HexLiteral)) {
+ APInt A;
+ if (getHexUint(A))
+ return true;
+ if (A.getBitWidth() > 64)
+ return error("expected 64-bit integer (too large)");
+ Result = A.getZExtValue();
+ return false;
+ }
+ return true;
+}
+
+bool MIParser::getHexUint(APInt &Result) {
+ assert(Token.is(MIToken::HexLiteral));
+ StringRef S = Token.range();
+ assert(S[0] == '0' && tolower(S[1]) == 'x');
+ // This could be a floating point literal with a special prefix.
+ if (!isxdigit(S[2]))
+ return true;
+ StringRef V = S.substr(2);
+ APInt A(V.size()*4, V, 16);
+ Result = APInt(A.getActiveBits(),
+ ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
return false;
}
@@ -1663,6 +1861,9 @@ bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
case MIToken::kw_non_temporal:
Flags |= MachineMemOperand::MONonTemporal;
break;
+ case MIToken::kw_dereferenceable:
+ Flags |= MachineMemOperand::MODereferenceable;
+ break;
case MIToken::kw_invariant:
Flags |= MachineMemOperand::MOInvariant;
break;
@@ -2059,36 +2260,42 @@ bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
}
-bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
+bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
StringRef Src, SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseBasicBlocks();
}
-bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
+bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
}
-bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
+bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
+ unsigned &Reg, StringRef Src,
+ SMDiagnostic &Error) {
+ return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
+}
+
+bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
unsigned &Reg, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
}
-bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
- unsigned &Reg, StringRef Src,
+bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
+ VRegInfo *&Info, StringRef Src,
SMDiagnostic &Error) {
- return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
+ return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
}
-bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
+bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
int &FI, StringRef Src,
SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
}
-bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
+bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
}
diff --git a/contrib/llvm/lib/CodeGen/MIRParser/MIParser.h b/contrib/llvm/lib/CodeGen/MIRParser/MIParser.h
index 18895b9..93a4d84 100644
--- a/contrib/llvm/lib/CodeGen/MIRParser/MIParser.h
+++ b/contrib/llvm/lib/CodeGen/MIRParser/MIParser.h
@@ -26,26 +26,42 @@ class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class MDNode;
+class RegisterBank;
struct SlotMapping;
class SMDiagnostic;
class SourceMgr;
+class TargetRegisterClass;
+
+struct VRegInfo {
+ enum uint8_t {
+ UNKNOWN, NORMAL, GENERIC, REGBANK
+ } Kind = UNKNOWN;
+ bool Explicit = false; ///< VReg was explicitly specified in the .mir file.
+ union {
+ const TargetRegisterClass *RC;
+ const RegisterBank *RegBank;
+ } D;
+ unsigned VReg;
+ unsigned PreferredReg = 0;
+};
struct PerFunctionMIParsingState {
+ BumpPtrAllocator Allocator;
MachineFunction &MF;
SourceMgr *SM;
const SlotMapping &IRSlots;
DenseMap<unsigned, MachineBasicBlock *> MBBSlots;
- DenseMap<unsigned, unsigned> VirtualRegisterSlots;
+ DenseMap<unsigned, VRegInfo*> VRegInfos;
DenseMap<unsigned, int> FixedStackObjectSlots;
DenseMap<unsigned, int> StackObjectSlots;
DenseMap<unsigned, unsigned> ConstantPoolSlots;
DenseMap<unsigned, unsigned> JumpTableSlots;
- /// Hold the generic virtual registers.
- SmallSet<unsigned, 8> GenericVRegs;
PerFunctionMIParsingState(MachineFunction &MF, SourceMgr &SM,
const SlotMapping &IRSlots);
+
+ VRegInfo &getVRegInfo(unsigned VReg);
};
/// Parse the machine basic block definitions, and skip the machine
@@ -73,26 +89,29 @@ bool parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
/// on the given source string.
///
/// Return true if an error occurred.
-bool parseMachineInstructions(const PerFunctionMIParsingState &PFS,
- StringRef Src, SMDiagnostic &Error);
+bool parseMachineInstructions(PerFunctionMIParsingState &PFS, StringRef Src,
+ SMDiagnostic &Error);
-bool parseMBBReference(const PerFunctionMIParsingState &PFS,
+bool parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB, StringRef Src,
SMDiagnostic &Error);
-bool parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
- unsigned &Reg, StringRef Src,
- SMDiagnostic &Error);
+bool parseRegisterReference(PerFunctionMIParsingState &PFS,
+ unsigned &Reg, StringRef Src,
+ SMDiagnostic &Error);
+
+bool parseNamedRegisterReference(PerFunctionMIParsingState &PFS, unsigned &Reg,
+ StringRef Src, SMDiagnostic &Error);
-bool parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
- unsigned &Reg, StringRef Src,
+bool parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
+ VRegInfo *&Info, StringRef Src,
SMDiagnostic &Error);
-bool parseStackObjectReference(const PerFunctionMIParsingState &PFS,
- int &FI, StringRef Src, SMDiagnostic &Error);
+bool parseStackObjectReference(PerFunctionMIParsingState &PFS, int &FI,
+ StringRef Src, SMDiagnostic &Error);
-bool parseMDNode(const PerFunctionMIParsingState &PFS, MDNode *&Node,
- StringRef Src, SMDiagnostic &Error);
+bool parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node, StringRef Src,
+ SMDiagnostic &Error);
} // end namespace llvm
diff --git a/contrib/llvm/lib/CodeGen/MIRParser/MIRParser.cpp b/contrib/llvm/lib/CodeGen/MIRParser/MIRParser.cpp
index 4aa3df6..3dff114 100644
--- a/contrib/llvm/lib/CodeGen/MIRParser/MIRParser.cpp
+++ b/contrib/llvm/lib/CodeGen/MIRParser/MIRParser.cpp
@@ -102,10 +102,10 @@ public:
/// Return true if error occurred.
bool initializeMachineFunction(MachineFunction &MF);
- bool initializeRegisterInfo(PerFunctionMIParsingState &PFS,
- const yaml::MachineFunction &YamlMF);
+ bool parseRegisterInfo(PerFunctionMIParsingState &PFS,
+ const yaml::MachineFunction &YamlMF);
- void inferRegisterInfo(const PerFunctionMIParsingState &PFS,
+ bool setupRegisterInfo(const PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF);
bool initializeFrameInfo(PerFunctionMIParsingState &PFS,
@@ -128,10 +128,10 @@ public:
const yaml::MachineJumpTable &YamlJTI);
private:
- bool parseMDNode(const PerFunctionMIParsingState &PFS, MDNode *&Node,
+ bool parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node,
const yaml::StringValue &Source);
- bool parseMBBReference(const PerFunctionMIParsingState &PFS,
+ bool parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB,
const yaml::StringValue &Source);
@@ -160,6 +160,8 @@ private:
///
/// Return null if the name isn't a register bank.
const RegisterBank *getRegBank(const MachineFunction &MF, StringRef Name);
+
+ void computeFunctionProperties(MachineFunction &MF);
};
} // end namespace llvm
@@ -255,7 +257,8 @@ std::unique_ptr<Module> MIRParserImpl::parse() {
bool MIRParserImpl::parseMachineFunction(yaml::Input &In, Module &M,
bool NoLLVMIR) {
auto MF = llvm::make_unique<yaml::MachineFunction>();
- yaml::yamlize(In, *MF, false);
+ yaml::EmptyContext Ctx;
+ yaml::yamlize(In, *MF, false, Ctx);
if (In.error())
return true;
auto FunctionName = MF->Name;
@@ -279,6 +282,43 @@ void MIRParserImpl::createDummyFunction(StringRef Name, Module &M) {
new UnreachableInst(Context, BB);
}
+static bool isSSA(const MachineFunction &MF) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
+ if (!MRI.hasOneDef(Reg) && !MRI.def_empty(Reg))
+ return false;
+ }
+ return true;
+}
+
+void MIRParserImpl::computeFunctionProperties(MachineFunction &MF) {
+ MachineFunctionProperties &Properties = MF.getProperties();
+
+ bool HasPHI = false;
+ bool HasInlineAsm = false;
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (MI.isPHI())
+ HasPHI = true;
+ if (MI.isInlineAsm())
+ HasInlineAsm = true;
+ }
+ }
+ if (!HasPHI)
+ Properties.set(MachineFunctionProperties::Property::NoPHIs);
+ MF.setHasInlineAsm(HasInlineAsm);
+
+ if (isSSA(MF))
+ Properties.set(MachineFunctionProperties::Property::IsSSA);
+ else
+ Properties.reset(MachineFunctionProperties::Property::IsSSA);
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ if (MRI.getNumVirtRegs() == 0)
+ Properties.set(MachineFunctionProperties::Property::NoVRegs);
+}
+
bool MIRParserImpl::initializeMachineFunction(MachineFunction &MF) {
auto It = Functions.find(MF.getName());
if (It == Functions.end())
@@ -289,11 +329,17 @@ bool MIRParserImpl::initializeMachineFunction(MachineFunction &MF) {
if (YamlMF.Alignment)
MF.setAlignment(YamlMF.Alignment);
MF.setExposesReturnsTwice(YamlMF.ExposesReturnsTwice);
- MF.setHasInlineAsm(YamlMF.HasInlineAsm);
- if (YamlMF.AllVRegsAllocated)
- MF.getProperties().set(MachineFunctionProperties::Property::AllVRegsAllocated);
+
+ if (YamlMF.Legalized)
+ MF.getProperties().set(MachineFunctionProperties::Property::Legalized);
+ if (YamlMF.RegBankSelected)
+ MF.getProperties().set(
+ MachineFunctionProperties::Property::RegBankSelected);
+ if (YamlMF.Selected)
+ MF.getProperties().set(MachineFunctionProperties::Property::Selected);
+
PerFunctionMIParsingState PFS(MF, SM, IRSlots);
- if (initializeRegisterInfo(PFS, YamlMF))
+ if (parseRegisterInfo(PFS, YamlMF))
return true;
if (!YamlMF.Constants.empty()) {
auto *ConstantPool = MF.getConstantPool();
@@ -343,62 +389,60 @@ bool MIRParserImpl::initializeMachineFunction(MachineFunction &MF) {
}
PFS.SM = &SM;
- inferRegisterInfo(PFS, YamlMF);
- // FIXME: This is a temporary workaround until the reserved registers can be
- // serialized.
- MF.getRegInfo().freezeReservedRegs(MF);
+ if (setupRegisterInfo(PFS, YamlMF))
+ return true;
+
+ computeFunctionProperties(MF);
+
MF.verify();
return false;
}
-bool MIRParserImpl::initializeRegisterInfo(PerFunctionMIParsingState &PFS,
- const yaml::MachineFunction &YamlMF) {
+bool MIRParserImpl::parseRegisterInfo(PerFunctionMIParsingState &PFS,
+ const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- assert(RegInfo.isSSA());
- if (!YamlMF.IsSSA)
- RegInfo.leaveSSA();
assert(RegInfo.tracksLiveness());
if (!YamlMF.TracksRegLiveness)
RegInfo.invalidateLiveness();
- RegInfo.enableSubRegLiveness(YamlMF.TracksSubRegLiveness);
SMDiagnostic Error;
// Parse the virtual register information.
for (const auto &VReg : YamlMF.VirtualRegisters) {
- unsigned Reg;
+ VRegInfo &Info = PFS.getVRegInfo(VReg.ID.Value);
+ if (Info.Explicit)
+ return error(VReg.ID.SourceRange.Start,
+ Twine("redefinition of virtual register '%") +
+ Twine(VReg.ID.Value) + "'");
+ Info.Explicit = true;
+
if (StringRef(VReg.Class.Value).equals("_")) {
- // This is a generic virtual register.
- // The size will be set appropriately when we reach the definition.
- Reg = RegInfo.createGenericVirtualRegister(/*Size*/ 1);
- PFS.GenericVRegs.insert(Reg);
+ Info.Kind = VRegInfo::GENERIC;
} else {
const auto *RC = getRegClass(MF, VReg.Class.Value);
if (RC) {
- Reg = RegInfo.createVirtualRegister(RC);
+ Info.Kind = VRegInfo::NORMAL;
+ Info.D.RC = RC;
} else {
- const auto *RegBank = getRegBank(MF, VReg.Class.Value);
+ const RegisterBank *RegBank = getRegBank(MF, VReg.Class.Value);
if (!RegBank)
return error(
VReg.Class.SourceRange.Start,
Twine("use of undefined register class or register bank '") +
VReg.Class.Value + "'");
- Reg = RegInfo.createGenericVirtualRegister(/*Size*/ 1);
- RegInfo.setRegBank(Reg, *RegBank);
- PFS.GenericVRegs.insert(Reg);
+ Info.Kind = VRegInfo::REGBANK;
+ Info.D.RegBank = RegBank;
}
}
- if (!PFS.VirtualRegisterSlots.insert(std::make_pair(VReg.ID.Value, Reg))
- .second)
- return error(VReg.ID.SourceRange.Start,
- Twine("redefinition of virtual register '%") +
- Twine(VReg.ID.Value) + "'");
+
if (!VReg.PreferredRegister.Value.empty()) {
- unsigned PreferredReg = 0;
- if (parseNamedRegisterReference(PFS, PreferredReg,
- VReg.PreferredRegister.Value, Error))
+ if (Info.Kind != VRegInfo::NORMAL)
+ return error(VReg.Class.SourceRange.Start,
+ Twine("preferred register can only be set for normal vregs"));
+
+ if (parseRegisterReference(PFS, Info.PreferredReg,
+ VReg.PreferredRegister.Value, Error))
return error(Error, VReg.PreferredRegister.SourceRange);
- RegInfo.setSimpleHint(Reg, PreferredReg);
}
}
@@ -409,9 +453,11 @@ bool MIRParserImpl::initializeRegisterInfo(PerFunctionMIParsingState &PFS,
return error(Error, LiveIn.Register.SourceRange);
unsigned VReg = 0;
if (!LiveIn.VirtualRegister.Value.empty()) {
- if (parseVirtualRegisterReference(PFS, VReg, LiveIn.VirtualRegister.Value,
+ VRegInfo *Info;
+ if (parseVirtualRegisterReference(PFS, Info, LiveIn.VirtualRegister.Value,
Error))
return error(Error, LiveIn.VirtualRegister.SourceRange);
+ VReg = Info->VReg;
}
RegInfo.addLiveIn(Reg, VReg);
}
@@ -430,26 +476,57 @@ bool MIRParserImpl::initializeRegisterInfo(PerFunctionMIParsingState &PFS,
return false;
}
-void MIRParserImpl::inferRegisterInfo(const PerFunctionMIParsingState &PFS,
+bool MIRParserImpl::setupRegisterInfo(const PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF) {
- if (YamlMF.CalleeSavedRegisters)
- return;
- MachineRegisterInfo &MRI = PFS.MF.getRegInfo();
- for (const MachineBasicBlock &MBB : PFS.MF) {
- for (const MachineInstr &MI : MBB) {
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isRegMask())
- continue;
- MRI.addPhysRegsUsedFromRegMask(MO.getRegMask());
+ MachineFunction &MF = PFS.MF;
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool Error = false;
+ // Create VRegs
+ for (auto P : PFS.VRegInfos) {
+ const VRegInfo &Info = *P.second;
+ unsigned Reg = Info.VReg;
+ switch (Info.Kind) {
+ case VRegInfo::UNKNOWN:
+ error(Twine("Cannot determine class/bank of virtual register ") +
+ Twine(P.first) + " in function '" + MF.getName() + "'");
+ Error = true;
+ break;
+ case VRegInfo::NORMAL:
+ MRI.setRegClass(Reg, Info.D.RC);
+ if (Info.PreferredReg != 0)
+ MRI.setSimpleHint(Reg, Info.PreferredReg);
+ break;
+ case VRegInfo::GENERIC:
+ break;
+ case VRegInfo::REGBANK:
+ MRI.setRegBank(Reg, *Info.D.RegBank);
+ break;
+ }
+ }
+
+ // Compute MachineRegisterInfo::UsedPhysRegMask
+ if (!YamlMF.CalleeSavedRegisters) {
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isRegMask())
+ continue;
+ MRI.addPhysRegsUsedFromRegMask(MO.getRegMask());
+ }
}
}
}
+
+ // FIXME: This is a temporary workaround until the reserved registers can be
+ // serialized.
+ MRI.freezeReservedRegs(MF);
+ return Error;
}
bool MIRParserImpl::initializeFrameInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
- MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
const Function &F = *MF.getFunction();
const yaml::MachineFrameInfo &YamlMFI = YamlMF.FrameInfo;
MFI.setFrameAddressIsTaken(YamlMFI.IsFrameAddressTaken);
@@ -507,7 +584,7 @@ bool MIRParserImpl::initializeFrameInfo(PerFunctionMIParsingState &PFS,
const yaml::StringValue &Name = Object.Name;
if (!Name.Value.empty()) {
Alloca = dyn_cast_or_null<AllocaInst>(
- F.getValueSymbolTable().lookup(Name.Value));
+ F.getValueSymbolTable()->lookup(Name.Value));
if (!Alloca)
return error(Name.SourceRange.Start,
"alloca instruction named '" + Name.Value +
@@ -597,11 +674,11 @@ bool MIRParserImpl::parseStackObjectsDebugInfo(PerFunctionMIParsingState &PFS,
typecheckMDNode(DIExpr, Expr, Object.DebugExpr, "DIExpression", *this) ||
typecheckMDNode(DILoc, Loc, Object.DebugLoc, "DILocation", *this))
return true;
- PFS.MF.getMMI().setVariableDbgInfo(DIVar, DIExpr, unsigned(FrameIdx), DILoc);
+ PFS.MF.setVariableDbgInfo(DIVar, DIExpr, unsigned(FrameIdx), DILoc);
return false;
}
-bool MIRParserImpl::parseMDNode(const PerFunctionMIParsingState &PFS,
+bool MIRParserImpl::parseMDNode(PerFunctionMIParsingState &PFS,
MDNode *&Node, const yaml::StringValue &Source) {
if (Source.Value.empty())
return false;
@@ -657,7 +734,7 @@ bool MIRParserImpl::initializeJumpTableInfo(PerFunctionMIParsingState &PFS,
return false;
}
-bool MIRParserImpl::parseMBBReference(const PerFunctionMIParsingState &PFS,
+bool MIRParserImpl::parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB,
const yaml::StringValue &Source) {
SMDiagnostic Error;
@@ -784,6 +861,14 @@ std::unique_ptr<MIRParser>
llvm::createMIRParser(std::unique_ptr<MemoryBuffer> Contents,
LLVMContext &Context) {
auto Filename = Contents->getBufferIdentifier();
+ if (Context.shouldDiscardValueNames()) {
+ Context.diagnose(DiagnosticInfoMIRParser(
+ DS_Error,
+ SMDiagnostic(
+ Filename, SourceMgr::DK_Error,
+ "Can't read MIR with a Context that discards named Values")));
+ return nullptr;
+ }
return llvm::make_unique<MIRParser>(
llvm::make_unique<MIRParserImpl>(std::move(Contents), Filename, Context));
}
diff --git a/contrib/llvm/lib/CodeGen/MIRPrinter.cpp b/contrib/llvm/lib/CodeGen/MIRPrinter.cpp
index 703c99d..db87092 100644
--- a/contrib/llvm/lib/CodeGen/MIRPrinter.cpp
+++ b/contrib/llvm/lib/CodeGen/MIRPrinter.cpp
@@ -14,6 +14,7 @@
#include "MIRPrinter.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineConstantPool.h"
@@ -27,13 +28,16 @@
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
@@ -86,10 +90,8 @@ public:
const MachineConstantPool &ConstantPool);
void convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI,
const MachineJumpTableInfo &JTI);
- void convertStackObjects(yaml::MachineFunction &MF,
- const MachineFrameInfo &MFI, MachineModuleInfo &MMI,
- ModuleSlotTracker &MST,
- const TargetRegisterInfo *TRI);
+ void convertStackObjects(yaml::MachineFunction &YMF,
+ const MachineFunction &MF, ModuleSlotTracker &MST);
private:
void initRegisterMaskIds(const MachineFunction &MF);
@@ -121,7 +123,7 @@ public:
void printTargetFlags(const MachineOperand &Op);
void print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
unsigned I, bool ShouldPrintRegisterTies,
- const MachineRegisterInfo *MRI = nullptr, bool IsDef = false);
+ LLT TypeToPrint, bool IsDef = false);
void print(const MachineMemOperand &Op);
void print(const MCCFIInstruction &CFI, const TargetRegisterInfo *TRI);
@@ -172,16 +174,19 @@ void MIRPrinter::print(const MachineFunction &MF) {
YamlMF.Name = MF.getName();
YamlMF.Alignment = MF.getAlignment();
YamlMF.ExposesReturnsTwice = MF.exposesReturnsTwice();
- YamlMF.HasInlineAsm = MF.hasInlineAsm();
- YamlMF.AllVRegsAllocated = MF.getProperties().hasProperty(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+
+ YamlMF.Legalized = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Legalized);
+ YamlMF.RegBankSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::RegBankSelected);
+ YamlMF.Selected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected);
convert(YamlMF, MF.getRegInfo(), MF.getSubtarget().getRegisterInfo());
ModuleSlotTracker MST(MF.getFunction()->getParent());
MST.incorporateFunction(*MF.getFunction());
- convert(MST, YamlMF.FrameInfo, *MF.getFrameInfo());
- convertStackObjects(YamlMF, *MF.getFrameInfo(), MF.getMMI(), MST,
- MF.getSubtarget().getRegisterInfo());
+ convert(MST, YamlMF.FrameInfo, MF.getFrameInfo());
+ convertStackObjects(YamlMF, MF, MST);
if (const auto *ConstantPool = MF.getConstantPool())
convert(YamlMF, *ConstantPool);
if (const auto *JumpTableInfo = MF.getJumpTableInfo())
@@ -203,9 +208,7 @@ void MIRPrinter::print(const MachineFunction &MF) {
void MIRPrinter::convert(yaml::MachineFunction &MF,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
- MF.IsSSA = RegInfo.isSSA();
MF.TracksRegLiveness = RegInfo.tracksLiveness();
- MF.TracksSubRegLiveness = RegInfo.subRegLivenessEnabled();
// Print the virtual register definitions.
for (unsigned I = 0, E = RegInfo.getNumVirtRegs(); I < E; ++I) {
@@ -219,7 +222,8 @@ void MIRPrinter::convert(yaml::MachineFunction &MF,
VReg.Class = StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
else {
VReg.Class = std::string("_");
- assert(RegInfo.getSize(Reg) && "Generic registers must have a size");
+ assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
+ "Generic registers must have a valid type");
}
unsigned PreferredReg = RegInfo.getSimpleHint(Reg);
if (PreferredReg)
@@ -279,11 +283,11 @@ void MIRPrinter::convert(ModuleSlotTracker &MST,
}
}
-void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF,
- const MachineFrameInfo &MFI,
- MachineModuleInfo &MMI,
- ModuleSlotTracker &MST,
- const TargetRegisterInfo *TRI) {
+void MIRPrinter::convertStackObjects(yaml::MachineFunction &YMF,
+ const MachineFunction &MF,
+ ModuleSlotTracker &MST) {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Process fixed stack objects.
unsigned ID = 0;
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
@@ -300,7 +304,7 @@ void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF,
YamlObject.Alignment = MFI.getObjectAlignment(I);
YamlObject.IsImmutable = MFI.isImmutableObjectIndex(I);
YamlObject.IsAliased = MFI.isAliasedObjectIndex(I);
- MF.FixedStackObjects.push_back(YamlObject);
+ YMF.FixedStackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(
std::make_pair(I, FrameIndexOperand::createFixed(ID++)));
}
@@ -325,7 +329,7 @@ void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF,
YamlObject.Size = MFI.getObjectSize(I);
YamlObject.Alignment = MFI.getObjectAlignment(I);
- MF.StackObjects.push_back(YamlObject);
+ YMF.StackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(std::make_pair(
I, FrameIndexOperand::create(YamlObject.Name.Value, ID++)));
}
@@ -338,9 +342,9 @@ void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF,
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
if (StackObject.IsFixed)
- MF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg;
+ YMF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg;
else
- MF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg;
+ YMF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg;
}
for (unsigned I = 0, E = MFI.getLocalFrameObjectCount(); I < E; ++I) {
auto LocalObject = MFI.getLocalFrameObjectMap(I);
@@ -349,26 +353,26 @@ void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF,
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a locally mapped stack object");
- MF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second;
+ YMF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second;
}
// Print the stack object references in the frame information class after
// converting the stack objects.
if (MFI.hasStackProtectorIndex()) {
- raw_string_ostream StrOS(MF.FrameInfo.StackProtector.Value);
+ raw_string_ostream StrOS(YMF.FrameInfo.StackProtector.Value);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printStackObjectReference(MFI.getStackProtectorIndex());
}
// Print the debug variable information.
- for (MachineModuleInfo::VariableDbgInfo &DebugVar :
- MMI.getVariableDbgInfo()) {
+ for (const MachineFunction::VariableDbgInfo &DebugVar :
+ MF.getVariableDbgInfo()) {
auto StackObjectInfo = StackObjectOperandMapping.find(DebugVar.Slot);
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a non-fixed stack object");
- auto &Object = MF.StackObjects[StackObject.ID];
+ auto &Object = YMF.StackObjects[StackObject.ID];
{
raw_string_ostream StrOS(Object.DebugVar.Value);
DebugVar.Var->printAsOperand(StrOS, MST);
@@ -475,25 +479,27 @@ void MIPrinter::print(const MachineBasicBlock &MBB) {
OS << ", ";
printMBBReference(**I);
if (MBB.hasSuccessorProbabilities())
- OS << '(' << MBB.getSuccProbability(I) << ')';
+ OS << '('
+ << format("0x%08" PRIx32, MBB.getSuccProbability(I).getNumerator())
+ << ')';
}
OS << "\n";
HasLineAttributes = true;
}
// Print the live in registers.
- const auto *TRI = MBB.getParent()->getSubtarget().getRegisterInfo();
- assert(TRI && "Expected target register info");
- if (!MBB.livein_empty()) {
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ if (MRI.tracksLiveness() && !MBB.livein_empty()) {
+ const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
OS.indent(2) << "liveins: ";
bool First = true;
for (const auto &LI : MBB.liveins()) {
if (!First)
OS << ", ";
First = false;
- printReg(LI.PhysReg, OS, TRI);
- if (LI.LaneMask != ~0u)
- OS << ':' << PrintLaneMask(LI.LaneMask);
+ printReg(LI.PhysReg, OS, &TRI);
+ if (!LI.LaneMask.all())
+ OS << ":0x" << PrintLaneMask(LI.LaneMask);
}
OS << "\n";
HasLineAttributes = true;
@@ -537,6 +543,27 @@ static bool hasComplexRegisterTies(const MachineInstr &MI) {
return false;
}
+static LLT getTypeToPrint(const MachineInstr &MI, unsigned OpIdx,
+ SmallBitVector &PrintedTypes,
+ const MachineRegisterInfo &MRI) {
+ const MachineOperand &Op = MI.getOperand(OpIdx);
+ if (!Op.isReg())
+ return LLT{};
+
+ if (MI.isVariadic() || OpIdx >= MI.getNumExplicitOperands())
+ return MRI.getType(Op.getReg());
+
+ auto &OpInfo = MI.getDesc().OpInfo[OpIdx];
+ if (!OpInfo.isGenericType())
+ return MRI.getType(Op.getReg());
+
+ if (PrintedTypes[OpInfo.getGenericTypeIndex()])
+ return LLT{};
+
+ PrintedTypes.set(OpInfo.getGenericTypeIndex());
+ return MRI.getType(Op.getReg());
+}
+
void MIPrinter::print(const MachineInstr &MI) {
const auto *MF = MI.getParent()->getParent();
const auto &MRI = MF->getRegInfo();
@@ -548,6 +575,7 @@ void MIPrinter::print(const MachineInstr &MI) {
if (MI.isCFIInstruction())
assert(MI.getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
+ SmallBitVector PrintedTypes(8);
bool ShouldPrintRegisterTies = hasComplexRegisterTies(MI);
unsigned I = 0, E = MI.getNumOperands();
for (; I < E && MI.getOperand(I).isReg() && MI.getOperand(I).isDef() &&
@@ -555,7 +583,8 @@ void MIPrinter::print(const MachineInstr &MI) {
++I) {
if (I)
OS << ", ";
- print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies, &MRI,
+ print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies,
+ getTypeToPrint(MI, I, PrintedTypes, MRI),
/*IsDef=*/true);
}
@@ -564,11 +593,6 @@ void MIPrinter::print(const MachineInstr &MI) {
if (MI.getFlag(MachineInstr::FrameSetup))
OS << "frame-setup ";
OS << TII->getName(MI.getOpcode());
- if (isPreISelGenericOpcode(MI.getOpcode())) {
- assert(MI.getType() && "Generic instructions must have a type");
- OS << ' ';
- MI.getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true);
- }
if (I < E)
OS << ' ';
@@ -576,7 +600,8 @@ void MIPrinter::print(const MachineInstr &MI) {
for (; I < E; ++I) {
if (NeedComma)
OS << ", ";
- print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies);
+ print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies,
+ getTypeToPrint(MI, I, PrintedTypes, MRI));
NeedComma = true;
}
@@ -748,8 +773,8 @@ static const char *getTargetIndexName(const MachineFunction &MF, int Index) {
}
void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
- unsigned I, bool ShouldPrintRegisterTies,
- const MachineRegisterInfo *MRI, bool IsDef) {
+ unsigned I, bool ShouldPrintRegisterTies, LLT TypeToPrint,
+ bool IsDef) {
printTargetFlags(Op);
switch (Op.getType()) {
case MachineOperand::MO_Register:
@@ -773,12 +798,11 @@ void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
printReg(Op.getReg(), OS, TRI);
// Print the sub register.
if (Op.getSubReg() != 0)
- OS << ':' << TRI->getSubRegIndexName(Op.getSubReg());
+ OS << '.' << TRI->getSubRegIndexName(Op.getSubReg());
if (ShouldPrintRegisterTies && Op.isTied() && !Op.isDef())
OS << "(tied-def " << Op.getParent()->findTiedOperandIdx(I) << ")";
- assert((!IsDef || MRI) && "for IsDef, MRI must be provided");
- if (IsDef && MRI->getSize(Op.getReg()))
- OS << '(' << MRI->getSize(Op.getReg()) << ')';
+ if (TypeToPrint.isValid())
+ OS << '(' << TypeToPrint << ')';
break;
case MachineOperand::MO_Immediate:
OS << Op.getImm();
@@ -861,8 +885,25 @@ void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
OS << "<mcsymbol " << *Op.getMCSymbol() << ">";
break;
case MachineOperand::MO_CFIIndex: {
- const auto &MMI = Op.getParent()->getParent()->getParent()->getMMI();
- print(MMI.getFrameInstructions()[Op.getCFIIndex()], TRI);
+ const MachineFunction &MF = *Op.getParent()->getParent()->getParent();
+ print(MF.getFrameInstructions()[Op.getCFIIndex()], TRI);
+ break;
+ }
+ case MachineOperand::MO_IntrinsicID: {
+ Intrinsic::ID ID = Op.getIntrinsicID();
+ if (ID < Intrinsic::num_intrinsics)
+ OS << "intrinsic(@" << Intrinsic::getName(ID, None) << ')';
+ else {
+ const MachineFunction &MF = *Op.getParent()->getParent()->getParent();
+ const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
+ OS << "intrinsic(@" << TII->getName(ID) << ')';
+ }
+ break;
+ }
+ case MachineOperand::MO_Predicate: {
+ auto Pred = static_cast<CmpInst::Predicate>(Op.getPredicate());
+ OS << (CmpInst::isIntPredicate(Pred) ? "int" : "float") << "pred("
+ << CmpInst::getPredicateName(Pred) << ')';
break;
}
}
@@ -875,6 +916,8 @@ void MIPrinter::print(const MachineMemOperand &Op) {
OS << "volatile ";
if (Op.isNonTemporal())
OS << "non-temporal ";
+ if (Op.isDereferenceable())
+ OS << "dereferenceable ";
if (Op.isInvariant())
OS << "invariant ";
if (Op.isLoad())
@@ -917,6 +960,9 @@ void MIPrinter::print(const MachineMemOperand &Op) {
printLLVMNameWithoutPrefix(
OS, cast<ExternalSymbolPseudoSourceValue>(PVal)->getSymbol());
break;
+ case PseudoSourceValue::TargetCustom:
+ llvm_unreachable("TargetCustom pseudo source values are not supported");
+ break;
}
}
printOffset(Op.getOffset());
@@ -956,32 +1002,32 @@ void MIPrinter::print(const MCCFIInstruction &CFI,
const TargetRegisterInfo *TRI) {
switch (CFI.getOperation()) {
case MCCFIInstruction::OpSameValue:
- OS << ".cfi_same_value ";
+ OS << "same_value ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpOffset:
- OS << ".cfi_offset ";
+ OS << "offset ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfaRegister:
- OS << ".cfi_def_cfa_register ";
+ OS << "def_cfa_register ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpDefCfaOffset:
- OS << ".cfi_def_cfa_offset ";
+ OS << "def_cfa_offset ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
OS << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfa:
- OS << ".cfi_def_cfa ";
+ OS << "def_cfa ";
if (CFI.getLabel())
OS << "<mcsymbol> ";
printCFIRegister(CFI.getRegister(), OS, TRI);
diff --git a/contrib/llvm/lib/CodeGen/MIRPrintingPass.cpp b/contrib/llvm/lib/CodeGen/MIRPrintingPass.cpp
index 8e7566a..c690bcf 100644
--- a/contrib/llvm/lib/CodeGen/MIRPrintingPass.cpp
+++ b/contrib/llvm/lib/CodeGen/MIRPrintingPass.cpp
@@ -33,7 +33,7 @@ struct MIRPrintingPass : public MachineFunctionPass {
MIRPrintingPass() : MachineFunctionPass(ID), OS(dbgs()) {}
MIRPrintingPass(raw_ostream &OS) : MachineFunctionPass(ID), OS(OS) {}
- const char *getPassName() const override { return "MIR Printing Pass"; }
+ StringRef getPassName() const override { return "MIR Printing Pass"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
diff --git a/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
index 689dd07..3869f97 100644
--- a/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
@@ -51,7 +51,7 @@ MCSymbol *MachineBasicBlock::getSymbol() const {
if (!CachedMCSymbol) {
const MachineFunction *MF = getParent();
MCContext &Ctx = MF->getContext();
- const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
+ auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
Twine(MF->getFunctionNumber()) +
@@ -74,7 +74,8 @@ raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
-void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
+void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
+ MachineBasicBlock *N) {
MachineFunction &MF = *N->getParent();
N->Number = MF.addToMBBNumbering(N);
@@ -85,7 +86,8 @@ void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
I->AddRegOperandsToUseLists(RegInfo);
}
-void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
+void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
+ MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
}
@@ -116,15 +118,13 @@ void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
/// When moving a range of instructions from one MBB list to another, we need to
/// update the parent pointers and the use/def lists.
-void ilist_traits<MachineInstr>::
-transferNodesFromList(ilist_traits<MachineInstr> &FromList,
- ilist_iterator<MachineInstr> First,
- ilist_iterator<MachineInstr> Last) {
+void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
+ instr_iterator First,
+ instr_iterator Last) {
assert(Parent->getParent() == FromList.Parent->getParent() &&
"MachineInstr parent mismatch!");
-
- // Splice within the same MBB -> no change.
- if (Parent == FromList.Parent) return;
+ assert(this != &FromList && "Called without a real transfer...");
+ assert(Parent != FromList.Parent && "Two lists have the same parent?");
// If splicing between two blocks within the same function, just update the
// parent pointers.
@@ -132,7 +132,7 @@ transferNodesFromList(ilist_traits<MachineInstr> &FromList,
First->setParent(Parent);
}
-void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
+void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
assert(!MI->getParent() && "MI is still in a block!");
Parent->getParent()->DeleteMachineInstr(MI);
}
@@ -149,12 +149,25 @@ MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
iterator E = end();
+ while (I != E && (I->isPHI() || I->isPosition()))
+ ++I;
+ // FIXME: This needs to change if we wish to bundle labels
+ // inside the bundle.
+ assert((I == E || !I->isInsideBundle()) &&
+ "First non-phi / non-label instruction is inside a bundle!");
+ return I;
+}
+
+MachineBasicBlock::iterator
+MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
+ iterator E = end();
while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
++I;
// FIXME: This needs to change if we wish to bundle labels / dbg_values
// inside the bundle.
assert((I == E || !I->isInsideBundle()) &&
- "First non-phi / non-label instruction is inside a bundle!");
+ "First non-phi / non-label / non-debug "
+ "instruction is inside a bundle!");
return I;
}
@@ -178,10 +191,7 @@ MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
// Skip over begin-of-block dbg_value instructions.
- iterator I = begin(), E = end();
- while (I != E && I->isDebugValue())
- ++I;
- return I;
+ return skipDebugInstructionsForward(begin(), end());
}
MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
@@ -276,9 +286,9 @@ void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
if (!livein_empty()) {
if (Indexes) OS << '\t';
OS << " Live Ins:";
- for (const auto &LI : make_range(livein_begin(), livein_end())) {
+ for (const auto &LI : LiveIns) {
OS << ' ' << PrintReg(LI.PhysReg, TRI);
- if (LI.LaneMask != ~0u)
+ if (!LI.LaneMask.all())
OS << ':' << PrintLaneMask(LI.LaneMask);
}
OS << '\n';
@@ -323,22 +333,20 @@ void MachineBasicBlock::printAsOperand(raw_ostream &OS,
}
void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
- LiveInVector::iterator I = std::find_if(
- LiveIns.begin(), LiveIns.end(),
- [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
+ LiveInVector::iterator I = find_if(
+ LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
if (I == LiveIns.end())
return;
I->LaneMask &= ~LaneMask;
- if (I->LaneMask == 0)
+ if (I->LaneMask.none())
LiveIns.erase(I);
}
bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
- livein_iterator I = std::find_if(
- LiveIns.begin(), LiveIns.end(),
- [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
- return I != livein_end() && (I->LaneMask & LaneMask) != 0;
+ livein_iterator I = find_if(
+ LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
+ return I != livein_end() && (I->LaneMask & LaneMask).any();
}
void MachineBasicBlock::sortUniqueLiveIns() {
@@ -418,7 +426,7 @@ void MachineBasicBlock::updateTerminator() {
// The block has an unconditional branch. If its successor is now its
// layout successor, delete the branch.
if (isLayoutSuccessor(TBB))
- TII->RemoveBranch(*this);
+ TII->removeBranch(*this);
} else {
// The block has an unconditional fallthrough. If its successor is not its
// layout successor, insert a branch. First we have to locate the only
@@ -438,7 +446,7 @@ void MachineBasicBlock::updateTerminator() {
// Finally update the unconditional successor to be reached via a branch
// if it would not be reached by fallthrough.
if (!isLayoutSuccessor(TBB))
- TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ TII->insertBranch(*this, TBB, nullptr, Cond, DL);
}
return;
}
@@ -448,13 +456,13 @@ void MachineBasicBlock::updateTerminator() {
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (isLayoutSuccessor(TBB)) {
- if (TII->ReverseBranchCondition(Cond))
+ if (TII->reverseBranchCondition(Cond))
return;
- TII->RemoveBranch(*this);
- TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
+ TII->removeBranch(*this);
+ TII->insertBranch(*this, FBB, nullptr, Cond, DL);
} else if (isLayoutSuccessor(FBB)) {
- TII->RemoveBranch(*this);
- TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ TII->removeBranch(*this);
+ TII->insertBranch(*this, TBB, nullptr, Cond, DL);
}
return;
}
@@ -476,37 +484,37 @@ void MachineBasicBlock::updateTerminator() {
// Remove the conditional jump, leaving unconditional fallthrough.
// FIXME: This does not seem like a reasonable pattern to support, but it
// has been seen in the wild coming out of degenerate ARM test cases.
- TII->RemoveBranch(*this);
+ TII->removeBranch(*this);
// Finally update the unconditional successor to be reached via a branch if
// it would not be reached by fallthrough.
if (!isLayoutSuccessor(TBB))
- TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ TII->insertBranch(*this, TBB, nullptr, Cond, DL);
return;
}
// We enter here iff exactly one successor is TBB which cannot fallthrough
// and the rest successors if any are EHPads. In this case, we need to
// change the conditional branch into unconditional branch.
- TII->RemoveBranch(*this);
+ TII->removeBranch(*this);
Cond.clear();
- TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ TII->insertBranch(*this, TBB, nullptr, Cond, DL);
return;
}
// The block has a fallthrough conditional branch.
if (isLayoutSuccessor(TBB)) {
- if (TII->ReverseBranchCondition(Cond)) {
+ if (TII->reverseBranchCondition(Cond)) {
// We can't reverse the condition, add an unconditional branch.
Cond.clear();
- TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
+ TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
return;
}
- TII->RemoveBranch(*this);
- TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
+ TII->removeBranch(*this);
+ TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
} else if (!isLayoutSuccessor(FallthroughBB)) {
- TII->RemoveBranch(*this);
- TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
+ TII->removeBranch(*this);
+ TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
}
}
@@ -545,7 +553,7 @@ void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
bool NormalizeSuccProbs) {
- succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
+ succ_iterator I = find(Successors, Succ);
removeSuccessor(I, NormalizeSuccProbs);
}
@@ -611,7 +619,7 @@ void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
}
void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
- pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
+ pred_iterator I = find(Predecessors, Pred);
assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
Predecessors.erase(I);
}
@@ -661,11 +669,11 @@ MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
}
bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
- return std::find(pred_begin(), pred_end(), MBB) != pred_end();
+ return is_contained(predecessors(), MBB);
}
bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
- return std::find(succ_begin(), succ_end(), MBB) != succ_end();
+ return is_contained(successors(), MBB);
}
bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
@@ -775,7 +783,7 @@ MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
continue;
unsigned Reg = OI->getReg();
- if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
+ if (!is_contained(UsedRegs, Reg))
UsedRegs.push_back(Reg);
}
}
@@ -802,9 +810,8 @@ MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
E = Terminators.end(); I != E; ++I) {
- if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
- NewTerminators.end())
- Indexes->removeMachineInstrFromMaps(**I);
+ if (!is_contained(NewTerminators, *I))
+ Indexes->removeMachineInstrFromMaps(**I);
}
}
@@ -813,7 +820,7 @@ MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
if (!NMBB->isLayoutSuccessor(Succ)) {
SmallVector<MachineOperand, 4> Cond;
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
- TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
+ TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
if (Indexes) {
for (MachineInstr &MI : NMBB->instrs()) {
@@ -1090,16 +1097,16 @@ bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
bool Changed = false;
- MachineFunction::iterator FallThru = std::next(getIterator());
+ MachineBasicBlock *FallThru = getNextNode();
if (!DestA && !DestB) {
// Block falls through to successor.
- DestA = &*FallThru;
- DestB = &*FallThru;
+ DestA = FallThru;
+ DestB = FallThru;
} else if (DestA && !DestB) {
if (IsCond)
// Block ends in conditional jump that falls through to successor.
- DestB = &*FallThru;
+ DestB = FallThru;
} else {
assert(DestA && DestB && IsCond &&
"CFG in a bad state. Cannot correct CFG edges");
@@ -1130,17 +1137,11 @@ bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
/// instructions. Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
- DebugLoc DL;
- instr_iterator E = instr_end();
- if (MBBI == E)
- return DL;
-
// Skip debug declarations, we don't want a DebugLoc from them.
- while (MBBI != E && MBBI->isDebugValue())
- MBBI++;
- if (MBBI != E)
- DL = MBBI->getDebugLoc();
- return DL;
+ MBBI = skipDebugInstructionsForward(MBBI, instr_end());
+ if (MBBI != instr_end())
+ return MBBI->getDebugLoc();
+ return {};
}
/// Return probability of the edge from this block to MBB.
@@ -1287,3 +1288,14 @@ MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
// care what kind of return it is, putting a mask after it is a no-op.
return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
}
+
+void MachineBasicBlock::clearLiveIns() {
+ LiveIns.clear();
+}
+
+MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
+ assert(getParent()->getProperties().hasProperty(
+ MachineFunctionProperties::Property::TracksLiveness) &&
+ "Liveness information is accurate");
+ return LiveIns.begin();
+}
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockFrequencyInfo.cpp b/contrib/llvm/lib/CodeGen/MachineBlockFrequencyInfo.cpp
index 6c0f99f..7d5124d 100644
--- a/contrib/llvm/lib/CodeGen/MachineBlockFrequencyInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBlockFrequencyInfo.cpp
@@ -42,9 +42,7 @@ static cl::opt<GVDAGType> ViewMachineBlockFreqPropagationDAG(
"display a graph using the raw "
"integer fractional block frequency representation."),
clEnumValN(GVDT_Count, "count", "display a graph using the real "
- "profile count if available."),
-
- clEnumValEnd));
+ "profile count if available.")));
extern cl::opt<std::string> ViewBlockFreqFuncName;
extern cl::opt<unsigned> ViewHotFreqPercent;
@@ -52,29 +50,26 @@ extern cl::opt<unsigned> ViewHotFreqPercent;
namespace llvm {
template <> struct GraphTraits<MachineBlockFrequencyInfo *> {
- typedef const MachineBasicBlock NodeType;
+ typedef const MachineBasicBlock *NodeRef;
typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
- typedef MachineFunction::const_iterator nodes_iterator;
+ typedef pointer_iterator<MachineFunction::const_iterator> nodes_iterator;
- static inline const NodeType *
- getEntryNode(const MachineBlockFrequencyInfo *G) {
+ static NodeRef getEntryNode(const MachineBlockFrequencyInfo *G) {
return &G->getFunction()->front();
}
- static ChildIteratorType child_begin(const NodeType *N) {
+ static ChildIteratorType child_begin(const NodeRef N) {
return N->succ_begin();
}
- static ChildIteratorType child_end(const NodeType *N) {
- return N->succ_end();
- }
+ static ChildIteratorType child_end(const NodeRef N) { return N->succ_end(); }
static nodes_iterator nodes_begin(const MachineBlockFrequencyInfo *G) {
- return G->getFunction()->begin();
+ return nodes_iterator(G->getFunction()->begin());
}
static nodes_iterator nodes_end(const MachineBlockFrequencyInfo *G) {
- return G->getFunction()->end();
+ return nodes_iterator(G->getFunction()->end());
}
};
@@ -175,6 +170,12 @@ Optional<uint64_t> MachineBlockFrequencyInfo::getBlockProfileCount(
return MBFI ? MBFI->getBlockProfileCount(*F, MBB) : None;
}
+Optional<uint64_t>
+MachineBlockFrequencyInfo::getProfileCountFromFreq(uint64_t Freq) const {
+ const Function *F = MBFI->getFunction()->getFunction();
+ return MBFI ? MBFI->getProfileCountFromFreq(*F, Freq) : None;
+}
+
const MachineFunction *MachineBlockFrequencyInfo::getFunction() const {
return MBFI ? MBFI->getFunction() : nullptr;
}
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
index 03dda8b..40e3840 100644
--- a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
@@ -40,6 +40,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -78,10 +79,14 @@ static cl::opt<unsigned> ExitBlockBias(
"over the original exit to be considered the new exit."),
cl::init(0), cl::Hidden);
+// Definition:
+// - Outlining: placement of a basic block outside the chain or hot path.
+
static cl::opt<bool> OutlineOptionalBranches(
"outline-optional-branches",
- cl::desc("Put completely optional branches, i.e. branches with a common "
- "post dominator, out of line."),
+ cl::desc("Outlining optional branches will place blocks that are optional "
+ "branches, i.e. branches with a common post dominator, outside "
+ "the hot path or chain"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned> OutlineOptionalThreshold(
@@ -117,6 +122,12 @@ static cl::opt<unsigned> MisfetchCost(
static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
cl::desc("Cost of jump instructions."),
cl::init(1), cl::Hidden);
+static cl::opt<bool>
+TailDupPlacement("tail-dup-placement",
+ cl::desc("Perform tail duplication during placement. "
+ "Creates more fallthrough opportunites in "
+ "outline branches."),
+ cl::init(true), cl::Hidden);
static cl::opt<bool>
BranchFoldPlacement("branch-fold-placement",
@@ -124,6 +135,14 @@ BranchFoldPlacement("branch-fold-placement",
"Reduces code size."),
cl::init(true), cl::Hidden);
+// Heuristic for tail duplication.
+static cl::opt<unsigned> TailDuplicatePlacementThreshold(
+ "tail-dup-placement-threshold",
+ cl::desc("Instruction cutoff for tail duplication during layout. "
+ "Tail merging during layout is forced to have a threshold "
+ "that won't conflict."), cl::init(2),
+ cl::Hidden);
+
extern cl::opt<unsigned> StaticLikelyProb;
extern cl::opt<unsigned> ProfileLikelyProb;
@@ -181,6 +200,16 @@ public:
/// \brief End of blocks within the chain.
iterator end() { return Blocks.end(); }
+ bool remove(MachineBasicBlock* BB) {
+ for(iterator i = begin(); i != end(); ++i) {
+ if (*i == BB) {
+ Blocks.erase(i);
+ return true;
+ }
+ }
+ return false;
+ }
+
/// \brief Merge a block chain into this one.
///
/// This routine merges a block chain into this one. It takes care of forming
@@ -235,7 +264,7 @@ public:
namespace {
class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A typedef for a block filter set.
- typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
+ typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet;
/// \brief work lists of blocks that are ready to be laid out
SmallVector<MachineBasicBlock *, 16> BlockWorkList;
@@ -253,6 +282,11 @@ class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A handle to the loop info.
MachineLoopInfo *MLI;
+ /// \brief Preferred loop exit.
+ /// Member variable for convenience. It may be removed by duplication deep
+ /// in the call stack.
+ MachineBasicBlock *PreferredLoopExit;
+
/// \brief A handle to the target's instruction info.
const TargetInstrInfo *TII;
@@ -262,6 +296,13 @@ class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A handle to the post dominator tree.
MachineDominatorTree *MDT;
+ /// \brief Duplicator used to duplicate tails during placement.
+ ///
+ /// Placement decisions can open up new tail duplication opportunities, but
+ /// since tail duplication affects placement decisions of later blocks, it
+ /// must be done inline.
+ TailDuplicator TailDup;
+
/// \brief A set of blocks that are unavoidably execute, i.e. they dominate
/// all terminators of the MachineFunction.
SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
@@ -283,8 +324,26 @@ class MachineBlockPlacement : public MachineFunctionPass {
/// between basic blocks.
DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
+#ifndef NDEBUG
+ /// The set of basic blocks that have terminators that cannot be fully
+ /// analyzed. These basic blocks cannot be re-ordered safely by
+ /// MachineBlockPlacement, and we must preserve physical layout of these
+ /// blocks and their successors through the pass.
+ SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
+#endif
+
+ /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
+ /// if the count goes to 0, add them to the appropriate work list.
void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
const BlockFilterSet *BlockFilter = nullptr);
+
+ /// Decrease the UnscheduledPredecessors count for a single block, and
+ /// if the count goes to 0, add them to the appropriate work list.
+ void markBlockSuccessors(
+ BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB,
+ const BlockFilterSet *BlockFilter = nullptr);
+
+
BranchProbability
collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
const BlockFilterSet *BlockFilter,
@@ -294,6 +353,16 @@ class MachineBlockPlacement : public MachineFunctionPass {
const BlockFilterSet *BlockFilter,
BranchProbability SuccProb,
BranchProbability HotProb);
+ bool repeatedlyTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+ MachineBasicBlock *LoopHeaderBB,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt);
+ bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
+ const BlockChain &Chain,
+ BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ bool &DuplicatedToPred);
bool
hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
BlockChain &SuccChain, BranchProbability SuccProb,
@@ -319,7 +388,7 @@ class MachineBlockPlacement : public MachineFunctionPass {
SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
const BlockFilterSet *BlockFilter);
void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
- const BlockFilterSet *BlockFilter = nullptr);
+ BlockFilterSet *BlockFilter = nullptr);
MachineBasicBlock *findBestLoopTop(MachineLoop &L,
const BlockFilterSet &LoopBlockSet);
MachineBasicBlock *findBestLoopExit(MachineLoop &L,
@@ -384,37 +453,49 @@ static std::string getBlockName(MachineBasicBlock *BB) {
/// When a chain is being merged into the "placed" chain, this routine will
/// quickly walk the successors of each block in the chain and mark them as
/// having one fewer active predecessor. It also adds any successors of this
-/// chain which reach the zero-predecessor state to the worklist passed in.
+/// chain which reach the zero-predecessor state to the appropriate worklist.
void MachineBlockPlacement::markChainSuccessors(
BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
const BlockFilterSet *BlockFilter) {
// Walk all the blocks in this chain, marking their successors as having
// a predecessor placed.
for (MachineBasicBlock *MBB : Chain) {
- // Add any successors for which this is the only un-placed in-loop
- // predecessor to the worklist as a viable candidate for CFG-neutral
- // placement. No subsequent placement of this block will violate the CFG
- // shape, so we get to use heuristics to choose a favorable placement.
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (BlockFilter && !BlockFilter->count(Succ))
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- // Disregard edges within a fixed chain, or edges to the loop header.
- if (&Chain == &SuccChain || Succ == LoopHeaderBB)
- continue;
+ markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
+ }
+}
- // This is a cross-chain edge that is within the loop, so decrement the
- // loop predecessor count of the destination chain.
- if (SuccChain.UnscheduledPredecessors == 0 ||
- --SuccChain.UnscheduledPredecessors > 0)
- continue;
+/// \brief Mark a single block's successors as having one fewer preds.
+///
+/// Under normal circumstances, this is only called by markChainSuccessors,
+/// but if a block that was to be placed is completely tail-duplicated away,
+/// and was duplicated into the chain end, we need to redo markBlockSuccessors
+/// for just that block.
+void MachineBlockPlacement::markBlockSuccessors(
+ BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB,
+ const BlockFilterSet *BlockFilter) {
+ // Add any successors for which this is the only un-placed in-loop
+ // predecessor to the worklist as a viable candidate for CFG-neutral
+ // placement. No subsequent placement of this block will violate the CFG
+ // shape, so we get to use heuristics to choose a favorable placement.
+ for (MachineBasicBlock *Succ : MBB->successors()) {
+ if (BlockFilter && !BlockFilter->count(Succ))
+ continue;
+ BlockChain &SuccChain = *BlockToChain[Succ];
+ // Disregard edges within a fixed chain, or edges to the loop header.
+ if (&Chain == &SuccChain || Succ == LoopHeaderBB)
+ continue;
- auto *MBB = *SuccChain.begin();
- if (MBB->isEHPad())
- EHPadWorkList.push_back(MBB);
- else
- BlockWorkList.push_back(MBB);
- }
+ // This is a cross-chain edge that is within the loop, so decrement the
+ // loop predecessor count of the destination chain.
+ if (SuccChain.UnscheduledPredecessors == 0 ||
+ --SuccChain.UnscheduledPredecessors > 0)
+ continue;
+
+ auto *NewBB = *SuccChain.begin();
+ if (NewBB->isEHPad())
+ EHPadWorkList.push_back(NewBB);
+ else
+ BlockWorkList.push_back(NewBB);
}
}
@@ -627,16 +708,46 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
// BB->Succ. This is equivalent to looking the CFG backward with backward
// edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
// profile data).
-
+ // --------------------------------------------------------------------------
+ // Case 3: forked diamond
+ // S
+ // / \
+ // / \
+ // BB Pred
+ // | \ / |
+ // | \ / |
+ // | X |
+ // | / \ |
+ // | / \ |
+ // S1 S2
+ //
+ // The current block is BB and edge BB->S1 is now being evaluated.
+ // As above S->BB was already selected because
+ // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
+ //
+ // topo-order:
+ //
+ // S-------| ---S
+ // | | | |
+ // ---BB | | BB
+ // | | | |
+ // | Pred----| | S1----
+ // | | | |
+ // --(S1 or S2) ---Pred--
+ //
+ // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
+ // + min(freq(Pred->S1), freq(Pred->S2))
+ // Non-topo-order cost:
+ // In the worst case, S2 will not get laid out after Pred.
+ // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
+ // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
+ // is 0. Then the non topo layout is better when
+ // freq(S->Pred) < freq(BB->S1).
+ // This is exactly what is checked below.
+ // Note there are other shapes that apply (Pred may not be a single block,
+ // but they all fit this general pattern.)
BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
- // Forward checking. For case 2, SuccProb will be 1.
- if (SuccProb < HotProb) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob) (CFG conflict)\n");
- return true;
- }
-
// Make sure that a hot successor doesn't have a globally more
// important predecessor.
BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
@@ -647,11 +758,11 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
(BlockFilter && !BlockFilter->count(Pred)) ||
BlockToChain[Pred] == &Chain)
continue;
- // Do backward checking. For case 1, it is actually redundant check. For
- // case 2 above, we need a backward checking to filter out edges that are
- // not 'strongly' biased. With profile data available, the check is mostly
- // redundant too (when threshold prob is set at 50%) unless S has more than
- // two successors.
+ // Do backward checking.
+ // For all cases above, we need a backward checking to filter out edges that
+ // are not 'strongly' biased. With profile data available, the check is
+ // mostly redundant for case 2 (when threshold prob is set at 50%) unless S
+ // has more than two successors.
// BB Pred
// \ /
// Succ
@@ -660,6 +771,8 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
// i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
// HotProb
// i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
+ // Case 1 is covered too, because the first equation reduces to:
+ // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
BlockFrequency PredEdgeFreq =
MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
@@ -669,7 +782,7 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
}
if (BadCFGConflict) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
+ DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
return true;
}
@@ -699,7 +812,7 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
auto AdjustedSumProb =
collectViableSuccessors(BB, Chain, BlockFilter, Successors);
- DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
+ DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
for (MachineBasicBlock *Succ : Successors) {
auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
BranchProbability SuccProb =
@@ -718,15 +831,23 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
continue;
DEBUG(
- dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob)"
+ dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: "
+ << SuccProb
<< (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
<< "\n");
- if (BestSucc && BestProb >= SuccProb)
+
+ if (BestSucc && BestProb >= SuccProb) {
+ DEBUG(dbgs() << " Not the best candidate, continuing\n");
continue;
+ }
+
+ DEBUG(dbgs() << " Setting it as best candidate\n");
BestSucc = Succ;
BestProb = SuccProb;
}
+ if (BestSucc)
+ DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc) << "\n");
+
return BestSucc;
}
@@ -746,10 +867,10 @@ MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
// worklist of already placed entries.
// FIXME: If this shows up on profiles, it could be folded (at the cost of
// some code complexity) into the loop below.
- WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
- [&](MachineBasicBlock *BB) {
- return BlockToChain.lookup(BB) == &Chain;
- }),
+ WorkList.erase(remove_if(WorkList,
+ [&](MachineBasicBlock *BB) {
+ return BlockToChain.lookup(BB) == &Chain;
+ }),
WorkList.end());
if (WorkList.empty())
@@ -858,7 +979,7 @@ void MachineBlockPlacement::fillWorkLists(
void MachineBlockPlacement::buildChain(
MachineBasicBlock *BB, BlockChain &Chain,
- const BlockFilterSet *BlockFilter) {
+ BlockFilterSet *BlockFilter) {
assert(BB && "BB must not be null.\n");
assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
@@ -893,6 +1014,17 @@ void MachineBlockPlacement::buildChain(
"layout successor until the CFG reduces\n");
}
+ // Placement may have changed tail duplication opportunities.
+ // Check for that now.
+ if (TailDupPlacement && BestSucc) {
+ // If the chosen successor was duplicated into all its predecessors,
+ // don't bother laying it out, just go round the loop again with BB as
+ // the chain end.
+ if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
+ BlockFilter, PrevUnplacedBlockIt))
+ continue;
+ }
+
// Place this block, updating the datastructures to reflect its placement.
BlockChain &SuccChain = *BlockToChain[BestSucc];
// Zero out UnscheduledPredecessors for the successor we're about to merge in case
@@ -922,6 +1054,16 @@ void MachineBlockPlacement::buildChain(
MachineBasicBlock *
MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
const BlockFilterSet &LoopBlockSet) {
+ // Placing the latch block before the header may introduce an extra branch
+ // that skips this block the first time the loop is executed, which we want
+ // to avoid when optimising for size.
+ // FIXME: in theory there is a case that does not introduce a new branch,
+ // i.e. when the layout predecessor does not fallthrough to the loop header.
+ // In practice this never happens though: there always seems to be a preheader
+ // that can fallthrough and that is also placed before the header.
+ if (F->getFunction()->optForSize())
+ return L.getHeader();
+
// Check that the header hasn't been fused with a preheader block due to
// crazy branches. If it has, we need to start with the header at the top to
// prevent pulling the preheader into the loop body.
@@ -937,7 +1079,7 @@ MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
if (!LoopBlockSet.count(Pred))
continue;
- DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
+ DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has "
<< Pred->succ_size() << " successors, ";
MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
if (Pred->succ_size() > 1)
@@ -1066,8 +1208,14 @@ MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
}
// Without a candidate exiting block or with only a single block in the
// loop, just use the loop header to layout the loop.
- if (!ExitingBB || L.getNumBlocks() == 1)
+ if (!ExitingBB) {
+ DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n");
return nullptr;
+ }
+ if (L.getNumBlocks() == 1) {
+ DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
+ return nullptr;
+ }
// Also, if we have exit blocks which lead to outer loops but didn't select
// one of them as the exiting block we are rotating toward, disable loop
@@ -1116,8 +1264,7 @@ void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
}
}
- BlockChain::iterator ExitIt =
- std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
+ BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
if (ExitIt == LoopChain.end())
return;
@@ -1140,7 +1287,7 @@ void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
void MachineBlockPlacement::rotateLoopWithProfile(
BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
auto HeaderBB = L.getHeader();
- auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
+ auto HeaderIter = find(LoopChain, HeaderBB);
auto RotationPos = LoopChain.end();
BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
@@ -1340,9 +1487,8 @@ void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
// If we selected just the header for the loop top, look for a potentially
// profitable exit block in the event that rotating the loop can eliminate
// branches by placing an exit edge at the bottom.
- MachineBasicBlock *ExitingBB = nullptr;
if (!RotateLoopWithProfile && LoopTop == L.getHeader())
- ExitingBB = findBestLoopExit(L, LoopBlockSet);
+ PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
BlockChain &LoopChain = *BlockToChain[LoopTop];
@@ -1361,7 +1507,7 @@ void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
if (RotateLoopWithProfile)
rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
else
- rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
+ rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
DEBUG({
// Crash at the end so we get all of the debugging output first.
@@ -1374,7 +1520,7 @@ void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
}
for (MachineBasicBlock *ChainBB : LoopChain) {
dbgs() << " ... " << getBlockName(ChainBB) << "\n";
- if (!LoopBlockSet.erase(ChainBB)) {
+ if (!LoopBlockSet.remove(ChainBB)) {
// We don't mark the loop as bad here because there are real situations
// where this can occur. For example, with an unanalyzable fallthrough
// from a loop block to a non-loop block or vice versa.
@@ -1451,6 +1597,9 @@ void MachineBlockPlacement::buildCFGChains() {
<< getBlockName(BB) << " -> " << getBlockName(NextBB)
<< "\n");
Chain->merge(NextBB, nullptr);
+#ifndef NDEBUG
+ BlocksWithUnanalyzableExits.insert(&*BB);
+#endif
FI = NextFI;
BB = NextBB;
}
@@ -1460,6 +1609,7 @@ void MachineBlockPlacement::buildCFGChains() {
collectMustExecuteBBs();
// Build any loop-based chains.
+ PreferredLoopExit = nullptr;
for (MachineLoop *L : *MLI)
buildLoopChains(*L);
@@ -1522,6 +1672,19 @@ void MachineBlockPlacement::buildCFGChains() {
Cond.clear();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
+#ifndef NDEBUG
+ if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
+ // Given the exact block placement we chose, we may actually not _need_ to
+ // be able to edit PrevBB's terminator sequence, but not being _able_ to
+ // do that at this point is a bug.
+ assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
+ !PrevBB->canFallThrough()) &&
+ "Unexpected block with un-analyzable fallthrough!");
+ Cond.clear();
+ TBB = FBB = nullptr;
+ }
+#endif
+
// The "PrevBB" is not yet updated to reflect current code layout, so,
// o. it may fall-through to a block without explicit "goto" instruction
// before layout, and no longer fall-through it after layout; or
@@ -1576,15 +1739,15 @@ void MachineBlockPlacement::optimizeBranches() {
if (TBB && !Cond.empty() && FBB &&
MBPI->getEdgeProbability(ChainBB, FBB) >
MBPI->getEdgeProbability(ChainBB, TBB) &&
- !TII->ReverseBranchCondition(Cond)) {
+ !TII->reverseBranchCondition(Cond)) {
DEBUG(dbgs() << "Reverse order of the two branches: "
<< getBlockName(ChainBB) << "\n");
DEBUG(dbgs() << " Edge probability: "
<< MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
<< MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
DebugLoc dl; // FIXME: this is nowhere
- TII->RemoveBranch(*ChainBB);
- TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl);
+ TII->removeBranch(*ChainBB);
+ TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
ChainBB->updateTerminator();
}
}
@@ -1659,6 +1822,175 @@ void MachineBlockPlacement::alignBlocks() {
}
}
+/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
+/// it was duplicated into its chain predecessor and removed.
+/// \p BB - Basic block that may be duplicated.
+///
+/// \p LPred - Chosen layout predecessor of \p BB.
+/// Updated to be the chain end if LPred is removed.
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+/// Used to identify which blocks to update predecessor
+/// counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+/// chosen in the given order due to unnatural CFG
+/// only needed if \p BB is removed and
+/// \p PrevUnplacedBlockIt pointed to \p BB.
+/// @return true if \p BB was removed.
+bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *&LPred,
+ MachineBasicBlock *LoopHeaderBB,
+ BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt) {
+ bool Removed, DuplicatedToLPred;
+ bool DuplicatedToOriginalLPred;
+ Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
+ PrevUnplacedBlockIt,
+ DuplicatedToLPred);
+ if (!Removed)
+ return false;
+ DuplicatedToOriginalLPred = DuplicatedToLPred;
+ // Iteratively try to duplicate again. It can happen that a block that is
+ // duplicated into is still small enough to be duplicated again.
+ // No need to call markBlockSuccessors in this case, as the blocks being
+ // duplicated from here on are already scheduled.
+ // Note that DuplicatedToLPred always implies Removed.
+ while (DuplicatedToLPred) {
+ assert (Removed && "Block must have been removed to be duplicated into its "
+ "layout predecessor.");
+ MachineBasicBlock *DupBB, *DupPred;
+ // The removal callback causes Chain.end() to be updated when a block is
+ // removed. On the first pass through the loop, the chain end should be the
+ // same as it was on function entry. On subsequent passes, because we are
+ // duplicating the block at the end of the chain, if it is removed the
+ // chain will have shrunk by one block.
+ BlockChain::iterator ChainEnd = Chain.end();
+ DupBB = *(--ChainEnd);
+ // Now try to duplicate again.
+ if (ChainEnd == Chain.begin())
+ break;
+ DupPred = *std::prev(ChainEnd);
+ Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
+ PrevUnplacedBlockIt,
+ DuplicatedToLPred);
+ }
+ // If BB was duplicated into LPred, it is now scheduled. But because it was
+ // removed, markChainSuccessors won't be called for its chain. Instead we
+ // call markBlockSuccessors for LPred to achieve the same effect. This must go
+ // at the end because repeating the tail duplication can increase the number
+ // of unscheduled predecessors.
+ LPred = *std::prev(Chain.end());
+ if (DuplicatedToOriginalLPred)
+ markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
+ return true;
+}
+
+/// Tail duplicate \p BB into (some) predecessors if profitable.
+/// \p BB - Basic block that may be duplicated
+/// \p LPred - Chosen layout predecessor of \p BB
+/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
+/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
+/// Used to identify which blocks to update predecessor
+/// counts.
+/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
+/// chosen in the given order due to unnatural CFG
+/// only needed if \p BB is removed and
+/// \p PrevUnplacedBlockIt pointed to \p BB.
+/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
+/// only be true if the block was removed.
+/// \return - True if the block was duplicated into all preds and removed.
+bool MachineBlockPlacement::maybeTailDuplicateBlock(
+ MachineBasicBlock *BB, MachineBasicBlock *LPred,
+ const BlockChain &Chain, BlockFilterSet *BlockFilter,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ bool &DuplicatedToLPred) {
+
+ DuplicatedToLPred = false;
+ DEBUG(dbgs() << "Redoing tail duplication for Succ#"
+ << BB->getNumber() << "\n");
+ bool IsSimple = TailDup.isSimpleBB(BB);
+ // Blocks with single successors don't create additional fallthrough
+ // opportunities. Don't duplicate them. TODO: When conditional exits are
+ // analyzable, allow them to be duplicated.
+ if (!IsSimple && BB->succ_size() == 1)
+ return false;
+ if (!TailDup.shouldTailDuplicate(IsSimple, *BB))
+ return false;
+ // This has to be a callback because none of it can be done after
+ // BB is deleted.
+ bool Removed = false;
+ auto RemovalCallback =
+ [&](MachineBasicBlock *RemBB) {
+ // Signal to outer function
+ Removed = true;
+
+ // Conservative default.
+ bool InWorkList = true;
+ // Remove from the Chain and Chain Map
+ if (BlockToChain.count(RemBB)) {
+ BlockChain *Chain = BlockToChain[RemBB];
+ InWorkList = Chain->UnscheduledPredecessors == 0;
+ Chain->remove(RemBB);
+ BlockToChain.erase(RemBB);
+ }
+
+ // Handle the unplaced block iterator
+ if (&(*PrevUnplacedBlockIt) == RemBB) {
+ PrevUnplacedBlockIt++;
+ }
+
+ // Handle the Work Lists
+ if (InWorkList) {
+ SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
+ if (RemBB->isEHPad())
+ RemoveList = EHPadWorkList;
+ RemoveList.erase(
+ remove_if(RemoveList,
+ [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
+ RemoveList.end());
+ }
+
+ // Handle the filter set
+ if (BlockFilter) {
+ BlockFilter->remove(RemBB);
+ }
+
+ // Remove the block from loop info.
+ MLI->removeBlock(RemBB);
+ if (RemBB == PreferredLoopExit)
+ PreferredLoopExit = nullptr;
+
+ DEBUG(dbgs() << "TailDuplicator deleted block: "
+ << getBlockName(RemBB) << "\n");
+ };
+ auto RemovalCallbackRef =
+ llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
+
+ SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
+ TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
+ &DuplicatedPreds, &RemovalCallbackRef);
+
+ // Update UnscheduledPredecessors to reflect tail-duplication.
+ DuplicatedToLPred = false;
+ for (MachineBasicBlock *Pred : DuplicatedPreds) {
+ // We're only looking for unscheduled predecessors that match the filter.
+ BlockChain* PredChain = BlockToChain[Pred];
+ if (Pred == LPred)
+ DuplicatedToLPred = true;
+ if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
+ || PredChain == &Chain)
+ continue;
+ for (MachineBasicBlock *NewSucc : Pred->successors()) {
+ if (BlockFilter && !BlockFilter->count(NewSucc))
+ continue;
+ BlockChain *NewChain = BlockToChain[NewSucc];
+ if (NewChain != &Chain && NewChain != PredChain)
+ NewChain->UnscheduledPredecessors++;
+ }
+ }
+ return Removed;
+}
+
bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
@@ -1675,6 +2007,18 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TLI = MF.getSubtarget().getTargetLowering();
MDT = &getAnalysis<MachineDominatorTree>();
+
+ // Initialize PreferredLoopExit to nullptr here since it may never be set if
+ // there are no MachineLoops.
+ PreferredLoopExit = nullptr;
+
+ if (TailDupPlacement) {
+ unsigned TailDupSize = TailDuplicatePlacementThreshold;
+ if (MF.getFunction()->optForSize())
+ TailDupSize = 1;
+ TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
+ }
+
assert(BlockToChain.empty());
buildCFGChains();
@@ -1688,14 +2032,17 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
BranchFoldPlacement;
// No tail merging opportunities if the block number is less than four.
if (MF.size() > 3 && EnableTailMerge) {
+ unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1;
BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
- *MBPI);
+ *MBPI, TailMergeSize);
if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
/*AfterBlockPlacement=*/true)) {
// Redo the layout if tail merging creates/removes/moves blocks.
BlockToChain.clear();
+ // Must redo the dominator tree if blocks were changed.
+ MDT->runOnMachineFunction(MF);
ChainAllocator.DestroyAll();
buildCFGChains();
}
diff --git a/contrib/llvm/lib/CodeGen/MachineBranchProbabilityInfo.cpp b/contrib/llvm/lib/CodeGen/MachineBranchProbabilityInfo.cpp
index fe73406..21eff9d 100644
--- a/contrib/llvm/lib/CodeGen/MachineBranchProbabilityInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineBranchProbabilityInfo.cpp
@@ -50,8 +50,7 @@ BranchProbability MachineBranchProbabilityInfo::getEdgeProbability(
const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const {
// This is a linear search. Try to use the const_succ_iterator version when
// possible.
- return getEdgeProbability(Src,
- std::find(Src->succ_begin(), Src->succ_end(), Dst));
+ return getEdgeProbability(Src, find(Src->successors(), Dst));
}
bool MachineBranchProbabilityInfo::isEdgeHot(
diff --git a/contrib/llvm/lib/CodeGen/MachineCSE.cpp b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
index 1209f73..0766f46 100644
--- a/contrib/llvm/lib/CodeGen/MachineCSE.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
@@ -177,8 +177,7 @@ MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
unsigned LookAheadLeft = LookAheadLimit;
while (LookAheadLeft) {
// Skip over dbg_value's.
- while (I != E && I->isDebugValue())
- ++I;
+ I = skipDebugInstructionsForward(I, E);
if (I == E)
// Reached end of block, register is obviously dead.
@@ -227,7 +226,7 @@ bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// Reading constant physregs is ok.
- if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
+ if (!MRI->isConstantPhysReg(Reg))
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
PhysRefs.insert(*AI);
}
@@ -346,7 +345,7 @@ bool MachineCSE::isCSECandidate(MachineInstr *MI) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
- if (!MI->isInvariantLoad(AA))
+ if (!MI->isDereferenceableInvariantLoad(AA))
// FIXME: we should be able to hoist loads with no other side effects if
// there are no other instructions which can change memory in this loop.
// This is a trivial form of alias analysis.
diff --git a/contrib/llvm/lib/CodeGen/MachineCombiner.cpp b/contrib/llvm/lib/CodeGen/MachineCombiner.cpp
index 6b5c6ba..5beed5f 100644
--- a/contrib/llvm/lib/CodeGen/MachineCombiner.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineCombiner.cpp
@@ -56,7 +56,7 @@ public:
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
- const char *getPassName() const override { return "Machine InstCombiner"; }
+ StringRef getPassName() const override { return "Machine InstCombiner"; }
private:
bool doSubstitute(unsigned NewSize, unsigned OldSize);
@@ -71,6 +71,7 @@ private:
improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineCombinerPattern Pattern);
bool preservesResourceLen(MachineBasicBlock *MBB,
@@ -134,7 +135,7 @@ MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
// are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
for (auto *InstrPtr : InsInstrs) { // for each Use
unsigned IDepth = 0;
- DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
+ DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(TII); dbgs() << "\n";);
for (const MachineOperand &MO : InstrPtr->operands()) {
// Check for virtual register operand.
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
@@ -242,6 +243,7 @@ bool MachineCombiner::improvesCriticalPathLen(
MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineCombinerPattern Pattern) {
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
@@ -269,8 +271,13 @@ bool MachineCombiner::improvesCriticalPathLen(
// A more flexible cost calculation for the critical path includes the slack
// of the original code sequence. This may allow the transform to proceed
// even if the instruction depths (data dependency cycles) become worse.
+
unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
- unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
+ unsigned RootLatency = 0;
+
+ for (auto I : DelInstrs)
+ RootLatency += TSchedModel.computeInstrLatency(I);
+
unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n";
@@ -421,7 +428,7 @@ bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
// resource pressure.
if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount) ||
(improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
- InstrIdxForVirtReg, P) &&
+ DelInstrs, InstrIdxForVirtReg, P) &&
preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
for (auto *InstrPtr : InsInstrs)
MBB->insert((MachineBasicBlock::iterator) &MI, InstrPtr);
diff --git a/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp b/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
index 8fdf39d..5de6dec 100644
--- a/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineCopyPropagation.cpp
@@ -56,11 +56,12 @@ namespace {
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
private:
void ClobberRegister(unsigned Reg);
+ void ReadRegister(unsigned Reg);
void CopyPropagateBlock(MachineBasicBlock &MBB);
bool eraseIfRedundant(MachineInstr &Copy, unsigned Src, unsigned Def);
@@ -120,6 +121,18 @@ void MachineCopyPropagation::ClobberRegister(unsigned Reg) {
}
}
+void MachineCopyPropagation::ReadRegister(unsigned Reg) {
+ // If 'Reg' is defined by a copy, the copy is no longer a candidate
+ // for elimination.
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
+ Reg2MIMap::iterator CI = CopyMap.find(*AI);
+ if (CI != CopyMap.end()) {
+ DEBUG(dbgs() << "MCP: Copy is used - not dead: "; CI->second->dump());
+ MaybeDeadCopies.remove(CI->second);
+ }
+ }
+}
+
/// Return true if \p PreviousCopy did copy register \p Src to register \p Def.
/// This fact may have been obscured by sub register usage or may not be true at
/// all even though Src and Def are subregisters of the registers used in
@@ -212,12 +225,14 @@ void MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
// If Src is defined by a previous copy, the previous copy cannot be
// eliminated.
- for (MCRegAliasIterator AI(Src, TRI, true); AI.isValid(); ++AI) {
- Reg2MIMap::iterator CI = CopyMap.find(*AI);
- if (CI != CopyMap.end()) {
- DEBUG(dbgs() << "MCP: Copy is no longer dead: "; CI->second->dump());
- MaybeDeadCopies.remove(CI->second);
- }
+ ReadRegister(Src);
+ for (const MachineOperand &MO : MI->implicit_operands()) {
+ if (!MO.isReg() || !MO.readsReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ ReadRegister(Reg);
}
DEBUG(dbgs() << "MCP: Copy is a deletion candidate: "; MI->dump());
@@ -234,6 +249,14 @@ void MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
// ...
// %xmm2<def> = copy %xmm9
ClobberRegister(Def);
+ for (const MachineOperand &MO : MI->implicit_operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ ClobberRegister(Reg);
+ }
// Remember Def is defined by the copy.
for (MCSubRegIterator SR(Def, TRI, /*IncludeSelf=*/true); SR.isValid();
@@ -245,7 +268,7 @@ void MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
// Remember source that's copied to Def. Once it's clobbered, then
// it's no longer available for copy propagation.
RegList &DestList = SrcMap[Src];
- if (std::find(DestList.begin(), DestList.end(), Def) == DestList.end())
+ if (!is_contained(DestList, Def))
DestList.push_back(Def);
continue;
@@ -268,17 +291,8 @@ void MachineCopyPropagation::CopyPropagateBlock(MachineBasicBlock &MBB) {
if (MO.isDef()) {
Defs.push_back(Reg);
- continue;
- }
-
- // If 'Reg' is defined by a copy, the copy is no longer a candidate
- // for elimination.
- for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
- Reg2MIMap::iterator CI = CopyMap.find(*AI);
- if (CI != CopyMap.end()) {
- DEBUG(dbgs() << "MCP: Copy is used - not dead: "; CI->second->dump());
- MaybeDeadCopies.remove(CI->second);
- }
+ } else {
+ ReadRegister(Reg);
}
// Treat undef use like defs for copy propagation but not for
// dead copy. We would need to do a liveness check to be sure the copy
diff --git a/contrib/llvm/lib/CodeGen/MachineFunction.cpp b/contrib/llvm/lib/CodeGen/MachineFunction.cpp
index a7c63ef..c1d5ea9 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunction.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunction.cpp
@@ -54,28 +54,29 @@ static cl::opt<unsigned>
void MachineFunctionInitializer::anchor() {}
-void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const {
- // Leave this function even in NDEBUG as an out-of-line anchor.
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- for (BitVector::size_type i = 0; i < Properties.size(); ++i) {
- bool HasProperty = Properties[i];
- if (OnlySet && !HasProperty)
+static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
+ typedef MachineFunctionProperties::Property P;
+ switch(Prop) {
+ case P::FailedISel: return "FailedISel";
+ case P::IsSSA: return "IsSSA";
+ case P::Legalized: return "Legalized";
+ case P::NoPHIs: return "NoPHIs";
+ case P::NoVRegs: return "NoVRegs";
+ case P::RegBankSelected: return "RegBankSelected";
+ case P::Selected: return "Selected";
+ case P::TracksLiveness: return "TracksLiveness";
+ }
+ llvm_unreachable("Invalid machine function property");
+}
+
+void MachineFunctionProperties::print(raw_ostream &OS) const {
+ const char *Separator = "";
+ for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
+ if (!Properties[I])
continue;
- switch(static_cast<Property>(i)) {
- case Property::IsSSA:
- ROS << (HasProperty ? "SSA, " : "Post SSA, ");
- break;
- case Property::TracksLiveness:
- ROS << (HasProperty ? "" : "not ") << "tracking liveness, ";
- break;
- case Property::AllVRegsAllocated:
- ROS << (HasProperty ? "AllVRegsAllocated" : "HasVRegs");
- break;
- default:
- break;
- }
+ OS << Separator << getPropertyName(static_cast<Property>(I));
+ Separator = ", ";
}
-#endif
}
//===----------------------------------------------------------------------===//
@@ -85,7 +86,7 @@ void MachineFunctionProperties::print(raw_ostream &ROS, bool OnlySet) const {
// Out-of-line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() {}
-void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
+void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
@@ -100,6 +101,11 @@ MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
unsigned FunctionNum, MachineModuleInfo &mmi)
: Fn(F), Target(TM), STI(TM.getSubtargetImpl(*F)), Ctx(mmi.getContext()),
MMI(mmi) {
+ FunctionNumber = FunctionNum;
+ init();
+}
+
+void MachineFunction::init() {
// Assume the function starts in SSA form with correct liveness.
Properties.set(MachineFunctionProperties::Property::IsSSA);
Properties.set(MachineFunctionProperties::Property::TracksLiveness);
@@ -112,11 +118,11 @@ MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
// We can realign the stack if the target supports it and the user hasn't
// explicitly asked us not to.
bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
- !F->hasFnAttribute("no-realign-stack");
+ !Fn->hasFnAttribute("no-realign-stack");
FrameInfo = new (Allocator) MachineFrameInfo(
getFnStackAlignment(STI, Fn), /*StackRealignable=*/CanRealignSP,
/*ForceRealign=*/CanRealignSP &&
- F->hasFnAttribute(Attribute::StackAlignment));
+ Fn->hasFnAttribute(Attribute::StackAlignment));
if (Fn->hasFnAttribute(Attribute::StackAlignment))
FrameInfo->ensureMaxAlignment(Fn->getFnStackAlignment());
@@ -133,15 +139,14 @@ MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
if (AlignAllFunctions)
Alignment = AlignAllFunctions;
- FunctionNumber = FunctionNum;
JumpTableInfo = nullptr;
if (isFuncletEHPersonality(classifyEHPersonality(
- F->hasPersonalityFn() ? F->getPersonalityFn() : nullptr))) {
+ Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr))) {
WinEHInfo = new (Allocator) WinEHFuncInfo();
}
- assert(TM.isCompatibleDataLayout(getDataLayout()) &&
+ assert(Target.isCompatibleDataLayout(getDataLayout()) &&
"Can't create a MachineFunction using a Module with a "
"Target-incompatible DataLayout attached\n");
@@ -149,6 +154,11 @@ MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM,
}
MachineFunction::~MachineFunction() {
+ clear();
+}
+
+void MachineFunction::clear() {
+ Properties.reset();
// Don't call destructors on MachineInstr and MachineOperand. All of their
// memory comes from the BumpPtrAllocator which is about to be purged.
//
@@ -296,9 +306,12 @@ MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
MachineMemOperand *MachineFunction::getMachineMemOperand(
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
- unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges) {
+ unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
+ SynchronizationScope SynchScope, AtomicOrdering Ordering,
+ AtomicOrdering FailureOrdering) {
return new (Allocator)
- MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges);
+ MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
+ SynchScope, Ordering, FailureOrdering);
}
MachineMemOperand *
@@ -308,13 +321,15 @@ MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getValue(),
MMO->getOffset()+Offset),
- MMO->getFlags(), Size,
- MMO->getBaseAlignment());
+ MMO->getFlags(), Size, MMO->getBaseAlignment(),
+ AAMDNodes(), nullptr, MMO->getSynchScope(),
+ MMO->getOrdering(), MMO->getFailureOrdering());
return new (Allocator)
MachineMemOperand(MachinePointerInfo(MMO->getPseudoValue(),
MMO->getOffset()+Offset),
- MMO->getFlags(), Size,
- MMO->getBaseAlignment());
+ MMO->getFlags(), Size, MMO->getBaseAlignment(),
+ AAMDNodes(), nullptr, MMO->getSynchScope(),
+ MMO->getOrdering(), MMO->getFailureOrdering());
}
MachineInstr::mmo_iterator
@@ -345,7 +360,9 @@ MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getSize(), (*I)->getBaseAlignment(),
- (*I)->getAAInfo());
+ (*I)->getAAInfo(), nullptr,
+ (*I)->getSynchScope(), (*I)->getOrdering(),
+ (*I)->getFailureOrdering());
Result[Index] = JustLoad;
}
++Index;
@@ -377,7 +394,9 @@ MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
getMachineMemOperand((*I)->getPointerInfo(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getSize(), (*I)->getBaseAlignment(),
- (*I)->getAAInfo());
+ (*I)->getAAInfo(), nullptr,
+ (*I)->getSynchScope(), (*I)->getOrdering(),
+ (*I)->getFailureOrdering());
Result[Index] = JustStore;
}
++Index;
@@ -406,9 +425,8 @@ StringRef MachineFunction::getName() const {
void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
OS << "# Machine code for function " << getName() << ": ";
- OS << "Properties: <";
getProperties().print(OS);
- OS << ">\n";
+ OS << '\n';
// Print Frame Information
FrameInfo->print(*this, OS);
@@ -535,8 +553,8 @@ MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
assert(JumpTableInfo && "No jump tables");
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
- const char *Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
- : DL.getPrivateGlobalPrefix();
+ StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
+ : DL.getPrivateGlobalPrefix();
SmallString<60> Name;
raw_svector_ostream(Name)
<< Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
@@ -550,6 +568,193 @@ MCSymbol *MachineFunction::getPICBaseSymbol() const {
Twine(getFunctionNumber()) + "$pb");
}
+/// \name Exception Handling
+/// \{
+
+LandingPadInfo &
+MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
+ unsigned N = LandingPads.size();
+ for (unsigned i = 0; i < N; ++i) {
+ LandingPadInfo &LP = LandingPads[i];
+ if (LP.LandingPadBlock == LandingPad)
+ return LP;
+ }
+
+ LandingPads.push_back(LandingPadInfo(LandingPad));
+ return LandingPads[N];
+}
+
+void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
+ MCSymbol *BeginLabel, MCSymbol *EndLabel) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.BeginLabels.push_back(BeginLabel);
+ LP.EndLabels.push_back(EndLabel);
+}
+
+MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
+ MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.LandingPadLabel = LandingPadLabel;
+ return LandingPadLabel;
+}
+
+void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
+ ArrayRef<const GlobalValue *> TyInfo) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ for (unsigned N = TyInfo.size(); N; --N)
+ LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
+}
+
+void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
+ ArrayRef<const GlobalValue *> TyInfo) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ std::vector<unsigned> IdsInFilter(TyInfo.size());
+ for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
+ IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
+ LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
+}
+
+void MachineFunction::tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
+ for (unsigned i = 0; i != LandingPads.size(); ) {
+ LandingPadInfo &LandingPad = LandingPads[i];
+ if (LandingPad.LandingPadLabel &&
+ !LandingPad.LandingPadLabel->isDefined() &&
+ (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
+ LandingPad.LandingPadLabel = nullptr;
+
+ // Special case: we *should* emit LPs with null LP MBB. This indicates
+ // "nounwind" case.
+ if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
+ LandingPads.erase(LandingPads.begin() + i);
+ continue;
+ }
+
+ for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
+ MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
+ MCSymbol *EndLabel = LandingPad.EndLabels[j];
+ if ((BeginLabel->isDefined() ||
+ (LPMap && (*LPMap)[BeginLabel] != 0)) &&
+ (EndLabel->isDefined() ||
+ (LPMap && (*LPMap)[EndLabel] != 0))) continue;
+
+ LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
+ LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
+ --j;
+ --e;
+ }
+
+ // Remove landing pads with no try-ranges.
+ if (LandingPads[i].BeginLabels.empty()) {
+ LandingPads.erase(LandingPads.begin() + i);
+ continue;
+ }
+
+ // If there is no landing pad, ensure that the list of typeids is empty.
+ // If the only typeid is a cleanup, this is the same as having no typeids.
+ if (!LandingPad.LandingPadBlock ||
+ (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
+ LandingPad.TypeIds.clear();
+ ++i;
+ }
+}
+
+void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.TypeIds.push_back(0);
+}
+
+void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
+ const Function *Filter,
+ const BlockAddress *RecoverBA) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ SEHHandler Handler;
+ Handler.FilterOrFinally = Filter;
+ Handler.RecoverBA = RecoverBA;
+ LP.SEHHandlers.push_back(Handler);
+}
+
+void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
+ const Function *Cleanup) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ SEHHandler Handler;
+ Handler.FilterOrFinally = Cleanup;
+ Handler.RecoverBA = nullptr;
+ LP.SEHHandlers.push_back(Handler);
+}
+
+void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
+ ArrayRef<unsigned> Sites) {
+ LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
+}
+
+unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
+ for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
+ if (TypeInfos[i] == TI) return i + 1;
+
+ TypeInfos.push_back(TI);
+ return TypeInfos.size();
+}
+
+int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
+ // If the new filter coincides with the tail of an existing filter, then
+ // re-use the existing filter. Folding filters more than this requires
+ // re-ordering filters and/or their elements - probably not worth it.
+ for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
+ E = FilterEnds.end(); I != E; ++I) {
+ unsigned i = *I, j = TyIds.size();
+
+ while (i && j)
+ if (FilterIds[--i] != TyIds[--j])
+ goto try_next;
+
+ if (!j)
+ // The new filter coincides with range [i, end) of the existing filter.
+ return -(1 + i);
+
+try_next:;
+ }
+
+ // Add the new filter.
+ int FilterID = -(1 + FilterIds.size());
+ FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
+ FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
+ FilterEnds.push_back(FilterIds.size());
+ FilterIds.push_back(0); // terminator
+ return FilterID;
+}
+
+void llvm::addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB) {
+ MachineFunction &MF = *MBB.getParent();
+ if (const auto *PF = dyn_cast<Function>(
+ I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
+ MF.getMMI().addPersonality(PF);
+
+ if (I.isCleanup())
+ MF.addCleanup(&MBB);
+
+ // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
+ // but we need to do it this way because of how the DWARF EH emitter
+ // processes the clauses.
+ for (unsigned i = I.getNumClauses(); i != 0; --i) {
+ Value *Val = I.getClause(i - 1);
+ if (I.isCatch(i - 1)) {
+ MF.addCatchTypeInfo(&MBB,
+ dyn_cast<GlobalValue>(Val->stripPointerCasts()));
+ } else {
+ // Add filters in a list.
+ Constant *CVal = cast<Constant>(Val);
+ SmallVector<const GlobalValue *, 4> FilterList;
+ for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
+ II != IE; ++II)
+ FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
+
+ MF.addFilterTypeInfo(&MBB, FilterList);
+ }
+ }
+}
+
+/// \}
+
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
@@ -634,11 +839,11 @@ int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
/// Create a spill slot at a fixed location on the stack.
/// Returns an index with a negative value.
int MachineFrameInfo::CreateFixedSpillStackObject(uint64_t Size,
- int64_t SPOffset) {
+ int64_t SPOffset,
+ bool Immutable) {
unsigned Align = MinAlign(SPOffset, ForcedRealign ? 1 : StackAlignment);
Align = clampStackAlignment(!StackRealignable, Align, StackAlignment);
- Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset,
- /*Immutable*/ true,
+ Objects.insert(Objects.begin(), StackObject(Size, Align, SPOffset, Immutable,
/*isSS*/ true,
/*Alloca*/ nullptr,
/*isAliased*/ false));
@@ -890,13 +1095,20 @@ MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
}
MachineConstantPool::~MachineConstantPool() {
+ // A constant may be a member of both Constants and MachineCPVsSharingEntries,
+ // so keep track of which we've deleted to avoid double deletions.
+ DenseSet<MachineConstantPoolValue*> Deleted;
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
- if (Constants[i].isMachineConstantPoolEntry())
+ if (Constants[i].isMachineConstantPoolEntry()) {
+ Deleted.insert(Constants[i].Val.MachineCPVal);
delete Constants[i].Val.MachineCPVal;
+ }
for (DenseSet<MachineConstantPoolValue*>::iterator I =
MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
- I != E; ++I)
- delete *I;
+ I != E; ++I) {
+ if (Deleted.count(*I) == 0)
+ delete *I;
+ }
}
/// Test whether the given two constants can be allocated the same constant pool
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp
deleted file mode 100644
index 338cd1e..0000000
--- a/contrib/llvm/lib/CodeGen/MachineFunctionAnalysis.cpp
+++ /dev/null
@@ -1,60 +0,0 @@
-//===-- MachineFunctionAnalysis.cpp ---------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the definitions of the MachineFunctionAnalysis members.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/MachineFunctionAnalysis.h"
-#include "llvm/CodeGen/GCMetadata.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/MachineFunctionInitializer.h"
-using namespace llvm;
-
-char MachineFunctionAnalysis::ID = 0;
-
-MachineFunctionAnalysis::MachineFunctionAnalysis(
- const TargetMachine &tm, MachineFunctionInitializer *MFInitializer)
- : FunctionPass(ID), TM(tm), MF(nullptr), MFInitializer(MFInitializer) {
- initializeMachineModuleInfoPass(*PassRegistry::getPassRegistry());
-}
-
-MachineFunctionAnalysis::~MachineFunctionAnalysis() {
- releaseMemory();
- assert(!MF && "MachineFunctionAnalysis left initialized!");
-}
-
-void MachineFunctionAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<MachineModuleInfo>();
-}
-
-bool MachineFunctionAnalysis::doInitialization(Module &M) {
- MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
- assert(MMI && "MMI not around yet??");
- MMI->setModule(&M);
- NextFnNum = 0;
- return false;
-}
-
-
-bool MachineFunctionAnalysis::runOnFunction(Function &F) {
- assert(!MF && "MachineFunctionAnalysis already initialized!");
- MF = new MachineFunction(&F, TM, NextFnNum++,
- getAnalysis<MachineModuleInfo>());
- if (MFInitializer)
- MFInitializer->initializeMachineFunction(*MF);
- return false;
-}
-
-void MachineFunctionAnalysis::releaseMemory() {
- delete MF;
- MF = nullptr;
-}
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
index 228fe17..2265676 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunctionPass.cpp
@@ -22,7 +22,7 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/Dominators.h"
@@ -41,7 +41,9 @@ bool MachineFunctionPass::runOnFunction(Function &F) {
if (F.hasAvailableExternallyLinkage())
return false;
- MachineFunction &MF = getAnalysis<MachineFunctionAnalysis>().getMF();
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+ MachineFunction &MF = MMI.getMachineFunction(F);
+
MachineFunctionProperties &MFProps = MF.getProperties();
#ifndef NDEBUG
@@ -49,7 +51,7 @@ bool MachineFunctionPass::runOnFunction(Function &F) {
errs() << "MachineFunctionProperties required by " << getPassName()
<< " pass are not met by function " << F.getName() << ".\n"
<< "Required properties: ";
- RequiredProperties.print(errs(), /*OnlySet=*/true);
+ RequiredProperties.print(errs());
errs() << "\nCurrent properties: ";
MFProps.print(errs());
errs() << "\n";
@@ -60,13 +62,13 @@ bool MachineFunctionPass::runOnFunction(Function &F) {
bool RV = runOnMachineFunction(MF);
MFProps.set(SetProperties);
- MFProps.clear(ClearedProperties);
+ MFProps.reset(ClearedProperties);
return RV;
}
void MachineFunctionPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<MachineFunctionAnalysis>();
- AU.addPreserved<MachineFunctionAnalysis>();
+ AU.addRequired<MachineModuleInfo>();
+ AU.addPreserved<MachineModuleInfo>();
// MachineFunctionPass preserves all LLVM IR passes, but there's no
// high-level way to express this. Instead, just list a bunch of
diff --git a/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp b/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
index 4f424ff..0d533c3 100644
--- a/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineFunctionPrinterPass.cpp
@@ -34,7 +34,7 @@ struct MachineFunctionPrinterPass : public MachineFunctionPass {
MachineFunctionPrinterPass(raw_ostream &os, const std::string &banner)
: MachineFunctionPass(ID), OS(os), Banner(banner) {}
- const char *getPassName() const override { return "MachineFunction Printer"; }
+ StringRef getPassName() const override { return "MachineFunction Printer"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
diff --git a/contrib/llvm/lib/CodeGen/MachineInstr.cpp b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
index 3cdf8d2..2f2e3b3 100644
--- a/contrib/llvm/lib/CodeGen/MachineInstr.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
@@ -26,6 +26,7 @@
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
@@ -40,6 +41,7 @@
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
@@ -91,6 +93,8 @@ void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
// That won't happen in legal code.
setSubReg(0);
+ if (isDef())
+ setIsUndef(false);
}
setReg(Reg);
}
@@ -171,6 +175,16 @@ void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
Contents.Sym = Sym;
}
+void MachineOperand::ChangeToFrameIndex(int Idx) {
+ assert((!isReg() || !isTied()) &&
+ "Cannot change a tied operand into a FrameIndex");
+
+ removeRegFromUses();
+
+ OpKind = MO_FrameIndex;
+ setIndex(Idx);
+}
+
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
@@ -256,6 +270,10 @@ bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
return getCFIIndex() == Other.getCFIIndex();
case MachineOperand::MO_Metadata:
return getMetadata() == Other.getMetadata();
+ case MachineOperand::MO_IntrinsicID:
+ return getIntrinsicID() == Other.getIntrinsicID();
+ case MachineOperand::MO_Predicate:
+ return getPredicate() == Other.getPredicate();
}
llvm_unreachable("Invalid machine operand type");
}
@@ -300,18 +318,23 @@ hash_code llvm::hash_value(const MachineOperand &MO) {
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
case MachineOperand::MO_CFIIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
+ case MachineOperand::MO_IntrinsicID:
+ return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
+ case MachineOperand::MO_Predicate:
+ return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
}
llvm_unreachable("Invalid machine operand type");
}
-void MachineOperand::print(raw_ostream &OS,
- const TargetRegisterInfo *TRI) const {
+void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
+ const TargetIntrinsicInfo *IntrinsicInfo) const {
ModuleSlotTracker DummyMST(nullptr);
- print(OS, DummyMST, TRI);
+ print(OS, DummyMST, TRI, IntrinsicInfo);
}
void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
- const TargetRegisterInfo *TRI) const {
+ const TargetRegisterInfo *TRI,
+ const TargetIntrinsicInfo *IntrinsicInfo) const {
switch (getType()) {
case MachineOperand::MO_Register:
OS << PrintReg(getReg(), TRI, getSubReg());
@@ -378,7 +401,7 @@ void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
} else if (getFPImm()->getType()->isHalfTy()) {
APFloat APF = getFPImm()->getValueAPF();
bool Unused;
- APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
+ APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
OS << "half " << APF.convertToFloat();
} else {
OS << getFPImm()->getValueAPF().convertToDouble();
@@ -454,12 +477,32 @@ void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
case MachineOperand::MO_CFIIndex:
OS << "<call frame instruction>";
break;
+ case MachineOperand::MO_IntrinsicID: {
+ Intrinsic::ID ID = getIntrinsicID();
+ if (ID < Intrinsic::num_intrinsics)
+ OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
+ else if (IntrinsicInfo)
+ OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
+ else
+ OS << "<intrinsic:" << ID << '>';
+ break;
+ }
+ case MachineOperand::MO_Predicate: {
+ auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
+ OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
+ << CmpInst::getPredicateName(Pred) << '>';
+ }
}
-
if (unsigned TF = getTargetFlags())
OS << "[TF=" << TF << ']';
}
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MachineOperand::dump() const {
+ dbgs() << *this << '\n';
+}
+#endif
+
//===----------------------------------------------------------------------===//
// MachineMemOperand Implementation
//===----------------------------------------------------------------------===//
@@ -500,7 +543,10 @@ MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
uint64_t s, unsigned int a,
const AAMDNodes &AAInfo,
- const MDNode *Ranges)
+ const MDNode *Ranges,
+ SynchronizationScope SynchScope,
+ AtomicOrdering Ordering,
+ AtomicOrdering FailureOrdering)
: PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
AAInfo(AAInfo), Ranges(Ranges) {
assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
@@ -508,6 +554,13 @@ MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
"invalid pointer value");
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
assert((isLoad() || isStore()) && "Not a load/store!");
+
+ AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope);
+ assert(getSynchScope() == SynchScope && "Value truncated");
+ AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
+ assert(getOrdering() == Ordering && "Value truncated");
+ AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
+ assert(getFailureOrdering() == FailureOrdering && "Value truncated");
}
/// Profile - Gather unique data for the object.
@@ -623,10 +676,10 @@ void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
OS << ")";
}
- // Print nontemporal info.
if (isNonTemporal())
OS << "(nontemporal)";
-
+ if (isDereferenceable())
+ OS << "(dereferenceable)";
if (isInvariant())
OS << "(invariant)";
}
@@ -653,12 +706,7 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
DebugLoc dl, bool NoImp)
: MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
- debugLoc(std::move(dl))
-#ifdef LLVM_BUILD_GLOBAL_ISEL
- ,
- Ty(nullptr)
-#endif
-{
+ debugLoc(std::move(dl)) {
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
// Reserve space for the expected number of operands.
@@ -677,12 +725,7 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
: MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
- MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc())
-#ifdef LLVM_BUILD_GLOBAL_ISEL
- ,
- Ty(nullptr)
-#endif
-{
+ MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) {
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
CapOperands = OperandCapacity::get(MI.getNumOperands());
@@ -705,25 +748,6 @@ MachineRegisterInfo *MachineInstr::getRegInfo() {
return nullptr;
}
-// Implement dummy setter and getter for type when
-// global-isel is not built.
-// The proper implementation is WIP and is tracked here:
-// PR26576.
-#ifndef LLVM_BUILD_GLOBAL_ISEL
-void MachineInstr::setType(Type *Ty) {}
-
-Type *MachineInstr::getType() const { return nullptr; }
-
-#else
-void MachineInstr::setType(Type *Ty) {
- assert((!Ty || isPreISelGenericOpcode(getOpcode())) &&
- "Non generic instructions are not supposed to be typed");
- this->Ty = Ty;
-}
-
-Type *MachineInstr::getType() const { return Ty; }
-#endif // LLVM_BUILD_GLOBAL_ISEL
-
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands already be on their use lists.
@@ -976,16 +1000,24 @@ bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
return false;
if (isBundle()) {
- // Both instructions are bundles, compare MIs inside the bundle.
+ // We have passed the test above that both instructions have the same
+ // opcode, so we know that both instructions are bundles here. Let's compare
+ // MIs inside the bundle.
+ assert(Other.isBundle() && "Expected that both instructions are bundles.");
MachineBasicBlock::const_instr_iterator I1 = getIterator();
- MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
- MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
- while (++I1 != E1 && I1->isInsideBundle()) {
+ // Loop until we analysed the last intruction inside at least one of the
+ // bundles.
+ while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
+ ++I1;
++I2;
- if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
+ if (!I1->isIdenticalTo(*I2, Check))
return false;
}
+ // If we've reached the end of just one of the two bundles, but not both,
+ // the instructions are not identical.
+ if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
+ return false;
}
// Check operands to make sure they match.
@@ -1287,8 +1319,8 @@ bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
-int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
- const TargetRegisterInfo *TRI) const {
+int MachineInstr::findRegisterUseOperandIdx(
+ unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse())
@@ -1296,11 +1328,9 @@ int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
- if (MOReg == Reg ||
- (TRI &&
- TargetRegisterInfo::isPhysicalRegister(MOReg) &&
- TargetRegisterInfo::isPhysicalRegister(Reg) &&
- TRI->isSubRegister(MOReg, Reg)))
+ if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
+ TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ TRI->isSubRegister(MOReg, Reg)))
if (!isKill || MO.isKill())
return i;
}
@@ -1533,7 +1563,7 @@ bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
// destination. The check for isInvariantLoad gives the targe the chance to
// classify the load as always returning a constant, e.g. a constant pool
// load.
- if (mayLoad() && !isInvariantLoad(AA))
+ if (mayLoad() && !isDereferenceableInvariantLoad(AA))
// Otherwise, this is a real load. If there is a store between the load and
// end of block, we can't move it.
return !SawStore;
@@ -1564,12 +1594,10 @@ bool MachineInstr::hasOrderedMemoryRef() const {
});
}
-/// isInvariantLoad - Return true if this instruction is loading from a
-/// location whose value is invariant across the function. For example,
-/// loading a value from the constant pool or from the argument area
-/// of a function if it does not change. This should only return true of
-/// *all* loads the instruction does are invariant (if it does multiple loads).
-bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
+/// isDereferenceableInvariantLoad - Return true if this instruction will never
+/// trap and is loading from a location whose value is invariant across a run of
+/// this function.
+bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
// If the instruction doesn't load at all, it isn't an invariant load.
if (!mayLoad())
return false;
@@ -1579,16 +1607,17 @@ bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
if (memoperands_empty())
return false;
- const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
+ const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
for (MachineMemOperand *MMO : memoperands()) {
if (MMO->isVolatile()) return false;
if (MMO->isStore()) return false;
- if (MMO->isInvariant()) continue;
+ if (MMO->isInvariant() && MMO->isDereferenceable())
+ continue;
// A load from a constant PseudoSourceValue is invariant.
if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
- if (PSV->isConstant(MFI))
+ if (PSV->isConstant(&MFI))
continue;
if (const Value *V = MMO->getValue()) {
@@ -1663,35 +1692,40 @@ void MachineInstr::copyImplicitOps(MachineFunction &MF,
}
}
-LLVM_DUMP_METHOD void MachineInstr::dump() const {
+LLVM_DUMP_METHOD void MachineInstr::dump(const TargetInstrInfo *TII) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- dbgs() << " " << *this;
+ dbgs() << " ";
+ print(dbgs(), false /* SkipOpers */, TII);
#endif
}
-void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
+void MachineInstr::print(raw_ostream &OS, bool SkipOpers,
+ const TargetInstrInfo *TII) const {
const Module *M = nullptr;
if (const MachineBasicBlock *MBB = getParent())
if (const MachineFunction *MF = MBB->getParent())
M = MF->getFunction()->getParent();
ModuleSlotTracker MST(M);
- print(OS, MST, SkipOpers);
+ print(OS, MST, SkipOpers, TII);
}
void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
- bool SkipOpers) const {
+ bool SkipOpers, const TargetInstrInfo *TII) const {
// We can be a bit tidier if we know the MachineFunction.
const MachineFunction *MF = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const MachineRegisterInfo *MRI = nullptr;
- const TargetInstrInfo *TII = nullptr;
+ const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
+
if (const MachineBasicBlock *MBB = getParent()) {
MF = MBB->getParent();
if (MF) {
MRI = &MF->getRegInfo();
TRI = MF->getSubtarget().getRegisterInfo();
- TII = MF->getSubtarget().getInstrInfo();
+ if (!TII)
+ TII = MF->getSubtarget().getInstrInfo();
+ IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
}
}
@@ -1705,13 +1739,13 @@ void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
!getOperand(StartOp).isImplicit();
++StartOp) {
if (StartOp != 0) OS << ", ";
- getOperand(StartOp).print(OS, MST, TRI);
+ getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
unsigned Reg = getOperand(StartOp).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
VirtRegs.push_back(Reg);
- unsigned Size;
- if (MRI && (Size = MRI->getSize(Reg)))
- OS << '(' << Size << ')';
+ LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
+ if (Ty.isValid())
+ OS << '(' << Ty << ')';
}
}
@@ -1724,12 +1758,6 @@ void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
else
OS << "UNKNOWN";
- if (getType()) {
- OS << ' ';
- getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true);
- OS << ' ';
- }
-
if (SkipOpers)
return;
@@ -1812,7 +1840,8 @@ void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
OS << "!\"" << DIV->getName() << '\"';
else
MO.print(OS, MST, TRI);
- } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
+ } else if (TRI && (isInsertSubreg() || isRegSequence() ||
+ (isSubregToReg() && i == 3)) && MO.isImm()) {
OS << TRI->getSubRegIndexName(MO.getImm());
} else if (i == AsmDescOp && MO.isImm()) {
// Pretty print the inline asm operand descriptor.
@@ -2145,8 +2174,8 @@ void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
// If there are no uses, including partial uses, the def is dead.
- if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
- [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
+ if (none_of(UsedRegs,
+ [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
MO.setIsDead();
}
diff --git a/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp b/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
index e4686b3..b5621a0 100644
--- a/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineInstrBundle.cpp
@@ -24,7 +24,8 @@ namespace {
class UnpackMachineBundles : public MachineFunctionPass {
public:
static char ID; // Pass identification
- UnpackMachineBundles(std::function<bool(const Function &)> Ftor = nullptr)
+ UnpackMachineBundles(
+ std::function<bool(const MachineFunction &)> Ftor = nullptr)
: MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry());
}
@@ -32,7 +33,7 @@ namespace {
bool runOnMachineFunction(MachineFunction &MF) override;
private:
- std::function<bool(const Function &)> PredicateFtor;
+ std::function<bool(const MachineFunction &)> PredicateFtor;
};
} // end anonymous namespace
@@ -42,7 +43,7 @@ INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles",
"Unpack machine instruction bundles", false, false)
bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
- if (PredicateFtor && !PredicateFtor(*MF.getFunction()))
+ if (PredicateFtor && !PredicateFtor(MF))
return false;
bool Changed = false;
@@ -78,7 +79,8 @@ bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
}
FunctionPass *
-llvm::createUnpackMachineBundles(std::function<bool(const Function &)> Ftor) {
+llvm::createUnpackMachineBundles(
+ std::function<bool(const MachineFunction &)> Ftor) {
return new UnpackMachineBundles(std::move(Ftor));
}
diff --git a/contrib/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
index 119751b..b3d1843 100644
--- a/contrib/llvm/lib/CodeGen/MachineLICM.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
@@ -92,8 +92,7 @@ namespace {
SmallVector<MachineBasicBlock*, 8> ExitBlocks;
bool isExitBlock(const MachineBasicBlock *MBB) const {
- return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
- ExitBlocks.end();
+ return is_contained(ExitBlocks, MBB);
}
// Track 'estimated' register pressure.
@@ -268,7 +267,7 @@ bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
TII = ST.getInstrInfo();
TLI = ST.getTargetLowering();
TRI = ST.getRegisterInfo();
- MFI = MF.getFrameInfo();
+ MFI = &MF.getFrameInfo();
MRI = &MF.getRegInfo();
SchedModel.init(ST.getSchedModel(), &ST, TII);
@@ -896,7 +895,7 @@ bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
- if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
+ if (!MRI->isConstantPhysReg(Reg))
return false;
// Otherwise it's safe to move.
continue;
@@ -1139,7 +1138,8 @@ bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
// High register pressure situation, only hoist if the instruction is going
// to be remat'ed.
- if (!TII->isTriviallyReMaterializable(MI, AA) && !MI.isInvariantLoad(AA)) {
+ if (!TII->isTriviallyReMaterializable(MI, AA) &&
+ !MI.isDereferenceableInvariantLoad(AA)) {
DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
return false;
}
@@ -1158,7 +1158,7 @@ MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
// If not, we may be able to unfold a load and hoist that.
// First test whether the instruction is loading from an amenable
// memory location.
- if (!MI->isInvariantLoad(AA))
+ if (!MI->isDereferenceableInvariantLoad(AA))
return nullptr;
// Next determine the register class for a temporary register.
@@ -1336,6 +1336,11 @@ bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
// Otherwise, splice the instruction to the preheader.
Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
+ // Since we are moving the instruction out of its basic block, we do not
+ // retain its debug location. Doing so would degrade the debugging
+ // experience and adversely affect the accuracy of profiling information.
+ MI->setDebugLoc(DebugLoc());
+
// Update register pressure for BBs from header to this block.
UpdateBackTraceRegPressure(MI);
diff --git a/contrib/llvm/lib/CodeGen/MachineLoopInfo.cpp b/contrib/llvm/lib/CodeGen/MachineLoopInfo.cpp
index 376f78f..fdeaf7b 100644
--- a/contrib/llvm/lib/CodeGen/MachineLoopInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineLoopInfo.cpp
@@ -77,6 +77,51 @@ MachineBasicBlock *MachineLoop::getBottomBlock() {
return BotMBB;
}
+MachineBasicBlock *MachineLoop::findLoopControlBlock() {
+ if (MachineBasicBlock *Latch = getLoopLatch()) {
+ if (isLoopExiting(Latch))
+ return Latch;
+ else
+ return getExitingBlock();
+ }
+ return nullptr;
+}
+
+MachineBasicBlock *
+MachineLoopInfo::findLoopPreheader(MachineLoop *L,
+ bool SpeculativePreheader) const {
+ if (MachineBasicBlock *PB = L->getLoopPreheader())
+ return PB;
+
+ if (!SpeculativePreheader)
+ return nullptr;
+
+ MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch();
+ if (HB->pred_size() != 2 || HB->hasAddressTaken())
+ return nullptr;
+ // Find the predecessor of the header that is not the latch block.
+ MachineBasicBlock *Preheader = nullptr;
+ for (MachineBasicBlock *P : HB->predecessors()) {
+ if (P == LB)
+ continue;
+ // Sanity.
+ if (Preheader)
+ return nullptr;
+ Preheader = P;
+ }
+
+ // Check if the preheader candidate is a successor of any other loop
+ // headers. We want to avoid having two loop setups in the same block.
+ for (MachineBasicBlock *S : Preheader->successors()) {
+ if (S == HB)
+ continue;
+ MachineLoop *T = getLoopFor(S);
+ if (T && T->getHeader() == S)
+ return nullptr;
+ }
+ return Preheader;
+}
+
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineLoop::dump() const {
print(dbgs());
diff --git a/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp b/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
index 244e3fb..6618857 100644
--- a/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineModuleInfo.cpp
@@ -9,26 +9,31 @@
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionInitializer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace llvm::dwarf;
// Handle the Pass registration stuff necessary to use DataLayout's.
-INITIALIZE_PASS(MachineModuleInfo, "machinemoduleinfo",
- "Machine Module Information", false, false)
+INITIALIZE_TM_PASS(MachineModuleInfo, "machinemoduleinfo",
+ "Machine Module Information", false, false)
char MachineModuleInfo::ID = 0;
// Out of line virtual method.
@@ -54,7 +59,7 @@ public:
class MMIAddrLabelMap {
MCContext &Context;
struct AddrLabelSymEntry {
- /// Symbols - The symbols for the label.
+ /// The symbols for the label.
TinyPtrVector<MCSymbol *> Symbols;
Function *Fn; // The containing function of the BasicBlock.
@@ -63,14 +68,13 @@ class MMIAddrLabelMap {
DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
- /// BBCallbacks - Callbacks for the BasicBlock's that we have entries for. We
- /// use this so we get notified if a block is deleted or RAUWd.
+ /// Callbacks for the BasicBlock's that we have entries for. We use this so
+ /// we get notified if a block is deleted or RAUWd.
std::vector<MMIAddrLabelMapCallbackPtr> BBCallbacks;
- /// DeletedAddrLabelsNeedingEmission - This is a per-function list of symbols
- /// whose corresponding BasicBlock got deleted. These symbols need to be
- /// emitted at some point in the file, so AsmPrinter emits them after the
- /// function body.
+ /// This is a per-function list of symbols whose corresponding BasicBlock got
+ /// deleted. These symbols need to be emitted at some point in the file, so
+ /// AsmPrinter emits them after the function body.
DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> >
DeletedAddrLabelsNeedingEmission;
public:
@@ -112,8 +116,7 @@ ArrayRef<MCSymbol *> MMIAddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
return Entry.Symbols;
}
-/// takeDeletedSymbolsForFunction - If we have any deleted symbols for F, return
-/// them.
+/// If we have any deleted symbols for F, return them.
void MMIAddrLabelMap::
takeDeletedSymbolsForFunction(Function *F, std::vector<MCSymbol*> &Result) {
DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> >::iterator I =
@@ -186,20 +189,13 @@ void MMIAddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
//===----------------------------------------------------------------------===//
-MachineModuleInfo::MachineModuleInfo(const MCAsmInfo &MAI,
- const MCRegisterInfo &MRI,
- const MCObjectFileInfo *MOFI)
- : ImmutablePass(ID), Context(&MAI, &MRI, MOFI, nullptr, false) {
+MachineModuleInfo::MachineModuleInfo(const TargetMachine *TM)
+ : ImmutablePass(ID), TM(*TM),
+ Context(TM->getMCAsmInfo(), TM->getMCRegisterInfo(),
+ TM->getObjFileLowering(), nullptr, false) {
initializeMachineModuleInfoPass(*PassRegistry::getPassRegistry());
}
-MachineModuleInfo::MachineModuleInfo()
- : ImmutablePass(ID), Context(nullptr, nullptr, nullptr) {
- llvm_unreachable("This MachineModuleInfo constructor should never be called, "
- "MMI should always be explicitly constructed by "
- "LLVMTargetMachine");
-}
-
MachineModuleInfo::~MachineModuleInfo() {
}
@@ -207,13 +203,9 @@ bool MachineModuleInfo::doInitialization(Module &M) {
ObjFileMMI = nullptr;
CurCallSite = 0;
- CallsEHReturn = false;
- CallsUnwindInit = false;
- HasEHFunclets = false;
DbgInfoAvailable = UsesVAFloatArgument = UsesMorestackAddr = false;
- PersonalityTypeCache = EHPersonality::Unknown;
AddrLabelSymbols = nullptr;
- TheModule = nullptr;
+ TheModule = &M;
return false;
}
@@ -233,30 +225,8 @@ bool MachineModuleInfo::doFinalization(Module &M) {
return false;
}
-/// EndFunction - Discard function meta information.
-///
-void MachineModuleInfo::EndFunction() {
- // Clean up frame info.
- FrameInstructions.clear();
-
- // Clean up exception info.
- LandingPads.clear();
- PersonalityTypeCache = EHPersonality::Unknown;
- CallSiteMap.clear();
- TypeInfos.clear();
- FilterIds.clear();
- FilterEnds.clear();
- CallsEHReturn = false;
- CallsUnwindInit = false;
- HasEHFunclets = false;
- VariableDbgInfos.clear();
-}
-
//===- Address of Block Management ----------------------------------------===//
-/// getAddrLabelSymbolToEmit - Return the symbol to be used for the specified
-/// basic block when its address is taken. If other blocks were RAUW'd to
-/// this one, we may have to emit them as well, return the whole set.
ArrayRef<MCSymbol *>
MachineModuleInfo::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
// Lazily create AddrLabelSymbols.
@@ -265,11 +235,6 @@ MachineModuleInfo::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
return AddrLabelSymbols->getAddrLabelSymbolToEmit(const_cast<BasicBlock*>(BB));
}
-
-/// takeDeletedSymbolsForFunction - If the specified function has had any
-/// references to address-taken blocks generated, but the block got deleted,
-/// return the symbol now so we can emit it. This prevents emitting a
-/// reference to a symbol that has no definition.
void MachineModuleInfo::
takeDeletedSymbolsForFunction(const Function *F,
std::vector<MCSymbol*> &Result) {
@@ -279,40 +244,8 @@ takeDeletedSymbolsForFunction(const Function *F,
takeDeletedSymbolsForFunction(const_cast<Function*>(F), Result);
}
-//===- EH -----------------------------------------------------------------===//
-
-/// getOrCreateLandingPadInfo - Find or create an LandingPadInfo for the
-/// specified MachineBasicBlock.
-LandingPadInfo &MachineModuleInfo::getOrCreateLandingPadInfo
- (MachineBasicBlock *LandingPad) {
- unsigned N = LandingPads.size();
- for (unsigned i = 0; i < N; ++i) {
- LandingPadInfo &LP = LandingPads[i];
- if (LP.LandingPadBlock == LandingPad)
- return LP;
- }
-
- LandingPads.push_back(LandingPadInfo(LandingPad));
- return LandingPads[N];
-}
-
-/// addInvoke - Provide the begin and end labels of an invoke style call and
-/// associate it with a try landing pad block.
-void MachineModuleInfo::addInvoke(MachineBasicBlock *LandingPad,
- MCSymbol *BeginLabel, MCSymbol *EndLabel) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- LP.BeginLabels.push_back(BeginLabel);
- LP.EndLabels.push_back(EndLabel);
-}
-
-/// addLandingPad - Provide the label of a try LandingPad block.
-///
-MCSymbol *MachineModuleInfo::addLandingPad(MachineBasicBlock *LandingPad) {
- MCSymbol *LandingPadLabel = Context.createTempSymbol();
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- LP.LandingPadLabel = LandingPadLabel;
- return LandingPadLabel;
-}
+/// \name Exception Handling
+/// \{
void MachineModuleInfo::addPersonality(const Function *Personality) {
for (unsigned i = 0; i < Personalities.size(); ++i)
@@ -321,143 +254,83 @@ void MachineModuleInfo::addPersonality(const Function *Personality) {
Personalities.push_back(Personality);
}
-/// addCatchTypeInfo - Provide the catch typeinfo for a landing pad.
-///
-void MachineModuleInfo::
-addCatchTypeInfo(MachineBasicBlock *LandingPad,
- ArrayRef<const GlobalValue *> TyInfo) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- for (unsigned N = TyInfo.size(); N; --N)
- LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
-}
-
-/// addFilterTypeInfo - Provide the filter typeinfo for a landing pad.
-///
-void MachineModuleInfo::
-addFilterTypeInfo(MachineBasicBlock *LandingPad,
- ArrayRef<const GlobalValue *> TyInfo) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- std::vector<unsigned> IdsInFilter(TyInfo.size());
- for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
- IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
- LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
-}
-
-/// addCleanup - Add a cleanup action for a landing pad.
-///
-void MachineModuleInfo::addCleanup(MachineBasicBlock *LandingPad) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- LP.TypeIds.push_back(0);
-}
+/// \}
+
+MachineFunction &MachineModuleInfo::getMachineFunction(const Function &F) {
+ // Shortcut for the common case where a sequence of MachineFunctionPasses
+ // all query for the same Function.
+ if (LastRequest == &F)
+ return *LastResult;
+
+ auto I = MachineFunctions.insert(
+ std::make_pair(&F, std::unique_ptr<MachineFunction>()));
+ MachineFunction *MF;
+ if (I.second) {
+ // No pre-existing machine function, create a new one.
+ MF = new MachineFunction(&F, TM, NextFnNum++, *this);
+ // Update the set entry.
+ I.first->second.reset(MF);
+
+ if (MFInitializer)
+ if (MFInitializer->initializeMachineFunction(*MF))
+ report_fatal_error("Unable to initialize machine function");
+ } else {
+ MF = I.first->second.get();
+ }
-void MachineModuleInfo::addSEHCatchHandler(MachineBasicBlock *LandingPad,
- const Function *Filter,
- const BlockAddress *RecoverBA) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- SEHHandler Handler;
- Handler.FilterOrFinally = Filter;
- Handler.RecoverBA = RecoverBA;
- LP.SEHHandlers.push_back(Handler);
+ LastRequest = &F;
+ LastResult = MF;
+ return *MF;
}
-void MachineModuleInfo::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
- const Function *Cleanup) {
- LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- SEHHandler Handler;
- Handler.FilterOrFinally = Cleanup;
- Handler.RecoverBA = nullptr;
- LP.SEHHandlers.push_back(Handler);
+void MachineModuleInfo::deleteMachineFunctionFor(Function &F) {
+ MachineFunctions.erase(&F);
+ LastRequest = nullptr;
+ LastResult = nullptr;
}
-/// TidyLandingPads - Remap landing pad labels and remove any deleted landing
-/// pads.
-void MachineModuleInfo::TidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
- for (unsigned i = 0; i != LandingPads.size(); ) {
- LandingPadInfo &LandingPad = LandingPads[i];
- if (LandingPad.LandingPadLabel &&
- !LandingPad.LandingPadLabel->isDefined() &&
- (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
- LandingPad.LandingPadLabel = nullptr;
-
- // Special case: we *should* emit LPs with null LP MBB. This indicates
- // "nounwind" case.
- if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
- LandingPads.erase(LandingPads.begin() + i);
- continue;
- }
-
- for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
- MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
- MCSymbol *EndLabel = LandingPad.EndLabels[j];
- if ((BeginLabel->isDefined() ||
- (LPMap && (*LPMap)[BeginLabel] != 0)) &&
- (EndLabel->isDefined() ||
- (LPMap && (*LPMap)[EndLabel] != 0))) continue;
-
- LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
- LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
- --j;
- --e;
- }
-
- // Remove landing pads with no try-ranges.
- if (LandingPads[i].BeginLabels.empty()) {
- LandingPads.erase(LandingPads.begin() + i);
- continue;
- }
+namespace {
+/// This pass frees the MachineFunction object associated with a Function.
+class FreeMachineFunction : public FunctionPass {
+public:
+ static char ID;
+ FreeMachineFunction() : FunctionPass(ID) {}
- // If there is no landing pad, ensure that the list of typeids is empty.
- // If the only typeid is a cleanup, this is the same as having no typeids.
- if (!LandingPad.LandingPadBlock ||
- (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
- LandingPad.TypeIds.clear();
- ++i;
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ AU.addPreserved<MachineModuleInfo>();
}
-}
-/// setCallSiteLandingPad - Map the landing pad's EH symbol to the call site
-/// indexes.
-void MachineModuleInfo::setCallSiteLandingPad(MCSymbol *Sym,
- ArrayRef<unsigned> Sites) {
- LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
-}
-
-/// getTypeIDFor - Return the type id for the specified typeinfo. This is
-/// function wide.
-unsigned MachineModuleInfo::getTypeIDFor(const GlobalValue *TI) {
- for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
- if (TypeInfos[i] == TI) return i + 1;
+ bool runOnFunction(Function &F) override {
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+ MMI.deleteMachineFunctionFor(F);
+ return true;
+ }
+};
+char FreeMachineFunction::ID;
+} // end anonymous namespace
- TypeInfos.push_back(TI);
- return TypeInfos.size();
+namespace llvm {
+FunctionPass *createFreeMachineFunctionPass() {
+ return new FreeMachineFunction();
}
-
-/// getFilterIDFor - Return the filter id for the specified typeinfos. This is
-/// function wide.
-int MachineModuleInfo::getFilterIDFor(std::vector<unsigned> &TyIds) {
- // If the new filter coincides with the tail of an existing filter, then
- // re-use the existing filter. Folding filters more than this requires
- // re-ordering filters and/or their elements - probably not worth it.
- for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
- E = FilterEnds.end(); I != E; ++I) {
- unsigned i = *I, j = TyIds.size();
-
- while (i && j)
- if (FilterIds[--i] != TyIds[--j])
- goto try_next;
-
- if (!j)
- // The new filter coincides with range [i, end) of the existing filter.
- return -(1 + i);
-
-try_next:;
+} // end namespace llvm
+
+//===- MMI building helpers -----------------------------------------------===//
+
+void llvm::computeUsesVAFloatArgument(const CallInst &I,
+ MachineModuleInfo &MMI) {
+ FunctionType *FT =
+ cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
+ if (FT->isVarArg() && !MMI.usesVAFloatArgument()) {
+ for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
+ Type *T = I.getArgOperand(i)->getType();
+ for (auto i : post_order(T)) {
+ if (i->isFloatingPointTy()) {
+ MMI.setUsesVAFloatArgument(true);
+ return;
+ }
+ }
+ }
}
-
- // Add the new filter.
- int FilterID = -(1 + FilterIds.size());
- FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
- FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
- FilterEnds.push_back(FilterIds.size());
- FilterIds.push_back(0); // terminator
- return FilterID;
}
diff --git a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
new file mode 100644
index 0000000..43a1809
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
@@ -0,0 +1,3984 @@
+//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
+//
+// Software pipelining (SWP) is an instruction scheduling technique for loops
+// that overlap loop iterations and explioits ILP via a compiler transformation.
+//
+// Swing Modulo Scheduling is an implementation of software pipelining
+// that generates schedules that are near optimal in terms of initiation
+// interval, register requirements, and stage count. See the papers:
+//
+// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
+// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
+// Conference on Parallel Architectures and Compilation Techiniques.
+//
+// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
+// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
+// Transactions on Computers, Vol. 50, No. 3, 2001.
+//
+// "An Implementation of Swing Modulo Scheduling With Extensions for
+// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
+// Urbana-Chambpain, 2005.
+//
+//
+// The SMS algorithm consists of three main steps after computing the minimal
+// initiation interval (MII).
+// 1) Analyze the dependence graph and compute information about each
+// instruction in the graph.
+// 2) Order the nodes (instructions) by priority based upon the heuristics
+// described in the algorithm.
+// 3) Attempt to schedule the nodes in the specified order using the MII.
+//
+// This SMS implementation is a target-independent back-end pass. When enabled,
+// the pass runs just prior to the register allocation pass, while the machine
+// IR is in SSA form. If software pipelining is successful, then the original
+// loop is replaced by the optimized loop. The optimized loop contains one or
+// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
+// the instructions cannot be scheduled in a given MII, we increase the MII by
+// one and try again.
+//
+// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
+// represent loop carried dependences in the DAG as order edges to the Phi
+// nodes. We also perform several passes over the DAG to eliminate unnecessary
+// edges that inhibit the ability to pipeline. The implementation uses the
+// DFAPacketizer class to compute the minimum initiation interval and the check
+// where an instruction may be inserted in the pipelined schedule.
+//
+// In order for the SMS pass to work, several target specific hooks need to be
+// implemented to get information about the loop structure and to rewrite
+// instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterPressure.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleDAGMutation.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/PassAnalysisSupport.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <deque>
+#include <functional>
+#include <iterator>
+#include <map>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pipeliner"
+
+STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
+STATISTIC(NumPipelined, "Number of loops software pipelined");
+
+/// A command line option to turn software pipelining on or off.
+static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
+ cl::ZeroOrMore,
+ cl::desc("Enable Software Pipelining"));
+
+/// A command line option to enable SWP at -Os.
+static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
+ cl::desc("Enable SWP at Os."), cl::Hidden,
+ cl::init(false));
+
+/// A command line argument to limit minimum initial interval for pipelining.
+static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
+ cl::desc("Size limit for the the MII."),
+ cl::Hidden, cl::init(27));
+
+/// A command line argument to limit the number of stages in the pipeline.
+static cl::opt<int>
+ SwpMaxStages("pipeliner-max-stages",
+ cl::desc("Maximum stages allowed in the generated scheduled."),
+ cl::Hidden, cl::init(3));
+
+/// A command line option to disable the pruning of chain dependences due to
+/// an unrelated Phi.
+static cl::opt<bool>
+ SwpPruneDeps("pipeliner-prune-deps",
+ cl::desc("Prune dependences between unrelated Phi nodes."),
+ cl::Hidden, cl::init(true));
+
+/// A command line option to disable the pruning of loop carried order
+/// dependences.
+static cl::opt<bool>
+ SwpPruneLoopCarried("pipeliner-prune-loop-carried",
+ cl::desc("Prune loop carried order dependences."),
+ cl::Hidden, cl::init(true));
+
+#ifndef NDEBUG
+static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
+#endif
+
+static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
+ cl::ReallyHidden, cl::init(false),
+ cl::ZeroOrMore, cl::desc("Ignore RecMII"));
+
+namespace {
+
+class NodeSet;
+class SMSchedule;
+class SwingSchedulerDAG;
+
+/// The main class in the implementation of the target independent
+/// software pipeliner pass.
+class MachinePipeliner : public MachineFunctionPass {
+public:
+ MachineFunction *MF = nullptr;
+ const MachineLoopInfo *MLI = nullptr;
+ const MachineDominatorTree *MDT = nullptr;
+ const InstrItineraryData *InstrItins;
+ const TargetInstrInfo *TII = nullptr;
+ RegisterClassInfo RegClassInfo;
+
+#ifndef NDEBUG
+ static int NumTries;
+#endif
+ /// Cache the target analysis information about the loop.
+ struct LoopInfo {
+ MachineBasicBlock *TBB = nullptr;
+ MachineBasicBlock *FBB = nullptr;
+ SmallVector<MachineOperand, 4> BrCond;
+ MachineInstr *LoopInductionVar = nullptr;
+ MachineInstr *LoopCompare = nullptr;
+ };
+ LoopInfo LI;
+
+ static char ID;
+ MachinePipeliner() : MachineFunctionPass(ID) {
+ initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ bool canPipelineLoop(MachineLoop &L);
+ bool scheduleLoop(MachineLoop &L);
+ bool swingModuloScheduler(MachineLoop &L);
+};
+
+/// This class builds the dependence graph for the instructions in a loop,
+/// and attempts to schedule the instructions using the SMS algorithm.
+class SwingSchedulerDAG : public ScheduleDAGInstrs {
+ MachinePipeliner &Pass;
+ /// The minimum initiation interval between iterations for this schedule.
+ unsigned MII;
+ /// Set to true if a valid pipelined schedule is found for the loop.
+ bool Scheduled;
+ MachineLoop &Loop;
+ LiveIntervals &LIS;
+ const RegisterClassInfo &RegClassInfo;
+
+ /// A toplogical ordering of the SUnits, which is needed for changing
+ /// dependences and iterating over the SUnits.
+ ScheduleDAGTopologicalSort Topo;
+
+ struct NodeInfo {
+ int ASAP;
+ int ALAP;
+ NodeInfo() : ASAP(0), ALAP(0) {}
+ };
+ /// Computed properties for each node in the graph.
+ std::vector<NodeInfo> ScheduleInfo;
+
+ enum OrderKind { BottomUp = 0, TopDown = 1 };
+ /// Computed node ordering for scheduling.
+ SetVector<SUnit *> NodeOrder;
+
+ typedef SmallVector<NodeSet, 8> NodeSetType;
+ typedef DenseMap<unsigned, unsigned> ValueMapTy;
+ typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
+ typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
+
+ /// Instructions to change when emitting the final schedule.
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
+
+ /// We may create a new instruction, so remember it because it
+ /// must be deleted when the pass is finished.
+ SmallPtrSet<MachineInstr *, 4> NewMIs;
+
+ /// Ordered list of DAG postprocessing steps.
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
+
+ /// Helper class to implement Johnson's circuit finding algorithm.
+ class Circuits {
+ std::vector<SUnit> &SUnits;
+ SetVector<SUnit *> Stack;
+ BitVector Blocked;
+ SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
+ SmallVector<SmallVector<int, 4>, 16> AdjK;
+ unsigned NumPaths;
+ static unsigned MaxPaths;
+
+ public:
+ Circuits(std::vector<SUnit> &SUs)
+ : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
+ AdjK(SUs.size()) {}
+ /// Reset the data structures used in the circuit algorithm.
+ void reset() {
+ Stack.clear();
+ Blocked.reset();
+ B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
+ NumPaths = 0;
+ }
+ void createAdjacencyStructure(SwingSchedulerDAG *DAG);
+ bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
+ void unblock(int U);
+ };
+
+public:
+ SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
+ const RegisterClassInfo &rci)
+ : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
+ Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
+ Topo(SUnits, &ExitSU) {
+ P.MF->getSubtarget().getSMSMutations(Mutations);
+ }
+
+ void schedule() override;
+ void finishBlock() override;
+
+ /// Return true if the loop kernel has been scheduled.
+ bool hasNewSchedule() { return Scheduled; }
+
+ /// Return the earliest time an instruction may be scheduled.
+ int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
+
+ /// Return the latest time an instruction my be scheduled.
+ int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
+
+ /// The mobility function, which the the number of slots in which
+ /// an instruction may be scheduled.
+ int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
+
+ /// The depth, in the dependence graph, for a node.
+ int getDepth(SUnit *Node) { return Node->getDepth(); }
+
+ /// The height, in the dependence graph, for a node.
+ int getHeight(SUnit *Node) { return Node->getHeight(); }
+
+ /// Return true if the dependence is a back-edge in the data dependence graph.
+ /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
+ /// using an anti dependence from a Phi to an instruction.
+ bool isBackedge(SUnit *Source, const SDep &Dep) {
+ if (Dep.getKind() != SDep::Anti)
+ return false;
+ return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
+ }
+
+ /// Return true if the dependence is an order dependence between non-Phis.
+ static bool isOrder(SUnit *Source, const SDep &Dep) {
+ if (Dep.getKind() != SDep::Order)
+ return false;
+ return (!Source->getInstr()->isPHI() &&
+ !Dep.getSUnit()->getInstr()->isPHI());
+ }
+
+ bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
+
+ /// The latency of the dependence.
+ unsigned getLatency(SUnit *Source, const SDep &Dep) {
+ // Anti dependences represent recurrences, so use the latency of the
+ // instruction on the back-edge.
+ if (Dep.getKind() == SDep::Anti) {
+ if (Source->getInstr()->isPHI())
+ return Dep.getSUnit()->Latency;
+ if (Dep.getSUnit()->getInstr()->isPHI())
+ return Source->Latency;
+ return Dep.getLatency();
+ }
+ return Dep.getLatency();
+ }
+
+ /// The distance function, which indicates that operation V of iteration I
+ /// depends on operations U of iteration I-distance.
+ unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
+ // Instructions that feed a Phi have a distance of 1. Computing larger
+ // values for arrays requires data dependence information.
+ if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
+ return 1;
+ return 0;
+ }
+
+ /// Set the Minimum Initiation Interval for this schedule attempt.
+ void setMII(unsigned mii) { MII = mii; }
+
+ MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
+ bool UpdateDAG = false);
+
+ /// Return the new base register that was stored away for the changed
+ /// instruction.
+ unsigned getInstrBaseReg(SUnit *SU) {
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end())
+ return It->second.first;
+ return 0;
+ }
+
+ void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
+ Mutations.push_back(std::move(Mutation));
+ }
+
+private:
+ void addLoopCarriedDependences(AliasAnalysis *AA);
+ void updatePhiDependences();
+ void changeDependences();
+ unsigned calculateResMII();
+ unsigned calculateRecMII(NodeSetType &RecNodeSets);
+ void findCircuits(NodeSetType &NodeSets);
+ void fuseRecs(NodeSetType &NodeSets);
+ void removeDuplicateNodes(NodeSetType &NodeSets);
+ void computeNodeFunctions(NodeSetType &NodeSets);
+ void registerPressureFilter(NodeSetType &NodeSets);
+ void colocateNodeSets(NodeSetType &NodeSets);
+ void checkNodeSets(NodeSetType &NodeSets);
+ void groupRemainingNodes(NodeSetType &NodeSets);
+ void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded);
+ void computeNodeOrder(NodeSetType &NodeSets);
+ bool schedulePipeline(SMSchedule &Schedule);
+ void generatePipelinedLoop(SMSchedule &Schedule);
+ void generateProlog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs);
+ void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
+ void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs);
+ void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule);
+ void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
+ ValueMapTy *VRMap);
+ bool computeDelta(MachineInstr &MI, unsigned &Delta);
+ void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
+ unsigned Num);
+ MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum);
+ MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum,
+ SMSchedule &Schedule);
+ void updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum, unsigned InstStageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap);
+ MachineInstr *findDefInLoop(unsigned Reg);
+ unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
+ unsigned LoopStage, ValueMapTy *VRMap,
+ MachineBasicBlock *BB);
+ void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap);
+ void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
+ InstrMapTy &InstrMap, unsigned CurStageNum,
+ unsigned PhiNum, MachineInstr *Phi,
+ unsigned OldReg, unsigned NewReg,
+ unsigned PrevReg = 0);
+ bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
+ unsigned &OffsetPos, unsigned &NewBase,
+ int64_t &NewOffset);
+ void postprocessDAG();
+};
+
+/// A NodeSet contains a set of SUnit DAG nodes with additional information
+/// that assigns a priority to the set.
+class NodeSet {
+ SetVector<SUnit *> Nodes;
+ bool HasRecurrence;
+ unsigned RecMII = 0;
+ int MaxMOV = 0;
+ int MaxDepth = 0;
+ unsigned Colocate = 0;
+ SUnit *ExceedPressure = nullptr;
+
+public:
+ typedef SetVector<SUnit *>::const_iterator iterator;
+
+ NodeSet() : Nodes(), HasRecurrence(false) {}
+
+ NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
+
+ bool insert(SUnit *SU) { return Nodes.insert(SU); }
+
+ void insert(iterator S, iterator E) { Nodes.insert(S, E); }
+
+ template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
+ return Nodes.remove_if(P);
+ }
+
+ unsigned count(SUnit *SU) const { return Nodes.count(SU); }
+
+ bool hasRecurrence() { return HasRecurrence; };
+
+ unsigned size() const { return Nodes.size(); }
+
+ bool empty() const { return Nodes.empty(); }
+
+ SUnit *getNode(unsigned i) const { return Nodes[i]; };
+
+ void setRecMII(unsigned mii) { RecMII = mii; };
+
+ void setColocate(unsigned c) { Colocate = c; };
+
+ void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
+
+ bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
+
+ int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
+
+ int getRecMII() { return RecMII; }
+
+ /// Summarize node functions for the entire node set.
+ void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
+ for (SUnit *SU : *this) {
+ MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
+ MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
+ }
+ }
+
+ void clear() {
+ Nodes.clear();
+ RecMII = 0;
+ HasRecurrence = false;
+ MaxMOV = 0;
+ MaxDepth = 0;
+ Colocate = 0;
+ ExceedPressure = nullptr;
+ }
+
+ operator SetVector<SUnit *> &() { return Nodes; }
+
+ /// Sort the node sets by importance. First, rank them by recurrence MII,
+ /// then by mobility (least mobile done first), and finally by depth.
+ /// Each node set may contain a colocate value which is used as the first
+ /// tie breaker, if it's set.
+ bool operator>(const NodeSet &RHS) const {
+ if (RecMII == RHS.RecMII) {
+ if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
+ return Colocate < RHS.Colocate;
+ if (MaxMOV == RHS.MaxMOV)
+ return MaxDepth > RHS.MaxDepth;
+ return MaxMOV < RHS.MaxMOV;
+ }
+ return RecMII > RHS.RecMII;
+ }
+
+ bool operator==(const NodeSet &RHS) const {
+ return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
+ MaxDepth == RHS.MaxDepth;
+ }
+
+ bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
+
+ iterator begin() { return Nodes.begin(); }
+ iterator end() { return Nodes.end(); }
+
+ void print(raw_ostream &os) const {
+ os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
+ << " depth " << MaxDepth << " col " << Colocate << "\n";
+ for (const auto &I : Nodes)
+ os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
+ os << "\n";
+ }
+
+ void dump() const { print(dbgs()); }
+};
+
+/// This class repesents the scheduled code. The main data structure is a
+/// map from scheduled cycle to instructions. During scheduling, the
+/// data structure explicitly represents all stages/iterations. When
+/// the algorithm finshes, the schedule is collapsed into a single stage,
+/// which represents instructions from different loop iterations.
+///
+/// The SMS algorithm allows negative values for cycles, so the first cycle
+/// in the schedule is the smallest cycle value.
+class SMSchedule {
+private:
+ /// Map from execution cycle to instructions.
+ DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
+
+ /// Map from instruction to execution cycle.
+ std::map<SUnit *, int> InstrToCycle;
+
+ /// Map for each register and the max difference between its uses and def.
+ /// The first element in the pair is the max difference in stages. The
+ /// second is true if the register defines a Phi value and loop value is
+ /// scheduled before the Phi.
+ std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
+
+ /// Keep track of the first cycle value in the schedule. It starts
+ /// as zero, but the algorithm allows negative values.
+ int FirstCycle;
+
+ /// Keep track of the last cycle value in the schedule.
+ int LastCycle;
+
+ /// The initiation interval (II) for the schedule.
+ int InitiationInterval;
+
+ /// Target machine information.
+ const TargetSubtargetInfo &ST;
+
+ /// Virtual register information.
+ MachineRegisterInfo &MRI;
+
+ DFAPacketizer *Resources;
+
+public:
+ SMSchedule(MachineFunction *mf)
+ : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
+ Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
+ FirstCycle = 0;
+ LastCycle = 0;
+ InitiationInterval = 0;
+ }
+
+ ~SMSchedule() {
+ ScheduledInstrs.clear();
+ InstrToCycle.clear();
+ RegToStageDiff.clear();
+ delete Resources;
+ }
+
+ void reset() {
+ ScheduledInstrs.clear();
+ InstrToCycle.clear();
+ RegToStageDiff.clear();
+ FirstCycle = 0;
+ LastCycle = 0;
+ InitiationInterval = 0;
+ }
+
+ /// Set the initiation interval for this schedule.
+ void setInitiationInterval(int ii) { InitiationInterval = ii; }
+
+ /// Return the first cycle in the completed schedule. This
+ /// can be a negative value.
+ int getFirstCycle() const { return FirstCycle; }
+
+ /// Return the last cycle in the finalized schedule.
+ int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
+
+ /// Return the cycle of the earliest scheduled instruction in the dependence
+ /// chain.
+ int earliestCycleInChain(const SDep &Dep);
+
+ /// Return the cycle of the latest scheduled instruction in the dependence
+ /// chain.
+ int latestCycleInChain(const SDep &Dep);
+
+ void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
+ bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
+
+ /// Iterators for the cycle to instruction map.
+ typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
+ typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
+ const_sched_iterator;
+
+ /// Return true if the instruction is scheduled at the specified stage.
+ bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
+ return (stageScheduled(SU) == (int)StageNum);
+ }
+
+ /// Return the stage for a scheduled instruction. Return -1 if
+ /// the instruction has not been scheduled.
+ int stageScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ if (it == InstrToCycle.end())
+ return -1;
+ return (it->second - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the cycle for a scheduled instruction. This function normalizes
+ /// the first cycle to be 0.
+ unsigned cycleScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
+ return (it->second - FirstCycle) % InitiationInterval;
+ }
+
+ /// Return the maximum stage count needed for this schedule.
+ unsigned getMaxStageCount() {
+ return (LastCycle - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the max. number of stages/iterations that can occur between a
+ /// register definition and its uses.
+ unsigned getStagesForReg(int Reg, unsigned CurStage) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
+ return 1;
+ return Stages.first;
+ }
+
+ /// The number of stages for a Phi is a little different than other
+ /// instructions. The minimum value computed in RegToStageDiff is 1
+ /// because we assume the Phi is needed for at least 1 iteration.
+ /// This is not the case if the loop value is scheduled prior to the
+ /// Phi in the same stage. This function returns the number of stages
+ /// or iterations needed between the Phi definition and any uses.
+ unsigned getStagesForPhi(int Reg) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (Stages.second)
+ return Stages.first;
+ return Stages.first - 1;
+ }
+
+ /// Return the instructions that are scheduled at the specified cycle.
+ std::deque<SUnit *> &getInstructions(int cycle) {
+ return ScheduledInstrs[cycle];
+ }
+
+ bool isValidSchedule(SwingSchedulerDAG *SSD);
+ void finalizeSchedule(SwingSchedulerDAG *SSD);
+ bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts);
+ bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
+ bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
+ MachineOperand &MO);
+ void print(raw_ostream &os) const;
+ void dump() const;
+};
+
+} // end anonymous namespace
+
+unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
+char MachinePipeliner::ID = 0;
+#ifndef NDEBUG
+int MachinePipeliner::NumTries = 0;
+#endif
+char &llvm::MachinePipelinerID = MachinePipeliner::ID;
+INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
+ "Modulo Software Pipelining", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
+ "Modulo Software Pipelining", false, false)
+
+/// The "main" function for implementing Swing Modulo Scheduling.
+bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(*mf.getFunction()))
+ return false;
+
+ if (!EnableSWP)
+ return false;
+
+ if (mf.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
+ !EnableSWPOptSize.getPosition())
+ return false;
+
+ MF = &mf;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ TII = MF->getSubtarget().getInstrInfo();
+ RegClassInfo.runOnMachineFunction(*MF);
+
+ for (auto &L : *MLI)
+ scheduleLoop(*L);
+
+ return false;
+}
+
+/// Attempt to perform the SMS algorithm on the specified loop. This function is
+/// the main entry point for the algorithm. The function identifies candidate
+/// loops, calculates the minimum initiation interval, and attempts to schedule
+/// the loop.
+bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
+ bool Changed = false;
+ for (auto &InnerLoop : L)
+ Changed |= scheduleLoop(*InnerLoop);
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = SwpLoopLimit;
+ if (Limit >= 0) {
+ if (NumTries >= SwpLoopLimit)
+ return Changed;
+ NumTries++;
+ }
+#endif
+
+ if (!canPipelineLoop(L))
+ return Changed;
+
+ ++NumTrytoPipeline;
+
+ Changed = swingModuloScheduler(L);
+
+ return Changed;
+}
+
+/// Return true if the loop can be software pipelined. The algorithm is
+/// restricted to loops with a single basic block. Make sure that the
+/// branch in the loop can be analyzed.
+bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
+ if (L.getNumBlocks() != 1)
+ return false;
+
+ // Check if the branch can't be understood because we can't do pipelining
+ // if that's the case.
+ LI.TBB = nullptr;
+ LI.FBB = nullptr;
+ LI.BrCond.clear();
+ if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
+ return false;
+
+ LI.LoopInductionVar = nullptr;
+ LI.LoopCompare = nullptr;
+ if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
+ return false;
+
+ if (!L.getLoopPreheader())
+ return false;
+
+ // If any of the Phis contain subregs, then we can't pipeline
+ // because we don't know how to maintain subreg information in the
+ // VMap structure.
+ MachineBasicBlock *MBB = L.getHeader();
+ for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
+ BBE = MBB->getFirstNonPHI();
+ BBI != BBE; ++BBI)
+ for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
+ if (BBI->getOperand(i).getSubReg() != 0)
+ return false;
+
+ return true;
+}
+
+/// The SMS algorithm consists of the following main steps:
+/// 1. Computation and analysis of the dependence graph.
+/// 2. Ordering of the nodes (instructions).
+/// 3. Attempt to Schedule the loop.
+bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
+ assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
+
+ SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
+
+ MachineBasicBlock *MBB = L.getHeader();
+ // The kernel should not include any terminator instructions. These
+ // will be added back later.
+ SMS.startBlock(MBB);
+
+ // Compute the number of 'real' instructions in the basic block by
+ // ignoring terminators.
+ unsigned size = MBB->size();
+ for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
+ E = MBB->instr_end();
+ I != E; ++I, --size)
+ ;
+
+ SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
+ SMS.schedule();
+ SMS.exitRegion();
+
+ SMS.finishBlock();
+ return SMS.hasNewSchedule();
+}
+
+/// We override the schedule function in ScheduleDAGInstrs to implement the
+/// scheduling part of the Swing Modulo Scheduling algorithm.
+void SwingSchedulerDAG::schedule() {
+ AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
+ buildSchedGraph(AA);
+ addLoopCarriedDependences(AA);
+ updatePhiDependences();
+ Topo.InitDAGTopologicalSorting();
+ postprocessDAG();
+ changeDependences();
+ DEBUG({
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this);
+ });
+
+ NodeSetType NodeSets;
+ findCircuits(NodeSets);
+
+ // Calculate the MII.
+ unsigned ResMII = calculateResMII();
+ unsigned RecMII = calculateRecMII(NodeSets);
+
+ fuseRecs(NodeSets);
+
+ // This flag is used for testing and can cause correctness problems.
+ if (SwpIgnoreRecMII)
+ RecMII = 0;
+
+ MII = std::max(ResMII, RecMII);
+ DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
+ << ")\n");
+
+ // Can't schedule a loop without a valid MII.
+ if (MII == 0)
+ return;
+
+ // Don't pipeline large loops.
+ if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
+ return;
+
+ computeNodeFunctions(NodeSets);
+
+ registerPressureFilter(NodeSets);
+
+ colocateNodeSets(NodeSets);
+
+ checkNodeSets(NodeSets);
+
+ DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " Rec NodeSet ";
+ I.dump();
+ }
+ });
+
+ std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
+
+ groupRemainingNodes(NodeSets);
+
+ removeDuplicateNodes(NodeSets);
+
+ DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " NodeSet ";
+ I.dump();
+ }
+ });
+
+ computeNodeOrder(NodeSets);
+
+ SMSchedule Schedule(Pass.MF);
+ Scheduled = schedulePipeline(Schedule);
+
+ if (!Scheduled)
+ return;
+
+ unsigned numStages = Schedule.getMaxStageCount();
+ // No need to generate pipeline if there are no overlapped iterations.
+ if (numStages == 0)
+ return;
+
+ // Check that the maximum stage count is less than user-defined limit.
+ if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
+ return;
+
+ generatePipelinedLoop(Schedule);
+ ++NumPipelined;
+}
+
+/// Clean up after the software pipeliner runs.
+void SwingSchedulerDAG::finishBlock() {
+ for (MachineInstr *I : NewMIs)
+ MF.DeleteMachineInstr(I);
+ NewMIs.clear();
+
+ // Call the superclass.
+ ScheduleDAGInstrs::finishBlock();
+}
+
+/// Return the register values for the operands of a Phi instruction.
+/// This function assume the instruction is a Phi.
+static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
+ unsigned &InitVal, unsigned &LoopVal) {
+ assert(Phi.isPHI() && "Expecting a Phi.");
+
+ InitVal = 0;
+ LoopVal = 0;
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != Loop)
+ InitVal = Phi.getOperand(i).getReg();
+ else if (Phi.getOperand(i + 1).getMBB() == Loop)
+ LoopVal = Phi.getOperand(i).getReg();
+
+ assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
+}
+
+/// Return the Phi register value that comes from the incoming block.
+static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return the Phi register value that comes the the loop block.
+static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() == LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return true if SUb can be reached from SUa following the chain edges.
+static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SUnit *, 8> Worklist;
+ Worklist.push_back(SUa);
+ while (!Worklist.empty()) {
+ const SUnit *SU = Worklist.pop_back_val();
+ for (auto &SI : SU->Succs) {
+ SUnit *SuccSU = SI.getSUnit();
+ if (SI.getKind() == SDep::Order) {
+ if (Visited.count(SuccSU))
+ continue;
+ if (SuccSU == SUb)
+ return true;
+ Worklist.push_back(SuccSU);
+ Visited.insert(SuccSU);
+ }
+ }
+ }
+ return false;
+}
+
+/// Return true if the instruction causes a chain between memory
+/// references before and after it.
+static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
+ return MI.isCall() || MI.hasUnmodeledSideEffects() ||
+ (MI.hasOrderedMemoryRef() &&
+ (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
+}
+
+/// Return the underlying objects for the memory references of an instruction.
+/// This function calls the code in ValueTracking, but first checks that the
+/// instruction has a memory operand.
+static void getUnderlyingObjects(MachineInstr *MI,
+ SmallVectorImpl<Value *> &Objs,
+ const DataLayout &DL) {
+ if (!MI->hasOneMemOperand())
+ return;
+ MachineMemOperand *MM = *MI->memoperands_begin();
+ if (!MM->getValue())
+ return;
+ GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
+}
+
+/// Add a chain edge between a load and store if the store can be an
+/// alias of the load on a subsequent iteration, i.e., a loop carried
+/// dependence. This code is very similar to the code in ScheduleDAGInstrs
+/// but that code doesn't create loop carried dependences.
+void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
+ MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
+ for (auto &SU : SUnits) {
+ MachineInstr &MI = *SU.getInstr();
+ if (isDependenceBarrier(MI, AA))
+ PendingLoads.clear();
+ else if (MI.mayLoad()) {
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
+ for (auto V : Objs) {
+ SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
+ SUs.push_back(&SU);
+ }
+ } else if (MI.mayStore()) {
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
+ for (auto V : Objs) {
+ MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
+ PendingLoads.find(V);
+ if (I == PendingLoads.end())
+ continue;
+ for (auto Load : I->second) {
+ if (isSuccOrder(Load, &SU))
+ continue;
+ MachineInstr &LdMI = *Load->getInstr();
+ // First, perform the cheaper check that compares the base register.
+ // If they are the same and the load offset is less than the store
+ // offset, then mark the dependence as loop carried potentially.
+ unsigned BaseReg1, BaseReg2;
+ int64_t Offset1, Offset2;
+ if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
+ !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
+ assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
+ "What happened to the chain edge?");
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ // Second, the more expensive check that uses alias analysis on the
+ // base registers. If they alias, and the load offset is less than
+ // the store offset, the mark the dependence as loop carried.
+ if (!AA) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
+ MachineMemOperand *MMO2 = *MI.memoperands_begin();
+ if (!MMO1->getValue() || !MMO2->getValue()) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ if (MMO1->getValue() == MMO2->getValue() &&
+ MMO1->getOffset() <= MMO2->getOffset()) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ AliasResult AAResult = AA->alias(
+ MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
+ MMO1->getAAInfo()),
+ MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
+ MMO2->getAAInfo()));
+
+ if (AAResult != NoAlias)
+ SU.addPred(SDep(Load, SDep::Barrier));
+ }
+ }
+ }
+ }
+}
+
+/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
+/// processes dependences for PHIs. This function adds true dependences
+/// from a PHI to a use, and a loop carried dependence from the use to the
+/// PHI. The loop carried dependence is represented as an anti dependence
+/// edge. This function also removes chain dependences between unrelated
+/// PHIs.
+void SwingSchedulerDAG::updatePhiDependences() {
+ SmallVector<SDep, 4> RemoveDeps;
+ const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
+
+ // Iterate over each DAG node.
+ for (SUnit &I : SUnits) {
+ RemoveDeps.clear();
+ // Set to true if the instruction has an operand defined by a Phi.
+ unsigned HasPhiUse = 0;
+ unsigned HasPhiDef = 0;
+ MachineInstr *MI = I.getInstr();
+ // Iterate over each operand, and we process the definitions.
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg())
+ continue;
+ unsigned Reg = MOI->getReg();
+ if (MOI->isDef()) {
+ // If the register is used by a Phi, then create an anti dependence.
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI.use_instr_begin(Reg),
+ UE = MRI.use_instr_end();
+ UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SUnit *SU = getSUnit(UseMI);
+ if (SU != nullptr && UseMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Anti, Reg);
+ I.addPred(Dep);
+ } else {
+ HasPhiDef = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ } else if (MOI->isUse()) {
+ // If the register is defined by a Phi, then create a true dependence.
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
+ if (DefMI == nullptr)
+ continue;
+ SUnit *SU = getSUnit(DefMI);
+ if (SU != nullptr && DefMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Data, Reg);
+ Dep.setLatency(0);
+ ST.adjustSchedDependency(SU, &I, Dep);
+ I.addPred(Dep);
+ } else {
+ HasPhiUse = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ }
+ // Remove order dependences from an unrelated Phi.
+ if (!SwpPruneDeps)
+ continue;
+ for (auto &PI : I.Preds) {
+ MachineInstr *PMI = PI.getSUnit()->getInstr();
+ if (PMI->isPHI() && PI.getKind() == SDep::Order) {
+ if (I.getInstr()->isPHI()) {
+ if (PMI->getOperand(0).getReg() == HasPhiUse)
+ continue;
+ if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
+ continue;
+ }
+ RemoveDeps.push_back(PI);
+ }
+ }
+ for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
+ I.removePred(RemoveDeps[i]);
+ }
+}
+
+/// Iterate over each DAG node and see if we can change any dependences
+/// in order to reduce the recurrence MII.
+void SwingSchedulerDAG::changeDependences() {
+ // See if an instruction can use a value from the previous iteration.
+ // If so, we update the base and offset of the instruction and change
+ // the dependences.
+ for (SUnit &I : SUnits) {
+ unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
+ int64_t NewOffset = 0;
+ if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
+ NewOffset))
+ continue;
+
+ // Get the MI and SUnit for the instruction that defines the original base.
+ unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
+ if (!DefMI)
+ continue;
+ SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+ // Get the MI and SUnit for the instruction that defins the new base.
+ MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
+ if (!LastMI)
+ continue;
+ SUnit *LastSU = getSUnit(LastMI);
+ if (!LastSU)
+ continue;
+
+ if (Topo.IsReachable(&I, LastSU))
+ continue;
+
+ // Remove the dependence. The value now depends on a prior iteration.
+ SmallVector<SDep, 4> Deps;
+ for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
+ ++P)
+ if (P->getSUnit() == DefSU)
+ Deps.push_back(*P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(&I, Deps[i].getSUnit());
+ I.removePred(Deps[i]);
+ }
+ // Remove the chain dependence between the instructions.
+ Deps.clear();
+ for (auto &P : LastSU->Preds)
+ if (P.getSUnit() == &I && P.getKind() == SDep::Order)
+ Deps.push_back(P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(LastSU, Deps[i].getSUnit());
+ LastSU->removePred(Deps[i]);
+ }
+
+ // Add a dependence between the new instruction and the instruction
+ // that defines the new base.
+ SDep Dep(&I, SDep::Anti, NewBase);
+ LastSU->addPred(Dep);
+
+ // Remember the base and offset information so that we can update the
+ // instruction during code generation.
+ InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
+ }
+}
+
+namespace {
+
+// FuncUnitSorter - Comparison operator used to sort instructions by
+// the number of functional unit choices.
+struct FuncUnitSorter {
+ const InstrItineraryData *InstrItins;
+ DenseMap<unsigned, unsigned> Resources;
+
+ // Compute the number of functional unit alternatives needed
+ // at each stage, and take the minimum value. We prioritize the
+ // instructions by the least number of choices first.
+ unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
+ unsigned schedClass = Inst->getDesc().getSchedClass();
+ unsigned min = UINT_MAX;
+ for (const InstrStage *IS = InstrItins->beginStage(schedClass),
+ *IE = InstrItins->endStage(schedClass);
+ IS != IE; ++IS) {
+ unsigned funcUnits = IS->getUnits();
+ unsigned numAlternatives = countPopulation(funcUnits);
+ if (numAlternatives < min) {
+ min = numAlternatives;
+ F = funcUnits;
+ }
+ }
+ return min;
+ }
+
+ // Compute the critical resources needed by the instruction. This
+ // function records the functional units needed by instructions that
+ // must use only one functional unit. We use this as a tie breaker
+ // for computing the resource MII. The instrutions that require
+ // the same, highly used, functional unit have high priority.
+ void calcCriticalResources(MachineInstr &MI) {
+ unsigned SchedClass = MI.getDesc().getSchedClass();
+ for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
+ *IE = InstrItins->endStage(SchedClass);
+ IS != IE; ++IS) {
+ unsigned FuncUnits = IS->getUnits();
+ if (countPopulation(FuncUnits) == 1)
+ Resources[FuncUnits]++;
+ }
+ }
+
+ FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
+ /// Return true if IS1 has less priority than IS2.
+ bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
+ unsigned F1 = 0, F2 = 0;
+ unsigned MFUs1 = minFuncUnits(IS1, F1);
+ unsigned MFUs2 = minFuncUnits(IS2, F2);
+ if (MFUs1 == 1 && MFUs2 == 1)
+ return Resources.lookup(F1) < Resources.lookup(F2);
+ return MFUs1 > MFUs2;
+ }
+};
+
+} // end anonymous namespace
+
+/// Calculate the resource constrained minimum initiation interval for the
+/// specified loop. We use the DFA to model the resources needed for
+/// each instruction, and we ignore dependences. A different DFA is created
+/// for each cycle that is required. When adding a new instruction, we attempt
+/// to add it to each existing DFA, until a legal space is found. If the
+/// instruction cannot be reserved in an existing DFA, we create a new one.
+unsigned SwingSchedulerDAG::calculateResMII() {
+ SmallVector<DFAPacketizer *, 8> Resources;
+ MachineBasicBlock *MBB = Loop.getHeader();
+ Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
+
+ // Sort the instructions by the number of available choices for scheduling,
+ // least to most. Use the number of critical resources as the tie breaker.
+ FuncUnitSorter FUS =
+ FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FUS.calcCriticalResources(*I);
+ PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
+ FuncUnitOrder(FUS);
+
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FuncUnitOrder.push(&*I);
+
+ while (!FuncUnitOrder.empty()) {
+ MachineInstr *MI = FuncUnitOrder.top();
+ FuncUnitOrder.pop();
+ if (TII->isZeroCost(MI->getOpcode()))
+ continue;
+ // Attempt to reserve the instruction in an existing DFA. At least one
+ // DFA is needed for each cycle.
+ unsigned NumCycles = getSUnit(MI)->Latency;
+ unsigned ReservedCycles = 0;
+ SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
+ SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
+ for (unsigned C = 0; C < NumCycles; ++C)
+ while (RI != RE) {
+ if ((*RI++)->canReserveResources(*MI)) {
+ ++ReservedCycles;
+ break;
+ }
+ }
+ // Start reserving resources using existing DFAs.
+ for (unsigned C = 0; C < ReservedCycles; ++C) {
+ --RI;
+ (*RI)->reserveResources(*MI);
+ }
+ // Add new DFAs, if needed, to reserve resources.
+ for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
+ DFAPacketizer *NewResource =
+ TII->CreateTargetScheduleState(MF.getSubtarget());
+ assert(NewResource->canReserveResources(*MI) && "Reserve error.");
+ NewResource->reserveResources(*MI);
+ Resources.push_back(NewResource);
+ }
+ }
+ int Resmii = Resources.size();
+ // Delete the memory for each of the DFAs that were created earlier.
+ for (DFAPacketizer *RI : Resources) {
+ DFAPacketizer *D = RI;
+ delete D;
+ }
+ Resources.clear();
+ return Resmii;
+}
+
+/// Calculate the recurrence-constrainted minimum initiation interval.
+/// Iterate over each circuit. Compute the delay(c) and distance(c)
+/// for each circuit. The II needs to satisfy the inequality
+/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
+/// II that satistifies the inequality, and the RecMII is the maximum
+/// of those values.
+unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
+ unsigned RecMII = 0;
+
+ for (NodeSet &Nodes : NodeSets) {
+ if (Nodes.size() == 0)
+ continue;
+
+ unsigned Delay = Nodes.size() - 1;
+ unsigned Distance = 1;
+
+ // ii = ceil(delay / distance)
+ unsigned CurMII = (Delay + Distance - 1) / Distance;
+ Nodes.setRecMII(CurMII);
+ if (CurMII > RecMII)
+ RecMII = CurMII;
+ }
+
+ return RecMII;
+}
+
+/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+/// but we do this to find the circuits, and then change them back.
+static void swapAntiDependences(std::vector<SUnit> &SUnits) {
+ SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SUnits[i];
+ for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ if (IP->getKind() != SDep::Anti)
+ continue;
+ DepsAdded.push_back(std::make_pair(SU, *IP));
+ }
+ }
+ for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
+ E = DepsAdded.end();
+ I != E; ++I) {
+ // Remove this anti dependency and add one in the reverse direction.
+ SUnit *SU = I->first;
+ SDep &D = I->second;
+ SUnit *TargetSU = D.getSUnit();
+ unsigned Reg = D.getReg();
+ unsigned Lat = D.getLatency();
+ SU->removePred(D);
+ SDep Dep(SU, SDep::Anti, Reg);
+ Dep.setLatency(Lat);
+ TargetSU->addPred(Dep);
+ }
+}
+
+/// Create the adjacency structure of the nodes in the graph.
+void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
+ SwingSchedulerDAG *DAG) {
+ BitVector Added(SUnits.size());
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Added.reset();
+ // Add any successor to the adjacency matrix and exclude duplicates.
+ for (auto &SI : SUnits[i].Succs) {
+ // Do not process a boundary node and a back-edge is processed only
+ // if it goes to a Phi.
+ if (SI.getSUnit()->isBoundaryNode() ||
+ (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
+ continue;
+ int N = SI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ // A chain edge between a store and a load is treated as a back-edge in the
+ // adjacency matrix.
+ for (auto &PI : SUnits[i].Preds) {
+ if (!SUnits[i].getInstr()->mayStore() ||
+ !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
+ continue;
+ if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
+ int N = PI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ }
+ }
+}
+
+/// Identify an elementary circuit in the dependence graph starting at the
+/// specified node.
+bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
+ bool HasBackedge) {
+ SUnit *SV = &SUnits[V];
+ bool F = false;
+ Stack.insert(SV);
+ Blocked.set(V);
+
+ for (auto W : AdjK[V]) {
+ if (NumPaths > MaxPaths)
+ break;
+ if (W < S)
+ continue;
+ if (W == S) {
+ if (!HasBackedge)
+ NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
+ F = true;
+ ++NumPaths;
+ break;
+ } else if (!Blocked.test(W)) {
+ if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
+ F = true;
+ }
+ }
+
+ if (F)
+ unblock(V);
+ else {
+ for (auto W : AdjK[V]) {
+ if (W < S)
+ continue;
+ if (B[W].count(SV) == 0)
+ B[W].insert(SV);
+ }
+ }
+ Stack.pop_back();
+ return F;
+}
+
+/// Unblock a node in the circuit finding algorithm.
+void SwingSchedulerDAG::Circuits::unblock(int U) {
+ Blocked.reset(U);
+ SmallPtrSet<SUnit *, 4> &BU = B[U];
+ while (!BU.empty()) {
+ SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
+ assert(SI != BU.end() && "Invalid B set.");
+ SUnit *W = *SI;
+ BU.erase(W);
+ if (Blocked.test(W->NodeNum))
+ unblock(W->NodeNum);
+ }
+}
+
+/// Identify all the elementary circuits in the dependence graph using
+/// Johnson's circuit algorithm.
+void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
+ // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+ // but we do this to find the circuits, and then change them back.
+ swapAntiDependences(SUnits);
+
+ Circuits Cir(SUnits);
+ // Create the adjacency structure.
+ Cir.createAdjacencyStructure(this);
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Cir.reset();
+ Cir.circuit(i, i, NodeSets);
+ }
+
+ // Change the dependences back so that we've created a DAG again.
+ swapAntiDependences(SUnits);
+}
+
+/// Return true for DAG nodes that we ignore when computing the cost functions.
+/// We ignore the back-edge recurrence in order to avoid unbounded recurison
+/// in the calculation of the ASAP, ALAP, etc functions.
+static bool ignoreDependence(const SDep &D, bool isPred) {
+ if (D.isArtificial())
+ return true;
+ return D.getKind() == SDep::Anti && isPred;
+}
+
+/// Compute several functions need to order the nodes for scheduling.
+/// ASAP - Earliest time to schedule a node.
+/// ALAP - Latest time to schedule a node.
+/// MOV - Mobility function, difference between ALAP and ASAP.
+/// D - Depth of each node.
+/// H - Height of each node.
+void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
+
+ ScheduleInfo.resize(SUnits.size());
+
+ DEBUG({
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ SUnit *SU = &SUnits[*I];
+ SU->dump(this);
+ }
+ });
+
+ int maxASAP = 0;
+ // Compute ASAP.
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ int asap = 0;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
+ EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ if (ignoreDependence(*IP, true))
+ continue;
+ SUnit *pred = IP->getSUnit();
+ asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
+ getDistance(pred, SU, *IP) * MII));
+ }
+ maxASAP = std::max(maxASAP, asap);
+ ScheduleInfo[*I].ASAP = asap;
+ }
+
+ // Compute ALAP and MOV.
+ for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
+ E = Topo.rend();
+ I != E; ++I) {
+ int alap = maxASAP;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
+ ES = SU->Succs.end();
+ IS != ES; ++IS) {
+ if (ignoreDependence(*IS, true))
+ continue;
+ SUnit *succ = IS->getSUnit();
+ alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
+ getDistance(SU, succ, *IS) * MII));
+ }
+
+ ScheduleInfo[*I].ALAP = alap;
+ }
+
+ // After computing the node functions, compute the summary for each node set.
+ for (NodeSet &I : NodeSets)
+ I.computeNodeSetInfo(this);
+
+ DEBUG({
+ for (unsigned i = 0; i < SUnits.size(); i++) {
+ dbgs() << "\tNode " << i << ":\n";
+ dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
+ dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
+ dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
+ dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
+ dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
+ }
+ });
+}
+
+/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
+/// as the predecessors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool pred_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Preds,
+ const NodeSet *S = nullptr) {
+ Preds.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*PI, true))
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Preds.insert(PI->getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
+ ES = (*I)->Succs.end();
+ IS != ES; ++IS) {
+ if (IS->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(IS->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(IS->getSUnit()) == 0)
+ Preds.insert(IS->getSUnit());
+ }
+ }
+ return Preds.size() > 0;
+}
+
+/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
+/// as the successors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool succ_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Succs,
+ const NodeSet *S = nullptr) {
+ Succs.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
+ SI != SE; ++SI) {
+ if (S && S->count(SI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*SI, false))
+ continue;
+ if (NodeOrder.count(SI->getSUnit()) == 0)
+ Succs.insert(SI->getSUnit());
+ }
+ for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
+ PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (PI->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Succs.insert(PI->getSUnit());
+ }
+ }
+ return Succs.size() > 0;
+}
+
+/// Return true if there is a path from the specified node to any of the nodes
+/// in DestNodes. Keep track and return the nodes in any path.
+static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
+ SetVector<SUnit *> &DestNodes,
+ SetVector<SUnit *> &Exclude,
+ SmallPtrSet<SUnit *, 8> &Visited) {
+ if (Cur->isBoundaryNode())
+ return false;
+ if (Exclude.count(Cur) != 0)
+ return false;
+ if (DestNodes.count(Cur) != 0)
+ return true;
+ if (!Visited.insert(Cur).second)
+ return Path.count(Cur) != 0;
+ bool FoundPath = false;
+ for (auto &SI : Cur->Succs)
+ FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ for (auto &PI : Cur->Preds)
+ if (PI.getKind() == SDep::Anti)
+ FoundPath |=
+ computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ if (FoundPath)
+ Path.insert(Cur);
+ return FoundPath;
+}
+
+/// Return true if Set1 is a subset of Set2.
+template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
+ for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
+ if (Set2.count(*I) == 0)
+ return false;
+ return true;
+}
+
+/// Compute the live-out registers for the instructions in a node-set.
+/// The live-out registers are those that are defined in the node-set,
+/// but not used. Except for use operands of Phis.
+static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
+ NodeSet &NS) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SmallVector<RegisterMaskPair, 8> LiveOutRegs;
+ SmallSet<unsigned, 4> Uses;
+ for (SUnit *SU : NS) {
+ const MachineInstr *MI = SU->getInstr();
+ if (MI->isPHI())
+ continue;
+ for (const MachineOperand &MO : MI->operands())
+ if (MO.isReg() && MO.isUse()) {
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ Uses.insert(Reg);
+ else if (MRI.isAllocatable(Reg))
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+ Uses.insert(*Units);
+ }
+ }
+ for (SUnit *SU : NS)
+ for (const MachineOperand &MO : SU->getInstr()->operands())
+ if (MO.isReg() && MO.isDef() && !MO.isDead()) {
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (!Uses.count(Reg))
+ LiveOutRegs.push_back(RegisterMaskPair(Reg,
+ LaneBitmask::getNone()));
+ } else if (MRI.isAllocatable(Reg)) {
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+ if (!Uses.count(*Units))
+ LiveOutRegs.push_back(RegisterMaskPair(*Units,
+ LaneBitmask::getNone()));
+ }
+ }
+ RPTracker.addLiveRegs(LiveOutRegs);
+}
+
+/// A heuristic to filter nodes in recurrent node-sets if the register
+/// pressure of a set is too high.
+void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
+ for (auto &NS : NodeSets) {
+ // Skip small node-sets since they won't cause register pressure problems.
+ if (NS.size() <= 2)
+ continue;
+ IntervalPressure RecRegPressure;
+ RegPressureTracker RecRPTracker(RecRegPressure);
+ RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
+ computeLiveOuts(MF, RecRPTracker, NS);
+ RecRPTracker.closeBottom();
+
+ std::vector<SUnit *> SUnits(NS.begin(), NS.end());
+ std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
+ return A->NodeNum > B->NodeNum;
+ });
+
+ for (auto &SU : SUnits) {
+ // Since we're computing the register pressure for a subset of the
+ // instructions in a block, we need to set the tracker for each
+ // instruction in the node-set. The tracker is set to the instruction
+ // just after the one we're interested in.
+ MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
+ RecRPTracker.setPos(std::next(CurInstI));
+
+ RegPressureDelta RPDelta;
+ ArrayRef<PressureChange> CriticalPSets;
+ RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
+ CriticalPSets,
+ RecRegPressure.MaxSetPressure);
+ if (RPDelta.Excess.isValid()) {
+ DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
+ << ":" << RPDelta.Excess.getUnitInc());
+ NS.setExceedPressure(SU);
+ break;
+ }
+ RecRPTracker.recede();
+ }
+ }
+}
+
+/// A heuristic to colocate node sets that have the same set of
+/// successors.
+void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
+ unsigned Colocate = 0;
+ for (int i = 0, e = NodeSets.size(); i < e; ++i) {
+ NodeSet &N1 = NodeSets[i];
+ SmallSetVector<SUnit *, 8> S1;
+ if (N1.empty() || !succ_L(N1, S1))
+ continue;
+ for (int j = i + 1; j < e; ++j) {
+ NodeSet &N2 = NodeSets[j];
+ if (N1.compareRecMII(N2) != 0)
+ continue;
+ SmallSetVector<SUnit *, 8> S2;
+ if (N2.empty() || !succ_L(N2, S2))
+ continue;
+ if (isSubset(S1, S2) && S1.size() == S2.size()) {
+ N1.setColocate(++Colocate);
+ N2.setColocate(Colocate);
+ break;
+ }
+ }
+ }
+}
+
+/// Check if the existing node-sets are profitable. If not, then ignore the
+/// recurrent node-sets, and attempt to schedule all nodes together. This is
+/// a heuristic. If the MII is large and there is a non-recurrent node with
+/// a large depth compared to the MII, then it's best to try and schedule
+/// all instruction together instead of starting with the recurrent node-sets.
+void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
+ // Look for loops with a large MII.
+ if (MII <= 20)
+ return;
+ // Check if the node-set contains only a simple add recurrence.
+ for (auto &NS : NodeSets)
+ if (NS.size() > 2)
+ return;
+ // If the depth of any instruction is significantly larger than the MII, then
+ // ignore the recurrent node-sets and treat all instructions equally.
+ for (auto &SU : SUnits)
+ if (SU.getDepth() > MII * 1.5) {
+ NodeSets.clear();
+ DEBUG(dbgs() << "Clear recurrence node-sets\n");
+ return;
+ }
+}
+
+/// Add the nodes that do not belong to a recurrence set into groups
+/// based upon connected componenets.
+void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
+ SetVector<SUnit *> NodesAdded;
+ SmallPtrSet<SUnit *, 8> Visited;
+ // Add the nodes that are on a path between the previous node sets and
+ // the current node set.
+ for (NodeSet &I : NodeSets) {
+ SmallSetVector<SUnit *, 8> N;
+ // Add the nodes from the current node set to the previous node set.
+ if (succ_L(I, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, NodesAdded, I, Visited);
+ }
+ if (Path.size() > 0)
+ I.insert(Path.begin(), Path.end());
+ }
+ // Add the nodes from the previous node set to the current node set.
+ N.clear();
+ if (succ_L(NodesAdded, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, I, NodesAdded, Visited);
+ }
+ if (Path.size() > 0)
+ I.insert(Path.begin(), Path.end());
+ }
+ NodesAdded.insert(I.begin(), I.end());
+ }
+
+ // Create a new node set with the connected nodes of any successor of a node
+ // in a recurrent set.
+ NodeSet NewSet;
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+
+ // Create a new node set with the connected nodes of any predecessor of a node
+ // in a recurrent set.
+ NewSet.clear();
+ if (pred_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+
+ // Create new nodes sets with the connected nodes any any remaining node that
+ // has no predecessor.
+ for (unsigned i = 0; i < SUnits.size(); ++i) {
+ SUnit *SU = &SUnits[i];
+ if (NodesAdded.count(SU) == 0) {
+ NewSet.clear();
+ addConnectedNodes(SU, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+ }
+ }
+}
+
+/// Add the node to the set, and add all is its connected nodes to the set.
+void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded) {
+ NewSet.insert(SU);
+ NodesAdded.insert(SU);
+ for (auto &SI : SU->Succs) {
+ SUnit *Successor = SI.getSUnit();
+ if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
+ addConnectedNodes(Successor, NewSet, NodesAdded);
+ }
+ for (auto &PI : SU->Preds) {
+ SUnit *Predecessor = PI.getSUnit();
+ if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
+ addConnectedNodes(Predecessor, NewSet, NodesAdded);
+ }
+}
+
+/// Return true if Set1 contains elements in Set2. The elements in common
+/// are returned in a different container.
+static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
+ SmallSetVector<SUnit *, 8> &Result) {
+ Result.clear();
+ for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
+ SUnit *SU = Set1[i];
+ if (Set2.count(SU) != 0)
+ Result.insert(SU);
+ }
+ return !Result.empty();
+}
+
+/// Merge the recurrence node sets that have the same initial node.
+void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I) {
+ NodeSet &NI = *I;
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ NodeSet &NJ = *J;
+ if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
+ if (NJ.compareRecMII(NI) > 0)
+ NI.setRecMII(NJ.getRecMII());
+ for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
+ ++NII)
+ I->insert(*NII);
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+ }
+}
+
+/// Remove nodes that have been scheduled in previous NodeSets.
+void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I)
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
+
+ if (J->size() == 0) {
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+}
+
+/// Return true if Inst1 defines a value that is used in Inst2.
+static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
+ for (auto &SI : Inst1->Succs)
+ if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
+ return true;
+ return false;
+}
+
+/// Compute an ordered list of the dependence graph nodes, which
+/// indicates the order that the nodes will be scheduled. This is a
+/// two-level algorithm. First, a partial order is created, which
+/// consists of a list of sets ordered from highest to lowest priority.
+void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
+ SmallSetVector<SUnit *, 8> R;
+ NodeOrder.clear();
+
+ for (auto &Nodes : NodeSets) {
+ DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
+ OrderKind Order;
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (preds) ");
+ } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = TopDown;
+ DEBUG(dbgs() << " Top down (succs) ");
+ } else if (isIntersect(N, Nodes, R)) {
+ // If some of the successors are in the existing node-set, then use the
+ // top-down ordering.
+ Order = TopDown;
+ DEBUG(dbgs() << " Top down (intersect) ");
+ } else if (NodeSets.size() == 1) {
+ for (auto &N : Nodes)
+ if (N->Succs.size() == 0)
+ R.insert(N);
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (all) ");
+ } else {
+ // Find the node with the highest ASAP.
+ SUnit *maxASAP = nullptr;
+ for (SUnit *SU : Nodes) {
+ if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
+ maxASAP = SU;
+ }
+ R.insert(maxASAP);
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (default) ");
+ }
+
+ while (!R.empty()) {
+ if (Order == TopDown) {
+ // Choose the node with the maximum height. If more than one, choose
+ // the node with the lowest MOV. If still more than one, check if there
+ // is a dependence between the instructions.
+ while (!R.empty()) {
+ SUnit *maxHeight = nullptr;
+ for (SUnit *I : R) {
+ if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
+ maxHeight = I;
+ else if (getHeight(I) == getHeight(maxHeight) &&
+ getMOV(I) < getMOV(maxHeight) &&
+ !hasDataDependence(maxHeight, I))
+ maxHeight = I;
+ else if (hasDataDependence(I, maxHeight))
+ maxHeight = I;
+ }
+ NodeOrder.insert(maxHeight);
+ DEBUG(dbgs() << maxHeight->NodeNum << " ");
+ R.remove(maxHeight);
+ for (const auto &I : maxHeight->Succs) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ if (ignoreDependence(I, false))
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxHeight->Preds) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = BottomUp;
+ DEBUG(dbgs() << "\n Switching order to bottom up ");
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ } else {
+ // Choose the node with the maximum depth. If more than one, choose
+ // the node with the lowest MOV. If there is still more than one, check
+ // for a dependence between the instructions.
+ while (!R.empty()) {
+ SUnit *maxDepth = nullptr;
+ for (SUnit *I : R) {
+ if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
+ maxDepth = I;
+ else if (getDepth(I) == getDepth(maxDepth) &&
+ getMOV(I) < getMOV(maxDepth) &&
+ !hasDataDependence(I, maxDepth))
+ maxDepth = I;
+ else if (hasDataDependence(maxDepth, I))
+ maxDepth = I;
+ }
+ NodeOrder.insert(maxDepth);
+ DEBUG(dbgs() << maxDepth->NodeNum << " ");
+ R.remove(maxDepth);
+ if (Nodes.isExceedSU(maxDepth)) {
+ Order = TopDown;
+ R.clear();
+ R.insert(Nodes.getNode(0));
+ break;
+ }
+ for (const auto &I : maxDepth->Preds) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ if (I.getKind() == SDep::Anti)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxDepth->Succs) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = TopDown;
+ DEBUG(dbgs() << "\n Switching order to top down ");
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ }
+ }
+ DEBUG(dbgs() << "\nDone with Nodeset\n");
+ }
+
+ DEBUG({
+ dbgs() << "Node order: ";
+ for (SUnit *I : NodeOrder)
+ dbgs() << " " << I->NodeNum << " ";
+ dbgs() << "\n";
+ });
+}
+
+/// Process the nodes in the computed order and create the pipelined schedule
+/// of the instructions, if possible. Return true if a schedule is found.
+bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
+
+ if (NodeOrder.size() == 0)
+ return false;
+
+ bool scheduleFound = false;
+ // Keep increasing II until a valid schedule is found.
+ for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
+ Schedule.reset();
+ Schedule.setInitiationInterval(II);
+ DEBUG(dbgs() << "Try to schedule with " << II << "\n");
+
+ SetVector<SUnit *>::iterator NI = NodeOrder.begin();
+ SetVector<SUnit *>::iterator NE = NodeOrder.end();
+ do {
+ SUnit *SU = *NI;
+
+ // Compute the schedule time for the instruction, which is based
+ // upon the scheduled time for any predecessors/successors.
+ int EarlyStart = INT_MIN;
+ int LateStart = INT_MAX;
+ // These values are set when the size of the schedule window is limited
+ // due to chain dependences.
+ int SchedEnd = INT_MAX;
+ int SchedStart = INT_MIN;
+ Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
+ II, this);
+ DEBUG({
+ dbgs() << "Inst (" << SU->NodeNum << ") ";
+ SU->getInstr()->dump();
+ dbgs() << "\n";
+ });
+ DEBUG({
+ dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
+ << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
+ });
+
+ if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
+ SchedStart > LateStart)
+ scheduleFound = false;
+ else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
+ SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
+ SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
+ scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
+ } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
+ SchedEnd =
+ std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
+ // When scheduling a Phi it is better to start at the late cycle and go
+ // backwards. The default order may insert the Phi too far away from
+ // its first dependence.
+ if (SU->getInstr()->isPHI())
+ scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
+ else
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else {
+ int FirstCycle = Schedule.getFirstCycle();
+ scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
+ FirstCycle + getASAP(SU) + II - 1, II);
+ }
+ // Even if we find a schedule, make sure the schedule doesn't exceed the
+ // allowable number of stages. We keep trying if this happens.
+ if (scheduleFound)
+ if (SwpMaxStages > -1 &&
+ Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
+ scheduleFound = false;
+
+ DEBUG({
+ if (!scheduleFound)
+ dbgs() << "\tCan't schedule\n";
+ });
+ } while (++NI != NE && scheduleFound);
+
+ // If a schedule is found, check if it is a valid schedule too.
+ if (scheduleFound)
+ scheduleFound = Schedule.isValidSchedule(this);
+ }
+
+ DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
+
+ if (scheduleFound)
+ Schedule.finalizeSchedule(this);
+ else
+ Schedule.reset();
+
+ return scheduleFound && Schedule.getMaxStageCount() > 0;
+}
+
+/// Given a schedule for the loop, generate a new version of the loop,
+/// and replace the old version. This function generates a prolog
+/// that contains the initial iterations in the pipeline, and kernel
+/// loop, and the epilogue that contains the code for the final
+/// iterations.
+void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
+ // Create a new basic block for the kernel and add it to the CFG.
+ MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+
+ unsigned MaxStageCount = Schedule.getMaxStageCount();
+
+ // Remember the registers that are used in different stages. The index is
+ // the iteration, or stage, that the instruction is scheduled in. This is
+ // a map between register names in the orignal block and the names created
+ // in each stage of the pipelined loop.
+ ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
+ InstrMapTy InstrMap;
+
+ SmallVector<MachineBasicBlock *, 4> PrologBBs;
+ // Generate the prolog instructions that set up the pipeline.
+ generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
+ MF.insert(BB->getIterator(), KernelBB);
+
+ // Rearrange the instructions to generate the new, pipelined loop,
+ // and update register names as needed.
+ for (int Cycle = Schedule.getFirstCycle(),
+ LastCycle = Schedule.getFinalCycle();
+ Cycle <= LastCycle; ++Cycle) {
+ std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
+ // This inner loop schedules each instruction in the cycle.
+ for (SUnit *CI : CycleInstrs) {
+ if (CI->getInstr()->isPHI())
+ continue;
+ unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
+ MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
+ updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = CI->getInstr();
+ }
+ }
+
+ // Copy any terminator instructions to the new kernel, and update
+ // names as needed.
+ for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
+ E = BB->instr_end();
+ I != E; ++I) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
+ updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = &*I;
+ }
+
+ KernelBB->transferSuccessors(BB);
+ KernelBB->replaceSuccessor(BB, KernelBB);
+
+ generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
+ VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
+ generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
+ InstrMap, MaxStageCount, MaxStageCount, false);
+
+ DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
+
+ SmallVector<MachineBasicBlock *, 4> EpilogBBs;
+ // Generate the epilog instructions to complete the pipeline.
+ generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
+ PrologBBs);
+
+ // We need this step because the register allocation doesn't handle some
+ // situations well, so we insert copies to help out.
+ splitLifetimes(KernelBB, EpilogBBs, Schedule);
+
+ // Remove dead instructions due to loop induction variables.
+ removeDeadInstructions(KernelBB, EpilogBBs);
+
+ // Add branches between prolog and epilog blocks.
+ addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
+
+ // Remove the original loop since it's no longer referenced.
+ BB->clear();
+ BB->eraseFromParent();
+
+ delete[] VRMap;
+}
+
+/// Generate the pipeline prolog code.
+void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs) {
+ MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
+ assert(PreheaderBB != NULL &&
+ "Need to add code to handle loops w/o preheader");
+ MachineBasicBlock *PredBB = PreheaderBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which will be generated in the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ for (unsigned i = 0; i < LastStage; ++i) {
+ // Create and insert the prolog basic block prior to the original loop
+ // basic block. The original loop is removed later.
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+ PrologBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+ NewBB->transferSuccessors(PredBB);
+ PredBB->addSuccessor(NewBB);
+ PredBB = NewBB;
+
+ // Generate instructions for each appropriate stage. Process instructions
+ // in original program order.
+ for (int StageNum = i; StageNum >= 0; --StageNum) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstTerminator();
+ BBI != BBE; ++BBI) {
+ if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
+ if (BBI->isPHI())
+ continue;
+ MachineInstr *NewMI =
+ cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
+ updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
+ VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = &*BBI;
+ }
+ }
+ }
+ rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
+ DEBUG({
+ dbgs() << "prolog:\n";
+ NewBB->dump();
+ });
+ }
+
+ PredBB->replaceSuccessor(BB, KernelBB);
+
+ // Check if we need to remove the branch from the preheader to the original
+ // loop, and replace it with a branch to the new loop.
+ unsigned numBranches = TII->removeBranch(*PreheaderBB);
+ if (numBranches) {
+ SmallVector<MachineOperand, 0> Cond;
+ TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
+ }
+}
+
+/// Generate the pipeline epilog code. The epilog code finishes the iterations
+/// that were started in either the prolog or the kernel. We create a basic
+/// block for each stage that needs to complete.
+void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs,
+ MBBVectorTy &PrologBBs) {
+ // We need to change the branch from the kernel to the first epilog block, so
+ // this call to analyze branch uses the kernel rather than the original BB.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
+ assert(!checkBranch && "generateEpilog must be able to analyze the branch");
+ if (checkBranch)
+ return;
+
+ MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
+ if (*LoopExitI == KernelBB)
+ ++LoopExitI;
+ assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
+ MachineBasicBlock *LoopExitBB = *LoopExitI;
+
+ MachineBasicBlock *PredBB = KernelBB;
+ MachineBasicBlock *EpilogStart = LoopExitBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which was generated for the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ int EpilogStage = LastStage + 1;
+ for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
+ EpilogBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+
+ PredBB->replaceSuccessor(LoopExitBB, NewBB);
+ NewBB->addSuccessor(LoopExitBB);
+
+ if (EpilogStart == LoopExitBB)
+ EpilogStart = NewBB;
+
+ // Add instructions to the epilog depending on the current block.
+ // Process instructions in original program order.
+ for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
+ for (auto &BBI : *BB) {
+ if (BBI.isPHI())
+ continue;
+ MachineInstr *In = &BBI;
+ if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
+ MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
+ updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = In;
+ }
+ }
+ }
+ generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
+ VRMap, InstrMap, LastStage, EpilogStage, i == 1);
+ generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
+ InstrMap, LastStage, EpilogStage, i == 1);
+ PredBB = NewBB;
+
+ DEBUG({
+ dbgs() << "epilog:\n";
+ NewBB->dump();
+ });
+ }
+
+ // Fix any Phi nodes in the loop exit block.
+ for (MachineInstr &MI : *LoopExitBB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.getMBB() == BB)
+ MO.setMBB(PredBB);
+ }
+ }
+
+ // Create a branch to the new epilog from the kernel.
+ // Remove the original branch and add a new branch to the epilog.
+ TII->removeBranch(*KernelBB);
+ TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
+ // Add a branch to the loop exit.
+ if (EpilogBBs.size() > 0) {
+ MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
+ SmallVector<MachineOperand, 4> Cond1;
+ TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
+ }
+}
+
+/// Replace all uses of FromReg that appear outside the specified
+/// basic block with ToReg.
+static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
+ MachineBasicBlock *MBB,
+ MachineRegisterInfo &MRI,
+ LiveIntervals &LIS) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
+ E = MRI.use_end();
+ I != E;) {
+ MachineOperand &O = *I;
+ ++I;
+ if (O.getParent()->getParent() != MBB)
+ O.setReg(ToReg);
+ }
+ if (!LIS.hasInterval(ToReg))
+ LIS.createEmptyInterval(ToReg);
+}
+
+/// Return true if the register has a use that occurs outside the
+/// specified loop.
+static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
+ MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
+ E = MRI.use_end();
+ I != E; ++I)
+ if (I->getParent()->getParent() != BB)
+ return true;
+ return false;
+}
+
+/// Generate Phis for the specific block in the generated pipelined code.
+/// This function looks at the Phis from the original code to guide the
+/// creation of new Phis.
+void SwingSchedulerDAG::generateExistingPhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
+ bool IsLast) {
+ // Compute the stage number for the inital value of the Phi, which
+ // comes from the prolog. The prolog to use depends on to which kernel/
+ // epilog that we're adding the Phi.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ bool InKernel = (LastStageNum == CurStageNum);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - (CurStageNum - LastStageNum);
+ PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ unsigned Def = BBI->getOperand(0).getReg();
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+
+ unsigned PhiOp1 = 0;
+ // The Phi value from the loop body typically is defined in the loop, but
+ // not always. So, we need to check if the value is defined in the loop.
+ unsigned PhiOp2 = LoopVal;
+ if (VRMap[LastStageNum].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum][LoopVal];
+
+ int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
+ int LoopValStage =
+ Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
+ unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
+ if (NumStages == 0) {
+ // We don't need to generate a Phi anymore, but we need to rename any uses
+ // of the Phi value.
+ unsigned NewReg = VRMap[PrevStage][LoopVal];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
+ Def, NewReg);
+ if (VRMap[CurStageNum].count(LoopVal))
+ VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
+ }
+ // Adjust the number of Phis needed depending on the number of prologs left,
+ // and the distance from where the Phi is first scheduled.
+ unsigned NumPhis = NumStages;
+ if (!InKernel && (int)PrologStage < LoopValStage)
+ // The NumPhis is the maximum number of new Phis needed during the steady
+ // state. If the Phi has not been scheduled in current prolog, then we
+ // need to generate less Phis.
+ NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
+ // The number of Phis cannot exceed the number of prolog stages. Each
+ // stage can potentially define two values.
+ NumPhis = std::min(NumPhis, PrologStage + 2);
+
+ unsigned NewReg = 0;
+
+ unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
+ // In the epilog, we may need to look back one stage to get the correct
+ // Phi name because the epilog and prolog blocks execute the same stage.
+ // The correct name is from the previous block only when the Phi has
+ // been completely scheduled prior to the epilog, and Phi value is not
+ // needed in multiple stages.
+ int StageDiff = 0;
+ if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
+ NumPhis == 1)
+ StageDiff = 1;
+ // Adjust the computations below when the phi and the loop definition
+ // are scheduled in different stages.
+ if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiff = StageScheduled - LoopValStage;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ // If the Phi hasn't been scheduled, then use the initial Phi operand
+ // value. Otherwise, use the scheduled version of the instruction. This
+ // is a little complicated when a Phi references another Phi.
+ if (np > PrologStage || StageScheduled >= (int)LastStageNum)
+ PhiOp1 = InitVal;
+ // Check if the Phi has already been scheduled in a prolog stage.
+ else if (PrologStage >= AccessStage + StageDiff + np &&
+ VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
+ PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
+ // Check if the Phi has already been scheduled, but the loop intruction
+ // is either another Phi, or doesn't occur in the loop.
+ else if (PrologStage >= AccessStage + StageDiff + np) {
+ // If the Phi references another Phi, we need to examine the other
+ // Phi to get the correct value.
+ PhiOp1 = LoopVal;
+ MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
+ int Indirects = 1;
+ while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
+ int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
+ if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
+ PhiOp1 = getInitPhiReg(*InstOp1, BB);
+ else
+ PhiOp1 = getLoopPhiReg(*InstOp1, BB);
+ InstOp1 = MRI.getVRegDef(PhiOp1);
+ int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
+ int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
+ if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
+ VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
+ PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
+ break;
+ }
+ ++Indirects;
+ }
+ } else
+ PhiOp1 = InitVal;
+ // If this references a generated Phi in the kernel, get the Phi operand
+ // from the incoming block.
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+
+ MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
+ bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
+ // In the epilog, a map lookup is needed to get the value from the kernel,
+ // or previous epilog block. How is does this depends on if the
+ // instruction is scheduled in the previous block.
+ if (!InKernel) {
+ int StageDiffAdj = 0;
+ if (LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiffAdj = StageScheduled - LoopValStage;
+ // Use the loop value defined in the kernel, unless the kernel
+ // contains the last definition of the Phi.
+ if (np == 0 && PrevStage == LastStageNum &&
+ (StageScheduled != 0 || LoopValStage != 0) &&
+ VRMap[PrevStage - StageDiffAdj].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
+ // Use the value defined by the Phi. We add one because we switch
+ // from looking at the loop value to the Phi definition.
+ else if (np > 0 && PrevStage == LastStageNum &&
+ VRMap[PrevStage - np + 1].count(Def))
+ PhiOp2 = VRMap[PrevStage - np + 1][Def];
+ // Use the loop value defined in the kernel.
+ else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
+ VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
+ // Use the value defined by the Phi, unless we're generating the first
+ // epilog and the Phi refers to a Phi in a different stage.
+ else if (VRMap[PrevStage - np].count(Def) &&
+ (!LoopDefIsPhi || PrevStage != LastStageNum))
+ PhiOp2 = VRMap[PrevStage - np][Def];
+ }
+
+ // Check if we can reuse an existing Phi. This occurs when a Phi
+ // references another Phi, and the other Phi is scheduled in an
+ // earlier stage. We can try to reuse an existing Phi up until the last
+ // stage of the current Phi.
+ if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
+ int LVNumStages = Schedule.getStagesForPhi(LoopVal);
+ int StageDiff = (StageScheduled - LoopValStage);
+ LVNumStages -= StageDiff;
+ if (LVNumStages > (int)np) {
+ NewReg = PhiOp2;
+ unsigned ReuseStage = CurStageNum;
+ if (Schedule.isLoopCarried(this, *PhiInst))
+ ReuseStage -= LVNumStages;
+ // Check if the Phi to reuse has been generated yet. If not, then
+ // there is nothing to reuse.
+ if (VRMap[ReuseStage].count(LoopVal)) {
+ NewReg = VRMap[ReuseStage][LoopVal];
+
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, Def, NewReg);
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ PhiOp2 = NewReg;
+ if (VRMap[LastStageNum - np - 1].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
+
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ continue;
+ }
+ } else if (InKernel && StageDiff > 0 &&
+ VRMap[CurStageNum - StageDiff - np].count(LoopVal))
+ PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
+ }
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // We define the Phis after creating the new pipelined code, so
+ // we need to rename the Phi values in scheduled instructions.
+
+ unsigned PrevReg = 0;
+ if (InKernel && VRMap[PrevStage - np].count(LoopVal))
+ PrevReg = VRMap[PrevStage - np][LoopVal];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
+ Def, NewReg, PrevReg);
+ // If the Phi has been scheduled, use the new name for rewriting.
+ if (VRMap[CurStageNum - np].count(Def)) {
+ unsigned R = VRMap[CurStageNum - np][Def];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
+ R, NewReg);
+ }
+
+ // Check if we need to rename any uses that occurs after the loop. The
+ // register to replace depends on whether the Phi is scheduled in the
+ // epilog.
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+
+ // In the kernel, a dependent Phi uses the value from this Phi.
+ if (InKernel)
+ PhiOp2 = NewReg;
+
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ }
+
+ while (NumPhis++ < NumStages) {
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
+ &*BBI, Def, NewReg, 0);
+ }
+
+ // Check if we need to rename a Phi that has been eliminated due to
+ // scheduling.
+ if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
+ replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
+ }
+}
+
+/// Generate Phis for the specified block in the generated pipelined code.
+/// These are new Phis needed because the definition is scheduled after the
+/// use in the pipelened sequence.
+void SwingSchedulerDAG::generatePhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
+ bool IsLast) {
+ // Compute the stage number that contains the initial Phi value, and
+ // the Phi from the previous stage.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ unsigned StageDiff = CurStageNum - LastStageNum;
+ bool InKernel = (StageDiff == 0);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - StageDiff;
+ PrevStage = LastStageNum + StageDiff - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
+ BBE = BB->instr_end();
+ BBI != BBE; ++BBI) {
+ for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = BBI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() ||
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+
+ int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
+ assert(StageScheduled != -1 && "Expecting scheduled instruction.");
+ unsigned Def = MO.getReg();
+ unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
+ // An instruction scheduled in stage 0 and is used after the loop
+ // requires a phi in the epilog for the last definition from either
+ // the kernel or prolog.
+ if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
+ hasUseAfterLoop(Def, BB, MRI))
+ NumPhis = 1;
+ if (!InKernel && (unsigned)StageScheduled > PrologStage)
+ continue;
+
+ unsigned PhiOp2 = VRMap[PrevStage][Def];
+ if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
+ if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
+ PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
+ // The number of Phis can't exceed the number of prolog stages. The
+ // prolog stage number is zero based.
+ if (NumPhis > PrologStage + 1 - StageScheduled)
+ NumPhis = PrologStage + 1 - StageScheduled;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ unsigned PhiOp1 = VRMap[PrologStage][Def];
+ if (np <= PrologStage)
+ PhiOp1 = VRMap[PrologStage - np][Def];
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+ if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
+ }
+ if (!InKernel)
+ PhiOp2 = VRMap[PrevStage - np][Def];
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ unsigned NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // Rewrite uses and update the map. The actions depend upon whether
+ // we generating code for the kernel or epilog blocks.
+ if (InKernel) {
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, PhiOp1, NewReg);
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, PhiOp2, NewReg);
+
+ PhiOp2 = NewReg;
+ VRMap[PrevStage - np - 1][Def] = NewReg;
+ } else {
+ VRMap[CurStageNum - np][Def] = NewReg;
+ if (np == NumPhis - 1)
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, Def, NewReg);
+ }
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ }
+ }
+ }
+}
+
+/// Remove instructions that generate values with no uses.
+/// Typically, these are induction variable operations that generate values
+/// used in the loop itself. A dead instruction has a definition with
+/// no uses, or uses that occur in the original loop only.
+void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ // For each epilog block, check that the value defined by each instruction
+ // is used. If not, delete it.
+ for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
+ MBE = EpilogBBs.rend();
+ MBB != MBE; ++MBB)
+ for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
+ ME = (*MBB)->instr_rend();
+ MI != ME;) {
+ // From DeadMachineInstructionElem. Don't delete inline assembly.
+ if (MI->isInlineAsm()) {
+ ++MI;
+ continue;
+ }
+ bool SawStore = false;
+ // Check if it's safe to remove the instruction due to side effects.
+ // We can, and want to, remove Phis here.
+ if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
+ ++MI;
+ continue;
+ }
+ bool used = true;
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ unsigned reg = MOI->getReg();
+ unsigned realUses = 0;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ // Check if there are any uses that occur only in the original
+ // loop. If so, that's not a real use.
+ if (UI->getParent()->getParent() != BB) {
+ realUses++;
+ used = true;
+ break;
+ }
+ }
+ if (realUses > 0)
+ break;
+ used = false;
+ }
+ if (!used) {
+ MI++->eraseFromParent();
+ continue;
+ }
+ ++MI;
+ }
+ // In the kernel block, check if we can remove a Phi that generates a value
+ // used in an instruction removed in the epilog block.
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBE = KernelBB->getFirstNonPHI();
+ BBI != BBE;) {
+ MachineInstr *MI = &*BBI;
+ ++BBI;
+ unsigned reg = MI->getOperand(0).getReg();
+ if (MRI.use_begin(reg) == MRI.use_end()) {
+ MI->eraseFromParent();
+ }
+ }
+}
+
+/// For loop carried definitions, we split the lifetime of a virtual register
+/// that has uses past the definition in the next iteration. A copy with a new
+/// virtual register is inserted before the definition, which helps with
+/// generating a better register assignment.
+///
+/// v1 = phi(a, v2) v1 = phi(a, v2)
+/// v2 = phi(b, v3) v2 = phi(b, v3)
+/// v3 = .. v4 = copy v1
+/// .. = V1 v3 = ..
+/// .. = v4
+void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBF = KernelBB->getFirstNonPHI();
+ BBI != BBF; ++BBI) {
+ unsigned Def = BBI->getOperand(0).getReg();
+ // Check for any Phi definition that used as an operand of another Phi
+ // in the same block.
+ for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
+ E = MRI.use_instr_end();
+ I != E; ++I) {
+ if (I->isPHI() && I->getParent() == KernelBB) {
+ // Get the loop carried definition.
+ unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
+ if (!LCDef)
+ continue;
+ MachineInstr *MI = MRI.getVRegDef(LCDef);
+ if (!MI || MI->getParent() != KernelBB || MI->isPHI())
+ continue;
+ // Search through the rest of the block looking for uses of the Phi
+ // definition. If one occurs, then split the lifetime.
+ unsigned SplitReg = 0;
+ for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
+ KernelBB->instr_end()))
+ if (BBJ.readsRegister(Def)) {
+ // We split the lifetime when we find the first use.
+ if (SplitReg == 0) {
+ SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
+ BuildMI(*KernelBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), SplitReg)
+ .addReg(Def);
+ }
+ BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
+ }
+ if (!SplitReg)
+ continue;
+ // Search through each of the epilog blocks for any uses to be renamed.
+ for (auto &Epilog : EpilogBBs)
+ for (auto &I : *Epilog)
+ if (I.readsRegister(Def))
+ I.substituteRegister(Def, SplitReg, 0, *TRI);
+ break;
+ }
+ }
+ }
+}
+
+/// Remove the incoming block from the Phis in a basic block.
+static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
+ for (MachineInstr &MI : *BB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
+ if (MI.getOperand(i + 1).getMBB() == Incoming) {
+ MI.RemoveOperand(i + 1);
+ MI.RemoveOperand(i);
+ break;
+ }
+ }
+}
+
+/// Create branches from each prolog basic block to the appropriate epilog
+/// block. These edges are needed if the loop ends before reaching the
+/// kernel.
+void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
+ MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule, ValueMapTy *VRMap) {
+ assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
+ MachineInstr *IndVar = Pass.LI.LoopInductionVar;
+ MachineInstr *Cmp = Pass.LI.LoopCompare;
+ MachineBasicBlock *LastPro = KernelBB;
+ MachineBasicBlock *LastEpi = KernelBB;
+
+ // Start from the blocks connected to the kernel and work "out"
+ // to the first prolog and the last epilog blocks.
+ SmallVector<MachineInstr *, 4> PrevInsts;
+ unsigned MaxIter = PrologBBs.size() - 1;
+ unsigned LC = UINT_MAX;
+ unsigned LCMin = UINT_MAX;
+ for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
+ // Add branches to the prolog that go to the corresponding
+ // epilog, and the fall-thru prolog/kernel block.
+ MachineBasicBlock *Prolog = PrologBBs[j];
+ MachineBasicBlock *Epilog = EpilogBBs[i];
+ // We've executed one iteration, so decrement the loop count and check for
+ // the loop end.
+ SmallVector<MachineOperand, 4> Cond;
+ // Check if the LOOP0 has already been removed. If so, then there is no need
+ // to reduce the trip count.
+ if (LC != 0)
+ LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
+ MaxIter);
+
+ // Record the value of the first trip count, which is used to determine if
+ // branches and blocks can be removed for constant trip counts.
+ if (LCMin == UINT_MAX)
+ LCMin = LC;
+
+ unsigned numAdded = 0;
+ if (TargetRegisterInfo::isVirtualRegister(LC)) {
+ Prolog->addSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
+ } else if (j >= LCMin) {
+ Prolog->addSuccessor(Epilog);
+ Prolog->removeSuccessor(LastPro);
+ LastEpi->removeSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, LastEpi);
+ // Remove the blocks that are no longer referenced.
+ if (LastPro != LastEpi) {
+ LastEpi->clear();
+ LastEpi->eraseFromParent();
+ }
+ LastPro->clear();
+ LastPro->eraseFromParent();
+ } else {
+ numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, Prolog);
+ }
+ LastPro = Prolog;
+ LastEpi = Epilog;
+ for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
+ E = Prolog->instr_rend();
+ I != E && numAdded > 0; ++I, --numAdded)
+ updateInstruction(&*I, false, j, 0, Schedule, VRMap);
+ }
+}
+
+/// Return true if we can compute the amount the instruction changes
+/// during each iteration. Set Delta to the amount of the change.
+bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ unsigned BaseReg;
+ int64_t Offset;
+ if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
+ return false;
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ // Check if there is a Phi. If so, get the definition in the loop.
+ MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
+ if (BaseDef && BaseDef->isPHI()) {
+ BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
+ BaseDef = MRI.getVRegDef(BaseReg);
+ }
+ if (!BaseDef)
+ return false;
+
+ int D = 0;
+ if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
+ return false;
+
+ Delta = D;
+ return true;
+}
+
+/// Update the memory operand with a new offset when the pipeliner
+/// generates a new copy of the instruction that refers to a
+/// different memory location.
+void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
+ MachineInstr &OldMI, unsigned Num) {
+ if (Num == 0)
+ return;
+ // If the instruction has memory operands, then adjust the offset
+ // when the instruction appears in different stages.
+ unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
+ if (NumRefs == 0)
+ return;
+ MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
+ unsigned Refs = 0;
+ for (MachineMemOperand *MMO : NewMI.memoperands()) {
+ if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
+ (!MMO->getValue())) {
+ NewMemRefs[Refs++] = MMO;
+ continue;
+ }
+ unsigned Delta;
+ if (computeDelta(OldMI, Delta)) {
+ int64_t AdjOffset = Delta * Num;
+ NewMemRefs[Refs++] =
+ MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
+ } else
+ NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
+ }
+ NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
+}
+
+/// Clone the instruction for the new pipelined loop and update the
+/// memory operands, if needed.
+MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ // Check for tied operands in inline asm instructions. This should be handled
+ // elsewhere, but I'm not sure of the best solution.
+ if (OldMI->isInlineAsm())
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ const auto &MO = OldMI->getOperand(i);
+ if (MO.isReg() && MO.isUse())
+ break;
+ unsigned UseIdx;
+ if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
+ NewMI->tieOperands(i, UseIdx);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Clone the instruction for the new pipelined loop. If needed, this
+/// function updates the instruction using the values saved in the
+/// InstrChanges structure.
+MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum,
+ SMSchedule &Schedule) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(getSUnit(OldMI));
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
+ return nullptr;
+ int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
+ MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
+ if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
+ NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Update the machine instruction with new virtual registers. This
+/// function may change the defintions and/or uses.
+void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum,
+ unsigned InstrStageNum,
+ SMSchedule &Schedule,
+ ValueMapTy *VRMap) {
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ unsigned reg = MO.getReg();
+ if (MO.isDef()) {
+ // Create a new virtual register for the definition.
+ const TargetRegisterClass *RC = MRI.getRegClass(reg);
+ unsigned NewReg = MRI.createVirtualRegister(RC);
+ MO.setReg(NewReg);
+ VRMap[CurStageNum][reg] = NewReg;
+ if (LastDef)
+ replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
+ } else if (MO.isUse()) {
+ MachineInstr *Def = MRI.getVRegDef(reg);
+ // Compute the stage that contains the last definition for instruction.
+ int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
+ unsigned StageNum = CurStageNum;
+ if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
+ // Compute the difference in stages between the defintion and the use.
+ unsigned StageDiff = (InstrStageNum - DefStageNum);
+ // Make an adjustment to get the last definition.
+ StageNum -= StageDiff;
+ }
+ if (VRMap[StageNum].count(reg))
+ MO.setReg(VRMap[StageNum][reg]);
+ }
+ }
+}
+
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
+MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
+/// Return the new name for the value from the previous stage.
+unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
+ unsigned LoopVal, unsigned LoopStage,
+ ValueMapTy *VRMap,
+ MachineBasicBlock *BB) {
+ unsigned PrevVal = 0;
+ if (StageNum > PhiStage) {
+ MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
+ if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
+ // The name is defined in the previous stage.
+ PrevVal = VRMap[StageNum - 1][LoopVal];
+ else if (VRMap[StageNum].count(LoopVal))
+ // The previous name is defined in the current stage when the instruction
+ // order is swapped.
+ PrevVal = VRMap[StageNum][LoopVal];
+ else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
+ // The loop value hasn't yet been scheduled.
+ PrevVal = LoopVal;
+ else if (StageNum == PhiStage + 1)
+ // The loop value is another phi, which has not been scheduled.
+ PrevVal = getInitPhiReg(*LoopInst, BB);
+ else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
+ // The loop value is another phi, which has been scheduled.
+ PrevVal =
+ getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
+ LoopStage, VRMap, BB);
+ }
+ return PrevVal;
+}
+
+/// Rewrite the Phi values in the specified block to use the mappings
+/// from the initial operand. Once the Phi is scheduled, we switch
+/// to using the loop value instead of the Phi value, so those names
+/// do not need to be rewritten.
+void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
+ unsigned StageNum,
+ SMSchedule &Schedule,
+ ValueMapTy *VRMap,
+ InstrMapTy &InstrMap) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+ unsigned PhiDef = BBI->getOperand(0).getReg();
+
+ unsigned PhiStage =
+ (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
+ unsigned LoopStage =
+ (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
+ unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
+ if (NumPhis > StageNum)
+ NumPhis = StageNum;
+ for (unsigned np = 0; np <= NumPhis; ++np) {
+ unsigned NewVal =
+ getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
+ if (!NewVal)
+ NewVal = InitVal;
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
+ PhiDef, NewVal);
+ }
+ }
+}
+
+/// Rewrite a previously scheduled instruction to use the register value
+/// from the new instruction. Make sure the instruction occurs in the
+/// basic block, and we don't change the uses in the new instruction.
+void SwingSchedulerDAG::rewriteScheduledInstr(
+ MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
+ unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
+ unsigned NewReg, unsigned PrevReg) {
+ bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
+ int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
+ // Rewrite uses that have been scheduled already to use the new
+ // Phi register.
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
+ EI = MRI.use_end();
+ UI != EI;) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ ++UI;
+ if (UseMI->getParent() != BB)
+ continue;
+ if (UseMI->isPHI()) {
+ if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
+ continue;
+ if (getLoopPhiReg(*UseMI, BB) != OldReg)
+ continue;
+ }
+ InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
+ assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
+ SUnit *OrigMISU = getSUnit(OrigInstr->second);
+ int StageSched = Schedule.stageScheduled(OrigMISU);
+ int CycleSched = Schedule.cycleScheduled(OrigMISU);
+ unsigned ReplaceReg = 0;
+ // This is the stage for the scheduled instruction.
+ if (StagePhi == StageSched && Phi->isPHI()) {
+ int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
+ if (PrevReg && InProlog)
+ ReplaceReg = PrevReg;
+ else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
+ (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
+ ReplaceReg = PrevReg;
+ else
+ ReplaceReg = NewReg;
+ }
+ // The scheduled instruction occurs before the scheduled Phi, and the
+ // Phi is not loop carried.
+ if (!InProlog && StagePhi + 1 == StageSched &&
+ !Schedule.isLoopCarried(this, *Phi))
+ ReplaceReg = NewReg;
+ if (StagePhi > StageSched && Phi->isPHI())
+ ReplaceReg = NewReg;
+ if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
+ ReplaceReg = NewReg;
+ if (ReplaceReg) {
+ MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
+ UseOp.setReg(ReplaceReg);
+ }
+ }
+}
+
+/// Check if we can change the instruction to use an offset value from the
+/// previous iteration. If so, return true and set the base and offset values
+/// so that we can rewrite the load, if necessary.
+/// v1 = Phi(v0, v3)
+/// v2 = load v1, 0
+/// v3 = post_store v1, 4, x
+/// This function enables the load to be rewritten as v2 = load v3, 4.
+bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
+ unsigned &BasePos,
+ unsigned &OffsetPos,
+ unsigned &NewBase,
+ int64_t &Offset) {
+ // Get the load instruction.
+ if (TII->isPostIncrement(*MI))
+ return false;
+ unsigned BasePosLd, OffsetPosLd;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
+ return false;
+ unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
+
+ // Look for the Phi instruction.
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineInstr *Phi = MRI.getVRegDef(BaseReg);
+ if (!Phi || !Phi->isPHI())
+ return false;
+ // Get the register defined in the loop block.
+ unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
+ if (!PrevReg)
+ return false;
+
+ // Check for the post-increment load/store instruction.
+ MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
+ if (!PrevDef || PrevDef == MI)
+ return false;
+
+ if (!TII->isPostIncrement(*PrevDef))
+ return false;
+
+ unsigned BasePos1 = 0, OffsetPos1 = 0;
+ if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
+ return false;
+
+ // Make sure offset values are both positive or both negative.
+ int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
+ int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
+ if ((LoadOffset >= 0) != (StoreOffset >= 0))
+ return false;
+
+ // Set the return value once we determine that we return true.
+ BasePos = BasePosLd;
+ OffsetPos = OffsetPosLd;
+ NewBase = PrevReg;
+ Offset = StoreOffset;
+ return true;
+}
+
+/// Apply changes to the instruction if needed. The changes are need
+/// to improve the scheduling and depend up on the final schedule.
+MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
+ SMSchedule &Schedule,
+ bool UpdateDAG) {
+ SUnit *SU = getSUnit(MI);
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ return nullptr;
+ unsigned BaseReg = MI->getOperand(BasePos).getReg();
+ MachineInstr *LoopDef = findDefInLoop(BaseReg);
+ int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
+ int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
+ int BaseStageNum = Schedule.stageScheduled(SU);
+ int BaseCycleNum = Schedule.cycleScheduled(SU);
+ if (BaseStageNum < DefStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ int OffsetDiff = DefStageNum - BaseStageNum;
+ if (DefCycleNum < BaseCycleNum) {
+ NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
+ if (OffsetDiff > 0)
+ --OffsetDiff;
+ }
+ int64_t NewOffset =
+ MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ if (UpdateDAG) {
+ SU->setInstr(NewMI);
+ MISUnitMap[NewMI] = SU;
+ }
+ NewMIs.insert(NewMI);
+ return NewMI;
+ }
+ }
+ return nullptr;
+}
+
+/// Return true for an order dependence that is loop carried potentially.
+/// An order dependence is loop carried if the destination defines a value
+/// that may be used by the source in a subsequent iteration.
+bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
+ bool isSucc) {
+ if (!isOrder(Source, Dep) || Dep.isArtificial())
+ return false;
+
+ if (!SwpPruneLoopCarried)
+ return true;
+
+ MachineInstr *SI = Source->getInstr();
+ MachineInstr *DI = Dep.getSUnit()->getInstr();
+ if (!isSucc)
+ std::swap(SI, DI);
+ assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
+
+ // Assume ordered loads and stores may have a loop carried dependence.
+ if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
+ SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
+ return true;
+
+ // Only chain dependences between a load and store can be loop carried.
+ if (!DI->mayStore() || !SI->mayLoad())
+ return false;
+
+ unsigned DeltaS, DeltaD;
+ if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
+ return true;
+
+ unsigned BaseRegS, BaseRegD;
+ int64_t OffsetS, OffsetD;
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
+ !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
+ return true;
+
+ if (BaseRegS != BaseRegD)
+ return true;
+
+ uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
+ uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
+
+ // This is the main test, which checks the offset values and the loop
+ // increment value to determine if the accesses may be loop carried.
+ if (OffsetS >= OffsetD)
+ return OffsetS + AccessSizeS > DeltaS;
+ else if (OffsetS < OffsetD)
+ return OffsetD + AccessSizeD > DeltaD;
+
+ return true;
+}
+
+void SwingSchedulerDAG::postprocessDAG() {
+ for (auto &M : Mutations)
+ M->apply(this);
+}
+
+/// Try to schedule the node at the specified StartCycle and continue
+/// until the node is schedule or the EndCycle is reached. This function
+/// returns true if the node is scheduled. This routine may search either
+/// forward or backward for a place to insert the instruction based upon
+/// the relative values of StartCycle and EndCycle.
+bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
+ bool forward = true;
+ if (StartCycle > EndCycle)
+ forward = false;
+
+ // The terminating condition depends on the direction.
+ int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
+ for (int curCycle = StartCycle; curCycle != termCycle;
+ forward ? ++curCycle : --curCycle) {
+
+ // Add the already scheduled instructions at the specified cycle to the DFA.
+ Resources->clearResources();
+ for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
+ checkCycle <= LastCycle; checkCycle += II) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
+
+ for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
+ E = cycleInstrs.end();
+ I != E; ++I) {
+ if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
+ continue;
+ assert(Resources->canReserveResources(*(*I)->getInstr()) &&
+ "These instructions have already been scheduled.");
+ Resources->reserveResources(*(*I)->getInstr());
+ }
+ }
+ if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
+ Resources->canReserveResources(*SU->getInstr())) {
+ DEBUG({
+ dbgs() << "\tinsert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+
+ ScheduledInstrs[curCycle].push_back(SU);
+ InstrToCycle.insert(std::make_pair(SU, curCycle));
+ if (curCycle > LastCycle)
+ LastCycle = curCycle;
+ if (curCycle < FirstCycle)
+ FirstCycle = curCycle;
+ return true;
+ }
+ DEBUG({
+ dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+ }
+ return false;
+}
+
+// Return the cycle of the earliest scheduled instruction in the chain.
+int SMSchedule::earliestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int EarlyCycle = INT_MAX;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *PrevSU = Cur.getSUnit();
+ if (Visited.count(PrevSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
+ if (it == InstrToCycle.end())
+ continue;
+ EarlyCycle = std::min(EarlyCycle, it->second);
+ for (const auto &PI : PrevSU->Preds)
+ if (SwingSchedulerDAG::isOrder(PrevSU, PI))
+ Worklist.push_back(PI);
+ Visited.insert(PrevSU);
+ }
+ return EarlyCycle;
+}
+
+// Return the cycle of the latest scheduled instruction in the chain.
+int SMSchedule::latestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int LateCycle = INT_MIN;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *SuccSU = Cur.getSUnit();
+ if (Visited.count(SuccSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
+ if (it == InstrToCycle.end())
+ continue;
+ LateCycle = std::max(LateCycle, it->second);
+ for (const auto &SI : SuccSU->Succs)
+ if (SwingSchedulerDAG::isOrder(SuccSU, SI))
+ Worklist.push_back(SI);
+ Visited.insert(SuccSU);
+ }
+ return LateCycle;
+}
+
+/// If an instruction has a use that spans multiple iterations, then
+/// return true. These instructions are characterized by having a back-ege
+/// to a Phi, which contains a reference to another Phi.
+static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
+ for (auto &P : SU->Preds)
+ if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
+ for (auto &S : P.getSUnit()->Succs)
+ if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
+ return P.getSUnit();
+ return nullptr;
+}
+
+/// Compute the scheduling start slot for the instruction. The start slot
+/// depends on any predecessor or successor nodes scheduled already.
+void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II,
+ SwingSchedulerDAG *DAG) {
+ // Iterate over each instruction that has been scheduled already. The start
+ // slot computuation depends on whether the previously scheduled instruction
+ // is a predecessor or successor of the specified instruction.
+ for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
+
+ // Iterate over each instruction in the current cycle.
+ for (SUnit *I : getInstructions(cycle)) {
+ // Because we're processing a DAG for the dependences, we recognize
+ // the back-edge in recurrences by anti dependences.
+ for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
+ const SDep &Dep = SU->Preds[i];
+ if (Dep.getSUnit() == I) {
+ if (!DAG->isBackedge(SU, Dep)) {
+ int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
+ int End = earliestCycleInChain(Dep) + (II - 1);
+ *MinEnd = std::min(*MinEnd, End);
+ }
+ } else {
+ int LateStart = cycle - DAG->getLatency(SU, Dep) +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ }
+ }
+ // For instruction that requires multiple iterations, make sure that
+ // the dependent instruction is not scheduled past the definition.
+ SUnit *BE = multipleIterations(I, DAG);
+ if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
+ !SU->isPred(I))
+ *MinLateStart = std::min(*MinLateStart, cycle);
+ }
+ for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
+ if (SU->Succs[i].getSUnit() == I) {
+ const SDep &Dep = SU->Succs[i];
+ if (!DAG->isBackedge(SU, Dep)) {
+ int LateStart = cycle - DAG->getLatency(SU, Dep) +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ if (DAG->isLoopCarriedOrder(SU, Dep)) {
+ int Start = latestCycleInChain(Dep) + 1 - II;
+ *MaxStart = std::max(*MaxStart, Start);
+ }
+ } else {
+ int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ }
+ }
+ }
+ }
+}
+
+/// Order the instructions within a cycle so that the definitions occur
+/// before the uses. Returns true if the instruction is added to the start
+/// of the list, or false if added to the end.
+bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts) {
+ MachineInstr *MI = SU->getInstr();
+ bool OrderBeforeUse = false;
+ bool OrderAfterDef = false;
+ bool OrderBeforeDef = false;
+ unsigned MoveDef = 0;
+ unsigned MoveUse = 0;
+ int StageInst1 = stageScheduled(SU);
+
+ unsigned Pos = 0;
+ for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
+ ++I, ++Pos) {
+ // Relative order of Phis does not matter.
+ if (MI->isPHI() && (*I)->getInstr()->isPHI())
+ continue;
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ unsigned Reg = MO.getReg();
+ unsigned BasePos, OffsetPos;
+ if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ if (MI->getOperand(BasePos).getReg() == Reg)
+ if (unsigned NewReg = SSD->getInstrBaseReg(SU))
+ Reg = NewReg;
+ bool Reads, Writes;
+ std::tie(Reads, Writes) =
+ (*I)->getInstr()->readsWritesVirtualRegister(Reg);
+ if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
+ // Add the instruction after the scheduled instruction.
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
+ if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ if (MoveUse != 0) {
+ OrderAfterDef = true;
+ MoveDef = Pos - 1;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
+ // Add the instruction before the scheduled instruction.
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
+ isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
+ OrderBeforeDef = true;
+ MoveUse = Pos;
+ }
+ }
+ // Check for order dependences between instructions. Make sure the source
+ // is ordered before the destination.
+ for (auto &S : SU->Succs)
+ if (S.getKind() == SDep::Order) {
+ if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
+ if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
+ if (S.isAssignedRegDep()) {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ }
+ for (auto &P : SU->Preds)
+ if (P.getKind() == SDep::Order) {
+ if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
+ if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
+ if (P.isAssignedRegDep()) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ } else {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ }
+ }
+
+ // A circular dependence.
+ if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
+ OrderBeforeUse = false;
+
+ // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
+ // to a loop-carried dependence.
+ if (OrderBeforeDef)
+ OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
+
+ // The uncommon case when the instruction order needs to be updated because
+ // there is both a use and def.
+ if (OrderBeforeUse && OrderAfterDef) {
+ SUnit *UseSU = Insts.at(MoveUse);
+ SUnit *DefSU = Insts.at(MoveDef);
+ if (MoveUse > MoveDef) {
+ Insts.erase(Insts.begin() + MoveUse);
+ Insts.erase(Insts.begin() + MoveDef);
+ } else {
+ Insts.erase(Insts.begin() + MoveDef);
+ Insts.erase(Insts.begin() + MoveUse);
+ }
+ if (orderDependence(SSD, UseSU, Insts)) {
+ Insts.push_front(SU);
+ orderDependence(SSD, DefSU, Insts);
+ return true;
+ }
+ Insts.pop_back();
+ Insts.push_back(SU);
+ Insts.push_back(UseSU);
+ orderDependence(SSD, DefSU, Insts);
+ return false;
+ }
+ // Put the new instruction first if there is a use in the list. Otherwise,
+ // put it at the end of the list.
+ if (OrderBeforeUse)
+ Insts.push_front(SU);
+ else
+ Insts.push_back(SU);
+ return OrderBeforeUse;
+}
+
+/// Return true if the scheduled Phi has a loop carried operand.
+bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
+ if (!Phi.isPHI())
+ return false;
+ assert(Phi.isPHI() && "Expecing a Phi.");
+ SUnit *DefSU = SSD->getSUnit(&Phi);
+ unsigned DefCycle = cycleScheduled(DefSU);
+ int DefStage = stageScheduled(DefSU);
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
+ SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
+ if (!UseSU)
+ return true;
+ if (UseSU->getInstr()->isPHI())
+ return true;
+ unsigned LoopCycle = cycleScheduled(UseSU);
+ int LoopStage = stageScheduled(UseSU);
+ return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
+}
+
+/// Return true if the instruction is a definition that is loop carried
+/// and defines the use on the next iteration.
+/// v1 = phi(v2, v3)
+/// (Def) v3 = op v1
+/// (MO) = v1
+/// If MO appears before Def, then then v1 and v3 may get assigned to the same
+/// register.
+bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
+ MachineInstr *Def, MachineOperand &MO) {
+ if (!MO.isReg())
+ return false;
+ if (Def->isPHI())
+ return false;
+ MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
+ if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
+ return false;
+ if (!isLoopCarried(SSD, *Phi))
+ return false;
+ unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
+ for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
+ MachineOperand &DMO = Def->getOperand(i);
+ if (!DMO.isReg() || !DMO.isDef())
+ continue;
+ if (DMO.getReg() == LoopReg)
+ return true;
+ }
+ return false;
+}
+
+// Check if the generated schedule is valid. This function checks if
+// an instruction that uses a physical register is scheduled in a
+// different stage than the definition. The pipeliner does not handle
+// physical register values that may cross a basic block boundary.
+bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
+ for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
+ SUnit &SU = SSD->SUnits[i];
+ if (!SU.hasPhysRegDefs)
+ continue;
+ int StageDef = stageScheduled(&SU);
+ assert(StageDef != -1 && "Instruction should have been scheduled.");
+ for (auto &SI : SU.Succs)
+ if (SI.isAssignedRegDep())
+ if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
+ if (stageScheduled(SI.getSUnit()) != StageDef)
+ return false;
+ }
+ return true;
+}
+
+/// After the schedule has been formed, call this function to combine
+/// the instructions from the different stages/cycles. That is, this
+/// function creates a schedule that represents a single iteration.
+void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
+ // Move all instructions to the first stage from later stages.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
+ ++stage) {
+ std::deque<SUnit *> &cycleInstrs =
+ ScheduledInstrs[cycle + (stage * InitiationInterval)];
+ for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
+ E = cycleInstrs.rend();
+ I != E; ++I)
+ ScheduledInstrs[cycle].push_front(*I);
+ }
+ }
+ // Iterate over the definitions in each instruction, and compute the
+ // stage difference for each use. Keep the maximum value.
+ for (auto &I : InstrToCycle) {
+ int DefStage = stageScheduled(I.first);
+ MachineInstr *MI = I.first->getInstr();
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+
+ unsigned Reg = Op.getReg();
+ unsigned MaxDiff = 0;
+ bool PhiIsSwapped = false;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ SUnit *SUnitUse = SSD->getSUnit(UseMI);
+ int UseStage = stageScheduled(SUnitUse);
+ unsigned Diff = 0;
+ if (UseStage != -1 && UseStage >= DefStage)
+ Diff = UseStage - DefStage;
+ if (MI->isPHI()) {
+ if (isLoopCarried(SSD, *MI))
+ ++Diff;
+ else
+ PhiIsSwapped = true;
+ }
+ MaxDiff = std::max(Diff, MaxDiff);
+ }
+ RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
+ }
+ }
+
+ // Erase all the elements in the later stages. Only one iteration should
+ // remain in the scheduled list, and it contains all the instructions.
+ for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
+ ScheduledInstrs.erase(cycle);
+
+ // Change the registers in instruction as specified in the InstrChanges
+ // map. We need to use the new registers to create the correct order.
+ for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SSD->SUnits[i];
+ SSD->applyInstrChange(SU->getInstr(), *this, true);
+ }
+
+ // Reorder the instructions in each cycle to fix and improve the
+ // generated code.
+ for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
+ std::deque<SUnit *> newOrderZC;
+ // Put the zero-cost, pseudo instructions at the start of the cycle.
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
+ orderDependence(SSD, SU, newOrderZC);
+ }
+ std::deque<SUnit *> newOrderI;
+ // Then, add the regular instructions back.
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
+ orderDependence(SSD, SU, newOrderI);
+ }
+ // Replace the old order with the new order.
+ cycleInstrs.swap(newOrderZC);
+ cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
+ }
+
+ DEBUG(dump(););
+}
+
+/// Print the schedule information to the given output.
+void SMSchedule::print(raw_ostream &os) const {
+ // Iterate over each cycle.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ // Iterate over each instruction in the cycle.
+ const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
+ for (SUnit *CI : cycleInstrs->second) {
+ os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
+ os << "(" << CI->NodeNum << ") ";
+ CI->getInstr()->print(os);
+ os << "\n";
+ }
+ }
+}
+
+/// Utility function used for debugging to print the schedule.
+void SMSchedule::dump() const { print(dbgs()); }
diff --git a/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp b/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
index 613598d..242cb0b 100644
--- a/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineRegisterInfo.cpp
@@ -21,11 +21,16 @@
using namespace llvm;
+static cl::opt<bool> EnableSubRegLiveness("enable-subreg-liveness", cl::Hidden,
+ cl::init(true), cl::desc("Enable subregister liveness tracking."));
+
// Pin the vtable to this file.
void MachineRegisterInfo::Delegate::anchor() {}
MachineRegisterInfo::MachineRegisterInfo(MachineFunction *MF)
- : MF(MF), TheDelegate(nullptr), TracksSubRegLiveness(false) {
+ : MF(MF), TheDelegate(nullptr),
+ TracksSubRegLiveness(MF->getSubtarget().enableSubRegLiveness() &&
+ EnableSubRegLiveness) {
unsigned NumRegs = getTargetRegisterInfo()->getNumRegs();
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
@@ -88,6 +93,13 @@ MachineRegisterInfo::recomputeRegClass(unsigned Reg) {
return true;
}
+unsigned MachineRegisterInfo::createIncompleteVirtualRegister() {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
+ VRegInfo.grow(Reg);
+ RegAllocHints.grow(Reg);
+ return Reg;
+}
+
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
@@ -98,41 +110,42 @@ MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
"Virtual register RegClass must be allocatable.");
// New virtual register number.
- unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
- VRegInfo.grow(Reg);
+ unsigned Reg = createIncompleteVirtualRegister();
VRegInfo[Reg].first = RegClass;
- RegAllocHints.grow(Reg);
if (TheDelegate)
TheDelegate->MRI_NoteNewVirtualRegister(Reg);
return Reg;
}
-unsigned
-MachineRegisterInfo::getSize(unsigned VReg) const {
- VRegToSizeMap::const_iterator SizeIt = getVRegToSize().find(VReg);
- return SizeIt != getVRegToSize().end() ? SizeIt->second : 0;
+LLT MachineRegisterInfo::getType(unsigned VReg) const {
+ VRegToTypeMap::const_iterator TypeIt = getVRegToType().find(VReg);
+ return TypeIt != getVRegToType().end() ? TypeIt->second : LLT{};
}
-void MachineRegisterInfo::setSize(unsigned VReg, unsigned Size) {
- getVRegToSize()[VReg] = Size;
+void MachineRegisterInfo::setType(unsigned VReg, LLT Ty) {
+ // Check that VReg doesn't have a class.
+ assert((getRegClassOrRegBank(VReg).isNull() ||
+ !getRegClassOrRegBank(VReg).is<const TargetRegisterClass *>()) &&
+ "Can't set the size of a non-generic virtual register");
+ getVRegToType()[VReg] = Ty;
}
unsigned
-MachineRegisterInfo::createGenericVirtualRegister(unsigned Size) {
- assert(Size && "Cannot create empty virtual register");
-
+MachineRegisterInfo::createGenericVirtualRegister(LLT Ty) {
// New virtual register number.
- unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
- VRegInfo.grow(Reg);
+ unsigned Reg = createIncompleteVirtualRegister();
// FIXME: Should we use a dummy register class?
- VRegInfo[Reg].first = static_cast<TargetRegisterClass *>(nullptr);
- getVRegToSize()[Reg] = Size;
- RegAllocHints.grow(Reg);
+ VRegInfo[Reg].first = static_cast<RegisterBank *>(nullptr);
+ getVRegToType()[Reg] = Ty;
if (TheDelegate)
TheDelegate->MRI_NoteNewVirtualRegister(Reg);
return Reg;
}
+void MachineRegisterInfo::clearVirtRegTypes() {
+ getVRegToType().clear();
+}
+
/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void MachineRegisterInfo::clearVirtRegs() {
#ifndef NDEBUG
@@ -444,13 +457,16 @@ void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
"Invalid ReservedRegs vector from target");
}
-bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
- const MachineFunction &MF) const {
+bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg) const {
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
+ const TargetRegisterInfo *TRI = getTargetRegisterInfo();
+ if (TRI->isConstantPhysReg(PhysReg))
+ return true;
+
// Check if any overlapping register is modified, or allocatable so it may be
// used later.
- for (MCRegAliasIterator AI(PhysReg, getTargetRegisterInfo(), true);
+ for (MCRegAliasIterator AI(PhysReg, TRI, true);
AI.isValid(); ++AI)
if (!def_empty(*AI) || isAllocatable(*AI))
return false;
diff --git a/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp b/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
index 47ad60c..e9b4755 100644
--- a/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineSSAUpdater.cpp
@@ -18,7 +18,6 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
index d921e29..e06bc51 100644
--- a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
@@ -230,11 +230,6 @@ static cl::opt<bool> EnablePostRAMachineSched(
cl::desc("Enable the post-ra machine instruction scheduling pass."),
cl::init(true), cl::Hidden);
-/// Forward declare the standard machine scheduler. This will be used as the
-/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
-static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
-
/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,
@@ -251,8 +246,8 @@ priorNonDebug(MachineBasicBlock::const_iterator I,
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,
MachineBasicBlock::const_iterator Beg) {
- return const_cast<MachineInstr*>(
- &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
+ return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
+ .getNonConstIterator();
}
/// If this iterator is a debug value, increment until reaching the End or a
@@ -271,12 +266,8 @@ nextIfDebug(MachineBasicBlock::const_iterator I,
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,
MachineBasicBlock::const_iterator End) {
- // Cast the return value to nonconst MachineInstr, then cast to an
- // instr_iterator, which does not check for null, finally return a
- // bundle_iterator.
- return MachineBasicBlock::instr_iterator(
- const_cast<MachineInstr*>(
- &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
+ return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
+ .getNonConstIterator();
}
/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
@@ -458,9 +449,10 @@ void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
unsigned NumRegionInstrs = 0;
MachineBasicBlock::iterator I = RegionEnd;
for (;I != MBB->begin(); --I) {
- if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
+ MachineInstr &MI = *std::prev(I);
+ if (isSchedBoundary(&MI, &*MBB, MF, TII))
break;
- if (!I->isDebugValue())
+ if (!MI.isDebugValue())
++NumRegionInstrs;
}
// Notify the scheduler of the region, even if we may skip scheduling
@@ -692,8 +684,14 @@ void ScheduleDAGMI::schedule() {
// This may initialize a DFSResult to be used for queue priority.
SchedImpl->initialize(this);
- DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
- SUnits[su].dumpAll(this));
+ DEBUG(
+ if (EntrySU.getInstr() != nullptr)
+ EntrySU.dumpAll(this);
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this);
+ if (ExitSU.getInstr() != nullptr)
+ ExitSU.dumpAll(this);
+ );
if (ViewMISchedDAGs) viewGraph();
// Initialize ready queues now that the DAG and priority data are finalized.
@@ -862,6 +860,44 @@ ScheduleDAGMILive::~ScheduleDAGMILive() {
delete DFSResult;
}
+void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
+ const MachineInstr &MI = *SU.getInstr();
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg())
+ continue;
+ if (!MO.readsReg())
+ continue;
+ if (TrackLaneMasks && !MO.isUse())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ // Ignore re-defs.
+ if (TrackLaneMasks) {
+ bool FoundDef = false;
+ for (const MachineOperand &MO2 : MI.operands()) {
+ if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
+ FoundDef = true;
+ break;
+ }
+ }
+ if (FoundDef)
+ continue;
+ }
+
+ // Record this local VReg use.
+ VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
+ for (; UI != VRegUses.end(); ++UI) {
+ if (UI->SU == &SU)
+ break;
+ }
+ if (UI == VRegUses.end())
+ VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
+ }
+}
+
/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
@@ -889,6 +925,11 @@ void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
// Setup the register pressure trackers for the top scheduled top and bottom
// scheduled regions.
void ScheduleDAGMILive::initRegPressure() {
+ VRegUses.clear();
+ VRegUses.setUniverse(MRI.getNumVirtRegs());
+ for (SUnit &SU : SUnits)
+ collectVRegUses(SU);
+
TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
ShouldTrackLaneMasks, false);
BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
@@ -999,7 +1040,7 @@ void ScheduleDAGMILive::updatePressureDiffs(
// this fact anymore => decrement pressure.
// If the register has just become dead then other uses make it come
// back to life => increment pressure.
- bool Decrement = P.LaneMask != 0;
+ bool Decrement = P.LaneMask.any();
for (const VReg2SUnit &V2SU
: make_range(VRegUses.find(Reg), VRegUses.end())) {
@@ -1018,7 +1059,7 @@ void ScheduleDAGMILive::updatePressureDiffs(
);
}
} else {
- assert(P.LaneMask != 0);
+ assert(P.LaneMask.any());
DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
// This may be called before CurrentBottom has been initialized. However,
// BotRPTracker must have a valid position. We want the value live into the
@@ -1087,6 +1128,8 @@ void ScheduleDAGMILive::schedule() {
SchedImpl->initialize(this);
DEBUG(
+ if (EntrySU.getInstr() != nullptr)
+ EntrySU.dumpAll(this);
for (const SUnit &SU : SUnits) {
SU.dumpAll(this);
if (ShouldTrackPressure) {
@@ -1095,6 +1138,8 @@ void ScheduleDAGMILive::schedule() {
}
dbgs() << '\n';
}
+ if (ExitSU.getInstr() != nullptr)
+ ExitSU.dumpAll(this);
);
if (ViewMISchedDAGs) viewGraph();
@@ -1362,7 +1407,8 @@ class BaseMemOpClusterMutation : public ScheduleDAGMutation {
: SU(su), BaseReg(reg), Offset(ofs) {}
bool operator<(const MemOpInfo&RHS) const {
- return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
+ return std::tie(BaseReg, Offset, SU->NodeNum) <
+ std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
}
};
@@ -1395,6 +1441,24 @@ public:
};
} // anonymous
+namespace llvm {
+
+std::unique_ptr<ScheduleDAGMutation>
+createLoadClusterDAGMutation(const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ return EnableMemOpCluster ? make_unique<LoadClusterMutation>(TII, TRI)
+ : nullptr;
+}
+
+std::unique_ptr<ScheduleDAGMutation>
+createStoreClusterDAGMutation(const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ return EnableMemOpCluster ? make_unique<StoreClusterMutation>(TII, TRI)
+ : nullptr;
+}
+
+} // namespace llvm
+
void BaseMemOpClusterMutation::clusterNeighboringMemOps(
ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
SmallVector<MemOpInfo, 32> MemOpRecords;
@@ -1487,29 +1551,23 @@ namespace {
/// that may be fused by the processor into a single operation.
class MacroFusion : public ScheduleDAGMutation {
const TargetInstrInfo &TII;
- const TargetRegisterInfo &TRI;
public:
- MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
- : TII(TII), TRI(TRI) {}
+ MacroFusion(const TargetInstrInfo &TII)
+ : TII(TII) {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
} // anonymous
-/// Returns true if \p MI reads a register written by \p Other.
-static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
- const MachineInstr &Other) {
- for (const MachineOperand &MO : MI.uses()) {
- if (!MO.isReg() || !MO.readsReg())
- continue;
+namespace llvm {
- unsigned Reg = MO.getReg();
- if (Other.modifiesRegister(Reg, &TRI))
- return true;
- }
- return false;
+std::unique_ptr<ScheduleDAGMutation>
+createMacroFusionDAGMutation(const TargetInstrInfo *TII) {
+ return EnableMacroFusion ? make_unique<MacroFusion>(*TII) : nullptr;
}
+} // namespace llvm
+
/// \brief Callback from DAG postProcessing to create cluster edges to encourage
/// fused operations.
void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
@@ -1521,16 +1579,12 @@ void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
if (!Branch)
return;
- for (SUnit &SU : DAG->SUnits) {
- // SUnits with successors can't be schedule in front of the ExitSU.
- if (!SU.Succs.empty())
- continue;
- // We only care if the node writes to a register that the branch reads.
- MachineInstr *Pred = SU.getInstr();
- if (!HasDataDep(TRI, *Branch, *Pred))
+ for (SDep &PredDep : ExitSU.Preds) {
+ if (PredDep.isWeak())
continue;
-
- if (!TII.shouldScheduleAdjacent(*Pred, *Branch))
+ SUnit &SU = *PredDep.getSUnit();
+ MachineInstr &Pred = *SU.getInstr();
+ if (!TII.shouldScheduleAdjacent(Pred, *Branch))
continue;
// Create a single weak edge from SU to ExitSU. The only effect is to cause
@@ -1543,6 +1597,16 @@ void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
(void)Success;
assert(Success && "No DAG nodes should be reachable from ExitSU");
+ // Adjust latency of data deps between the nodes.
+ for (SDep &PredDep : ExitSU.Preds) {
+ if (PredDep.getSUnit() == &SU)
+ PredDep.setLatency(0);
+ }
+ for (SDep &SuccDep : SU.Succs) {
+ if (SuccDep.getSUnit() == &ExitSU)
+ SuccDep.setLatency(0);
+ }
+
DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
break;
}
@@ -1572,6 +1636,16 @@ protected:
};
} // anonymous
+namespace llvm {
+
+std::unique_ptr<ScheduleDAGMutation>
+createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ return make_unique<CopyConstrain>(TII, TRI);
+}
+
+} // namespace llvm
+
/// constrainLocalCopy handles two possibilities:
/// 1) Local src:
/// I0: = dst
@@ -1760,7 +1834,6 @@ void SchedBoundary::reset() {
Available.clear();
Pending.clear();
CheckPending = false;
- NextSUs.clear();
CurrCycle = 0;
CurrMOps = 0;
MinReadyCycle = UINT_MAX;
@@ -1961,23 +2034,6 @@ void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
Pending.push(SU);
else
Available.push(SU);
-
- // Record this node as an immediate dependent of the scheduled node.
- NextSUs.insert(SU);
-}
-
-void SchedBoundary::releaseTopNode(SUnit *SU) {
- if (SU->isScheduled)
- return;
-
- releaseNode(SU, SU->TopReadyCycle);
-}
-
-void SchedBoundary::releaseBottomNode(SUnit *SU) {
- if (SU->isScheduled)
- return;
-
- releaseNode(SU, SU->BotReadyCycle);
}
/// Move the boundary of scheduled code by one cycle.
@@ -2828,9 +2884,8 @@ void GenericScheduler::tryCandidate(SchedCandidate &Cand,
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// For loops that are acyclic path limited, aggressively schedule for
- // latency. This can result in very long dependence chains scheduled in
- // sequence, so once every cycle (when CurrMOps == 0), switch to normal
- // heuristics.
+ // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
+ // heuristics to take precedence.
if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
tryLatency(TryCand, Cand, *Zone))
return;
@@ -2888,13 +2943,6 @@ void GenericScheduler::tryCandidate(SchedCandidate &Cand,
!Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
return;
- // Prefer immediate defs/users of the last scheduled instruction. This is a
- // local pressure avoidance strategy that also makes the machine code
- // readable.
- if (tryGreater(Zone->isNextSU(TryCand.SU), Zone->isNextSU(Cand.SU),
- TryCand, Cand, NextDefUse))
- return;
-
// Fall through to original instruction order.
if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
|| (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
@@ -3105,28 +3153,24 @@ void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
/// Create the standard converging machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
+ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
// Register DAG post-processors.
//
// FIXME: extend the mutation API to allow earlier mutations to instantiate
// data and pass it to later mutations. Have a single mutation that gathers
// the interesting nodes in one pass.
- DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
- if (EnableMemOpCluster) {
- if (DAG->TII->enableClusterLoads())
- DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
- if (DAG->TII->enableClusterStores())
- DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI));
- }
- if (EnableMacroFusion)
- DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
+ DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
+static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
+ return createGenericSchedLive(C);
+}
+
static MachineSchedRegistry
GenericSchedRegistry("converge", "Standard converging scheduler.",
- createGenericSchedLive);
+ createConveringSched);
//===----------------------------------------------------------------------===//
// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
@@ -3257,9 +3301,9 @@ void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
Top.bumpNode(SU);
}
-/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
-static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
- return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
+ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
+ return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C),
+ /*RemoveKillFlags=*/true);
}
//===----------------------------------------------------------------------===//
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp
index 571a5c1..5f87b68 100644
--- a/contrib/llvm/lib/CodeGen/MachineSink.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp
@@ -22,9 +22,15 @@
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LLVMContext.h"
@@ -34,6 +40,13 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <map>
+#include <utility>
+#include <vector>
+
using namespace llvm;
#define DEBUG_TYPE "machine-sink"
@@ -48,12 +61,21 @@ UseBlockFreqInfo("machine-sink-bfi",
cl::desc("Use block frequency info to find successors to sink"),
cl::init(true), cl::Hidden);
+static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
+ "machine-sink-split-probability-threshold",
+ cl::desc(
+ "Percentage threshold for splitting single-instruction critical edge. "
+ "If the branch threshold is higher than this threshold, we allow "
+ "speculative execution of up to 1 instruction to avoid branching to "
+ "splitted critical edge"),
+ cl::init(40), cl::Hidden);
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");
namespace {
+
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
@@ -62,15 +84,16 @@ namespace {
MachinePostDominatorTree *PDT; // Machine post dominator tree
MachineLoopInfo *LI;
const MachineBlockFrequencyInfo *MBFI;
+ const MachineBranchProbabilityInfo *MBPI;
AliasAnalysis *AA;
// Remember which edges have been considered for breaking.
- SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
+ SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
CEBCandidates;
// Remember which edges we are about to split.
// This is different from CEBCandidates since those edges
// will be split.
- SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
+ SetVector<std::pair<MachineBasicBlock*, MachineBasicBlock*> > ToSplit;
SparseBitVector<> RegsToClearKillFlags;
@@ -79,6 +102,7 @@ namespace {
public:
static char ID; // Pass identification
+
MachineSinking() : MachineFunctionPass(ID) {
initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
}
@@ -92,6 +116,7 @@ namespace {
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachinePostDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
@@ -143,12 +168,14 @@ namespace {
GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
AllSuccsCache &AllSuccessors) const;
};
+
} // end anonymous namespace
char MachineSinking::ID = 0;
char &llvm::MachineSinkingID = MachineSinking::ID;
INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
"Machine code sinking", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
@@ -269,11 +296,12 @@ bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
PDT = &getAnalysis<MachinePostDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
bool EverMadeChange = false;
- while (1) {
+ while (true) {
bool MadeChange = false;
// Process all basic blocks.
@@ -369,6 +397,10 @@ bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
return true;
+ if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
+ BranchProbability(SplitEdgeProbabilityThreshold, 100))
+ return true;
+
// MI is cheap, we probably don't want to break the critical edge for it.
// However, if this would allow some definitions of its source operands
// to be sunk then it's probably worth it.
@@ -604,7 +636,7 @@ MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
- if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
+ if (!MRI->isConstantPhysReg(Reg))
return nullptr;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
diff --git a/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
index 86332c8..ef7e525 100644
--- a/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.cpp
@@ -430,16 +430,17 @@ public:
po_iterator_storage(LoopBounds &lb) : LB(lb) {}
void finishPostorder(const MachineBasicBlock*) {}
- bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
+ bool insertEdge(Optional<const MachineBasicBlock *> From,
+ const MachineBasicBlock *To) {
// Skip already visited To blocks.
MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
return false;
// From is null once when To is the trace center block.
if (From) {
- if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
+ if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) {
// Don't follow backedges, don't leave FromLoop when going upwards.
- if ((LB.Downward ? To : From) == FromLoop->getHeader())
+ if ((LB.Downward ? To : *From) == FromLoop->getHeader())
return false;
// Don't leave FromLoop.
if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
diff --git a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
index a70adb0..a98139f 100644
--- a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
+++ b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
@@ -70,6 +70,10 @@ namespace {
unsigned foundErrors;
+ // Avoid querying the MachineFunctionProperties for each operand.
+ bool isFunctionRegBankSelected;
+ bool isFunctionSelected;
+
typedef SmallVector<unsigned, 16> RegVector;
typedef SmallVector<const uint32_t*, 4> RegMaskVector;
typedef DenseSet<unsigned> RegSet;
@@ -204,16 +208,13 @@ namespace {
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
void visitMachineFunctionAfter();
- template <typename T> void report(const char *msg, ilist_iterator<T> I) {
- report(msg, &*I);
- }
void report(const char *msg, const MachineFunction *MF);
void report(const char *msg, const MachineBasicBlock *MBB);
void report(const char *msg, const MachineInstr *MI);
void report(const char *msg, const MachineOperand *MO, unsigned MONum);
void report_context(const LiveInterval &LI) const;
- void report_context(const LiveRange &LR, unsigned Reg,
+ void report_context(const LiveRange &LR, unsigned VRegUnit,
LaneBitmask LaneMask) const;
void report_context(const LiveRange::Segment &S) const;
void report_context(const VNInfo &VNI) const;
@@ -228,10 +229,10 @@ namespace {
void checkLiveness(const MachineOperand *MO, unsigned MONum);
void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
SlotIndex UseIdx, const LiveRange &LR, unsigned Reg,
- LaneBitmask LaneMask = 0);
+ LaneBitmask LaneMask = LaneBitmask::getNone());
void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
SlotIndex DefIdx, const LiveRange &LR, unsigned Reg,
- LaneBitmask LaneMask = 0);
+ LaneBitmask LaneMask = LaneBitmask::getNone());
void markReachable(const MachineBasicBlock *MBB);
void calcRegsPassed();
@@ -242,11 +243,12 @@ namespace {
void verifyLiveIntervals();
void verifyLiveInterval(const LiveInterval&);
void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
- unsigned);
+ LaneBitmask);
void verifyLiveRangeSegment(const LiveRange&,
const LiveRange::const_iterator I, unsigned,
- unsigned);
- void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0);
+ LaneBitmask);
+ void verifyLiveRange(const LiveRange&, unsigned,
+ LaneBitmask LaneMask = LaneBitmask::getNone());
void verifyStackFrame();
@@ -310,15 +312,12 @@ void MachineVerifier::verifySlotIndexes() const {
void MachineVerifier::verifyProperties(const MachineFunction &MF) {
// If a pass has introduced virtual registers without clearing the
- // AllVRegsAllocated property (or set it without allocating the vregs)
+ // NoVRegs property (or set it without allocating the vregs)
// then report an error.
if (MF.getProperties().hasProperty(
- MachineFunctionProperties::Property::AllVRegsAllocated) &&
- MRI->getNumVirtRegs()) {
- report(
- "Function has AllVRegsAllocated property but there are VReg operands",
- &MF);
- }
+ MachineFunctionProperties::Property::NoVRegs) &&
+ MRI->getNumVirtRegs())
+ report("Function has NoVRegs property but there are VReg operands", &MF);
}
unsigned MachineVerifier::verify(MachineFunction &MF) {
@@ -330,6 +329,11 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
+ isFunctionRegBankSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::RegBankSelected);
+ isFunctionSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected);
+
LiveVars = nullptr;
LiveInts = nullptr;
LiveStks = nullptr;
@@ -359,7 +363,7 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
if (MBBI->getParent() != &*MFI) {
- report("Bad instruction parent pointer", MFI);
+ report("Bad instruction parent pointer", &*MFI);
errs() << "Instruction: " << *MBBI;
continue;
}
@@ -381,7 +385,7 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
CurBundle = &*MBBI;
visitMachineBundleBefore(CurBundle);
} else if (!CurBundle)
- report("No bundle header", MBBI);
+ report("No bundle header", &*MBBI);
visitMachineInstrBefore(&*MBBI);
for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
const MachineInstr &MI = *MBBI;
@@ -474,11 +478,11 @@ void MachineVerifier::report_context(const LiveInterval &LI) const {
errs() << "- interval: " << LI << '\n';
}
-void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg,
+void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
LaneBitmask LaneMask) const {
report_context_liverange(LR);
- errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
- if (LaneMask != 0)
+ report_context_vreg_regunit(VRegUnit);
+ if (LaneMask.any())
report_context_lanemask(LaneMask);
}
@@ -524,16 +528,6 @@ void MachineVerifier::visitMachineFunctionBefore() {
lastIndex = SlotIndex();
regsReserved = MRI->getReservedRegs();
- // A sub-register of a reserved register is also reserved
- for (int Reg = regsReserved.find_first(); Reg>=0;
- Reg = regsReserved.find_next(Reg)) {
- for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
- // FIXME: This should probably be:
- // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
- regsReserved.set(*SubRegs);
- }
- }
-
markReachable(&MF->front());
// Build a set of the basic blocks in the function.
@@ -571,7 +565,8 @@ void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
FirstTerminator = nullptr;
- if (MRI->isSSA()) {
+ if (!MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
// If this block has allocatable physical registers live-in, check that
// it is an entry block or landing pad.
for (const auto &LI : MBB->liveins()) {
@@ -746,20 +741,21 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
regsLive.clear();
- for (const auto &LI : MBB->liveins()) {
- if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
- report("MBB live-in list contains non-physical register", MBB);
- continue;
+ if (MRI->tracksLiveness()) {
+ for (const auto &LI : MBB->liveins()) {
+ if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
+ report("MBB live-in list contains non-physical register", MBB);
+ continue;
+ }
+ for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ regsLive.insert(*SubRegs);
}
- for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- regsLive.insert(*SubRegs);
}
regsLiveInButUnused = regsLive;
- const MachineFrameInfo *MFI = MF->getFrameInfo();
- assert(MFI && "Function has no frame info");
- BitVector PR = MFI->getPristineRegs(*MF);
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ BitVector PR = MFI.getPristineRegs(*MF);
for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
@@ -850,6 +846,10 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
<< MI->getNumOperands() << " given.\n";
}
+ if (MI->isPHI() && MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoPHIs))
+ report("Found PHI instruction with NoPHIs property set", MI);
+
// Check the tied operands.
if (MI->isInlineAsm())
verifyInlineAsm(MI);
@@ -879,6 +879,35 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
}
}
+ // Check types.
+ if (isPreISelGenericOpcode(MCID.getOpcode())) {
+ if (isFunctionSelected)
+ report("Unexpected generic instruction in a Selected function", MI);
+
+ // Generic instructions specify equality constraints between some
+ // of their operands. Make sure these are consistent.
+ SmallVector<LLT, 4> Types;
+ for (unsigned i = 0; i < MCID.getNumOperands(); ++i) {
+ if (!MCID.OpInfo[i].isGenericType())
+ continue;
+ size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex();
+ Types.resize(std::max(TypeIdx + 1, Types.size()));
+
+ LLT OpTy = MRI->getType(MI->getOperand(i).getReg());
+ if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy)
+ report("type mismatch in generic instruction", MI);
+ Types[TypeIdx] = OpTy;
+ }
+ }
+
+ // Generic opcodes must not have physical register operands.
+ if (isPreISelGenericOpcode(MCID.getOpcode())) {
+ for (auto &Op : MI->operands()) {
+ if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg()))
+ report("Generic instruction cannot have physical register", MI);
+ }
+ }
+
StringRef ErrorInfo;
if (!TII->verifyInstruction(*MI, ErrorInfo))
report(ErrorInfo.data(), MI);
@@ -988,25 +1017,62 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
if (!RC) {
// This is a generic virtual register.
- // It must have a size and it must not have a SubIdx.
- unsigned Size = MRI->getSize(Reg);
- if (!Size) {
- report("Generic virtual register must have a size", MO, MONum);
+
+ // If we're post-Select, we can't have gvregs anymore.
+ if (isFunctionSelected) {
+ report("Generic virtual register invalid in a Selected function",
+ MO, MONum);
return;
}
- // Make sure the register fits into its register bank if any.
+
+ // The gvreg must have a type and it must not have a SubIdx.
+ LLT Ty = MRI->getType(Reg);
+ if (!Ty.isValid()) {
+ report("Generic virtual register must have a valid type", MO,
+ MONum);
+ return;
+ }
+
const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
- if (RegBank && RegBank->getSize() < Size) {
+
+ // If we're post-RegBankSelect, the gvreg must have a bank.
+ if (!RegBank && isFunctionRegBankSelected) {
+ report("Generic virtual register must have a bank in a "
+ "RegBankSelected function",
+ MO, MONum);
+ return;
+ }
+
+ // Make sure the register fits into its register bank if any.
+ if (RegBank && Ty.isValid() &&
+ RegBank->getSize() < Ty.getSizeInBits()) {
report("Register bank is too small for virtual register", MO,
MONum);
errs() << "Register bank " << RegBank->getName() << " too small("
- << RegBank->getSize() << ") to fit " << Size << "-bits\n";
+ << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
+ << "-bits\n";
return;
}
if (SubIdx) {
- report("Generic virtual register does not subregister index", MO, MONum);
+ report("Generic virtual register does not subregister index", MO,
+ MONum);
return;
}
+
+ // If this is a target specific instruction and this operand
+ // has register class constraint, the virtual register must
+ // comply to it.
+ if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ report("Virtual register does not match instruction constraint", MO,
+ MONum);
+ errs() << "Expect register class "
+ << TRI->getRegClassName(
+ TII->getRegClass(MCID, MONum, TRI, *MF))
+ << " but got nothing\n";
+ return;
+ }
+
break;
}
if (SubIdx) {
@@ -1113,7 +1179,7 @@ void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
LiveQueryResult LRQ = LR.Query(UseIdx);
// Check if we have a segment at the use, note however that we only need one
// live subregister range, the others may be dead.
- if (!LRQ.valueIn() && LaneMask == 0) {
+ if (!LRQ.valueIn() && LaneMask.none()) {
report("No live segment at use", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
@@ -1123,7 +1189,7 @@ void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
report("Live range continues after kill flag", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
- if (LaneMask != 0)
+ if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(UseIdx);
}
@@ -1138,7 +1204,7 @@ void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
report("Inconsistent valno->def", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
- if (LaneMask != 0)
+ if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(*VNI);
report_context(DefIdx);
@@ -1147,7 +1213,7 @@ void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
report("No live segment at def", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
- if (LaneMask != 0)
+ if (LaneMask.any())
report_context_lanemask(LaneMask);
report_context(DefIdx);
}
@@ -1177,7 +1243,7 @@ void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
report("Live range continues after dead def flag", MO, MONum);
report_context_liverange(LR);
report_context_vreg_regunit(VRegOrUnit);
- if (LaneMask != 0)
+ if (LaneMask.any())
report_context_lanemask(LaneMask);
}
}
@@ -1199,7 +1265,7 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
MO->isKill()) {
LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
- if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
+ if (!is_contained(VI.Kills, MI))
report("Kill missing from LiveVariables", MO, MONum);
}
@@ -1225,9 +1291,9 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
LaneBitmask MOMask = SubRegIdx != 0
? TRI->getSubRegIndexLaneMask(SubRegIdx)
: MRI->getMaxLaneMaskForVReg(Reg);
- LaneBitmask LiveInMask = 0;
+ LaneBitmask LiveInMask;
for (const LiveInterval::SubRange &SR : LI.subranges()) {
- if ((MOMask & SR.LaneMask) == 0)
+ if ((MOMask & SR.LaneMask).none())
continue;
checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
LiveQueryResult LRQ = SR.Query(UseIdx);
@@ -1235,7 +1301,7 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
LiveInMask |= SR.LaneMask;
}
// At least parts of the register has to be live at the use.
- if ((LiveInMask & MOMask) == 0) {
+ if ((LiveInMask & MOMask).none()) {
report("No live subrange at use", MO, MONum);
report_context(LI);
report_context(UseIdx);
@@ -1327,7 +1393,7 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
? TRI->getSubRegIndexLaneMask(SubRegIdx)
: MRI->getMaxLaneMaskForVReg(Reg);
for (const LiveInterval::SubRange &SR : LI.subranges()) {
- if ((SR.LaneMask & MOMask) == 0)
+ if ((SR.LaneMask & MOMask).none())
continue;
checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask);
}
@@ -1640,8 +1706,8 @@ void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
!TRI->hasRegUnit(MOI->getReg(), Reg))
continue;
}
- if (LaneMask != 0 &&
- (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
+ if (LaneMask.any() &&
+ (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
continue;
hasDef = true;
if (MOI->isEarlyClobber())
@@ -1772,15 +1838,22 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
if (!MOI->isReg() || MOI->getReg() != Reg)
continue;
- if (LaneMask != 0 &&
- (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
- continue;
+ unsigned Sub = MOI->getSubReg();
+ LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
+ : LaneBitmask::getAll();
if (MOI->isDef()) {
- if (MOI->getSubReg() != 0)
+ if (Sub != 0) {
hasSubRegDef = true;
+ // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane
+ // mask for subregister defs. Read-undef defs will be handled by
+ // readsReg below.
+ SLM = ~SLM;
+ }
if (MOI->isDead())
hasDeadDef = true;
}
+ if (LaneMask.any() && (LaneMask & SLM).none())
+ continue;
if (MOI->readsReg())
hasRead = true;
}
@@ -1788,7 +1861,7 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// Make sure that the corresponding machine operand for a "dead" live
// range has the dead flag. We cannot perform this check for subregister
// liveranges as partially dead values are allowed.
- if (LaneMask == 0 && !hasDeadDef) {
+ if (LaneMask.none() && !hasDeadDef) {
report("Instruction ending live segment on dead slot has no dead flag",
MI);
report_context(LR, Reg, LaneMask);
@@ -1798,7 +1871,7 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
if (!hasRead) {
// When tracking subregister liveness, the main range must start new
// values on partial register writes, even if there is no read.
- if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
+ if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
!hasSubRegDef) {
report("Instruction ending live segment doesn't read the register",
MI);
@@ -1842,7 +1915,7 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// All predecessors must have a live-out value if this is not a
// subregister liverange.
- if (!PVNI && LaneMask == 0) {
+ if (!PVNI && LaneMask.none()) {
report("Register not marked live out of predecessor", *PI);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
@@ -1882,14 +1955,14 @@ void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
assert(TargetRegisterInfo::isVirtualRegister(Reg));
verifyLiveRange(LI, Reg);
- LaneBitmask Mask = 0;
+ LaneBitmask Mask;
LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
for (const LiveInterval::SubRange &SR : LI.subranges()) {
- if ((Mask & SR.LaneMask) != 0) {
+ if ((Mask & SR.LaneMask).any()) {
report("Lane masks of sub ranges overlap in live interval", MF);
report_context(LI);
}
- if ((SR.LaneMask & ~MaxMask) != 0) {
+ if ((SR.LaneMask & ~MaxMask).any()) {
report("Subrange lanemask is invalid", MF);
report_context(LI);
}
@@ -1950,11 +2023,11 @@ void MachineVerifier::verifyStackFrame() {
SmallVector<StackStateOfBB, 8> SPState;
SPState.resize(MF->getNumBlockIDs());
- SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
+ df_iterator_default_set<const MachineBasicBlock*> Reachable;
// Visit the MBBs in DFS order.
for (df_ext_iterator<const MachineFunction*,
- SmallPtrSet<const MachineBasicBlock*, 8> >
+ df_iterator_default_set<const MachineBasicBlock*> >
DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
DFI != DFE; ++DFI) {
const MachineBasicBlock *MBB = *DFI;
diff --git a/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp b/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
index 0177e41..2a8531f 100644
--- a/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
+++ b/contrib/llvm/lib/CodeGen/OptimizePHIs.cpp
@@ -184,7 +184,7 @@ bool OptimizePHIs::OptimizeBB(MachineBasicBlock &MBB) {
for (InstrSetIterator PI = PHIsInCycle.begin(), PE = PHIsInCycle.end();
PI != PE; ++PI) {
MachineInstr *PhiMI = *PI;
- if (&*MII == PhiMI)
+ if (MII == PhiMI)
++MII;
PhiMI->eraseFromParent();
}
diff --git a/contrib/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
index b8d5431..c67a25b 100644
--- a/contrib/llvm/lib/CodeGen/PHIElimination.cpp
+++ b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
@@ -175,6 +175,8 @@ bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
ImpDefs.clear();
VRegPHIUseCount.clear();
+ MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
+
return Changed;
}
diff --git a/contrib/llvm/lib/CodeGen/PHIEliminationUtils.cpp b/contrib/llvm/lib/CodeGen/PHIEliminationUtils.cpp
index 4cabc3a..4e67ff2 100644
--- a/contrib/llvm/lib/CodeGen/PHIEliminationUtils.cpp
+++ b/contrib/llvm/lib/CodeGen/PHIEliminationUtils.cpp
@@ -54,6 +54,7 @@ llvm::findPHICopyInsertPoint(MachineBasicBlock* MBB, MachineBasicBlock* SuccMBB,
++InsertPoint;
}
- // Make sure the copy goes after any phi nodes however.
+ // Make sure the copy goes after any phi nodes but before
+ // any debug nodes.
return MBB->SkipPHIsAndLabels(InsertPoint);
}
diff --git a/contrib/llvm/lib/CodeGen/ParallelCG.cpp b/contrib/llvm/lib/CodeGen/ParallelCG.cpp
index ccdaec1..50dd44f 100644
--- a/contrib/llvm/lib/CodeGen/ParallelCG.cpp
+++ b/contrib/llvm/lib/CodeGen/ParallelCG.cpp
@@ -12,7 +12,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ParallelCG.h"
-#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
@@ -78,7 +79,7 @@ std::unique_ptr<Module> llvm::splitCodeGen(
CodegenThreadPool.async(
[TMFactory, FileType, ThreadOS](const SmallString<0> &BC) {
LLVMContext Ctx;
- ErrorOr<std::unique_ptr<Module>> MOrErr = parseBitcodeFile(
+ Expected<std::unique_ptr<Module>> MOrErr = parseBitcodeFile(
MemoryBufferRef(StringRef(BC.data(), BC.size()),
"<split-module>"),
Ctx);
diff --git a/contrib/llvm/lib/CodeGen/PatchableFunction.cpp b/contrib/llvm/lib/CodeGen/PatchableFunction.cpp
index 32468c9..ad9166f 100644
--- a/contrib/llvm/lib/CodeGen/PatchableFunction.cpp
+++ b/contrib/llvm/lib/CodeGen/PatchableFunction.cpp
@@ -32,7 +32,7 @@ struct PatchableFunction : public MachineFunctionPass {
bool runOnMachineFunction(MachineFunction &F) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
};
}
diff --git a/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp b/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
index 60b27dd..6d64345 100644
--- a/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
+++ b/contrib/llvm/lib/CodeGen/PeepholeOptimizer.cpp
@@ -70,17 +70,28 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cassert>
+#include <cstdint>
+#include <memory>
#include <utility>
+
using namespace llvm;
#define DEBUG_TYPE "peephole-opt"
@@ -118,6 +129,7 @@ STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
namespace {
+
class ValueTrackerResult;
class PeepholeOptimizer : public MachineFunctionPass {
@@ -128,6 +140,7 @@ namespace {
public:
static char ID; // Pass identification
+
PeepholeOptimizer() : MachineFunctionPass(ID) {
initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
}
@@ -390,10 +403,12 @@ namespace {
/// register of the last source.
unsigned getReg() const { return Reg; }
};
-}
+
+} // end anonymous namespace
char PeepholeOptimizer::ID = 0;
char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
+
INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
"Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
@@ -737,6 +752,7 @@ insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
}
namespace {
+
/// \brief Helper class to rewrite the arguments of a copy-like instruction.
class CopyRewriter {
protected:
@@ -820,7 +836,6 @@ public:
TargetInstrInfo::RegSubRegPair Def,
PeepholeOptimizer::RewriteMapTy &RewriteMap,
bool HandleMultipleSources = true) {
-
TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
do {
ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
@@ -859,7 +874,7 @@ public:
const MachineOperand &MODef = NewPHI->getOperand(0);
return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg());
- } while (1);
+ } while (true);
return TargetInstrInfo::RegSubRegPair(0, 0);
}
@@ -1001,6 +1016,7 @@ public:
TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
return true;
}
+
bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
if (CurrentSrcIdx != 2)
return false;
@@ -1141,7 +1157,8 @@ public:
return true;
}
};
-} // End namespace.
+
+} // end anonymous namespace
/// \brief Get the appropriated CopyRewriter for \p MI.
/// \return A pointer to a dynamically allocated CopyRewriter or nullptr
@@ -1523,11 +1540,6 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (MI->isDebugValue())
continue;
- // If we run into an instruction we can't fold across, discard
- // the load candidates.
- if (MI->isLoadFoldBarrier())
- FoldAsLoadDefCandidates.clear();
-
if (MI->isPosition() || MI->isPHI())
continue;
@@ -1571,7 +1583,6 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI
<< '\n');
NAPhysToVirtMIs.clear();
- continue;
}
if ((isUncoalescableCopy(*MI) &&
@@ -1622,8 +1633,14 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
// earlier load into MI.
if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
!FoldAsLoadDefCandidates.empty()) {
+
+ // We visit each operand even after successfully folding a previous
+ // one. This allows us to fold multiple loads into a single
+ // instruction. We do assume that optimizeLoadInstr doesn't insert
+ // foldable uses earlier in the argument list. Since we don't restart
+ // iteration, we'd miss such cases.
const MCInstrDesc &MIDesc = MI->getDesc();
- for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
+ for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
++i) {
const MachineOperand &MOp = MI->getOperand(i);
if (!MOp.isReg())
@@ -1650,13 +1667,23 @@ bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
MRI->markUsesInDebugValueAsUndef(FoldedReg);
FoldAsLoadDefCandidates.erase(FoldedReg);
++NumLoadFold;
- // MI is replaced with FoldMI.
+
+ // MI is replaced with FoldMI so we can continue trying to fold
Changed = true;
- break;
+ MI = FoldMI;
}
}
}
}
+
+ // If we run into an instruction we can't fold across, discard
+ // the load candidates. Note: We might be able to fold *into* this
+ // instruction, so this needs to be after the folding logic.
+ if (MI->isLoadFoldBarrier()) {
+ DEBUG(dbgs() << "Encountered load fold barrier on " << *MI << "\n");
+ FoldAsLoadDefCandidates.clear();
+ }
+
}
}
@@ -1688,7 +1715,8 @@ ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
// Bitcasts with more than one def are not supported.
if (Def->getDesc().getNumDefs() != 1)
return ValueTrackerResult();
- if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
+ const MachineOperand DefOp = Def->getOperand(DefIdx);
+ if (DefOp.getSubReg() != DefSubReg)
// If we look for a different subreg, it means we want a subreg of the src.
// Bails as we do not support composing subregs yet.
return ValueTrackerResult();
@@ -1708,6 +1736,14 @@ ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
return ValueTrackerResult();
SrcIdx = OpIdx;
}
+
+ // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
+ // will break the assumed guarantees for the upper bits.
+ for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
+ if (UseMI.isSubregToReg())
+ return ValueTrackerResult();
+ }
+
const MachineOperand &Src = Def->getOperand(SrcIdx);
return ValueTrackerResult(Src.getReg(), Src.getSubReg());
}
@@ -1806,8 +1842,8 @@ ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
// sub-register we are tracking.
const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
if (!TRI ||
- (TRI->getSubRegIndexLaneMask(DefSubReg) &
- TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
+ !(TRI->getSubRegIndexLaneMask(DefSubReg) &
+ TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
return ValueTrackerResult();
// At this point, the value is available in v0 via the same subreg
// we used for Def.
diff --git a/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp b/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
index 3fce307..6081916 100644
--- a/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
+++ b/contrib/llvm/lib/CodeGen/PostRASchedulerList.cpp
@@ -98,7 +98,7 @@ namespace {
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
bool runOnMachineFunction(MachineFunction &Fn) override;
diff --git a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
index 20a9a39..5fca7fa 100644
--- a/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
+++ b/contrib/llvm/lib/CodeGen/PrologEpilogInserter.cpp
@@ -80,7 +80,7 @@ public:
MachineFunctionProperties getRequiredProperties() const override {
MachineFunctionProperties MFP;
if (UsesCalleeSaves)
- MFP.set(MachineFunctionProperties::Property::AllVRegsAllocated);
+ MFP.set(MachineFunctionProperties::Property::NoVRegs);
return MFP;
}
@@ -117,6 +117,10 @@ private:
// TRI->requiresFrameIndexScavenging() for the current function.
bool FrameIndexVirtualScavenging;
+ // Flag to control whether the scavenger should be passed even though
+ // FrameIndexVirtualScavenging is used.
+ bool FrameIndexEliminationScavenging;
+
void calculateCallFrameInfo(MachineFunction &Fn);
void calculateSaveRestoreBlocks(MachineFunction &Fn);
@@ -176,6 +180,8 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : nullptr;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
+ FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) ||
+ TRI->requiresFrameIndexReplacementScavenging(Fn);
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
@@ -221,8 +227,8 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
}
// Warn on stack size when we exceeds the given limit.
- MachineFrameInfo *MFI = Fn.getFrameInfo();
- uint64_t StackSize = MFI->getStackSize();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
+ uint64_t StackSize = MFI.getStackSize();
if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
DiagnosticInfoStackSize DiagStackSize(*F, StackSize);
F->getContext().diagnose(DiagStackSize);
@@ -231,8 +237,8 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
delete RS;
SaveBlocks.clear();
RestoreBlocks.clear();
- MFI->setSavePoint(nullptr);
- MFI->setRestorePoint(nullptr);
+ MFI.setSavePoint(nullptr);
+ MFI.setRestorePoint(nullptr);
return true;
}
@@ -242,10 +248,10 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
void PEI::calculateCallFrameInfo(MachineFunction &Fn) {
const TargetInstrInfo &TII = *Fn.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getSubtarget().getFrameLowering();
- MachineFrameInfo *MFI = Fn.getFrameInfo();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
unsigned MaxCallFrameSize = 0;
- bool AdjustsStack = MFI->adjustsStack();
+ bool AdjustsStack = MFI.adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
@@ -274,8 +280,8 @@ void PEI::calculateCallFrameInfo(MachineFunction &Fn) {
AdjustsStack = true;
}
- MFI->setAdjustsStack(AdjustsStack);
- MFI->setMaxCallFrameSize(MaxCallFrameSize);
+ MFI.setAdjustsStack(AdjustsStack);
+ MFI.setMaxCallFrameSize(MaxCallFrameSize);
for (std::vector<MachineBasicBlock::iterator>::iterator
i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
@@ -293,17 +299,17 @@ void PEI::calculateCallFrameInfo(MachineFunction &Fn) {
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &Fn) {
- const MachineFrameInfo *MFI = Fn.getFrameInfo();
+ const MachineFrameInfo &MFI = Fn.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
- if (MFI->getSavePoint()) {
- SaveBlocks.push_back(MFI->getSavePoint());
- assert(MFI->getRestorePoint() && "Both restore and save must be set");
- MachineBasicBlock *RestoreBlock = MFI->getRestorePoint();
+ if (MFI.getSavePoint()) {
+ SaveBlocks.push_back(MFI.getSavePoint());
+ assert(MFI.getRestorePoint() && "Both restore and save must be set");
+ MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
@@ -340,7 +346,7 @@ static void assignCalleeSavedSpillSlots(MachineFunction &F,
}
const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
- MachineFrameInfo *MFI = F.getFrameInfo();
+ MachineFrameInfo &MFI = F.getFrameInfo();
if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI)) {
// If target doesn't implement this, use generic code.
@@ -379,26 +385,26 @@ static void assignCalleeSavedSpillSlots(MachineFunction &F,
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Align = std::min(Align, StackAlign);
- FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true);
+ FrameIdx = MFI.CreateStackObject(RC->getSize(), Align, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx =
- MFI->CreateFixedSpillStackObject(RC->getSize(), FixedSlot->Offset);
+ MFI.CreateFixedSpillStackObject(RC->getSize(), FixedSlot->Offset);
}
CS.setFrameIdx(FrameIdx);
}
}
- MFI->setCalleeSavedInfo(CSI);
+ MFI.setCalleeSavedInfo(CSI);
}
/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
// Visited will contain all the basic blocks that are in the region
// where the callee saved registers are alive:
// - Anything that is not Save or Restore -> LiveThrough.
@@ -409,7 +415,7 @@ static void updateLiveness(MachineFunction &MF) {
SmallPtrSet<MachineBasicBlock *, 8> Visited;
SmallVector<MachineBasicBlock *, 8> WorkList;
MachineBasicBlock *Entry = &MF.front();
- MachineBasicBlock *Save = MFI->getSavePoint();
+ MachineBasicBlock *Save = MFI.getSavePoint();
if (!Save)
Save = Entry;
@@ -420,7 +426,7 @@ static void updateLiveness(MachineFunction &MF) {
}
Visited.insert(Save);
- MachineBasicBlock *Restore = MFI->getRestorePoint();
+ MachineBasicBlock *Restore = MFI.getRestorePoint();
if (Restore)
// By construction Restore cannot be visited, otherwise it
// means there exists a path to Restore that does not go
@@ -440,7 +446,7 @@ static void updateLiveness(MachineFunction &MF) {
WorkList.push_back(SuccBB);
}
- const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
for (MachineBasicBlock *MBB : Visited) {
@@ -460,10 +466,10 @@ static void insertCSRSpillsAndRestores(MachineFunction &Fn,
const MBBVector &SaveBlocks,
const MBBVector &RestoreBlocks) {
// Get callee saved register information.
- MachineFrameInfo *MFI = Fn.getFrameInfo();
- const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
- MFI->setCalleeSavedInfoValid(true);
+ MFI.setCalleeSavedInfoValid(true);
// Early exit if no callee saved registers are modified!
if (CSI.empty())
@@ -551,14 +557,14 @@ static void doSpillCalleeSavedRegs(MachineFunction &Fn, RegScavenger *RS,
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
-AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
+AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign, unsigned Skew) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
- Offset += MFI->getObjectSize(FrameIdx);
+ Offset += MFI.getObjectSize(FrameIdx);
- unsigned Align = MFI->getObjectAlignment(FrameIdx);
+ unsigned Align = MFI.getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
@@ -569,11 +575,11 @@ AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
if (StackGrowsDown) {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n");
- MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
+ MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n");
- MFI->setObjectOffset(FrameIdx, Offset);
- Offset += MFI->getObjectSize(FrameIdx);
+ MFI.setObjectOffset(FrameIdx, Offset);
+ Offset += MFI.getObjectSize(FrameIdx);
}
}
@@ -581,7 +587,7 @@ AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
/// track of them in StackBytesFree.
///
static inline void
-computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown,
+computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown,
unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
int64_t FixedCSEnd, BitVector &StackBytesFree) {
// Avoid undefined int64_t -> int conversion below in extreme case.
@@ -592,7 +598,7 @@ computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown,
SmallVector<int, 16> AllocatedFrameSlots;
// Add fixed objects.
- for (int i = MFI->getObjectIndexBegin(); i != 0; ++i)
+ for (int i = MFI.getObjectIndexBegin(); i != 0; ++i)
AllocatedFrameSlots.push_back(i);
// Add callee-save objects.
for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
@@ -601,8 +607,8 @@ computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown,
for (int i : AllocatedFrameSlots) {
// These are converted from int64_t, but they should always fit in int
// because of the FixedCSEnd check above.
- int ObjOffset = MFI->getObjectOffset(i);
- int ObjSize = MFI->getObjectSize(i);
+ int ObjOffset = MFI.getObjectOffset(i);
+ int ObjSize = MFI.getObjectSize(i);
int ObjStart, ObjEnd;
if (StackGrowsDown) {
// ObjOffset is negative when StackGrowsDown is true.
@@ -621,10 +627,10 @@ computeFreeStackSlots(MachineFrameInfo *MFI, bool StackGrowsDown,
/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range. Return true if the allocation was successful.
///
-static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx,
+static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, unsigned MaxAlign,
BitVector &StackBytesFree) {
- if (MFI->isVariableSizedObjectIndex(FrameIdx))
+ if (MFI.isVariableSizedObjectIndex(FrameIdx))
return false;
if (StackBytesFree.none()) {
@@ -634,11 +640,11 @@ static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx,
return false;
}
- unsigned ObjAlign = MFI->getObjectAlignment(FrameIdx);
+ unsigned ObjAlign = MFI.getObjectAlignment(FrameIdx);
if (ObjAlign > MaxAlign)
return false;
- int64_t ObjSize = MFI->getObjectSize(FrameIdx);
+ int64_t ObjSize = MFI.getObjectSize(FrameIdx);
int FreeStart;
for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
FreeStart = StackBytesFree.find_next(FreeStart)) {
@@ -668,11 +674,11 @@ static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx,
int ObjStart = -(FreeStart + ObjSize);
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << ObjStart
<< "]\n");
- MFI->setObjectOffset(FrameIdx, ObjStart);
+ MFI.setObjectOffset(FrameIdx, ObjStart);
} else {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << FreeStart
<< "]\n");
- MFI->setObjectOffset(FrameIdx, FreeStart);
+ MFI.setObjectOffset(FrameIdx, FreeStart);
}
StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
@@ -684,7 +690,7 @@ static inline bool scavengeStackSlot(MachineFrameInfo *MFI, int FrameIdx,
static void
AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
- MachineFrameInfo *MFI, bool StackGrowsDown,
+ MachineFrameInfo &MFI, bool StackGrowsDown,
int64_t &Offset, unsigned &MaxAlign, unsigned Skew) {
for (StackObjSet::const_iterator I = UnassignedObjs.begin(),
@@ -706,7 +712,7 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
- MachineFrameInfo *MFI = Fn.getFrameInfo();
+ MachineFrameInfo &MFI = Fn.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
@@ -725,17 +731,17 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// non-fixed objects can't be allocated right at the start of local area.
// Adjust 'Offset' to point to the end of last fixed sized preallocated
// object.
- for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
+ for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) {
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
- FixedOff = -MFI->getObjectOffset(i);
+ FixedOff = -MFI.getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
- FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
+ FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
@@ -746,32 +752,32 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
- Offset += MFI->getObjectSize(i);
+ Offset += MFI.getObjectSize(i);
- unsigned Align = MFI->getObjectAlignment(i);
+ unsigned Align = MFI.getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n");
- MFI->setObjectOffset(i, -Offset); // Set the computed offset
+ MFI.setObjectOffset(i, -Offset); // Set the computed offset
}
} else if (MaxCSFrameIndex >= MinCSFrameIndex) {
// Be careful about underflow in comparisons agains MinCSFrameIndex.
for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) {
- unsigned Align = MFI->getObjectAlignment(i);
+ unsigned Align = MFI.getObjectAlignment(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, Align, Skew);
DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n");
- MFI->setObjectOffset(i, Offset);
- Offset += MFI->getObjectSize(i);
+ MFI.setObjectOffset(i, Offset);
+ Offset += MFI.getObjectSize(i);
}
}
// FixedCSEnd is the stack offset to the end of the fixed and callee-save
// stack area.
int64_t FixedCSEnd = Offset;
- unsigned MaxAlign = MFI->getMaxAlignment();
+ unsigned MaxAlign = MFI.getMaxAlignment();
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
@@ -793,8 +799,8 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
- if (MFI->getUseLocalStackAllocationBlock()) {
- unsigned Align = MFI->getLocalFrameMaxAlign();
+ if (MFI.getUseLocalStackAllocationBlock()) {
+ unsigned Align = MFI.getLocalFrameMaxAlign();
// Adjust to alignment boundary.
Offset = alignTo(Offset, Align, Skew);
@@ -802,15 +808,15 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
- for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) {
- std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i);
+ for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) {
+ std::pair<int, int64_t> Entry = MFI.getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" <<
FIOffset << "]\n");
- MFI->setObjectOffset(Entry.first, FIOffset);
+ MFI.setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
- Offset += MFI->getLocalFrameSize();
+ Offset += MFI.getLocalFrameSize();
MaxAlign = std::max(Align, MaxAlign);
}
@@ -823,30 +829,30 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
- if (MFI->getStackProtectorIndex() >= 0) {
+ if (MFI.getStackProtectorIndex() >= 0) {
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
- AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown,
+ AdjustStackOffset(MFI, MFI.getStackProtectorIndex(), StackGrowsDown,
Offset, MaxAlign, Skew);
// Assign large stack objects first.
- for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
- if (MFI->isObjectPreAllocated(i) &&
- MFI->getUseLocalStackAllocationBlock())
+ for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
+ if (MFI.isObjectPreAllocated(i) &&
+ MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
- if (MFI->isDeadObjectIndex(i))
+ if (MFI.isDeadObjectIndex(i))
continue;
- if (MFI->getStackProtectorIndex() == (int)i ||
+ if (MFI.getStackProtectorIndex() == (int)i ||
EHRegNodeFrameIndex == (int)i)
continue;
- switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) {
+ switch (SP->getSSPLayout(MFI.getObjectAllocation(i))) {
case StackProtector::SSPLK_None:
continue;
case StackProtector::SSPLK_SmallArray:
@@ -874,17 +880,16 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Then prepare to assign frame offsets to stack objects that are not used to
// spill callee saved registers.
- for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
- if (MFI->isObjectPreAllocated(i) &&
- MFI->getUseLocalStackAllocationBlock())
+ for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
+ if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
- if (MFI->isDeadObjectIndex(i))
+ if (MFI.isDeadObjectIndex(i))
continue;
- if (MFI->getStackProtectorIndex() == (int)i ||
+ if (MFI.getStackProtectorIndex() == (int)i ||
EHRegNodeFrameIndex == (int)i)
continue;
if (ProtectedObjs.count(i))
@@ -911,7 +916,7 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
BitVector StackBytesFree;
if (!ObjectsToAllocate.empty() &&
Fn.getTarget().getOptLevel() != CodeGenOpt::None &&
- MFI->getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(Fn))
+ MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(Fn))
computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
FixedCSEnd, StackBytesFree);
@@ -935,8 +940,8 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
- if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn))
- Offset += MFI->getMaxCallFrameSize();
+ if (MFI.adjustsStack() && TFI.hasReservedCallFrame(Fn))
+ Offset += MFI.getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
@@ -944,8 +949,8 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
- if (MFI->adjustsStack() || MFI->hasVarSizedObjects() ||
- (RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
+ if (MFI.adjustsStack() || MFI.hasVarSizedObjects() ||
+ (RegInfo->needsStackRealignment(Fn) && MFI.getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlignment();
else
StackAlign = TFI.getTransientStackAlignment();
@@ -958,7 +963,7 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
- MFI->setStackSize(StackSize);
+ MFI.setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
@@ -1009,7 +1014,7 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(Fn.getNumBlockIDs());
- SmallPtrSet<MachineBasicBlock*, 8> Reachable;
+ df_iterator_default_set<MachineBasicBlock*> Reachable;
// Iterate over the reachable blocks in DFS order.
for (auto DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
@@ -1047,7 +1052,8 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
- if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(*BB);
+ if (RS && FrameIndexEliminationScavenging)
+ RS->enterBasicBlock(*BB);
bool InsideCallSequence = false;
@@ -1116,7 +1122,7 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
- FrameIndexVirtualScavenging ? nullptr : RS);
+ FrameIndexEliminationScavenging ? RS : nullptr);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
@@ -1132,7 +1138,7 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
// the SP adjustment made by each instruction in the sequence.
// This includes both the frame setup/destroy pseudos (handled above),
// as well as other instructions that have side effects w.r.t the SP.
- // Note that this must come after eliminateFrameIndex, because
+ // Note that this must come after eliminateFrameIndex, because
// if I itself referred to a frame index, we shouldn't count its own
// adjustment.
if (DidFinishLoop && InsideCallSequence)
@@ -1141,7 +1147,7 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
if (DoIncr && I != BB->end()) ++I;
// Update register states.
- if (RS && !FrameIndexVirtualScavenging && DidFinishLoop)
+ if (RS && FrameIndexEliminationScavenging && DidFinishLoop)
RS->forward(MI);
}
}
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBase.cpp b/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
index 93eeb9c..fb49a93 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocBase.cpp
@@ -41,7 +41,8 @@ static cl::opt<bool, true>
VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
cl::desc("Verify during register allocation"));
-const char RegAllocBase::TimerGroupName[] = "Register Allocation";
+const char RegAllocBase::TimerGroupName[] = "regalloc";
+const char RegAllocBase::TimerGroupDescription[] = "Register Allocation";
bool RegAllocBase::VerifyEnabled = false;
//===----------------------------------------------------------------------===//
@@ -67,7 +68,8 @@ void RegAllocBase::init(VirtRegMap &vrm,
// register, unify them with the corresponding LiveIntervalUnion, otherwise push
// them on the priority queue for later assignment.
void RegAllocBase::seedLiveRegs() {
- NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("seed", "Seed Live Regs", TimerGroupName,
+ TimerGroupDescription, TimePassesIsEnabled);
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
@@ -143,6 +145,7 @@ void RegAllocBase::allocatePhysRegs() {
continue;
}
DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
+ assert(!SplitVirtReg->empty() && "expecting non-empty interval");
assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
"expect split value in virtual register");
enqueue(SplitVirtReg);
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBase.h b/contrib/llvm/lib/CodeGen/RegAllocBase.h
index 296ffe8..d8921b5 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBase.h
+++ b/contrib/llvm/lib/CodeGen/RegAllocBase.h
@@ -105,6 +105,7 @@ protected:
// Use this group name for NamedRegionTimer.
static const char TimerGroupName[];
+ static const char TimerGroupDescription[];
/// Method called when the allocator is about to remove a LiveInterval.
virtual void aboutToRemoveInterval(LiveInterval &LI) {}
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
index 11dfda6..a558e37 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
@@ -76,9 +76,7 @@ public:
RABasic();
/// Return the pass name.
- const char* getPassName() const override {
- return "Basic Register Allocator";
- }
+ StringRef getPassName() const override { return "Basic Register Allocator"; }
/// RABasic analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
@@ -105,6 +103,11 @@ public:
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
// Helper for spilling all live virtual registers currently unified under preg
// that interfere with the most recently queried lvr. Return true if spilling
// was successful, and append any new spilled/split intervals to splitLVRs.
diff --git a/contrib/llvm/lib/CodeGen/RegAllocFast.cpp b/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
index 55fb33e..fd759bc 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocFast.cpp
@@ -149,18 +149,21 @@ namespace {
spillImpossible = ~0u
};
public:
- const char *getPassName() const override {
- return "Fast Register Allocator";
- }
+ StringRef getPassName() const override { return "Fast Register Allocator"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
MachineFunctionProperties getSetProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
private:
@@ -209,8 +212,8 @@ int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
- int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
- RC->getAlignment());
+ int FrameIdx = MF->getFrameInfo().CreateSpillStackObject(RC->getSize(),
+ RC->getAlignment());
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
@@ -360,7 +363,7 @@ void RAFast::usePhysReg(MachineOperand &MO) {
break;
case regReserved:
PhysRegState[PhysReg] = regFree;
- // Fall through
+ LLVM_FALLTHROUGH;
case regFree:
MO.setIsKill();
return;
@@ -389,7 +392,7 @@ void RAFast::usePhysReg(MachineOperand &MO) {
assert((TRI->isSuperRegister(PhysReg, Alias) ||
TRI->isSuperRegister(Alias, PhysReg)) &&
"Instruction is not using a subregister of a reserved register");
- // Fall through.
+ LLVM_FALLTHROUGH;
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
@@ -421,7 +424,7 @@ void RAFast::definePhysReg(MachineInstr &MI, unsigned PhysReg,
break;
default:
spillVirtReg(MI, VirtReg);
- // Fall through.
+ LLVM_FALLTHROUGH;
case regFree:
case regReserved:
PhysRegState[PhysReg] = NewState;
@@ -437,7 +440,7 @@ void RAFast::definePhysReg(MachineInstr &MI, unsigned PhysReg,
break;
default:
spillVirtReg(MI, VirtReg);
- // Fall through.
+ LLVM_FALLTHROUGH;
case regFree:
case regReserved:
PhysRegState[Alias] = regDisabled;
@@ -1093,8 +1096,6 @@ bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
UsedInInstr.clear();
UsedInInstr.setUniverse(TRI->getNumRegUnits());
- assert(!MRI->isSSA() && "regalloc requires leaving SSA");
-
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
diff --git a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
index c4d4b1e..c47cfb1 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp
@@ -61,8 +61,7 @@ static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
cl::desc("Spill mode for splitting live ranges"),
cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
- clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
- clEnumValEnd),
+ clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
cl::init(SplitEditor::SM_Speed));
static cl::opt<unsigned>
@@ -318,9 +317,7 @@ public:
RAGreedy();
/// Return the pass name.
- const char* getPassName() const override {
- return "Greedy Register Allocator";
- }
+ StringRef getPassName() const override { return "Greedy Register Allocator"; }
/// RAGreedy analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
@@ -334,6 +331,11 @@ public:
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
static char ID;
private:
@@ -421,6 +423,24 @@ private:
} // end anonymous namespace
char RAGreedy::ID = 0;
+char &llvm::RAGreedyID = RAGreedy::ID;
+
+INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
+ "Greedy Register Allocator", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
+INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
+INITIALIZE_PASS_DEPENDENCY(LiveStacks)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
+INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
+INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
+INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
+INITIALIZE_PASS_END(RAGreedy, "greedy",
+ "Greedy Register Allocator", false, false)
#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
@@ -444,19 +464,6 @@ FunctionPass* llvm::createGreedyRegisterAllocator() {
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
- initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
- initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
- initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
- initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
- initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
- initializeLiveStacksPass(*PassRegistry::getPassRegistry());
- initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
- initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
- initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
- initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
- initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
- initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
@@ -639,6 +646,9 @@ unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
evictInterference(VirtReg, Hint, NewVRegs);
return Hint;
}
+ // Record the missed hint, we may be able to recover
+ // at the end if the surrounding allocation changed.
+ SetOfBrokenHints.insert(&VirtReg);
}
// Try to evict interference from a cheaper alternative.
@@ -859,7 +869,8 @@ unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
unsigned CostPerUseLimit) {
- NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
+ TimePassesIsEnabled);
// Keep track of the cheapest interference seen so far.
EvictionCost BestCost;
@@ -1957,7 +1968,8 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
- NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
+ TimerGroupDescription, TimePassesIsEnabled);
SA->analyze(&VirtReg);
unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
@@ -1965,7 +1977,8 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
return tryInstructionSplit(VirtReg, Order, NewVRegs);
}
- NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
+ TimerGroupDescription, TimePassesIsEnabled);
SA->analyze(&VirtReg);
@@ -2103,6 +2116,7 @@ unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
// Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
// this recoloring "session".
FixedRegisters.insert(VirtReg.reg);
+ SmallVector<unsigned, 4> CurrentNewVRegs;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
@@ -2110,6 +2124,7 @@ unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
<< PrintReg(PhysReg, TRI) << '\n');
RecoloringCandidates.clear();
VirtRegToPhysReg.clear();
+ CurrentNewVRegs.clear();
// It is only possible to recolor virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) >
@@ -2154,8 +2169,11 @@ unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
// If we cannot recolor all the interferences, we will have to start again
// at this point for the next physical register.
SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
- if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
- Depth)) {
+ if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
+ FixedRegisters, Depth)) {
+ // Push the queued vregs into the main queue.
+ for (unsigned NewVReg : CurrentNewVRegs)
+ NewVRegs.push_back(NewVReg);
// Do not mess up with the global assignment process.
// I.e., VirtReg must be unassigned.
Matrix->unassign(VirtReg);
@@ -2169,6 +2187,18 @@ unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
FixedRegisters = SaveFixedRegisters;
Matrix->unassign(VirtReg);
+ // For a newly created vreg which is also in RecoloringCandidates,
+ // don't add it to NewVRegs because its physical register will be restored
+ // below. Other vregs in CurrentNewVRegs are created by calling
+ // selectOrSplit and should be added into NewVRegs.
+ for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
+ End = CurrentNewVRegs.end();
+ Next != End; ++Next) {
+ if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
+ continue;
+ NewVRegs.push_back(*Next);
+ }
+
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
EndIt = RecoloringCandidates.end();
It != EndIt; ++It) {
@@ -2201,10 +2231,21 @@ bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
unsigned PhysReg;
PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
- if (PhysReg == ~0u || !PhysReg)
+ // When splitting happens, the live-range may actually be empty.
+ // In that case, this is okay to continue the recoloring even
+ // if we did not find an alternative color for it. Indeed,
+ // there will not be anything to color for LI in the end.
+ if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
return false;
+
+ if (!PhysReg) {
+ assert(LI->empty() && "Only empty live-range do not require a register");
+ DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n");
+ continue;
+ }
DEBUG(dbgs() << "Recoloring of " << *LI
<< " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
+
Matrix->assign(*LI, PhysReg);
FixedRegisters.insert(LI->reg);
}
@@ -2519,7 +2560,7 @@ unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
return PhysReg;
}
- assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
+ assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
@@ -2531,17 +2572,20 @@ unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
return 0;
}
+ if (Stage < RS_Spill) {
+ // Try splitting VirtReg or interferences.
+ unsigned NewVRegSizeBefore = NewVRegs.size();
+ unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
+ if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
+ return PhysReg;
+ }
+
// If we couldn't allocate a register from spilling, there is probably some
// invalid inline assembly. The base class wil report it.
if (Stage >= RS_Done || !VirtReg.isSpillable())
return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
Depth);
- // Try splitting VirtReg or interferences.
- unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
-
// Finally spill VirtReg itself.
if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
// TODO: This is experimental and in particular, we do not model
@@ -2552,7 +2596,8 @@ unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
DEBUG(dbgs() << "Do as if this register is in memory\n");
NewVRegs.push_back(VirtReg.reg);
} else {
- NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("spill", "Spiller", TimerGroupName,
+ TimerGroupDescription, TimePassesIsEnabled);
LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
diff --git a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
index d1221ec..101b30b 100644
--- a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
+++ b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp
@@ -99,9 +99,7 @@ public:
}
/// Return the pass name.
- const char* getPassName() const override {
- return "PBQP Register Allocator";
- }
+ StringRef getPassName() const override { return "PBQP Register Allocator"; }
/// PBQP analysis usage.
void getAnalysisUsage(AnalysisUsage &au) const override;
@@ -109,6 +107,11 @@ public:
/// Perform register allocation
bool runOnMachineFunction(MachineFunction &MF) override;
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
private:
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
diff --git a/contrib/llvm/lib/CodeGen/RegUsageInfoCollector.cpp b/contrib/llvm/lib/CodeGen/RegUsageInfoCollector.cpp
index 50b8854..ece44c2 100644
--- a/contrib/llvm/lib/CodeGen/RegUsageInfoCollector.cpp
+++ b/contrib/llvm/lib/CodeGen/RegUsageInfoCollector.cpp
@@ -48,7 +48,7 @@ public:
initializeRegUsageInfoCollectorPass(Registry);
}
- const char *getPassName() const override {
+ StringRef getPassName() const override {
return "Register Usage Information Collector Pass";
}
@@ -57,10 +57,6 @@ public:
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
-
-private:
- void markRegClobbered(const TargetRegisterInfo *TRI, uint32_t *RegMask,
- unsigned PReg);
};
} // end of anonymous namespace
@@ -76,13 +72,6 @@ FunctionPass *llvm::createRegUsageInfoCollector() {
return new RegUsageInfoCollector();
}
-void RegUsageInfoCollector::markRegClobbered(const TargetRegisterInfo *TRI,
- uint32_t *RegMask, unsigned PReg) {
- // If PReg is clobbered then all of its alias are also clobbered.
- for (MCRegAliasIterator AI(PReg, TRI, true); AI.isValid(); ++AI)
- RegMask[*AI / 32] &= ~(1u << *AI % 32);
-}
-
void RegUsageInfoCollector::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<PhysicalRegisterUsageInfo>();
AU.setPreservesAll();
@@ -116,7 +105,7 @@ bool RegUsageInfoCollector::runOnMachineFunction(MachineFunction &MF) {
for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg)
if (MRI->isPhysRegModified(PReg, true))
- markRegClobbered(TRI, &RegMask[0], PReg);
+ RegMask[PReg / 32] &= ~(1u << PReg % 32);
if (!TargetFrameLowering::isSafeForNoCSROpt(F)) {
const uint32_t *CallPreservedMask =
diff --git a/contrib/llvm/lib/CodeGen/RegUsageInfoPropagate.cpp b/contrib/llvm/lib/CodeGen/RegUsageInfoPropagate.cpp
index 7595661..5cc35bf 100644
--- a/contrib/llvm/lib/CodeGen/RegUsageInfoPropagate.cpp
+++ b/contrib/llvm/lib/CodeGen/RegUsageInfoPropagate.cpp
@@ -52,7 +52,7 @@ public:
initializeRegUsageInfoPropagationPassPass(Registry);
}
- const char *getPassName() const override { return RUIP_NAME; }
+ StringRef getPassName() const override { return RUIP_NAME; }
bool runOnMachineFunction(MachineFunction &MF) override;
diff --git a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
index 617ece9..4bb3c22 100644
--- a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
@@ -815,14 +815,14 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
for (LiveInterval::SubRange &SB : IntB.subranges()) {
LaneBitmask BMask = SB.LaneMask;
LaneBitmask Common = BMask & AMask;
- if (Common == 0)
+ if (Common.none())
continue;
DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
<< " into " << PrintLaneMask(Common) << '\n');
LaneBitmask BRest = BMask & ~AMask;
LiveInterval::SubRange *CommonRange;
- if (BRest != 0) {
+ if (BRest.any()) {
SB.LaneMask = BRest;
DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
<< '\n');
@@ -841,7 +841,7 @@ bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
AMask &= ~BMask;
}
- if (AMask != 0) {
+ if (AMask.any()) {
DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
@@ -975,6 +975,7 @@ bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
NewRC = CommonRC;
DstIdx = 0;
DefMO.setSubReg(0);
+ DefMO.setIsUndef(false); // Only subregs can have def+undef.
}
}
}
@@ -1060,7 +1061,7 @@ bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
SR.createDeadDef(DefIndex, Alloc);
MaxMask &= ~SR.LaneMask;
}
- if (MaxMask != 0) {
+ if (MaxMask.any()) {
LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
SR->createDeadDef(DefIndex, Alloc);
}
@@ -1153,7 +1154,7 @@ bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
- if ((SR.LaneMask & SrcMask) == 0)
+ if ((SR.LaneMask & SrcMask).none())
continue;
if (SR.liveAt(Idx))
return false;
@@ -1174,7 +1175,7 @@ bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
// The affected subregister segments can be removed.
LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
for (LiveInterval::SubRange &SR : DstLI.subranges()) {
- if ((SR.LaneMask & DstMask) == 0)
+ if ((SR.LaneMask & DstMask).none())
continue;
VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
@@ -1193,10 +1194,10 @@ bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
SlotIndex UseIdx = LIS->getInstructionIndex(MI);
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
bool isLive;
- if (UseMask != ~0u && DstLI.hasSubRanges()) {
+ if (!UseMask.all() && DstLI.hasSubRanges()) {
isLive = false;
for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
- if ((SR.LaneMask & UseMask) == 0)
+ if ((SR.LaneMask & UseMask).none())
continue;
if (SR.liveAt(UseIdx)) {
isLive = true;
@@ -1210,6 +1211,17 @@ bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
MO.setIsUndef(true);
DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
}
+
+ // A def of a subregister may be a use of the other subregisters, so
+ // deleting a def of a subregister may also remove uses. Since CopyMI
+ // is still part of the function (but about to be erased), mark all
+ // defs of DstReg in it as <undef>, so that shrinkToUses would
+ // ignore them.
+ for (MachineOperand &MO : CopyMI->operands())
+ if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
+ MO.setIsUndef(true);
+ LIS->shrinkToUses(&DstLI);
+
return true;
}
@@ -1220,7 +1232,7 @@ void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
Mask = ~Mask;
bool IsUndef = true;
for (const LiveInterval::SubRange &S : Int.subranges()) {
- if ((S.LaneMask & Mask) == 0)
+ if ((S.LaneMask & Mask).none())
continue;
if (S.liveAt(UseIdx)) {
IsUndef = false;
@@ -1446,7 +1458,7 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
});
}
- ShrinkMask = 0;
+ ShrinkMask = LaneBitmask::getNone();
ShrinkMainRange = false;
// Okay, attempt to join these two intervals. On failure, this returns false.
@@ -1504,10 +1516,10 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
// Shrink subregister ranges if necessary.
- if (ShrinkMask != 0) {
+ if (ShrinkMask.any()) {
LiveInterval &LI = LIS->getInterval(CP.getDstReg());
for (LiveInterval::SubRange &S : LI.subranges()) {
- if ((S.LaneMask & ShrinkMask) == 0)
+ if ((S.LaneMask & ShrinkMask).none())
continue;
DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
<< ")\n");
@@ -1544,9 +1556,10 @@ bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
unsigned DstReg = CP.getDstReg();
+ unsigned SrcReg = CP.getSrcReg();
assert(CP.isPhys() && "Must be a physreg copy");
assert(MRI->isReserved(DstReg) && "Not a reserved register");
- LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+ LiveInterval &RHS = LIS->getInterval(SrcReg);
DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
assert(RHS.containsOneValue() && "Invalid join with reserved register");
@@ -1558,11 +1571,19 @@ bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
// Deny any overlapping intervals. This depends on all the reserved
// register live ranges to look like dead defs.
- for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
- if (RHS.overlaps(LIS->getRegUnit(*UI))) {
- DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
- return false;
+ if (!MRI->isConstantPhysReg(DstReg)) {
+ for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
+ // Abort if not all the regunits are reserved.
+ for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
+ if (!MRI->isReserved(*RI))
+ return false;
+ }
+ if (RHS.overlaps(LIS->getRegUnit(*UI))) {
+ DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
+ return false;
+ }
}
+ }
// Skip any value computations, we are not adding new values to the
// reserved register. Also skip merging the live ranges, the reserved
@@ -1572,43 +1593,64 @@ bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
// Delete the identity copy.
MachineInstr *CopyMI;
if (CP.isFlipped()) {
- CopyMI = MRI->getVRegDef(RHS.reg);
+ // Physreg is copied into vreg
+ // %vregY = COPY %X
+ // ... //< no other def of %X here
+ // use %vregY
+ // =>
+ // ...
+ // use %X
+ CopyMI = MRI->getVRegDef(SrcReg);
} else {
- if (!MRI->hasOneNonDBGUse(RHS.reg)) {
+ // VReg is copied into physreg:
+ // %vregX = def
+ // ... //< no other def or use of %Y here
+ // %Y = COPY %vregX
+ // =>
+ // %Y = def
+ // ...
+ if (!MRI->hasOneNonDBGUse(SrcReg)) {
DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
return false;
}
- MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
- CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
- const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
- const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot();
-
- // We checked above that there are no interfering defs of the physical
- // register. However, for this case, where we intent to move up the def of
- // the physical register, we also need to check for interfering uses.
- SlotIndexes *Indexes = LIS->getSlotIndexes();
- for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
- SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
- MachineInstr *MI = LIS->getInstructionFromIndex(SI);
- if (MI->readsRegister(DstReg, TRI)) {
- DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
- return false;
- }
+ if (!LIS->intervalIsInOneMBB(RHS)) {
+ DEBUG(dbgs() << "\t\tComplex control flow!\n");
+ return false;
+ }
- // We must also check for clobbers caused by regmasks.
- for (const auto &MO : MI->operands()) {
- if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
- DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
+ MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
+ CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
+ SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
+ SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
+
+ if (!MRI->isConstantPhysReg(DstReg)) {
+ // We checked above that there are no interfering defs of the physical
+ // register. However, for this case, where we intent to move up the def of
+ // the physical register, we also need to check for interfering uses.
+ SlotIndexes *Indexes = LIS->getSlotIndexes();
+ for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
+ SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
+ MachineInstr *MI = LIS->getInstructionFromIndex(SI);
+ if (MI->readsRegister(DstReg, TRI)) {
+ DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
return false;
}
+
+ // We must also check for clobbers caused by regmasks.
+ for (const auto &MO : MI->operands()) {
+ if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
+ DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
+ return false;
+ }
+ }
}
}
// We're going to remove the copy which defines a physical reserved
// register, so remove its valno, etc.
- DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
- << CopyRegIdx << "\n");
+ DEBUG(dbgs() << "\t\tRemoving phys reg def of " << PrintReg(DstReg, TRI)
+ << " at " << CopyRegIdx << "\n");
LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
// Create a new dead def at the new def location.
@@ -1795,11 +1837,11 @@ class JoinVals {
/// True once Pruned above has been computed.
bool PrunedComputed;
- Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
+ Val() : Resolution(CR_Keep), WriteLanes(), ValidLanes(),
RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
Pruned(false), PrunedComputed(false) {}
- bool isAnalyzed() const { return WriteLanes != 0; }
+ bool isAnalyzed() const { return WriteLanes.any(); }
};
/// One entry per value number in LI.
@@ -1889,12 +1931,22 @@ public:
/// no useful information and can be removed.
void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
+ /// Pruning values in subranges can lead to removing segments in these
+ /// subranges started by IMPLICIT_DEFs. The corresponding segments in
+ /// the main range also need to be removed. This function will mark
+ /// the corresponding values in the main range as pruned, so that
+ /// eraseInstrs can do the final cleanup.
+ /// The parameter @p LI must be the interval whose main range is the
+ /// live range LR.
+ void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
+
/// Erase any machine instructions that have been coalesced away.
/// Add erased instructions to ErasedInstrs.
/// Add foreign virtual registers to ShrinkRegs if their live range ended at
/// the erased instrs.
void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
- SmallVectorImpl<unsigned> &ShrinkRegs);
+ SmallVectorImpl<unsigned> &ShrinkRegs,
+ LiveInterval *LI = nullptr);
/// Remove liverange defs at places where implicit defs will be removed.
void removeImplicitDefs();
@@ -1906,7 +1958,7 @@ public:
LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
const {
- LaneBitmask L = 0;
+ LaneBitmask L;
for (const MachineOperand &MO : DefMI->operands()) {
if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
continue;
@@ -1944,7 +1996,7 @@ std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
for (const LiveInterval::SubRange &S : LI.subranges()) {
// Transform lanemask to a mask in the joined live interval.
LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
- if ((SMask & LaneMask) == 0)
+ if ((SMask & LaneMask).none())
continue;
LiveQueryResult LRQ = S.Query(Def);
ValueIn = LRQ.valueIn();
@@ -1984,7 +2036,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
assert(!V.isAnalyzed() && "Value has already been analyzed!");
VNInfo *VNI = LR.getValNumInfo(ValNo);
if (VNI->isUnused()) {
- V.WriteLanes = ~0u;
+ V.WriteLanes = LaneBitmask::getAll();
return CR_Keep;
}
@@ -1992,16 +2044,17 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
const MachineInstr *DefMI = nullptr;
if (VNI->isPHIDef()) {
// Conservatively assume that all lanes in a PHI are valid.
- LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
+ LaneBitmask Lanes = SubRangeJoin ? LaneBitmask(1)
+ : TRI->getSubRegIndexLaneMask(SubIdx);
V.ValidLanes = V.WriteLanes = Lanes;
} else {
DefMI = Indexes->getInstructionFromIndex(VNI->def);
assert(DefMI != nullptr);
if (SubRangeJoin) {
// We don't care about the lanes when joining subregister ranges.
- V.WriteLanes = V.ValidLanes = 1;
+ V.WriteLanes = V.ValidLanes = LaneBitmask(1);
if (DefMI->isImplicitDef()) {
- V.ValidLanes = 0;
+ V.ValidLanes = LaneBitmask::getNone();
V.ErasableImplicitDef = true;
}
} else {
@@ -2074,7 +2127,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// predecessor, the PHI itself can't introduce any conflicts.
if (VNI->isPHIDef())
return CR_Merge;
- if (V.ValidLanes & OtherV.ValidLanes)
+ if ((V.ValidLanes & OtherV.ValidLanes).any())
// Overlapping lanes can't be resolved.
return CR_Impossible;
else
@@ -2119,7 +2172,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// We need the def for the subregister if there is nothing else live at the
// subrange at this point.
if (TrackSubRegLiveness
- && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
+ && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
return CR_Replace;
return CR_Erase;
}
@@ -2159,7 +2212,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
//
// Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
// handles this complex value mapping.
- if ((V.WriteLanes & OtherV.ValidLanes) == 0)
+ if ((V.WriteLanes & OtherV.ValidLanes).none())
return CR_Replace;
// If the other live range is killed by DefMI and the live ranges are still
@@ -2180,7 +2233,7 @@ JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
// possibility that no instructions actually read the clobbered lanes.
// If we're clobbering all the lanes in OtherVNI, at least one must be read.
// Otherwise Other.RI wouldn't be live here.
- if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
+ if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
return CR_Impossible;
// We need to verify that no instructions are reading the clobbered lanes. To
@@ -2228,11 +2281,11 @@ void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
Val &OtherV = Other.Vals[V.OtherVNI->id];
// We cannot erase an IMPLICIT_DEF if we don't have valid values for all
// its lanes.
- if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
+ if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness)
OtherV.ErasableImplicitDef = false;
OtherV.Pruned = true;
+ LLVM_FALLTHROUGH;
}
- // Fall through.
default:
// This value number needs to go in the final joined live range.
Assignments[ValNo] = NewVNInfo.size();
@@ -2289,7 +2342,7 @@ taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
TaintedLanes &= ~OV.WriteLanes;
if (!OV.RedefVNI)
break;
- } while (TaintedLanes);
+ } while (TaintedLanes.any());
return true;
}
@@ -2302,8 +2355,8 @@ bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
continue;
if (!MO.readsReg())
continue;
- if (Lanes & TRI->getSubRegIndexLaneMask(
- TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
+ unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
+ if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
return true;
}
return false;
@@ -2350,7 +2403,7 @@ bool JoinVals::resolveConflicts(JoinVals &Other) {
Indexes->getInstructionFromIndex(TaintExtent.front().first);
assert(LastMI && "Range must end at a proper instruction");
unsigned TaintNum = 0;
- for(;;) {
+ for (;;) {
assert(MI != MBB->end() && "Bad LastMI");
if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
@@ -2415,7 +2468,8 @@ void JoinVals::pruneValues(JoinVals &Other,
for (MachineOperand &MO :
Indexes->getInstructionFromIndex(Def)->operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
- MO.setIsUndef(EraseImpDef);
+ if (MO.getSubReg() != 0)
+ MO.setIsUndef(EraseImpDef);
MO.setIsDead(false);
}
}
@@ -2448,8 +2502,7 @@ void JoinVals::pruneValues(JoinVals &Other,
}
}
-void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
-{
+void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
// Look for values being erased.
bool DidPrune = false;
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
@@ -2486,6 +2539,30 @@ void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
LI.removeEmptySubRanges();
}
+/// Check if any of the subranges of @p LI contain a definition at @p Def.
+static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
+ for (LiveInterval::SubRange &SR : LI.subranges()) {
+ if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
+ if (VNI->def == Def)
+ return true;
+ }
+ return false;
+}
+
+void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
+ assert(&static_cast<LiveRange&>(LI) == &LR);
+
+ for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
+ if (Vals[i].Resolution != CR_Keep)
+ continue;
+ VNInfo *VNI = LR.getValNumInfo(i);
+ if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
+ continue;
+ Vals[i].Pruned = true;
+ ShrinkMainRange = true;
+ }
+}
+
void JoinVals::removeImplicitDefs() {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
Val &V = Vals[i];
@@ -2499,7 +2576,8 @@ void JoinVals::removeImplicitDefs() {
}
void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
- SmallVectorImpl<unsigned> &ShrinkRegs) {
+ SmallVectorImpl<unsigned> &ShrinkRegs,
+ LiveInterval *LI) {
for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
// Get the def location before markUnused() below invalidates it.
SlotIndex Def = LR.getValNumInfo(i)->def;
@@ -2511,13 +2589,65 @@ void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
break;
// Remove value number i from LR.
+ // For intervals with subranges, removing a segment from the main range
+ // may require extending the previous segment: for each definition of
+ // a subregister, there will be a corresponding def in the main range.
+ // That def may fall in the middle of a segment from another subrange.
+ // In such cases, removing this def from the main range must be
+ // complemented by extending the main range to account for the liveness
+ // of the other subrange.
VNInfo *VNI = LR.getValNumInfo(i);
+ SlotIndex Def = VNI->def;
+ // The new end point of the main range segment to be extended.
+ SlotIndex NewEnd;
+ if (LI != nullptr) {
+ LiveRange::iterator I = LR.FindSegmentContaining(Def);
+ assert(I != LR.end());
+ // Do not extend beyond the end of the segment being removed.
+ // The segment may have been pruned in preparation for joining
+ // live ranges.
+ NewEnd = I->end;
+ }
+
LR.removeValNo(VNI);
// Note that this VNInfo is reused and still referenced in NewVNInfo,
// make it appear like an unused value number.
VNI->markUnused();
- DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
- // FALL THROUGH.
+
+ if (LI != nullptr && LI->hasSubRanges()) {
+ assert(static_cast<LiveRange*>(LI) == &LR);
+ // Determine the end point based on the subrange information:
+ // minimum of (earliest def of next segment,
+ // latest end point of containing segment)
+ SlotIndex ED, LE;
+ for (LiveInterval::SubRange &SR : LI->subranges()) {
+ LiveRange::iterator I = SR.find(Def);
+ if (I == SR.end())
+ continue;
+ if (I->start > Def)
+ ED = ED.isValid() ? std::min(ED, I->start) : I->start;
+ else
+ LE = LE.isValid() ? std::max(LE, I->end) : I->end;
+ }
+ if (LE.isValid())
+ NewEnd = std::min(NewEnd, LE);
+ if (ED.isValid())
+ NewEnd = std::min(NewEnd, ED);
+
+ // We only want to do the extension if there was a subrange that
+ // was live across Def.
+ if (LE.isValid()) {
+ LiveRange::iterator S = LR.find(Def);
+ if (S != LR.begin())
+ std::prev(S)->end = NewEnd;
+ }
+ }
+ DEBUG({
+ dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
+ if (LI != nullptr)
+ dbgs() << "\t\t LHS = " << *LI << '\n';
+ });
+ LLVM_FALLTHROUGH;
}
case CR_Erase: {
@@ -2591,8 +2721,15 @@ void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
// Recompute the parts of the live range we had to remove because of
// CR_Replace conflicts.
- DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
- << " points: " << LRange << '\n');
+ DEBUG({
+ dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
+ for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
+ dbgs() << EndPoints[i];
+ if (i != n-1)
+ dbgs() << ',';
+ }
+ dbgs() << ": " << LRange << '\n';
+ });
LIS->extendToIndices(LRange, EndPoints);
}
@@ -2606,7 +2743,7 @@ void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
// LaneMask of subregisters common to subrange R and ToMerge.
LaneBitmask Common = RMask & LaneMask;
// There is nothing to do without common subregs.
- if (Common == 0)
+ if (Common.none())
continue;
DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
@@ -2615,7 +2752,7 @@ void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
// they have to split into their own subrange.
LaneBitmask LRest = RMask & ~LaneMask;
LiveInterval::SubRange *CommonRange;
- if (LRest != 0) {
+ if (LRest.any()) {
R.LaneMask = LRest;
DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
// Duplicate SubRange for newly merged common stuff.
@@ -2630,7 +2767,7 @@ void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
LaneMask &= ~RMask;
}
- if (LaneMask != 0) {
+ if (LaneMask.any()) {
DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
}
@@ -2641,10 +2778,10 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
- JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
- TRI, false, TrackSubRegLiveness);
- JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
- TRI, false, TrackSubRegLiveness);
+ JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
+ NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
+ JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
+ NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
@@ -2670,7 +2807,7 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
: TRI->getSubRegIndexLaneMask(DstIdx);
// LHS must support subregs or we wouldn't be in this codepath.
- assert(Mask != 0);
+ assert(Mask.any());
LHS.createSubRangeFrom(Allocator, Mask, LHS);
} else if (DstIdx != 0) {
// Transform LHS lanemasks to new register class if necessary.
@@ -2697,6 +2834,10 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
}
DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
+ // Pruning implicit defs from subranges may result in the main range
+ // having stale segments.
+ LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
+
LHSVals.pruneSubRegValues(LHS, ShrinkMask);
RHSVals.pruneSubRegValues(LHS, ShrinkMask);
}
@@ -2712,7 +2853,7 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
// Erase COPY and IMPLICIT_DEF instructions. This may cause some external
// registers to require trimming.
SmallVector<unsigned, 8> ShrinkRegs;
- LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
+ LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
while (!ShrinkRegs.empty())
shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
@@ -2729,8 +2870,15 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
if (!EndPoints.empty()) {
// Recompute the parts of the live range we had to remove because of
// CR_Replace conflicts.
- DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
- << " points: " << LHS << '\n');
+ DEBUG({
+ dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
+ for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
+ dbgs() << EndPoints[i];
+ if (i != n-1)
+ dbgs() << ',';
+ }
+ dbgs() << ": " << LHS << '\n';
+ });
LIS->extendToIndices((LiveRange&)LHS, EndPoints);
}
@@ -3039,7 +3187,7 @@ bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
// If subranges are still supported, then the same subregs
// should still be supported.
for (LiveInterval::SubRange &S : LI.subranges()) {
- assert((S.LaneMask & ~MaxMask) == 0);
+ assert((S.LaneMask & ~MaxMask).none());
}
#endif
}
diff --git a/contrib/llvm/lib/CodeGen/RegisterPressure.cpp b/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
index a21d6c1..fc84aeb 100644
--- a/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterPressure.cpp
@@ -26,8 +26,8 @@ using namespace llvm;
static void increaseSetPressure(std::vector<unsigned> &CurrSetPressure,
const MachineRegisterInfo &MRI, unsigned Reg,
LaneBitmask PrevMask, LaneBitmask NewMask) {
- assert((PrevMask & ~NewMask) == 0 && "Must not remove bits");
- if (PrevMask != 0 || NewMask == 0)
+ assert((PrevMask & ~NewMask).none() && "Must not remove bits");
+ if (PrevMask.any() || NewMask.none())
return;
PSetIterator PSetI = MRI.getPressureSets(Reg);
@@ -40,8 +40,8 @@ static void increaseSetPressure(std::vector<unsigned> &CurrSetPressure,
static void decreaseSetPressure(std::vector<unsigned> &CurrSetPressure,
const MachineRegisterInfo &MRI, unsigned Reg,
LaneBitmask PrevMask, LaneBitmask NewMask) {
- assert((NewMask & !PrevMask) == 0 && "Must not add bits");
- if (NewMask != 0 || PrevMask == 0)
+ //assert((NewMask & !PrevMask) == 0 && "Must not add bits");
+ if (NewMask.any() || PrevMask.none())
return;
PSetIterator PSetI = MRI.getPressureSets(Reg);
@@ -73,7 +73,7 @@ void RegisterPressure::dump(const TargetRegisterInfo *TRI) const {
dbgs() << "Live In: ";
for (const RegisterMaskPair &P : LiveInRegs) {
dbgs() << PrintVRegOrUnit(P.RegUnit, TRI);
- if (P.LaneMask != ~0u)
+ if (!P.LaneMask.all())
dbgs() << ':' << PrintLaneMask(P.LaneMask);
dbgs() << ' ';
}
@@ -81,7 +81,7 @@ void RegisterPressure::dump(const TargetRegisterInfo *TRI) const {
dbgs() << "Live Out: ";
for (const RegisterMaskPair &P : LiveOutRegs) {
dbgs() << PrintVRegOrUnit(P.RegUnit, TRI);
- if (P.LaneMask != ~0u)
+ if (!P.LaneMask.all())
dbgs() << ':' << PrintLaneMask(P.LaneMask);
dbgs() << ' ';
}
@@ -112,7 +112,7 @@ void PressureDiff::dump(const TargetRegisterInfo &TRI) const {
void RegPressureTracker::increaseRegPressure(unsigned RegUnit,
LaneBitmask PreviousMask,
LaneBitmask NewMask) {
- if (PreviousMask != 0 || NewMask == 0)
+ if (PreviousMask.any() || NewMask.none())
return;
PSetIterator PSetI = MRI->getPressureSets(RegUnit);
@@ -266,9 +266,8 @@ bool RegPressureTracker::isBottomClosed() const {
SlotIndex RegPressureTracker::getCurrSlot() const {
- MachineBasicBlock::const_iterator IdxPos = CurrPos;
- while (IdxPos != MBB->end() && IdxPos->isDebugValue())
- ++IdxPos;
+ MachineBasicBlock::const_iterator IdxPos =
+ skipDebugInstructionsForward(CurrPos, MBB->end());
if (IdxPos == MBB->end())
return LIS->getMBBEndIdx(MBB);
return LIS->getInstructionIndex(*IdxPos).getRegSlot();
@@ -322,29 +321,28 @@ void RegPressureTracker::initLiveThru(const RegPressureTracker &RPTracker) {
unsigned RegUnit = Pair.RegUnit;
if (TargetRegisterInfo::isVirtualRegister(RegUnit)
&& !RPTracker.hasUntiedDef(RegUnit))
- increaseSetPressure(LiveThruPressure, *MRI, RegUnit, 0, Pair.LaneMask);
+ increaseSetPressure(LiveThruPressure, *MRI, RegUnit,
+ LaneBitmask::getNone(), Pair.LaneMask);
}
}
static LaneBitmask getRegLanes(ArrayRef<RegisterMaskPair> RegUnits,
unsigned RegUnit) {
- auto I = std::find_if(RegUnits.begin(), RegUnits.end(),
- [RegUnit](const RegisterMaskPair Other) {
- return Other.RegUnit == RegUnit;
- });
+ auto I = find_if(RegUnits, [RegUnit](const RegisterMaskPair Other) {
+ return Other.RegUnit == RegUnit;
+ });
if (I == RegUnits.end())
- return 0;
+ return LaneBitmask::getNone();
return I->LaneMask;
}
static void addRegLanes(SmallVectorImpl<RegisterMaskPair> &RegUnits,
RegisterMaskPair Pair) {
unsigned RegUnit = Pair.RegUnit;
- assert(Pair.LaneMask != 0);
- auto I = std::find_if(RegUnits.begin(), RegUnits.end(),
- [RegUnit](const RegisterMaskPair Other) {
- return Other.RegUnit == RegUnit;
- });
+ assert(Pair.LaneMask.any());
+ auto I = find_if(RegUnits, [RegUnit](const RegisterMaskPair Other) {
+ return Other.RegUnit == RegUnit;
+ });
if (I == RegUnits.end()) {
RegUnits.push_back(Pair);
} else {
@@ -354,28 +352,26 @@ static void addRegLanes(SmallVectorImpl<RegisterMaskPair> &RegUnits,
static void setRegZero(SmallVectorImpl<RegisterMaskPair> &RegUnits,
unsigned RegUnit) {
- auto I = std::find_if(RegUnits.begin(), RegUnits.end(),
- [RegUnit](const RegisterMaskPair Other) {
- return Other.RegUnit == RegUnit;
- });
+ auto I = find_if(RegUnits, [RegUnit](const RegisterMaskPair Other) {
+ return Other.RegUnit == RegUnit;
+ });
if (I == RegUnits.end()) {
- RegUnits.push_back(RegisterMaskPair(RegUnit, 0));
+ RegUnits.push_back(RegisterMaskPair(RegUnit, LaneBitmask::getNone()));
} else {
- I->LaneMask = 0;
+ I->LaneMask = LaneBitmask::getNone();
}
}
static void removeRegLanes(SmallVectorImpl<RegisterMaskPair> &RegUnits,
RegisterMaskPair Pair) {
unsigned RegUnit = Pair.RegUnit;
- assert(Pair.LaneMask != 0);
- auto I = std::find_if(RegUnits.begin(), RegUnits.end(),
- [RegUnit](const RegisterMaskPair Other) {
- return Other.RegUnit == RegUnit;
- });
+ assert(Pair.LaneMask.any());
+ auto I = find_if(RegUnits, [RegUnit](const RegisterMaskPair Other) {
+ return Other.RegUnit == RegUnit;
+ });
if (I != RegUnits.end()) {
I->LaneMask &= ~Pair.LaneMask;
- if (I->LaneMask == 0)
+ if (I->LaneMask.none())
RegUnits.erase(I);
}
}
@@ -386,14 +382,15 @@ static LaneBitmask getLanesWithProperty(const LiveIntervals &LIS,
bool(*Property)(const LiveRange &LR, SlotIndex Pos)) {
if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
const LiveInterval &LI = LIS.getInterval(RegUnit);
- LaneBitmask Result = 0;
+ LaneBitmask Result;
if (TrackLaneMasks && LI.hasSubRanges()) {
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if (Property(SR, Pos))
Result |= SR.LaneMask;
}
} else if (Property(LI, Pos)) {
- Result = TrackLaneMasks ? MRI.getMaxLaneMaskForVReg(RegUnit) : ~0u;
+ Result = TrackLaneMasks ? MRI.getMaxLaneMaskForVReg(RegUnit)
+ : LaneBitmask::getAll();
}
return Result;
@@ -403,7 +400,7 @@ static LaneBitmask getLanesWithProperty(const LiveIntervals &LIS,
// for physical registers on targets with many registers (GPUs).
if (LR == nullptr)
return SafeDefault;
- return Property(*LR, Pos) ? ~0u : 0;
+ return Property(*LR, Pos) ? LaneBitmask::getAll() : LaneBitmask::getNone();
}
}
@@ -411,7 +408,8 @@ static LaneBitmask getLiveLanesAt(const LiveIntervals &LIS,
const MachineRegisterInfo &MRI,
bool TrackLaneMasks, unsigned RegUnit,
SlotIndex Pos) {
- return getLanesWithProperty(LIS, MRI, TrackLaneMasks, RegUnit, Pos, ~0u,
+ return getLanesWithProperty(LIS, MRI, TrackLaneMasks, RegUnit, Pos,
+ LaneBitmask::getAll(),
[](const LiveRange &LR, SlotIndex Pos) {
return LR.liveAt(Pos);
});
@@ -478,10 +476,10 @@ class RegisterOperandsCollector {
void pushReg(unsigned Reg,
SmallVectorImpl<RegisterMaskPair> &RegUnits) const {
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- addRegLanes(RegUnits, RegisterMaskPair(Reg, ~0u));
+ addRegLanes(RegUnits, RegisterMaskPair(Reg, LaneBitmask::getAll()));
} else if (MRI.isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
- addRegLanes(RegUnits, RegisterMaskPair(*Units, ~0u));
+ addRegLanes(RegUnits, RegisterMaskPair(*Units, LaneBitmask::getAll()));
}
}
@@ -516,7 +514,7 @@ class RegisterOperandsCollector {
addRegLanes(RegUnits, RegisterMaskPair(Reg, LaneMask));
} else if (MRI.isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
- addRegLanes(RegUnits, RegisterMaskPair(*Units, ~0u));
+ addRegLanes(RegUnits, RegisterMaskPair(*Units, LaneBitmask::getAll()));
}
}
@@ -567,11 +565,11 @@ void RegisterOperands::adjustLaneLiveness(const LiveIntervals &LIS,
// of a subregister def we need a read-undef flag.
unsigned RegUnit = I->RegUnit;
if (TargetRegisterInfo::isVirtualRegister(RegUnit) &&
- AddFlagsMI != nullptr && (LiveAfter & ~I->LaneMask) == 0)
+ AddFlagsMI != nullptr && (LiveAfter & ~I->LaneMask).none())
AddFlagsMI->setRegisterDefReadUndef(RegUnit);
LaneBitmask ActualDef = I->LaneMask & LiveAfter;
- if (ActualDef == 0) {
+ if (ActualDef.none()) {
I = Defs.erase(I);
} else {
I->LaneMask = ActualDef;
@@ -582,7 +580,7 @@ void RegisterOperands::adjustLaneLiveness(const LiveIntervals &LIS,
LaneBitmask LiveBefore = getLiveLanesAt(LIS, MRI, true, I->RegUnit,
Pos.getBaseIndex());
LaneBitmask LaneMask = I->LaneMask & LiveBefore;
- if (LaneMask == 0) {
+ if (LaneMask.none()) {
I = Uses.erase(I);
} else {
I->LaneMask = LaneMask;
@@ -596,7 +594,7 @@ void RegisterOperands::adjustLaneLiveness(const LiveIntervals &LIS,
continue;
LaneBitmask LiveAfter = getLiveLanesAt(LIS, MRI, true, RegUnit,
Pos.getDeadSlot());
- if (LiveAfter == 0)
+ if (LiveAfter.none())
AddFlagsMI->setRegisterDefReadUndef(RegUnit);
}
}
@@ -673,17 +671,16 @@ void RegPressureTracker::addLiveRegs(ArrayRef<RegisterMaskPair> Regs) {
void RegPressureTracker::discoverLiveInOrOut(RegisterMaskPair Pair,
SmallVectorImpl<RegisterMaskPair> &LiveInOrOut) {
- assert(Pair.LaneMask != 0);
+ assert(Pair.LaneMask.any());
unsigned RegUnit = Pair.RegUnit;
- auto I = std::find_if(LiveInOrOut.begin(), LiveInOrOut.end(),
- [RegUnit](const RegisterMaskPair &Other) {
- return Other.RegUnit == RegUnit;
- });
+ auto I = find_if(LiveInOrOut, [RegUnit](const RegisterMaskPair &Other) {
+ return Other.RegUnit == RegUnit;
+ });
LaneBitmask PrevMask;
LaneBitmask NewMask;
if (I == LiveInOrOut.end()) {
- PrevMask = 0;
+ PrevMask = LaneBitmask::getNone();
NewMask = Pair.LaneMask;
LiveInOrOut.push_back(Pair);
} else {
@@ -738,14 +735,15 @@ void RegPressureTracker::recede(const RegisterOperands &RegOpers,
LaneBitmask NewMask = PreviousMask & ~Def.LaneMask;
LaneBitmask LiveOut = Def.LaneMask & ~PreviousMask;
- if (LiveOut != 0) {
+ if (LiveOut.any()) {
discoverLiveOut(RegisterMaskPair(Reg, LiveOut));
// Retroactively model effects on pressure of the live out lanes.
- increaseSetPressure(CurrSetPressure, *MRI, Reg, 0, LiveOut);
+ increaseSetPressure(CurrSetPressure, *MRI, Reg, LaneBitmask::getNone(),
+ LiveOut);
PreviousMask = LiveOut;
}
- if (NewMask == 0) {
+ if (NewMask.none()) {
// Add a 0 entry to LiveUses as a marker that the complete vreg has become
// dead.
if (TrackLaneMasks && LiveUses != nullptr)
@@ -762,26 +760,25 @@ void RegPressureTracker::recede(const RegisterOperands &RegOpers,
// Generate liveness for uses.
for (const RegisterMaskPair &Use : RegOpers.Uses) {
unsigned Reg = Use.RegUnit;
- assert(Use.LaneMask != 0);
+ assert(Use.LaneMask.any());
LaneBitmask PreviousMask = LiveRegs.insert(Use);
LaneBitmask NewMask = PreviousMask | Use.LaneMask;
if (NewMask == PreviousMask)
continue;
// Did the register just become live?
- if (PreviousMask == 0) {
+ if (PreviousMask.none()) {
if (LiveUses != nullptr) {
if (!TrackLaneMasks) {
addRegLanes(*LiveUses, RegisterMaskPair(Reg, NewMask));
} else {
- auto I = std::find_if(LiveUses->begin(), LiveUses->end(),
- [Reg](const RegisterMaskPair Other) {
- return Other.RegUnit == Reg;
- });
+ auto I = find_if(*LiveUses, [Reg](const RegisterMaskPair Other) {
+ return Other.RegUnit == Reg;
+ });
bool IsRedef = I != LiveUses->end();
if (IsRedef) {
// ignore re-defs here...
- assert(I->LaneMask == 0);
+ assert(I->LaneMask.none());
removeRegLanes(*LiveUses, RegisterMaskPair(Reg, NewMask));
} else {
addRegLanes(*LiveUses, RegisterMaskPair(Reg, NewMask));
@@ -792,7 +789,7 @@ void RegPressureTracker::recede(const RegisterOperands &RegOpers,
// Discover live outs if this may be the first occurance of this register.
if (RequireIntervals) {
LaneBitmask LiveOut = getLiveThroughAt(Reg, SlotIdx);
- if (LiveOut != 0)
+ if (LiveOut.any())
discoverLiveOut(RegisterMaskPair(Reg, LiveOut));
}
}
@@ -803,7 +800,7 @@ void RegPressureTracker::recede(const RegisterOperands &RegOpers,
for (const RegisterMaskPair &Def : RegOpers.Defs) {
unsigned RegUnit = Def.RegUnit;
if (TargetRegisterInfo::isVirtualRegister(RegUnit) &&
- (LiveRegs.contains(RegUnit) & Def.LaneMask) == 0)
+ (LiveRegs.contains(RegUnit) & Def.LaneMask).none())
UntiedDefs.insert(RegUnit);
}
}
@@ -819,9 +816,7 @@ void RegPressureTracker::recedeSkipDebugValues() {
static_cast<RegionPressure&>(P).openTop(CurrPos);
// Find the previous instruction.
- do
- --CurrPos;
- while (CurrPos != MBB->begin() && CurrPos->isDebugValue());
+ CurrPos = skipDebugInstructionsBackward(std::prev(CurrPos), MBB->begin());
SlotIndex SlotIdx;
if (RequireIntervals)
@@ -871,7 +866,7 @@ void RegPressureTracker::advance(const RegisterOperands &RegOpers) {
unsigned Reg = Use.RegUnit;
LaneBitmask LiveMask = LiveRegs.contains(Reg);
LaneBitmask LiveIn = Use.LaneMask & ~LiveMask;
- if (LiveIn != 0) {
+ if (LiveIn.any()) {
discoverLiveIn(RegisterMaskPair(Reg, LiveIn));
increaseRegPressure(Reg, LiveMask, LiveMask | LiveIn);
LiveRegs.insert(RegisterMaskPair(Reg, LiveIn));
@@ -879,7 +874,7 @@ void RegPressureTracker::advance(const RegisterOperands &RegOpers) {
// Kill liveness at last uses.
if (RequireIntervals) {
LaneBitmask LastUseMask = getLastUsedLanes(Reg, SlotIdx);
- if (LastUseMask != 0) {
+ if (LastUseMask.any()) {
LiveRegs.erase(RegisterMaskPair(Reg, LastUseMask));
decreaseRegPressure(Reg, LiveMask, LiveMask & ~LastUseMask);
}
@@ -897,9 +892,7 @@ void RegPressureTracker::advance(const RegisterOperands &RegOpers) {
bumpDeadDefs(RegOpers.DeadDefs);
// Find the next instruction.
- do
- ++CurrPos;
- while (CurrPos != MBB->end() && CurrPos->isDebugValue());
+ CurrPos = skipDebugInstructionsForward(std::next(CurrPos), MBB->end());
}
void RegPressureTracker::advance() {
@@ -1192,8 +1185,8 @@ static LaneBitmask findUseBetween(unsigned Reg, LaneBitmask LastUseMask,
unsigned SubRegIdx = MO.getSubReg();
LaneBitmask UseMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
LastUseMask &= ~UseMask;
- if (LastUseMask == 0)
- return 0;
+ if (LastUseMask.none())
+ return LaneBitmask::getNone();
}
}
return LastUseMask;
@@ -1202,7 +1195,8 @@ static LaneBitmask findUseBetween(unsigned Reg, LaneBitmask LastUseMask,
LaneBitmask RegPressureTracker::getLiveLanesAt(unsigned RegUnit,
SlotIndex Pos) const {
assert(RequireIntervals);
- return getLanesWithProperty(*LIS, *MRI, TrackLaneMasks, RegUnit, Pos, ~0u,
+ return getLanesWithProperty(*LIS, *MRI, TrackLaneMasks, RegUnit, Pos,
+ LaneBitmask::getAll(),
[](const LiveRange &LR, SlotIndex Pos) {
return LR.liveAt(Pos);
});
@@ -1212,7 +1206,7 @@ LaneBitmask RegPressureTracker::getLastUsedLanes(unsigned RegUnit,
SlotIndex Pos) const {
assert(RequireIntervals);
return getLanesWithProperty(*LIS, *MRI, TrackLaneMasks, RegUnit,
- Pos.getBaseIndex(), 0,
+ Pos.getBaseIndex(), LaneBitmask::getNone(),
[](const LiveRange &LR, SlotIndex Pos) {
const LiveRange::Segment *S = LR.getSegmentContaining(Pos);
return S != nullptr && S->end == Pos.getRegSlot();
@@ -1222,7 +1216,8 @@ LaneBitmask RegPressureTracker::getLastUsedLanes(unsigned RegUnit,
LaneBitmask RegPressureTracker::getLiveThroughAt(unsigned RegUnit,
SlotIndex Pos) const {
assert(RequireIntervals);
- return getLanesWithProperty(*LIS, *MRI, TrackLaneMasks, RegUnit, Pos, 0u,
+ return getLanesWithProperty(*LIS, *MRI, TrackLaneMasks, RegUnit, Pos,
+ LaneBitmask::getNone(),
[](const LiveRange &LR, SlotIndex Pos) {
const LiveRange::Segment *S = LR.getSegmentContaining(Pos);
return S != nullptr && S->start < Pos.getRegSlot(true) &&
@@ -1253,7 +1248,7 @@ void RegPressureTracker::bumpDownwardPressure(const MachineInstr *MI) {
for (const RegisterMaskPair &Use : RegOpers.Uses) {
unsigned Reg = Use.RegUnit;
LaneBitmask LastUseMask = getLastUsedLanes(Reg, SlotIdx);
- if (LastUseMask == 0)
+ if (LastUseMask.none())
continue;
// The LastUseMask is queried from the liveness information of instruction
// which may be further down the schedule. Some lanes may actually not be
@@ -1263,7 +1258,7 @@ void RegPressureTracker::bumpDownwardPressure(const MachineInstr *MI) {
SlotIndex CurrIdx = getCurrSlot();
LastUseMask
= findUseBetween(Reg, LastUseMask, CurrIdx, SlotIdx, *MRI, LIS);
- if (LastUseMask == 0)
+ if (LastUseMask.none())
continue;
LaneBitmask LiveMask = LiveRegs.contains(Reg);
diff --git a/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp b/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
index 6b80179..fdf741f 100644
--- a/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterScavenging.cpp
@@ -34,33 +34,12 @@ using namespace llvm;
void RegScavenger::setRegUsed(unsigned Reg, LaneBitmask LaneMask) {
for (MCRegUnitMaskIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) {
LaneBitmask UnitMask = (*RUI).second;
- if (UnitMask == 0 || (LaneMask & UnitMask) != 0)
+ if (UnitMask.none() || (LaneMask & UnitMask).any())
RegUnitsAvailable.reset((*RUI).first);
}
}
-void RegScavenger::initRegState() {
- for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(),
- IE = Scavenged.end(); I != IE; ++I) {
- I->Reg = 0;
- I->Restore = nullptr;
- }
-
- // All register units start out unused.
- RegUnitsAvailable.set();
-
- // Live-in registers are in use.
- for (const auto &LI : MBB->liveins())
- setRegUsed(LI.PhysReg, LI.LaneMask);
-
- // Pristine CSRs are also unavailable.
- const MachineFunction &MF = *MBB->getParent();
- BitVector PR = MF.getFrameInfo()->getPristineRegs(MF);
- for (int I = PR.find_first(); I>0; I = PR.find_next(I))
- setRegUsed(I);
-}
-
-void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
+void RegScavenger::init(MachineBasicBlock &MBB) {
MachineFunction &MF = *MBB.getParent();
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
@@ -69,11 +48,6 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
"Target changed?");
- // It is not possible to use the register scavenger after late optimization
- // passes that don't preserve accurate liveness information.
- assert(MRI->tracksLiveness() &&
- "Cannot use register scavenger with inaccurate liveness");
-
// Self-initialize.
if (!this->MBB) {
NumRegUnits = TRI->getNumRegUnits();
@@ -84,16 +58,56 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
}
this->MBB = &MBB;
- initRegState();
+ for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(),
+ IE = Scavenged.end(); I != IE; ++I) {
+ I->Reg = 0;
+ I->Restore = nullptr;
+ }
+
+ // All register units start out unused.
+ RegUnitsAvailable.set();
+
+ // Pristine CSRs are not available.
+ BitVector PR = MF.getFrameInfo().getPristineRegs(MF);
+ for (int I = PR.find_first(); I>0; I = PR.find_next(I))
+ setRegUsed(I);
Tracking = false;
}
+void RegScavenger::setLiveInsUsed(const MachineBasicBlock &MBB) {
+ for (const auto &LI : MBB.liveins())
+ setRegUsed(LI.PhysReg, LI.LaneMask);
+}
+
+void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
+ init(MBB);
+ setLiveInsUsed(MBB);
+}
+
+void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
+ init(MBB);
+ // Merge live-ins of successors to get live-outs.
+ for (const MachineBasicBlock *Succ : MBB.successors())
+ setLiveInsUsed(*Succ);
+
+ // Move internal iterator at the last instruction of the block.
+ if (MBB.begin() != MBB.end()) {
+ MBBI = std::prev(MBB.end());
+ Tracking = true;
+ }
+}
+
void RegScavenger::addRegUnits(BitVector &BV, unsigned Reg) {
for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
BV.set(*RUI);
}
+void RegScavenger::removeRegUnits(BitVector &BV, unsigned Reg) {
+ for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
+ BV.reset(*RUI);
+}
+
void RegScavenger::determineKillsAndDefs() {
assert(Tracking && "Must be tracking to determine kills and defs");
@@ -245,6 +259,48 @@ void RegScavenger::forward() {
setUsed(DefRegUnits);
}
+void RegScavenger::backward() {
+ assert(Tracking && "Must be tracking to determine kills and defs");
+
+ const MachineInstr &MI = *MBBI;
+ // Defined or clobbered registers are available now.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isRegMask()) {
+ for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd;
+ ++RU) {
+ for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
+ if (MO.clobbersPhysReg(*RURI)) {
+ RegUnitsAvailable.set(RU);
+ break;
+ }
+ }
+ }
+ } else if (MO.isReg() && MO.isDef()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
+ isReserved(Reg))
+ continue;
+ addRegUnits(RegUnitsAvailable, Reg);
+ }
+ }
+ // Mark read registers as unavailable.
+ for (const MachineOperand &MO : MI.uses()) {
+ if (MO.isReg() && MO.readsReg()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
+ isReserved(Reg))
+ continue;
+ removeRegUnits(RegUnitsAvailable, Reg);
+ }
+ }
+
+ if (MBBI == MBB->begin()) {
+ MBBI = MachineBasicBlock::iterator(nullptr);
+ Tracking = false;
+ } else
+ --MBBI;
+}
+
bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const {
if (includeReserved && isReserved(Reg))
return true;
@@ -358,7 +414,8 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- Candidates.reset(MO.getReg());
+ for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
+ Candidates.reset(*AI);
}
// Try to find a register that's unused if there is one, as then we won't
@@ -380,7 +437,7 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
// Find an available scavenging slot with size and alignment matching
// the requirements of the class RC.
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned NeedSize = RC->getSize();
unsigned NeedAlign = RC->getAlignment();
diff --git a/contrib/llvm/lib/CodeGen/RegisterUsageInfo.cpp b/contrib/llvm/lib/CodeGen/RegisterUsageInfo.cpp
index 5cf3e57..66f1966 100644
--- a/contrib/llvm/lib/CodeGen/RegisterUsageInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/RegisterUsageInfo.cpp
@@ -22,7 +22,7 @@ using namespace llvm;
#define DEBUG_TYPE "ip-regalloc"
-cl::opt<bool> DumpRegUsage(
+static cl::opt<bool> DumpRegUsage(
"print-regusage", cl::init(false), cl::Hidden,
cl::desc("print register usage details collected for analysis."));
diff --git a/contrib/llvm/lib/CodeGen/RenameIndependentSubregs.cpp b/contrib/llvm/lib/CodeGen/RenameIndependentSubregs.cpp
index ea952d9..2f7ee8b 100644
--- a/contrib/llvm/lib/CodeGen/RenameIndependentSubregs.cpp
+++ b/contrib/llvm/lib/CodeGen/RenameIndependentSubregs.cpp
@@ -48,7 +48,7 @@ public:
static char ID;
RenameIndependentSubregs() : MachineFunctionPass(ID) {}
- const char *getPassName() const override {
+ StringRef getPassName() const override {
return "Rename Disconnected Subregister Components";
}
@@ -184,7 +184,7 @@ bool RenameIndependentSubregs::findComponents(IntEqClasses &Classes,
unsigned MergedID = ~0u;
for (RenameIndependentSubregs::SubRangeInfo &SRInfo : SubRangeInfos) {
const LiveInterval::SubRange &SR = *SRInfo.SR;
- if ((SR.LaneMask & LaneMask) == 0)
+ if ((SR.LaneMask & LaneMask).none())
continue;
SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber())
@@ -219,24 +219,23 @@ void RenameIndependentSubregs::rewriteOperands(const IntEqClasses &Classes,
if (!MO.isDef() && !MO.readsReg())
continue;
- MachineInstr &MI = *MO.getParent();
-
- SlotIndex Pos = LIS->getInstructionIndex(MI);
+ SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
+ Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber())
+ : Pos.getBaseIndex();
unsigned SubRegIdx = MO.getSubReg();
LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
unsigned ID = ~0u;
for (const SubRangeInfo &SRInfo : SubRangeInfos) {
const LiveInterval::SubRange &SR = *SRInfo.SR;
- if ((SR.LaneMask & LaneMask) == 0)
+ if ((SR.LaneMask & LaneMask).none())
continue;
- LiveRange::const_iterator I = SR.find(Pos);
- if (I == SR.end())
+ const VNInfo *VNI = SR.getVNInfoAt(Pos);
+ if (VNI == nullptr)
continue;
- const VNInfo &VNI = *I->valno;
// Map to local representant ID.
- unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
+ unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI);
// Global ID
ID = Classes[LocalID + SRInfo.Index];
break;
@@ -354,19 +353,24 @@ void RenameIndependentSubregs::computeMainRangesFixFlags(
if (I == 0)
LI.clear();
LIS->constructMainRangeFromSubranges(LI);
+ // A def of a subregister may be a use of other register lanes. Replacing
+ // such a def with a def of a different register will eliminate the use,
+ // and may cause the recorded live range to be larger than the actual
+ // liveness in the program IR.
+ LIS->shrinkToUses(&LI);
}
}
bool RenameIndependentSubregs::runOnMachineFunction(MachineFunction &MF) {
// Skip renaming if liveness of subregister is not tracked.
- if (!MF.getSubtarget().enableSubRegLiveness())
+ MRI = &MF.getRegInfo();
+ if (!MRI->subRegLivenessEnabled())
return false;
DEBUG(dbgs() << "Renaming independent subregister live ranges in "
<< MF.getName() << '\n');
LIS = &getAnalysis<LiveIntervals>();
- MRI = &MF.getRegInfo();
TII = MF.getSubtarget().getInstrInfo();
// Iterate over all vregs. Note that we query getNumVirtRegs() the newly
diff --git a/contrib/llvm/lib/CodeGen/ResetMachineFunctionPass.cpp b/contrib/llvm/lib/CodeGen/ResetMachineFunctionPass.cpp
new file mode 100644
index 0000000..4519641
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ResetMachineFunctionPass.cpp
@@ -0,0 +1,67 @@
+//===-- ResetMachineFunctionPass.cpp - Reset Machine Function ----*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a pass that will conditionally reset a machine
+/// function as if it was just created. This is used to provide a fallback
+/// mechanism when GlobalISel fails, thus the condition for the reset to
+/// happen is that the MachineFunction has the FailedISel property.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "reset-machine-function"
+
+STATISTIC(NumFunctionsReset, "Number of functions reset");
+
+namespace {
+ class ResetMachineFunction : public MachineFunctionPass {
+ /// Tells whether or not this pass should emit a fallback
+ /// diagnostic when it resets a function.
+ bool EmitFallbackDiag;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ ResetMachineFunction(bool EmitFallbackDiag = false)
+ : MachineFunctionPass(ID), EmitFallbackDiag(EmitFallbackDiag) {}
+
+ StringRef getPassName() const override { return "ResetMachineFunction"; }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel)) {
+ DEBUG(dbgs() << "Reseting: " << MF.getName() << '\n');
+ ++NumFunctionsReset;
+ MF.reset();
+ if (EmitFallbackDiag) {
+ const Function &F = *MF.getFunction();
+ DiagnosticInfoISelFallback DiagFallback(F);
+ F.getContext().diagnose(DiagFallback);
+ }
+ return true;
+ }
+ return false;
+ }
+
+ };
+} // end anonymous namespace
+
+char ResetMachineFunction::ID = 0;
+INITIALIZE_PASS(ResetMachineFunction, DEBUG_TYPE,
+ "reset machine function if ISel failed", false, false)
+
+MachineFunctionPass *
+llvm::createResetMachineFunctionPass(bool EmitFallbackDiag = false) {
+ return new ResetMachineFunction(EmitFallbackDiag);
+}
diff --git a/contrib/llvm/lib/CodeGen/SafeStack.cpp b/contrib/llvm/lib/CodeGen/SafeStack.cpp
index 4a1b995..2b82df2 100644
--- a/contrib/llvm/lib/CodeGen/SafeStack.cpp
+++ b/contrib/llvm/lib/CodeGen/SafeStack.cpp
@@ -52,17 +52,6 @@ using namespace llvm::safestack;
#define DEBUG_TYPE "safestack"
-enum UnsafeStackPtrStorageVal { ThreadLocalUSP, SingleThreadUSP };
-
-static cl::opt<UnsafeStackPtrStorageVal> USPStorage("safe-stack-usp-storage",
- cl::Hidden, cl::init(ThreadLocalUSP),
- cl::desc("Type of storage for the unsafe stack pointer"),
- cl::values(clEnumValN(ThreadLocalUSP, "thread-local",
- "Thread-local storage"),
- clEnumValN(SingleThreadUSP, "single-thread",
- "Non-thread-local storage"),
- clEnumValEnd));
-
namespace llvm {
STATISTIC(NumFunctions, "Total number of functions");
@@ -124,9 +113,6 @@ class SafeStack : public FunctionPass {
/// might expect to appear on the stack on most common targets.
enum { StackAlignment = 16 };
- /// \brief Build a value representing a pointer to the unsafe stack pointer.
- Value *getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F);
-
/// \brief Return the value of the stack canary.
Value *getStackGuard(IRBuilder<> &IRB, Function &F);
@@ -356,46 +342,8 @@ bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
return true;
}
-Value *SafeStack::getOrCreateUnsafeStackPtr(IRBuilder<> &IRB, Function &F) {
- // Check if there is a target-specific location for the unsafe stack pointer.
- if (TL)
- if (Value *V = TL->getSafeStackPointerLocation(IRB))
- return V;
-
- // Otherwise, assume the target links with compiler-rt, which provides a
- // thread-local variable with a magic name.
- Module &M = *F.getParent();
- const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
- auto UnsafeStackPtr =
- dyn_cast_or_null<GlobalVariable>(M.getNamedValue(UnsafeStackPtrVar));
-
- bool UseTLS = USPStorage == ThreadLocalUSP;
-
- if (!UnsafeStackPtr) {
- auto TLSModel = UseTLS ?
- GlobalValue::InitialExecTLSModel :
- GlobalValue::NotThreadLocal;
- // The global variable is not defined yet, define it ourselves.
- // We use the initial-exec TLS model because we do not support the
- // variable living anywhere other than in the main executable.
- UnsafeStackPtr = new GlobalVariable(
- M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
- UnsafeStackPtrVar, nullptr, TLSModel);
- } else {
- // The variable exists, check its type and attributes.
- if (UnsafeStackPtr->getValueType() != StackPtrTy)
- report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
- if (UseTLS != UnsafeStackPtr->isThreadLocal())
- report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
- (UseTLS ? "" : "not ") + "be thread-local");
- }
- return UnsafeStackPtr;
-}
-
Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
- Value *StackGuardVar = nullptr;
- if (TL)
- StackGuardVar = TL->getIRStackGuard(IRB);
+ Value *StackGuardVar = TL->getIRStackGuard(IRB);
if (!StackGuardVar)
StackGuardVar =
F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
@@ -752,7 +700,9 @@ bool SafeStack::runOnFunction(Function &F) {
return false;
}
- TL = TM ? TM->getSubtargetImpl(F)->getTargetLowering() : nullptr;
+ if (!TM)
+ report_fatal_error("Target machine is required");
+ TL = TM->getSubtargetImpl(F)->getTargetLowering();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
++NumFunctions;
@@ -764,7 +714,7 @@ bool SafeStack::runOnFunction(Function &F) {
// Collect all points where stack gets unwound and needs to be restored
// This is only necessary because the runtime (setjmp and unwind code) is
- // not aware of the unsafe stack and won't unwind/restore it prorerly.
+ // not aware of the unsafe stack and won't unwind/restore it properly.
// To work around this problem without changing the runtime, we insert
// instrumentation to restore the unsafe stack pointer when necessary.
SmallVector<Instruction *, 4> StackRestorePoints;
@@ -786,7 +736,7 @@ bool SafeStack::runOnFunction(Function &F) {
++NumUnsafeStackRestorePointsFunctions;
IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
- UnsafeStackPtr = getOrCreateUnsafeStackPtr(IRB, F);
+ UnsafeStackPtr = TL->getSafeStackPointerLocation(IRB);
// Load the current stack pointer (we'll also use it as a base pointer).
// FIXME: use a dedicated register for it ?
diff --git a/contrib/llvm/lib/CodeGen/SafeStackColoring.cpp b/contrib/llvm/lib/CodeGen/SafeStackColoring.cpp
index 795eb8d..7fbeadd 100644
--- a/contrib/llvm/lib/CodeGen/SafeStackColoring.cpp
+++ b/contrib/llvm/lib/CodeGen/SafeStackColoring.cpp
@@ -214,10 +214,12 @@ void StackColoring::calculateLiveIntervals() {
unsigned AllocaNo = It.second.AllocaNo;
if (IsStart) {
- assert(!Started.test(AllocaNo));
- Started.set(AllocaNo);
- Ended.reset(AllocaNo);
- Start[AllocaNo] = InstNo;
+ assert(!Started.test(AllocaNo) || Start[AllocaNo] == BBStart);
+ if (!Started.test(AllocaNo)) {
+ Started.set(AllocaNo);
+ Ended.reset(AllocaNo);
+ Start[AllocaNo] = InstNo;
+ }
} else {
assert(!Ended.test(AllocaNo));
if (Started.test(AllocaNo)) {
diff --git a/contrib/llvm/lib/CodeGen/SafeStackLayout.cpp b/contrib/llvm/lib/CodeGen/SafeStackLayout.cpp
index fb433c1..7d4dbd1 100644
--- a/contrib/llvm/lib/CodeGen/SafeStackLayout.cpp
+++ b/contrib/llvm/lib/CodeGen/SafeStackLayout.cpp
@@ -132,6 +132,14 @@ void StackLayout::computeLayout() {
// If this is replaced with something smarter, it must preserve the property
// that the first object is always at the offset 0 in the stack frame (for
// StackProtectorSlot), or handle stack protector in some other way.
+
+ // Sort objects by size (largest first) to reduce fragmentation.
+ if (StackObjects.size() > 2)
+ std::stable_sort(StackObjects.begin() + 1, StackObjects.end(),
+ [](const StackObject &a, const StackObject &b) {
+ return a.Size > b.Size;
+ });
+
for (auto &Obj : StackObjects)
layoutObject(Obj);
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
index efde61e..427d952 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
@@ -139,8 +139,7 @@ void SUnit::removePred(const SDep &D) {
SDep P = D;
P.setSUnit(this);
SUnit *N = D.getSUnit();
- SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(),
- N->Succs.end(), P);
+ SmallVectorImpl<SDep>::iterator Succ = find(N->Succs, P);
assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
N->Succs.erase(Succ);
Preds.erase(I);
@@ -311,10 +310,20 @@ void SUnit::biasCriticalPath() {
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void SUnit::print(raw_ostream &OS, const ScheduleDAG *DAG) const {
+ if (this == &DAG->ExitSU)
+ OS << "ExitSU";
+ else if (this == &DAG->EntrySU)
+ OS << "EntrySU";
+ else
+ OS << "SU(" << NodeNum << ")";
+}
+
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
/// a group of nodes flagged together.
void SUnit::dump(const ScheduleDAG *G) const {
- dbgs() << "SU(" << NodeNum << "): ";
+ print(dbgs(), G);
+ dbgs() << ": ";
G->dumpNode(this);
}
@@ -338,12 +347,12 @@ void SUnit::dumpAll(const ScheduleDAG *G) const {
I != E; ++I) {
dbgs() << " ";
switch (I->getKind()) {
- case SDep::Data: dbgs() << "val "; break;
- case SDep::Anti: dbgs() << "anti"; break;
- case SDep::Output: dbgs() << "out "; break;
- case SDep::Order: dbgs() << "ch "; break;
+ case SDep::Data: dbgs() << "data "; break;
+ case SDep::Anti: dbgs() << "anti "; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ord "; break;
}
- dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
+ I->getSUnit()->print(dbgs(), G);
if (I->isArtificial())
dbgs() << " *";
dbgs() << ": Latency=" << I->getLatency();
@@ -358,12 +367,12 @@ void SUnit::dumpAll(const ScheduleDAG *G) const {
I != E; ++I) {
dbgs() << " ";
switch (I->getKind()) {
- case SDep::Data: dbgs() << "val "; break;
- case SDep::Anti: dbgs() << "anti"; break;
- case SDep::Output: dbgs() << "out "; break;
- case SDep::Order: dbgs() << "ch "; break;
+ case SDep::Data: dbgs() << "data "; break;
+ case SDep::Anti: dbgs() << "anti "; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ord "; break;
}
- dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
+ I->getSUnit()->print(dbgs(), G);
if (I->isArtificial())
dbgs() << " *";
dbgs() << ": Latency=" << I->getLatency();
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
index 22bfd4d..611c5a7 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -77,7 +77,7 @@ static unsigned getReductionSize() {
static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dbgs() << "{ ";
- for (auto *su : L) {
+ for (const SUnit *su : L) {
dbgs() << "SU(" << su->NodeNum << ")";
if (su != L.back())
dbgs() << ", ";
@@ -142,9 +142,7 @@ static void getUnderlyingObjects(const Value *V,
SmallVector<Value *, 4> Objs;
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
- for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
- I != IE; ++I) {
- V = *I;
+ for (Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
@@ -164,7 +162,7 @@ static void getUnderlyingObjects(const Value *V,
/// information and it can be tracked to a normal reference to a known
/// object, return the Value for that object.
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
- const MachineFrameInfo *MFI,
+ const MachineFrameInfo &MFI,
UnderlyingObjectsVector &Objects,
const DataLayout &DL) {
auto allMMOsOkay = [&]() {
@@ -178,16 +176,16 @@ static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
// overlapping locations. The client code calling this function assumes
// this is not the case. So return a conservative answer of no known
// object.
- if (MFI->hasTailCall())
+ if (MFI.hasTailCall())
return false;
// For now, ignore PseudoSourceValues which may alias LLVM IR values
// because the code that uses this function has no way to cope with
// such aliases.
- if (PSV->isAliased(MFI))
+ if (PSV->isAliased(&MFI))
return false;
- bool MayAlias = PSV->mayAlias(MFI);
+ bool MayAlias = PSV->mayAlias(&MFI);
Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
} else if (const Value *V = MMO->getValue()) {
SmallVector<Value *, 4> Objs;
@@ -249,32 +247,27 @@ void ScheduleDAGInstrs::exitRegion() {
void ScheduleDAGInstrs::addSchedBarrierDeps() {
MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
ExitSU.setInstr(ExitMI);
- bool AllDepKnown = ExitMI &&
- (ExitMI->isCall() || ExitMI->isBarrier());
- if (ExitMI && AllDepKnown) {
- // If it's a call or a barrier, add dependencies on the defs and uses of
- // instruction.
- for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = ExitMI->getOperand(i);
+ // Add dependencies on the defs and uses of the instruction.
+ if (ExitMI) {
+ for (const MachineOperand &MO : ExitMI->operands()) {
if (!MO.isReg() || MO.isDef()) continue;
unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
-
- if (TRI->isPhysicalRegister(Reg))
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
- else if (MO.readsReg()) // ignore undef operands
- addVRegUseDeps(&ExitSU, i);
+ } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
+ addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
+ }
}
- } else {
+ }
+ if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
// For others, e.g. fallthrough, conditional branch, assume the exit
// uses all the registers that are livein to the successor blocks.
- assert(Uses.empty() && "Uses in set before adding deps?");
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI)
- for (const auto &LI : (*SI)->liveins()) {
+ for (const MachineBasicBlock *Succ : BB->successors()) {
+ for (const auto &LI : Succ->liveins()) {
if (!Uses.contains(LI.PhysReg))
Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
}
+ }
}
}
@@ -326,6 +319,10 @@ void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
MachineInstr *MI = SU->getInstr();
MachineOperand &MO = MI->getOperand(OperIdx);
+ unsigned Reg = MO.getReg();
+ // We do not need to track any dependencies for constant registers.
+ if (MRI.isConstantPhysReg(Reg))
+ return;
// Optionally add output and anti dependencies. For anti
// dependencies we use a latency of 0 because for a multi-issue
@@ -334,8 +331,7 @@ void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
// TODO: Using a latency of 1 here for output dependencies assumes
// there's no cost for reusing registers.
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
- for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
- Alias.isValid(); ++Alias) {
+ for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
if (!Defs.contains(*Alias))
continue;
for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
@@ -362,13 +358,11 @@ void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
// Either insert a new Reg2SUnits entry with an empty SUnits list, or
// retrieve the existing SUnits list for this register's uses.
// Push this SUnit on the use list.
- Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
+ Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
if (RemoveKillFlags)
MO.setIsKill(false);
- }
- else {
+ } else {
addPhysRegDataDeps(SU, OperIdx);
- unsigned Reg = MO.getReg();
// clear this register's use list
if (Uses.contains(Reg))
@@ -404,7 +398,7 @@ LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
// No point in tracking lanemasks if we don't have interesting subregisters.
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
if (!RC.HasDisjunctSubRegs)
- return ~0u;
+ return LaneBitmask::getAll();
unsigned SubReg = MO.getSubReg();
if (SubReg == 0)
@@ -430,14 +424,14 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
DefLaneMask = getLaneMaskForMO(MO);
// If we have a <read-undef> flag, none of the lane values comes from an
// earlier instruction.
- KillLaneMask = IsKill ? ~0u : DefLaneMask;
+ KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
// Clear undef flag, we'll re-add it later once we know which subregister
// Def is first.
MO.setIsUndef(false);
} else {
- DefLaneMask = ~0u;
- KillLaneMask = ~0u;
+ DefLaneMask = LaneBitmask::getAll();
+ KillLaneMask = LaneBitmask::getAll();
}
if (MO.isDead()) {
@@ -450,12 +444,12 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
E = CurrentVRegUses.end(); I != E; /*empty*/) {
LaneBitmask LaneMask = I->LaneMask;
// Ignore uses of other lanes.
- if ((LaneMask & KillLaneMask) == 0) {
+ if ((LaneMask & KillLaneMask).none()) {
++I;
continue;
}
- if ((LaneMask & DefLaneMask) != 0) {
+ if ((LaneMask & DefLaneMask).any()) {
SUnit *UseSU = I->SU;
MachineInstr *Use = UseSU->getInstr();
SDep Dep(SU, SDep::Data, Reg);
@@ -467,7 +461,7 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
LaneMask &= ~KillLaneMask;
// If we found a Def for all lanes of this use, remove it from the list.
- if (LaneMask != 0) {
+ if (LaneMask.any()) {
I->LaneMask = LaneMask;
++I;
} else
@@ -490,7 +484,7 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
CurrentVRegDefs.end())) {
// Ignore defs for other lanes.
- if ((V2SU.LaneMask & LaneMask) == 0)
+ if ((V2SU.LaneMask & LaneMask).none())
continue;
// Add an output dependence.
SUnit *DefSU = V2SU.SU;
@@ -513,11 +507,11 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
V2SU.SU = SU;
V2SU.LaneMask = OverlapMask;
- if (NonOverlapMask != 0)
+ if (NonOverlapMask.any())
CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
}
// If there was no CurrentVRegDefs entry for some lanes yet, create one.
- if (LaneMask != 0)
+ if (LaneMask.any())
CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
}
@@ -533,7 +527,8 @@ void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
unsigned Reg = MO.getReg();
// Remember the use. Data dependencies will be added when we find the def.
- LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
+ LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
+ : LaneBitmask::getAll();
CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
// Add antidependences to the following defs of the vreg.
@@ -541,7 +536,7 @@ void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
CurrentVRegDefs.end())) {
// Ignore defs for unrelated lanes.
LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
- if ((PrevDefLaneMask & LaneMask) == 0)
+ if ((PrevDefLaneMask & LaneMask).none())
continue;
if (V2SU.SU == SU)
continue;
@@ -554,7 +549,7 @@ void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
/// (like a call or something with unmodeled side effects).
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
return MI->isCall() || MI->hasUnmodeledSideEffects() ||
- (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
+ (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
}
/// This returns true if the two MIs need a chain edge between them.
@@ -621,8 +616,8 @@ static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
/// Check whether two objects need a chain edge and add it if needed.
void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
unsigned Latency) {
- if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
- SUb->getInstr())) {
+ if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(),
+ SUb->getInstr())) {
SDep Dep(SUa, SDep::MayAliasMem);
Dep.setLatency(Latency);
SUb->addPred(Dep);
@@ -668,10 +663,10 @@ void ScheduleDAGInstrs::initSUnits() {
// within an out-of-order core. These are identified by BufferSize=1.
if (SchedModel.hasInstrSchedModel()) {
const MCSchedClassDesc *SC = getSchedClass(SU);
- for (TargetSchedModel::ProcResIter
- PI = SchedModel.getWriteProcResBegin(SC),
- PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
- switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
+ for (const MCWriteProcResEntry &PRE :
+ make_range(SchedModel.getWriteProcResBegin(SC),
+ SchedModel.getWriteProcResEnd(SC))) {
+ switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
case 0:
SU->hasReservedResource = true;
break;
@@ -686,44 +681,6 @@ void ScheduleDAGInstrs::initSUnits() {
}
}
-void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
- const MachineInstr *MI = SU->getInstr();
- for (const MachineOperand &MO : MI->operands()) {
- if (!MO.isReg())
- continue;
- if (!MO.readsReg())
- continue;
- if (TrackLaneMasks && !MO.isUse())
- continue;
-
- unsigned Reg = MO.getReg();
- if (!TargetRegisterInfo::isVirtualRegister(Reg))
- continue;
-
- // Ignore re-defs.
- if (TrackLaneMasks) {
- bool FoundDef = false;
- for (const MachineOperand &MO2 : MI->operands()) {
- if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
- FoundDef = true;
- break;
- }
- }
- if (FoundDef)
- continue;
- }
-
- // Record this local VReg use.
- VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
- for (; UI != VRegUses.end(); ++UI) {
- if (UI->SU == SU)
- break;
- }
- if (UI == VRegUses.end())
- VRegUses.insert(VReg2SUnit(Reg, 0, SU));
- }
-}
-
class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
/// Current total number of SUs in map.
@@ -901,9 +858,6 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
CurrentVRegDefs.setUniverse(NumVirtRegs);
CurrentVRegUses.setUniverse(NumVirtRegs);
- VRegUses.clear();
- VRegUses.setUniverse(NumVirtRegs);
-
// Model data dependencies between instructions being scheduled and the
// ExitSU.
addSchedBarrierDeps();
@@ -926,8 +880,6 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
assert(SU && "No SUnit mapped to this MI");
if (RPTracker) {
- collectVRegUses(SU);
-
RegisterOperands RegOpers;
RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
if (TrackLaneMasks) {
@@ -957,12 +909,9 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
-
- if (TRI->isPhysicalRegister(Reg))
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
addPhysRegDeps(SU, j);
- else {
+ } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
HasVRegDef = true;
addVRegDefDeps(SU, j);
}
@@ -977,13 +926,11 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
if (!MO.isReg() || !MO.isUse())
continue;
unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
-
- if (TRI->isPhysicalRegister(Reg))
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
addPhysRegDeps(SU, j);
- else if (MO.readsReg()) // ignore undef operands
+ } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
addVRegUseDeps(SU, j);
+ }
}
// If we haven't seen any uses in this scheduling region, create a
@@ -1023,7 +970,8 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
}
// If it's not a store or a variant load, we're done.
- if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA)))
+ if (!MI.mayStore() &&
+ !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
continue;
// Always add dependecy edge to BarrierChain if present.
@@ -1200,9 +1148,8 @@ void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
LiveRegs.reset();
// Examine the live-in regs of all successors.
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI) {
- for (const auto &LI : (*SI)->liveins()) {
+ for (const MachineBasicBlock *Succ : BB->successors()) {
+ for (const auto &LI : Succ->liveins()) {
// Repeat, for reg and all subregs.
for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
@@ -1225,7 +1172,7 @@ static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
// might set it on too many operands. We will clear as many flags as we
// can though.
MachineBasicBlock::instr_iterator Begin = MI->getIterator();
- MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
+ MachineBasicBlock::instr_iterator End = getBundleEnd(Begin);
while (Begin != End) {
if (NewKillState) {
if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
@@ -1312,6 +1259,11 @@ void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
// register is used multiple times we only set the kill flag on
// the first use. Don't set kill flags on undef operands.
killedRegs.reset();
+
+ // toggleKillFlag can append new operands (implicit defs), so using
+ // a range-based loop is not safe. The new operands will be appended
+ // at the end of the operand list and they don't need to be visited,
+ // so iterating until the currently last operand is ok.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
@@ -1337,13 +1289,12 @@ void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
if (MO.isKill() != kill) {
DEBUG(dbgs() << "Fixing " << MO << " in ");
- // Warning: toggleKillFlag may invalidate MO.
toggleKillFlag(&MI, MO);
DEBUG(MI.dump());
DEBUG({
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
MachineBasicBlock::instr_iterator Begin = MI.getIterator();
- MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
+ MachineBasicBlock::instr_iterator End = getBundleEnd(Begin);
while (++Begin != End)
DEBUG(Begin->dump());
}
@@ -1355,8 +1306,7 @@ void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
// Mark any used register (that is not using undef) and subregs as
// now live...
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
+ for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
unsigned Reg = MO.getReg();
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
@@ -1457,13 +1407,12 @@ public:
// the subtree limit, then try to join it now since splitting subtrees is
// only useful if multiple high-pressure paths are possible.
unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
- for (SUnit::const_pred_iterator
- PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
- if (PI->getKind() != SDep::Data)
+ for (const SDep &PredDep : SU->Preds) {
+ if (PredDep.getKind() != SDep::Data)
continue;
- unsigned PredNum = PI->getSUnit()->NodeNum;
+ unsigned PredNum = PredDep.getSUnit()->NodeNum;
if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
- joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
+ joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
// Either link or merge the TreeData entry from the child to the parent.
if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
@@ -1505,12 +1454,11 @@ public:
R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
assert(SubtreeClasses.getNumClasses() == RootSet.size()
&& "number of roots should match trees");
- for (SparseSet<RootData>::const_iterator
- RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
- unsigned TreeID = SubtreeClasses[RI->NodeID];
- if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
- R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
- R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
+ for (const RootData &Root : RootSet) {
+ unsigned TreeID = SubtreeClasses[Root.NodeID];
+ if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
+ R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
+ R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
// Note that SubInstrCount may be greater than InstrCount if we joined
// subtrees across a cross edge. InstrCount will be attributed to the
// original parent, while SubInstrCount will be attributed to the joined
@@ -1524,14 +1472,12 @@ public:
DEBUG(dbgs() << " SU(" << Idx << ") in tree "
<< R.DFSNodeData[Idx].SubtreeID << '\n');
}
- for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
- I = ConnectionPairs.begin(), E = ConnectionPairs.end();
- I != E; ++I) {
- unsigned PredTree = SubtreeClasses[I->first->NodeNum];
- unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
+ for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
+ unsigned PredTree = SubtreeClasses[P.first->NodeNum];
+ unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
if (PredTree == SuccTree)
continue;
- unsigned Depth = I->first->getDepth();
+ unsigned Depth = P.first->getDepth();
addConnection(PredTree, SuccTree, Depth);
addConnection(SuccTree, PredTree, Depth);
}
@@ -1553,9 +1499,8 @@ protected:
// Four is the magic number of successors before a node is considered a
// pinch point.
unsigned NumDataSucs = 0;
- for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
- SE = PredSU->Succs.end(); SI != SE; ++SI) {
- if (SI->getKind() == SDep::Data) {
+ for (const SDep &SuccDep : PredSU->Succs) {
+ if (SuccDep.getKind() == SDep::Data) {
if (++NumDataSucs >= 4)
return false;
}
@@ -1575,10 +1520,9 @@ protected:
do {
SmallVectorImpl<SchedDFSResult::Connection> &Connections =
R.SubtreeConnections[FromTree];
- for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
- I = Connections.begin(), E = Connections.end(); I != E; ++I) {
- if (I->TreeID == ToTree) {
- I->Level = std::max(I->Level, Depth);
+ for (SchedDFSResult::Connection &C : Connections) {
+ if (C.TreeID == ToTree) {
+ C.Level = std::max(C.Level, Depth);
return;
}
}
@@ -1617,9 +1561,9 @@ public:
} // anonymous
static bool hasDataSucc(const SUnit *SU) {
- for (SUnit::const_succ_iterator
- SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
- if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
+ for (const SDep &SuccDep : SU->Succs) {
+ if (SuccDep.getKind() == SDep::Data &&
+ !SuccDep.getSUnit()->isBoundaryNode())
return true;
}
return false;
@@ -1632,15 +1576,13 @@ void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
llvm_unreachable("Top-down ILP metric is unimplemnted");
SchedDFSImpl Impl(*this);
- for (ArrayRef<SUnit>::const_iterator
- SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
- const SUnit *SU = &*SI;
- if (Impl.isVisited(SU) || hasDataSucc(SU))
+ for (const SUnit &SU : SUnits) {
+ if (Impl.isVisited(&SU) || hasDataSucc(&SU))
continue;
SchedDAGReverseDFS DFS;
- Impl.visitPreorder(SU);
- DFS.follow(SU);
+ Impl.visitPreorder(&SU);
+ DFS.follow(&SU);
for (;;) {
// Traverse the leftmost path as far as possible.
while (DFS.getPred() != DFS.getPredEnd()) {
@@ -1676,13 +1618,11 @@ void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
/// connected to this tree, record the depth of the connection so that the
/// nearest connected subtrees can be prioritized.
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
- for (SmallVectorImpl<Connection>::const_iterator
- I = SubtreeConnections[SubtreeID].begin(),
- E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
- SubtreeConnectLevels[I->TreeID] =
- std::max(SubtreeConnectLevels[I->TreeID], I->Level);
- DEBUG(dbgs() << " Tree: " << I->TreeID
- << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
+ for (const Connection &C : SubtreeConnections[SubtreeID]) {
+ SubtreeConnectLevels[C.TreeID] =
+ std::max(SubtreeConnectLevels[C.TreeID], C.Level);
+ DEBUG(dbgs() << " Tree: " << C.TreeID
+ << " @" << SubtreeConnectLevels[C.TreeID] << '\n');
}
}
diff --git a/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp b/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
index 69c4870..83bc1ba 100644
--- a/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
+++ b/contrib/llvm/lib/CodeGen/ScoreboardHazardRecognizer.cpp
@@ -145,7 +145,7 @@ ScoreboardHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
case InstrStage::Required:
// Required FUs conflict with both reserved and required ones
freeUnits &= ~ReservedScoreboard[StageCycle];
- // FALLTHROUGH
+ LLVM_FALLTHROUGH;
case InstrStage::Reserved:
// Reserved FUs can conflict only with required ones.
freeUnits &= ~RequiredScoreboard[StageCycle];
@@ -197,7 +197,7 @@ void ScoreboardHazardRecognizer::EmitInstruction(SUnit *SU) {
case InstrStage::Required:
// Required FUs conflict with both reserved and required ones
freeUnits &= ~ReservedScoreboard[cycle + i];
- // FALLTHROUGH
+ LLVM_FALLTHROUGH;
case InstrStage::Reserved:
// Reserved FUs can conflict only with required ones.
freeUnits &= ~RequiredScoreboard[cycle + i];
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index 5ecc6da..2c7bffe 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -16,14 +16,15 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
@@ -181,7 +182,7 @@ namespace {
/// if things it uses can be simplified by bit propagation.
/// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt Demanded = APInt::getAllOnesValue(BitWidth);
return SimplifyDemandedBits(Op, Demanded);
}
@@ -326,7 +327,7 @@ namespace {
SDValue visitFADDForFMACombine(SDNode *N);
SDValue visitFSUBForFMACombine(SDNode *N);
- SDValue visitFMULForFMACombine(SDNode *N);
+ SDValue visitFMULForFMADistributiveCombine(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS,
@@ -334,12 +335,15 @@ namespace {
SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
+ SDValue foldSelectOfConstants(SDNode *N);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
+ SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
+ SDValue N2, SDValue N3, ISD::CondCode CC);
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, bool foldBooleans = true);
@@ -356,6 +360,7 @@ namespace {
SDValue BuildSDIV(SDNode *N);
SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
+ SDValue BuildLogBase2(SDValue Op, const SDLoc &DL);
SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags);
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags);
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags);
@@ -374,9 +379,14 @@ namespace {
SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
SDValue ReduceLoadWidth(SDNode *N);
SDValue ReduceLoadOpStoreWidth(SDNode *N);
+ SDValue splitMergedValStore(StoreSDNode *ST);
SDValue TransformFPLoadStorePair(SDNode *N);
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
+ SDValue reduceBuildVecToShuffle(SDNode *N);
+ SDValue createBuildVecShuffle(SDLoc DL, SDNode *N, ArrayRef<int> VectorMask,
+ SDValue VecIn1, SDValue VecIn2,
+ unsigned LeftIdx);
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
@@ -444,10 +454,11 @@ namespace {
/// This is a helper function for MergeConsecutiveStores. When the source
/// elements of the consecutive stores are all constants or all extracted
/// vector elements, try to merge them into one larger store.
- /// \return True if a merged store was created.
- bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
- EVT MemVT, unsigned NumStores,
- bool IsConstantSrc, bool UseVector);
+ /// \return number of stores that were merged into a merged store (always
+ /// a prefix of \p StoreNode).
+ bool MergeStoresOfConstantsOrVecElts(
+ SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
+ bool IsConstantSrc, bool UseVector);
/// This is a helper function for MergeConsecutiveStores.
/// Stores that may be merged are placed in StoreNodes.
@@ -464,8 +475,10 @@ namespace {
/// Merge consecutive store operations into a wide store.
/// This optimization uses wide integers or vectors when possible.
- /// \return True if some memory operations were changed.
- bool MergeConsecutiveStores(StoreSDNode *N);
+ /// \return number of stores that were merged into a merged store (the
+ /// affected nodes are stored as a prefix in \p StoreNodes).
+ bool MergeConsecutiveStores(StoreSDNode *N,
+ SmallVectorImpl<MemOpLink> &StoreNodes);
/// \brief Try to transform a truncation where C is a constant:
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
@@ -536,10 +549,6 @@ void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorklist(N);
}
-void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
- ((DAGCombiner*)DC)->removeFromWorklist(N);
-}
-
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
@@ -620,7 +629,8 @@ static char isNegatibleForFree(SDValue Op, bool LegalOperations,
Depth + 1);
case ISD::FSUB:
// We can't turn -(A-B) into B-A when we honor signed zeros.
- if (!Options->UnsafeFPMath) return 0;
+ if (!Options->UnsafeFPMath && !Op.getNode()->getFlags()->hasNoSignedZeros())
+ return 0;
// fold (fneg (fsub A, B)) -> (fsub B, A)
return 1;
@@ -683,9 +693,6 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
LegalOperations, Depth+1),
Op.getOperand(0), Flags);
case ISD::FSUB:
- // We can't turn -(A-B) into B-A when we honor signed zeros.
- assert(Options.UnsafeFPMath);
-
// fold (fneg (fsub 0, B)) -> B
if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
if (N0CFP->isZero())
@@ -726,6 +733,15 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
}
}
+// APInts must be the same size for most operations, this helper
+// function zero extends the shorter of the pair so that they match.
+// We provide an Offset so that we can create bitwidths that won't overflow.
+static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
+ unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
+ LHS = LHS.zextOrSelf(Bits);
+ RHS = RHS.zextOrSelf(Bits);
+}
+
// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
@@ -775,42 +791,61 @@ static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
return nullptr;
}
-// \brief Returns the SDNode if it is a constant splat BuildVector or constant
-// int.
-static ConstantSDNode *isConstOrConstSplat(SDValue N) {
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
- return CN;
-
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
-
- // BuildVectors can truncate their operands. Ignore that case here.
- // FIXME: We blindly ignore splats which include undef which is overly
- // pessimistic.
- if (CN && UndefElements.none() &&
- CN->getValueType(0) == N.getValueType().getScalarType())
- return CN;
+// Determines if it is a constant integer or a build vector of constant
+// integers (and undefs).
+// Do not permit build vector implicit truncation.
+static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
+ return !(Const->isOpaque() && NoOpaques);
+ if (N.getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ unsigned BitWidth = N.getScalarValueSizeInBits();
+ for (const SDValue &Op : N->op_values()) {
+ if (Op.isUndef())
+ continue;
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
+ if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
+ (Const->isOpaque() && NoOpaques))
+ return false;
}
-
- return nullptr;
+ return true;
}
-// \brief Returns the SDNode if it is a constant splat BuildVector or constant
-// float.
-static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
- return CN;
+// Determines if it is a constant null integer or a splatted vector of a
+// constant null integer (with no undefs).
+// Build vector implicit truncation is not an issue for null values.
+static bool isNullConstantOrNullSplatConstant(SDValue N) {
+ if (ConstantSDNode *Splat = isConstOrConstSplat(N))
+ return Splat->isNullValue();
+ return false;
+}
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
+// Determines if it is a constant integer of one or a splatted vector of a
+// constant integer of one (with no undefs).
+// Do not permit build vector implicit truncation.
+static bool isOneConstantOrOneSplatConstant(SDValue N) {
+ unsigned BitWidth = N.getScalarValueSizeInBits();
+ if (ConstantSDNode *Splat = isConstOrConstSplat(N))
+ return Splat->isOne() && Splat->getAPIntValue().getBitWidth() == BitWidth;
+ return false;
+}
- if (CN && UndefElements.none())
- return CN;
- }
+// Determines if it is a constant integer of all ones or a splatted vector of a
+// constant integer of all ones (with no undefs).
+// Do not permit build vector implicit truncation.
+static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N) {
+ unsigned BitWidth = N.getScalarValueSizeInBits();
+ if (ConstantSDNode *Splat = isConstOrConstSplat(N))
+ return Splat->isAllOnesValue() &&
+ Splat->getAPIntValue().getBitWidth() == BitWidth;
+ return false;
+}
- return nullptr;
+// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
+// undef's.
+static bool isAnyConstantBuildVector(const SDNode *N) {
+ return ISD::isBuildVectorOfConstantSDNodes(N) ||
+ ISD::isBuildVectorOfConstantFPSDNodes(N);
}
SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
@@ -935,9 +970,9 @@ bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
}
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
- SDLoc dl(Load);
+ SDLoc DL(Load);
EVT VT = Load->getValueType(0);
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
DEBUG(dbgs() << "\nReplacing.9 ";
Load->dump(&DAG);
@@ -953,7 +988,7 @@ void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = false;
- SDLoc dl(Op);
+ SDLoc DL(Op);
if (ISD::isUNINDEXEDLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
@@ -962,7 +997,7 @@ SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
: ISD::EXTLOAD)
: LD->getExtensionType();
Replace = true;
- return DAG.getExtLoad(ExtType, dl, PVT,
+ return DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
}
@@ -971,30 +1006,30 @@ SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
switch (Opc) {
default: break;
case ISD::AssertSext:
- return DAG.getNode(ISD::AssertSext, dl, PVT,
+ return DAG.getNode(ISD::AssertSext, DL, PVT,
SExtPromoteOperand(Op.getOperand(0), PVT),
Op.getOperand(1));
case ISD::AssertZext:
- return DAG.getNode(ISD::AssertZext, dl, PVT,
+ return DAG.getNode(ISD::AssertZext, DL, PVT,
ZExtPromoteOperand(Op.getOperand(0), PVT),
Op.getOperand(1));
case ISD::Constant: {
unsigned ExtOpc =
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- return DAG.getNode(ExtOpc, dl, PVT, Op);
+ return DAG.getNode(ExtOpc, DL, PVT, Op);
}
}
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
return SDValue();
- return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
+ return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
}
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
return SDValue();
EVT OldVT = Op.getValueType();
- SDLoc dl(Op);
+ SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
@@ -1003,13 +1038,13 @@ SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
DAG.getValueType(OldVT));
}
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
EVT OldVT = Op.getValueType();
- SDLoc dl(Op);
+ SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
@@ -1018,7 +1053,7 @@ SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
- return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
+ return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
}
/// Promote the specified integer binary operation if the target indicates it is
@@ -1072,9 +1107,9 @@ SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
DEBUG(dbgs() << "\nPromoting ";
Op.getNode()->dump(&DAG));
- SDLoc dl(Op);
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(Opc, dl, PVT, NN0, NN1));
+ SDLoc DL(Op);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT,
+ DAG.getNode(Opc, DL, PVT, NN0, NN1));
}
return SDValue();
}
@@ -1119,9 +1154,9 @@ SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
DEBUG(dbgs() << "\nPromoting ";
Op.getNode()->dump(&DAG));
- SDLoc dl(Op);
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
+ SDLoc DL(Op);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT,
+ DAG.getNode(Opc, DL, PVT, N0, Op.getOperand(1)));
}
return SDValue();
}
@@ -1178,7 +1213,7 @@ bool DAGCombiner::PromoteLoad(SDValue Op) {
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
- SDLoc dl(Op);
+ SDLoc DL(Op);
SDNode *N = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
@@ -1186,10 +1221,10 @@ bool DAGCombiner::PromoteLoad(SDValue Op) {
? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
: ISD::EXTLOAD)
: LD->getExtensionType();
- SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
+ SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
+ SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
DEBUG(dbgs() << "\nPromoting ";
N->dump(&DAG);
@@ -1315,7 +1350,7 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
- RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
+ RV.getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
DEBUG(dbgs() << " ... into: ";
@@ -1562,8 +1597,7 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
break;
case ISD::TokenFactor:
- if (Op.hasOneUse() &&
- std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
+ if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
// Queue up for processing.
TFs.push_back(Op.getNode());
// Clean up in case the token factor is removed.
@@ -1571,7 +1605,7 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
Changed = true;
break;
}
- // Fall thru
+ LLVM_FALLTHROUGH;
default:
// Only add if it isn't already in the list.
@@ -1634,6 +1668,7 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
+ SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
@@ -1650,61 +1685,73 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
// fold (add x, undef) -> undef
if (N0.isUndef())
return N0;
+
if (N1.isUndef())
return N1;
+
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
// canonicalize constant to RHS
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
- return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
+ return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
// fold (add c1, c2) -> c1+c2
- return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT,
- N0.getNode(), N1.getNode());
+ return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, N0.getNode(),
+ N1.getNode());
}
+
// fold (add x, 0) -> x
if (isNullConstant(N1))
return N0;
+
// fold ((c1-A)+c2) -> (c1+c2)-A
- if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) {
+ if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
if (N0.getOpcode() == ISD::SUB)
- if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) {
- SDLoc DL(N);
+ if (isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
return DAG.getNode(ISD::SUB, DL, VT,
- DAG.getConstant(N1C->getAPIntValue()+
- N0C->getAPIntValue(), DL, VT),
+ DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
N0.getOperand(1));
}
}
+
// reassociate add
- if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1))
+ if (SDValue RADD = ReassociateOps(ISD::ADD, DL, N0, N1))
return RADD;
+
// fold ((0-A) + B) -> B-A
- if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0)))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
+ if (N0.getOpcode() == ISD::SUB &&
+ isNullConstantOrNullSplatConstant(N0.getOperand(0)))
+ return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
+
// fold (A + (0-B)) -> A-B
- if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0)))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
+ if (N1.getOpcode() == ISD::SUB &&
+ isNullConstantOrNullSplatConstant(N1.getOperand(0)))
+ return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
+
// fold (A+(B-A)) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
return N1.getOperand(0);
+
// fold ((B-A)+A) -> B
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
return N0.getOperand(0);
+
// fold (A+(B-(A+C))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(0))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
+ return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(1));
+
// fold (A+(B-(C+A))) to (B-C)
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
N0 == N1.getOperand(1).getOperand(1))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
+ return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
N1.getOperand(1).getOperand(0));
+
// fold (A+((B-A)+or-C)) to (B+or-C)
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
N1.getOperand(0).getOpcode() == ISD::SUB &&
N0 == N1.getOperand(0).getOperand(1))
- return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
- N1.getOperand(0).getOperand(0), N1.getOperand(1));
+ return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
+ N1.getOperand(1));
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
@@ -1713,52 +1760,50 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
- if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT,
+ if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
+ return DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
}
- if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
+ if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (a+b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
- VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
+ VT.isInteger() && DAG.haveNoCommonBitsSet(N0, N1))
+ return DAG.getNode(ISD::OR, DL, VT, N0, N1);
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
- isNullConstant(N1.getOperand(0).getOperand(0)))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
- DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ isNullConstantOrNullSplatConstant(N1.getOperand(0).getOperand(0)))
+ return DAG.getNode(ISD::SUB, DL, VT, N0,
+ DAG.getNode(ISD::SHL, DL, VT,
N1.getOperand(0).getOperand(1),
N1.getOperand(1)));
if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
- isNullConstant(N0.getOperand(0).getOperand(0)))
- return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
- DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ isNullConstantOrNullSplatConstant(N0.getOperand(0).getOperand(0)))
+ return DAG.getNode(ISD::SUB, DL, VT, N1,
+ DAG.getNode(ISD::SHL, DL, VT,
N0.getOperand(0).getOperand(1),
N0.getOperand(1)));
if (N1.getOpcode() == ISD::AND) {
SDValue AndOp0 = N1.getOperand(0);
unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
- unsigned DestBits = VT.getScalarType().getSizeInBits();
+ unsigned DestBits = VT.getScalarSizeInBits();
// (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
// and similar xforms where the inner op is either ~0 or 0.
- if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) {
- SDLoc DL(N);
+ if (NumSignBits == DestBits &&
+ isOneConstantOrOneSplatConstant(N1->getOperand(1)))
return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
- }
}
// add (sext i1), X -> sub X, (zext i1)
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getValueType() == MVT::i1 &&
!TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
- SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
@@ -1767,7 +1812,6 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
- SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
@@ -1853,6 +1897,7 @@ SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
+ SDLoc DL(N);
// fold vector ops
if (VT.isVector()) {
@@ -1867,62 +1912,97 @@ SDValue DAGCombiner::visitSUB(SDNode *N) {
// fold (sub x, x) -> 0
// FIXME: Refactor this and xor and other similar operations together.
if (N0 == N1)
- return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
+ return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations, LegalTypes);
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// fold (sub c1, c2) -> c1-c2
- return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT,
- N0.getNode(), N1.getNode());
+ return DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, N0.getNode(),
+ N1.getNode());
}
- ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
+
// fold (sub x, c) -> (add x, -c)
if (N1C) {
- SDLoc DL(N);
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
}
+
+ if (isNullConstantOrNullSplatConstant(N0)) {
+ unsigned BitWidth = VT.getScalarSizeInBits();
+ // Right-shifting everything out but the sign bit followed by negation is
+ // the same as flipping arithmetic/logical shift type without the negation:
+ // -(X >>u 31) -> (X >>s 31)
+ // -(X >>s 31) -> (X >>u 31)
+ if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
+ ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
+ if (ShiftAmt && ShiftAmt->getZExtValue() == BitWidth - 1) {
+ auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
+ if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
+ return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
+ }
+ }
+
+ // 0 - X --> 0 if the sub is NUW.
+ if (N->getFlags()->hasNoUnsignedWrap())
+ return N0;
+
+ if (DAG.MaskedValueIsZero(N1, ~APInt::getSignBit(BitWidth))) {
+ // N1 is either 0 or the minimum signed value. If the sub is NSW, then
+ // N1 must be 0 because negating the minimum signed value is undefined.
+ if (N->getFlags()->hasNoSignedWrap())
+ return N0;
+
+ // 0 - X --> X if X is 0 or the minimum signed value.
+ return N1;
+ }
+ }
+
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
- if (isAllOnesConstant(N0))
- return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
+ if (isAllOnesConstantOrAllOnesSplatConstant(N0))
+ return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
+
// fold A-(A-B) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
return N1.getOperand(1);
+
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
+
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
+
// fold C2-(A+C1) -> (C2-C1)-A
- ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
- dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
- if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
- SDLoc DL(N);
- SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
- DL, VT);
- return DAG.getNode(ISD::SUB, DL, VT, NewC,
- N1.getOperand(0));
+ if (N1.getOpcode() == ISD::ADD) {
+ SDValue N11 = N1.getOperand(1);
+ if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
+ isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
+ SDValue NewC = DAG.getNode(ISD::SUB, DL, VT, N0, N11);
+ return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
+ }
}
+
// fold ((A+(B+or-C))-B) -> A+or-C
if (N0.getOpcode() == ISD::ADD &&
(N0.getOperand(1).getOpcode() == ISD::SUB ||
N0.getOperand(1).getOpcode() == ISD::ADD) &&
N0.getOperand(1).getOperand(0) == N1)
- return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
- N0.getOperand(0), N0.getOperand(1).getOperand(1));
+ return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
+ N0.getOperand(1).getOperand(1));
+
// fold ((A+(C+B))-B) -> A+C
- if (N0.getOpcode() == ISD::ADD &&
- N0.getOperand(1).getOpcode() == ISD::ADD &&
+ if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::ADD, SDLoc(N), VT,
- N0.getOperand(0), N0.getOperand(1).getOperand(0));
+ return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
+ N0.getOperand(1).getOperand(0));
+
// fold ((A-(B-C))-C) -> A-B
- if (N0.getOpcode() == ISD::SUB &&
- N0.getOperand(1).getOpcode() == ISD::SUB &&
+ if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
N0.getOperand(1).getOperand(1) == N1)
- return DAG.getNode(ISD::SUB, SDLoc(N), VT,
- N0.getOperand(0), N0.getOperand(1).getOperand(0));
+ return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
+ N0.getOperand(1).getOperand(0));
// If either operand of a sub is undef, the result is undef
if (N0.isUndef())
@@ -1937,19 +2017,18 @@ SDValue DAGCombiner::visitSUB(SDNode *N) {
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
GA->getOffset() -
- (uint64_t)N1C->getSExtValue());
+ (uint64_t)N1C->getSExtValue());
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
- SDLoc(N), VT);
+ DL, VT);
}
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
- SDLoc DL(N);
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
@@ -2048,7 +2127,7 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
// We require a splat of the entire scalar bit width for non-contiguous
// bit patterns.
bool IsFullSplat =
- ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
+ ConstValue1.getBitWidth() == VT.getScalarSizeInBits();
// fold (mul x, 1) -> x
if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
return N0;
@@ -2080,28 +2159,27 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
getShiftAmountTy(N0.getValueType()))));
}
- APInt Val;
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
- if (N1IsConst && N0.getOpcode() == ISD::SHL &&
- (ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
- isa<ConstantSDNode>(N0.getOperand(1)))) {
+ if (N0.getOpcode() == ISD::SHL &&
+ isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
+ isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
- AddToWorklist(C3.getNode());
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
+ if (isConstantOrConstantVector(C3))
+ return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh(nullptr, 0), Y(nullptr, 0);
+
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (N0.getOpcode() == ISD::SHL &&
- (ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
- isa<ConstantSDNode>(N0.getOperand(1))) &&
+ isConstantOrConstantVector(N0.getOperand(1)) &&
N0.getNode()->hasOneUse()) {
Sh = N0; Y = N1;
} else if (N1.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(N1.getOperand(1)) &&
+ isConstantOrConstantVector(N1.getOperand(1)) &&
N1.getNode()->hasOneUse()) {
Sh = N1; Y = N0;
}
@@ -2188,8 +2266,8 @@ SDValue DAGCombiner::useDivRem(SDNode *Node) {
SDValue Op1 = Node->getOperand(1);
SDValue combined;
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
- UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
- SDNode *User = *UI;
+ UE = Op0.getNode()->use_end(); UI != UE;) {
+ SDNode *User = *UI++;
if (User == Node || User->use_empty())
continue;
// Convert the other matching node(s), too;
@@ -2246,10 +2324,8 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
- if (!VT.isVector()) {
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
- }
+ if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
@@ -2302,8 +2378,8 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
return Op;
// sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
- // Otherwise, we break the simplification logic in visitREM().
+ // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
+ // true. Otherwise, we break the simplification logic in visitREM().
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
@@ -2337,25 +2413,33 @@ SDValue DAGCombiner::visitUDIV(SDNode *N) {
if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
N0C, N1C))
return Folded;
+
// fold (udiv x, (1 << c)) -> x >>u c
- if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2())
- return DAG.getNode(ISD::SRL, DL, VT, N0,
- DAG.getConstant(N1C->getAPIntValue().logBase2(), DL,
- getShiftAmountTy(N0.getValueType())));
+ if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
+ DAG.isKnownToBeAPowerOfTwo(N1)) {
+ SDValue LogBase2 = BuildLogBase2(N1, DL);
+ AddToWorklist(LogBase2.getNode());
+
+ EVT ShiftVT = getShiftAmountTy(N0.getValueType());
+ SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
+ AddToWorklist(Trunc.getNode());
+ return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
+ }
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
- if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
- if (SHC->getAPIntValue().isPowerOf2()) {
- EVT ADDVT = N1.getOperand(1).getValueType();
- SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT,
- N1.getOperand(1),
- DAG.getConstant(SHC->getAPIntValue()
- .logBase2(),
- DL, ADDVT));
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
- }
+ SDValue N10 = N1.getOperand(0);
+ if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
+ DAG.isKnownToBeAPowerOfTwo(N10)) {
+ SDValue LogBase2 = BuildLogBase2(N10, DL);
+ AddToWorklist(LogBase2.getNode());
+
+ EVT ADDVT = N1.getOperand(1).getValueType();
+ SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
+ AddToWorklist(Trunc.getNode());
+ SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
}
}
@@ -2366,8 +2450,8 @@ SDValue DAGCombiner::visitUDIV(SDNode *N) {
return Op;
// sdiv, srem -> sdivrem
- // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
- // Otherwise, we break the simplification logic in visitREM().
+ // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
+ // true. Otherwise, we break the simplification logic in visitREM().
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
@@ -2401,27 +2485,25 @@ SDValue DAGCombiner::visitREM(SDNode *N) {
if (isSigned) {
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
- if (!VT.isVector()) {
- if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
- return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
- }
+ if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
} else {
// fold (urem x, pow2) -> (and x, pow2-1)
- if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
- N1C->getAPIntValue().isPowerOf2()) {
- return DAG.getNode(ISD::AND, DL, VT, N0,
- DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT));
+ if (DAG.isKnownToBeAPowerOfTwo(N1)) {
+ APInt NegOne = APInt::getAllOnesValue(VT.getScalarSizeInBits());
+ SDValue Add =
+ DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT));
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
- if (N1.getOpcode() == ISD::SHL) {
- ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0));
- if (SHC && SHC->getAPIntValue().isPowerOf2()) {
- APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits());
- SDValue Add =
- DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT));
- AddToWorklist(Add.getNode());
- return DAG.getNode(ISD::AND, DL, VT, N0, Add);
- }
+ if (N1.getOpcode() == ISD::SHL &&
+ DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
+ APInt NegOne = APInt::getAllOnesValue(VT.getScalarSizeInBits());
+ SDValue Add =
+ DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT));
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
}
@@ -2477,8 +2559,7 @@ SDValue DAGCombiner::visitMULHS(SDNode *N) {
if (isOneConstant(N1)) {
SDLoc DL(N);
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
- DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
- DL,
+ DAG.getConstant(N0.getValueSizeInBits() - 1, DL,
getShiftAmountTy(N0.getValueType())));
}
// fold (mulhs x, undef) -> 0
@@ -2706,7 +2787,7 @@ SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
// Bail early if none of these transforms apply.
- if (N0.getNode()->getNumOperands() == 0) return SDValue();
+ if (N0.getNumOperands() == 0) return SDValue();
// For each of OP in AND/OR/XOR:
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
@@ -2872,25 +2953,34 @@ SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
LL.getValueType().isInteger()) {
// fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
- SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
- LR.getValueType(), LL, RL);
- AddToWorklist(ORNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ EVT CCVT = getSetCCResultType(LR.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
}
if (isAllOnesConstant(LR)) {
// fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
if (Op1 == ISD::SETEQ) {
- SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
- LR.getValueType(), LL, RL);
- AddToWorklist(ANDNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ EVT CCVT = getSetCCResultType(LR.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ANDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ }
}
// fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
if (Op1 == ISD::SETGT) {
- SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
- LR.getValueType(), LL, RL);
- AddToWorklist(ORNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ EVT CCVT = getSetCCResultType(LR.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
}
}
}
@@ -2899,14 +2989,17 @@ SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
Op0 == Op1 && LL.getValueType().isInteger() &&
Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
- SDLoc DL(N0);
- SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
- LL, DAG.getConstant(1, DL,
- LL.getValueType()));
- AddToWorklist(ADDNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
- DAG.getConstant(2, DL, LL.getValueType()),
- ISD::SETUGE);
+ EVT CCVT = getSetCCResultType(LL.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDLoc DL(N0);
+ SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
+ LL, DAG.getConstant(1, DL,
+ LL.getValueType()));
+ AddToWorklist(ADDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
+ DAG.getConstant(2, DL, LL.getValueType()),
+ ISD::SETUGE);
+ }
}
// canonicalize equivalent to ll == rl
if (LL == RR && LR == RL) {
@@ -2967,6 +3060,11 @@ SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
unsigned Size = VT.getSizeInBits();
const APInt &AndMask = CAnd->getAPIntValue();
unsigned ShiftBits = CShift->getZExtValue();
+
+ // Bail out, this node will probably disappear anyway.
+ if (ShiftBits == 0)
+ return SDValue();
+
unsigned MaskBits = AndMask.countTrailingOnes();
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
@@ -2985,7 +3083,7 @@ SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
// extended to handle extensions mixed in.
SDValue SL(N0);
- assert(ShiftBits != 0 && MaskBits <= Size);
+ assert(MaskBits <= Size);
// Extracting the highest bit of the low half.
EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
@@ -3050,6 +3148,10 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
+ // x & x --> x
+ if (N0 == N1)
+ return N0;
+
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
@@ -3058,16 +3160,12 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (and x, 0) -> 0, vector edition
if (ISD::isBuildVectorAllZeros(N0.getNode()))
// do not return N0, because undef node may exist in N0
- return DAG.getConstant(
- APInt::getNullValue(
- N0.getValueType().getScalarType().getSizeInBits()),
- SDLoc(N), N0.getValueType());
+ return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
+ SDLoc(N), N0.getValueType());
if (ISD::isBuildVectorAllZeros(N1.getNode()))
// do not return N1, because undef node may exist in N1
- return DAG.getConstant(
- APInt::getNullValue(
- N1.getValueType().getScalarType().getSizeInBits()),
- SDLoc(N), N1.getValueType());
+ return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
+ SDLoc(N), N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isBuildVectorAllOnes(N0.getNode()))
@@ -3078,7 +3176,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (and c1, c2) -> c1&c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N0C && N1C && !N1C->isOpaque())
return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
// canonicalize constant to RHS
@@ -3089,7 +3187,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (isAllOnesConstant(N1))
return N0;
// if (and x, c) is known to be zero, return 0
- unsigned BitWidth = VT.getScalarType().getSizeInBits();
+ unsigned BitWidth = VT.getScalarSizeInBits();
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
APInt::getAllOnesValue(BitWidth)))
return DAG.getConstant(0, SDLoc(N), VT);
@@ -3098,14 +3196,14 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
return RAND;
// fold (and (or x, C), D) -> D if (C & D) == D
if (N1C && N0.getOpcode() == ISD::OR)
- if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+ if (ConstantSDNode *ORI = isConstOrConstSplat(N0.getOperand(1)))
if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
return N1;
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
APInt Mask = ~N1C->getAPIntValue();
- Mask = Mask.trunc(N0Op0.getValueSizeInBits());
+ Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
N0.getValueType(), N0Op0);
@@ -3156,7 +3254,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// that will apply equally to all members of the vector, so AND all the
// lanes of the constant together.
EVT VT = Vector->getValueType(0);
- unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
+ unsigned BitWidth = VT.getScalarSizeInBits();
// If the splat value has been compressed to a bitlength lower
// than the size of the vector lane, we need to re-expand it to
@@ -3187,8 +3285,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// Resize the constant to the same size as the original memory access before
// extension. If it is still the AllOnesValue then this AND is completely
// unneeded.
- Constant =
- Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
+ Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
bool B;
switch (Load->getExtensionType()) {
@@ -3230,9 +3327,9 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
- if (N1C && (N0.getOpcode() == ISD::LOAD ||
- (N0.getOpcode() == ISD::ANY_EXTEND &&
- N0.getOperand(0).getOpcode() == ISD::LOAD))) {
+ if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
+ (N0.getOpcode() == ISD::ANY_EXTEND &&
+ N0.getOperand(0).getOpcode() == ISD::LOAD))) {
bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
LoadSDNode *LN0 = HasAnyExt
? cast<LoadSDNode>(N0.getOperand(0))
@@ -3293,10 +3390,29 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
return Tmp;
+ // Masking the negated extension of a boolean is just the zero-extended
+ // boolean:
+ // and (sub 0, zext(bool X)), 1 --> zext(bool X)
+ // and (sub 0, sext(bool X)), 1 --> zext(bool X)
+ //
+ // Note: the SimplifyDemandedBits fold below can make an information-losing
+ // transform, and then we have no way to find this better fold.
+ if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
+ ConstantSDNode *SubLHS = isConstOrConstSplat(N0.getOperand(0));
+ SDValue SubRHS = N0.getOperand(1);
+ if (SubLHS && SubLHS->isNullValue()) {
+ if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
+ SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
+ return SubRHS;
+ if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
+ SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
+ }
+ }
+
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
- if (!VT.isVector() &&
- SimplifyDemandedBits(SDValue(N, 0)))
+ if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
@@ -3305,9 +3421,9 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
- unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
+ unsigned BitWidth = N1.getScalarValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - MemVT.getScalarType().getSizeInBits())) &&
+ BitWidth - MemVT.getScalarSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
@@ -3325,9 +3441,9 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
- unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
+ unsigned BitWidth = N1.getScalarValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - MemVT.getScalarType().getSizeInBits())) &&
+ BitWidth - MemVT.getScalarSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
@@ -3391,8 +3507,7 @@ SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
- if (!N0.getNode()->hasOneUse() ||
- !N1.getNode()->hasOneUse())
+ if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
@@ -3627,18 +3742,24 @@ SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
// fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
// fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
- SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
- LR.getValueType(), LL, RL);
- AddToWorklist(ORNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ EVT CCVT = getSetCCResultType(LR.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
}
// fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
// fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
- SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
- LR.getValueType(), LL, RL);
- AddToWorklist(ANDNode.getNode());
- return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ EVT CCVT = getSetCCResultType(LR.getValueType());
+ if (VT == CCVT || (!LegalOperations && VT == MVT::i1)) {
+ SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ANDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ }
}
}
// canonicalize equivalent to ll == rl
@@ -3708,6 +3829,10 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
+ // x | x --> x
+ if (N0 == N1)
+ return N0;
+
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
@@ -3723,15 +3848,13 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
if (ISD::isBuildVectorAllOnes(N0.getNode()))
// do not return N0, because undef node may exist in N0
return DAG.getConstant(
- APInt::getAllOnesValue(
- N0.getValueType().getScalarType().getSizeInBits()),
- SDLoc(N), N0.getValueType());
+ APInt::getAllOnesValue(N0.getScalarValueSizeInBits()), SDLoc(N),
+ N0.getValueType());
if (ISD::isBuildVectorAllOnes(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(
- APInt::getAllOnesValue(
- N1.getValueType().getScalarType().getSizeInBits()),
- SDLoc(N), N1.getValueType());
+ APInt::getAllOnesValue(N1.getScalarValueSizeInBits()), SDLoc(N),
+ N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
// Do this only if the resulting shuffle is legal.
@@ -4122,6 +4245,110 @@ SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
return nullptr;
}
+namespace {
+/// Helper struct to parse and store a memory address as base + index + offset.
+/// We ignore sign extensions when it is safe to do so.
+/// The following two expressions are not equivalent. To differentiate we need
+/// to store whether there was a sign extension involved in the index
+/// computation.
+/// (load (i64 add (i64 copyfromreg %c)
+/// (i64 signextend (add (i8 load %index)
+/// (i8 1))))
+/// vs
+///
+/// (load (i64 add (i64 copyfromreg %c)
+/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
+/// (i32 1)))))
+struct BaseIndexOffset {
+ SDValue Base;
+ SDValue Index;
+ int64_t Offset;
+ bool IsIndexSignExt;
+
+ BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
+
+ BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
+ bool IsIndexSignExt) :
+ Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
+
+ bool equalBaseIndex(const BaseIndexOffset &Other) {
+ return Other.Base == Base && Other.Index == Index &&
+ Other.IsIndexSignExt == IsIndexSignExt;
+ }
+
+ /// Parses tree in Ptr for base, index, offset addresses.
+ static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG,
+ int64_t PartialOffset = 0) {
+ bool IsIndexSignExt = false;
+
+ // Split up a folded GlobalAddress+Offset into its component parts.
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr))
+ if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) {
+ return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(),
+ SDLoc(GA),
+ GA->getValueType(0),
+ /*Offset=*/PartialOffset,
+ /*isTargetGA=*/false,
+ GA->getTargetFlags()),
+ SDValue(),
+ GA->getOffset(),
+ IsIndexSignExt);
+ }
+
+ // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
+ // instruction, then it could be just the BASE or everything else we don't
+ // know how to handle. Just use Ptr as BASE and give up.
+ if (Ptr->getOpcode() != ISD::ADD)
+ return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
+
+ // We know that we have at least an ADD instruction. Try to pattern match
+ // the simple case of BASE + OFFSET.
+ if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
+ int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
+ return match(Ptr->getOperand(0), DAG, Offset + PartialOffset);
+ }
+
+ // Inside a loop the current BASE pointer is calculated using an ADD and a
+ // MUL instruction. In this case Ptr is the actual BASE pointer.
+ // (i64 add (i64 %array_ptr)
+ // (i64 mul (i64 %induction_var)
+ // (i64 %element_size)))
+ if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
+ return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
+
+ // Look at Base + Index + Offset cases.
+ SDValue Base = Ptr->getOperand(0);
+ SDValue IndexOffset = Ptr->getOperand(1);
+
+ // Skip signextends.
+ if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
+ IndexOffset = IndexOffset->getOperand(0);
+ IsIndexSignExt = true;
+ }
+
+ // Either the case of Base + Index (no offset) or something else.
+ if (IndexOffset->getOpcode() != ISD::ADD)
+ return BaseIndexOffset(Base, IndexOffset, PartialOffset, IsIndexSignExt);
+
+ // Now we have the case of Base + Index + offset.
+ SDValue Index = IndexOffset->getOperand(0);
+ SDValue Offset = IndexOffset->getOperand(1);
+
+ if (!isa<ConstantSDNode>(Offset))
+ return BaseIndexOffset(Ptr, SDValue(), PartialOffset, IsIndexSignExt);
+
+ // Ignore signextends.
+ if (Index->getOpcode() == ISD::SIGN_EXTEND) {
+ Index = Index->getOperand(0);
+ IsIndexSignExt = true;
+ } else IsIndexSignExt = false;
+
+ int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
+ return BaseIndexOffset(Base, Index, Off + PartialOffset, IsIndexSignExt);
+ }
+};
+} // namespace
+
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -4317,16 +4544,20 @@ SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
if (!BinOpCst) return SDValue();
- // FIXME: disable this unless the input to the binop is a shift by a constant.
- // If it is not a shift, it pessimizes some common cases like:
- //
- // void foo(int *X, int i) { X[i & 1235] = 1; }
- // int bar(int *X, int i) { return X[i & 255]; }
+ // FIXME: disable this unless the input to the binop is a shift by a constant
+ // or is copy/select.Enable this in other cases when figure out it's exactly profitable.
SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
- if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
- BinOpLHSVal->getOpcode() != ISD::SRA &&
- BinOpLHSVal->getOpcode() != ISD::SRL) ||
- !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
+ bool isShift = BinOpLHSVal->getOpcode() == ISD::SHL ||
+ BinOpLHSVal->getOpcode() == ISD::SRA ||
+ BinOpLHSVal->getOpcode() == ISD::SRL;
+ bool isCopyOrSelect = BinOpLHSVal->getOpcode() == ISD::CopyFromReg ||
+ BinOpLHSVal->getOpcode() == ISD::SELECT;
+
+ if ((!isShift || !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) &&
+ !isCopyOrSelect)
+ return SDValue();
+
+ if (isCopyOrSelect && N->hasOneUse())
return SDValue();
EVT VT = N->getValueType(0);
@@ -4366,19 +4597,15 @@ SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
SDValue N01 = N->getOperand(0).getOperand(1);
-
- if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
- if (!N01C->isOpaque()) {
- EVT TruncVT = N->getValueType(0);
- SDValue N00 = N->getOperand(0).getOperand(0);
- APInt TruncC = N01C->getAPIntValue();
- TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
- SDLoc DL(N);
-
- return DAG.getNode(ISD::AND, DL, TruncVT,
- DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00),
- DAG.getConstant(TruncC, DL, TruncVT));
- }
+ if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
+ SDLoc DL(N);
+ EVT TruncVT = N->getValueType(0);
+ SDValue N00 = N->getOperand(0).getOperand(0);
+ SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
+ SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
+ AddToWorklist(Trunc00.getNode());
+ AddToWorklist(Trunc01.getNode());
+ return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
}
}
@@ -4404,7 +4631,6 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
@@ -4425,12 +4651,12 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
N01CV, N1CV))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
}
- } else {
- N1C = isConstOrConstSplat(N1);
}
}
}
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
+
// fold (shl c1, c2) -> c1<<c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
if (N0C && N1C && !N1C->isOpaque())
@@ -4464,13 +4690,18 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SHL) {
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
- uint64_t c1 = N0C1->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
SDLoc DL(N);
- if (c1 + c2 >= OpSizeInBits)
+ APInt c1 = N0C1->getAPIntValue();
+ APInt c2 = N1C->getAPIntValue();
+ zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
+
+ APInt Sum = c1 + c2;
+ if (Sum.uge(OpSizeInBits))
return DAG.getConstant(0, DL, VT);
- return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
- DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+
+ return DAG.getNode(
+ ISD::SHL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
}
}
@@ -4485,18 +4716,22 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
N0.getOperand(0).getOpcode() == ISD::SHL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
- uint64_t c1 = N0Op0C1->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
+ APInt c1 = N0Op0C1->getAPIntValue();
+ APInt c2 = N1C->getAPIntValue();
+ zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
+
EVT InnerShiftVT = N0Op0.getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
- if (c2 >= OpSizeInBits - InnerShiftSize) {
+ if (c2.uge(OpSizeInBits - InnerShiftSize)) {
SDLoc DL(N0);
- if (c1 + c2 >= OpSizeInBits)
+ APInt Sum = c1 + c2;
+ if (Sum.uge(OpSizeInBits))
return DAG.getConstant(0, DL, VT);
- return DAG.getNode(ISD::SHL, DL, VT,
- DAG.getNode(N0.getOpcode(), DL, VT,
- N0Op0->getOperand(0)),
- DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+
+ return DAG.getNode(
+ ISD::SHL, DL, VT,
+ DAG.getNode(N0.getOpcode(), DL, VT, N0Op0->getOperand(0)),
+ DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
}
}
}
@@ -4508,8 +4743,8 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
- uint64_t c1 = N0Op0C1->getZExtValue();
- if (c1 < VT.getScalarSizeInBits()) {
+ if (N0Op0C1->getAPIntValue().ult(VT.getScalarSizeInBits())) {
+ uint64_t c1 = N0Op0C1->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
if (c1 == c2) {
SDValue NewOp0 = N0.getOperand(0);
@@ -4569,37 +4804,37 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
}
}
}
+
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
- if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
+ if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
+ isConstantOrConstantVector(N1, /* No Opaques */ true)) {
unsigned BitSize = VT.getScalarSizeInBits();
SDLoc DL(N);
- SDValue HiBitsMask =
- DAG.getConstant(APInt::getHighBitsSet(BitSize,
- BitSize - N1C->getZExtValue()),
- DL, VT);
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
- HiBitsMask);
+ SDValue AllBits = DAG.getConstant(APInt::getAllOnesValue(BitSize), DL, VT);
+ SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
+ return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
}
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// Variant of version done on multiply, except mul by a power of 2 is turned
// into a shift.
- APInt Val;
- if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
- (isa<ConstantSDNode>(N0.getOperand(1)) ||
- ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
+ if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
+ isConstantOrConstantVector(N1, /* No Opaques */ true) &&
+ isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
+ AddToWorklist(Shl0.getNode());
+ AddToWorklist(Shl1.getNode());
return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
}
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
- if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) {
- if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
- if (SDValue Folded =
- DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C))
- return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded);
- }
+ if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
+ isConstantOrConstantVector(N1, /* No Opaques */ true) &&
+ isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
+ SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
+ if (isConstantOrConstantVector(Shl))
+ return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
}
if (N1C && !N1C->isOpaque())
@@ -4613,16 +4848,18 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+ unsigned OpSizeInBits = VT.getScalarSizeInBits();
+
+ // Arithmetic shifting an all-sign-bit value is a no-op.
+ if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
+ return N0;
// fold vector ops
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (VT.isVector()) {
+ if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
- N1C = isConstOrConstSplat(N1);
- }
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (sra c1, c2) -> (sra c1, c2)
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
@@ -4634,8 +4871,8 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
// fold (sra -1, x) -> -1
if (isAllOnesConstant(N0))
return N0;
- // fold (sra x, (setge c, size(x))) -> undef
- if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+ // fold (sra x, c >= size(x)) -> undef
+ if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
return DAG.getUNDEF(VT);
// fold (sra x, 0) -> x
if (N1C && N1C->isNullValue())
@@ -4656,13 +4893,19 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRA) {
- if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
- unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
- if (Sum >= OpSizeInBits)
- Sum = OpSizeInBits - 1;
+ if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
SDLoc DL(N);
- return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
- DAG.getConstant(Sum, DL, N1.getValueType()));
+ APInt c1 = N0C1->getAPIntValue();
+ APInt c2 = N1C->getAPIntValue();
+ zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
+
+ APInt Sum = c1 + c2;
+ if (Sum.uge(OpSizeInBits))
+ Sum = APInt(OpSizeInBits, OpSizeInBits - 1);
+
+ return DAG.getNode(
+ ISD::SRA, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
}
}
@@ -4759,16 +5002,14 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
- unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+ unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold vector ops
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- if (VT.isVector()) {
+ if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N))
return FoldedVOp;
- N1C = isConstOrConstSplat(N1);
- }
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (srl c1, c2) -> c1 >>u c2
ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
@@ -4778,7 +5019,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
if (isNullConstant(N0))
return N0;
// fold (srl x, c >= size(x)) -> undef
- if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+ if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
return DAG.getUNDEF(VT);
// fold (srl x, 0) -> x
if (N1C && N1C->isNullValue())
@@ -4790,14 +5031,19 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N1C && N0.getOpcode() == ISD::SRL) {
- if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
- uint64_t c1 = N01C->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
+ if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
SDLoc DL(N);
- if (c1 + c2 >= OpSizeInBits)
+ APInt c1 = N0C1->getAPIntValue();
+ APInt c2 = N1C->getAPIntValue();
+ zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
+
+ APInt Sum = c1 + c2;
+ if (Sum.uge(OpSizeInBits))
return DAG.getConstant(0, DL, VT);
- return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
- DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+
+ return DAG.getNode(
+ ISD::SRL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Sum.getZExtValue(), DL, N1.getValueType()));
}
}
@@ -4810,7 +5056,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = N0.getOperand(0).getValueType();
EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
- uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
+ uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
if (c1 + OpSizeInBits == InnerShiftSize) {
SDLoc DL(N0);
@@ -4825,14 +5071,14 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
}
// fold (srl (shl x, c), c) -> (and x, cst2)
- if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
- unsigned BitSize = N0.getScalarValueSizeInBits();
- if (BitSize <= 64) {
- uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
- SDLoc DL(N);
- return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
- DAG.getConstant(~0ULL >> ShAmt, DL, VT));
- }
+ if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
+ isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
+ SDLoc DL(N);
+ APInt AllBits = APInt::getAllOnesValue(N0.getScalarValueSizeInBits());
+ SDValue Mask =
+ DAG.getNode(ISD::SRL, DL, VT, DAG.getConstant(AllBits, DL, VT), N1);
+ AddToWorklist(Mask.getNode());
+ return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
}
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
@@ -5065,6 +5311,41 @@ static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
}
}
+// TODO: We should handle other cases of selecting between {-1,0,1} here.
+SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
+ SDValue Cond = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ EVT VT = N->getValueType(0);
+ EVT CondVT = Cond.getValueType();
+ SDLoc DL(N);
+
+ // fold (select Cond, 0, 1) -> (xor Cond, 1)
+ // We can't do this reliably if integer based booleans have different contents
+ // to floating point based booleans. This is because we can't tell whether we
+ // have an integer-based boolean or a floating-point-based boolean unless we
+ // can find the SETCC that produced it and inspect its operands. This is
+ // fairly easy if C is the SETCC node, but it can potentially be
+ // undiscoverable (or not reasonably discoverable). For example, it could be
+ // in another basic block or it could require searching a complicated
+ // expression.
+ if (VT.isInteger() &&
+ (CondVT == MVT::i1 || (CondVT.isInteger() &&
+ TLI.getBooleanContents(false, true) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ TLI.getBooleanContents(false, false) ==
+ TargetLowering::ZeroOrOneBooleanContent)) &&
+ isNullConstant(N1) && isOneConstant(N2)) {
+ SDValue NotCond = DAG.getNode(ISD::XOR, DL, CondVT, Cond,
+ DAG.getConstant(1, DL, CondVT));
+ if (VT.bitsEq(CondVT))
+ return NotCond;
+ return DAG.getZExtOrTrunc(NotCond, DL, VT);
+ }
+
+ return SDValue();
+}
+
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
@@ -5080,39 +5361,14 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
// fold (select false, X, Y) -> Y
return !N0C->isNullValue() ? N1 : N2;
}
- // fold (select C, 1, X) -> (or C, X)
- if (VT == MVT::i1 && isOneConstant(N1))
+ // fold (select X, X, Y) -> (or X, Y)
+ // fold (select X, 1, Y) -> (or C, Y)
+ if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
- // fold (select C, 0, 1) -> (xor C, 1)
- // We can't do this reliably if integer based booleans have different contents
- // to floating point based booleans. This is because we can't tell whether we
- // have an integer-based boolean or a floating-point-based boolean unless we
- // can find the SETCC that produced it and inspect its operands. This is
- // fairly easy if C is the SETCC node, but it can potentially be
- // undiscoverable (or not reasonably discoverable). For example, it could be
- // in another basic block or it could require searching a complicated
- // expression.
- if (VT.isInteger() &&
- (VT0 == MVT::i1 || (VT0.isInteger() &&
- TLI.getBooleanContents(false, false) ==
- TLI.getBooleanContents(false, true) &&
- TLI.getBooleanContents(false, false) ==
- TargetLowering::ZeroOrOneBooleanContent)) &&
- isNullConstant(N1) && isOneConstant(N2)) {
- SDValue XORNode;
- if (VT == VT0) {
- SDLoc DL(N);
- return DAG.getNode(ISD::XOR, DL, VT0,
- N0, DAG.getConstant(1, DL, VT0));
- }
- SDLoc DL0(N0);
- XORNode = DAG.getNode(ISD::XOR, DL0, VT0,
- N0, DAG.getConstant(1, DL0, VT0));
- AddToWorklist(XORNode.getNode());
- if (VT.bitsGT(VT0))
- return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
- return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
- }
+
+ if (SDValue V = foldSelectOfConstants(N))
+ return V;
+
// fold (select C, 0, X) -> (and (not C), X)
if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
@@ -5125,16 +5381,9 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
AddToWorklist(NOTNode.getNode());
return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
}
- // fold (select C, X, 0) -> (and C, X)
- if (VT == MVT::i1 && isNullConstant(N2))
- return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
- // fold (select X, X, Y) -> (or X, Y)
- // fold (select X, 1, Y) -> (or X, Y)
- if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
- return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
// fold (select X, Y, X) -> (and X, Y)
// fold (select X, Y, 0) -> (and X, Y)
- if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
+ if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
// If we can fold this based on the true/false value, do so.
@@ -5145,7 +5394,7 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
// The code in this block deals with the following 2 equivalences:
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
- // The target can specify its prefered form with the
+ // The target can specify its preferred form with the
// shouldNormalizeToSelectSequence() callback. However we always transform
// to the right anyway if we find the inner select exists in the DAG anyway
// and we always transform to the left side if we know that we can further
@@ -5214,6 +5463,18 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
}
}
+ // select (xor Cond, 1), X, Y -> select Cond, Y, X
+ if (VT0 == MVT::i1) {
+ if (N0->getOpcode() == ISD::XOR) {
+ if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) {
+ SDValue Cond0 = N0->getOperand(0);
+ if (C->isOne())
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(),
+ Cond0, N2, N1);
+ }
+ }
+ }
+
// fold selects based on a setcc into other things, such as min/max/abs
if (N0.getOpcode() == ISD::SETCC) {
// select x, y (fcmp lt x, y) -> fminnum x, y
@@ -5269,7 +5530,7 @@ std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
- SDLoc dl(N);
+ SDLoc DL(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
@@ -5316,7 +5577,7 @@ static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
"One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function.");
return DAG.getNode(
- ISD::CONCAT_VECTORS, dl, VT,
+ ISD::CONCAT_VECTORS, DL, VT,
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
@@ -5390,6 +5651,7 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) {
MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
SDValue Data = MST->getValue();
+ EVT VT = Data.getValueType();
SDLoc DL(N);
// If the MSTORE data type requires splitting and the mask is provided by a
@@ -5399,16 +5661,13 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) {
if (Mask.getOpcode() == ISD::SETCC) {
// Check if any splitting is required.
- if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
- EVT LoVT, HiVT;
- std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
-
SDValue Chain = MST->getChain();
SDValue Ptr = MST->getBasePtr();
@@ -5418,8 +5677,7 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) {
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
- (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
- Alignment/2 : Alignment;
+ (Alignment == VT.getSizeInBits() / 8) ? Alignment / 2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
@@ -5433,11 +5691,11 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) {
Alignment, MST->getAAInfo(), MST->getRanges());
Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
- MST->isTruncatingStore());
+ MST->isTruncatingStore(),
+ MST->isCompressingStore());
- unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
- Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
+ Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
+ MST->isCompressingStore());
MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
@@ -5446,7 +5704,8 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) {
MST->getRanges());
Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
- MST->isTruncatingStore());
+ MST->isTruncatingStore(),
+ MST->isCompressingStore());
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
@@ -5585,11 +5844,10 @@ SDValue DAGCombiner::visitMLOAD(SDNode *N) {
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
- ISD::NON_EXTLOAD);
+ ISD::NON_EXTLOAD, MLD->isExpandingLoad());
- unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
- Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
+ Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
+ MLD->isExpandingLoad());
MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
@@ -5597,7 +5855,7 @@ SDValue DAGCombiner::visitMLOAD(SDNode *N) {
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
- ISD::NON_EXTLOAD);
+ ISD::NON_EXTLOAD, MLD->isExpandingLoad());
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
@@ -5625,6 +5883,10 @@ SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N2 = N->getOperand(2);
SDLoc DL(N);
+ // fold (vselect C, X, X) -> X
+ if (N1 == N2)
+ return N1;
+
// Canonicalize integer abs.
// vselect (setg[te] X, 0), X, -X ->
// vselect (setgt X, -1), X, -X ->
@@ -5648,7 +5910,7 @@ SDValue DAGCombiner::visitVSELECT(SDNode *N) {
EVT VT = LHS.getValueType();
SDValue Shift = DAG.getNode(
ISD::SRA, DL, VT, LHS,
- DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT));
+ DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
AddToWorklist(Shift.getNode());
AddToWorklist(Add.getNode());
@@ -5803,7 +6065,7 @@ static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
// We can fold this node into a build_vector.
unsigned VTBits = SVT.getSizeInBits();
- unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
+ unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
SmallVector<SDValue, 8> Elts;
unsigned NumElts = VT.getVectorNumElements();
SDLoc DL(N);
@@ -6026,7 +6288,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// fold (sext (truncate (load x))) -> (sext (smaller load x))
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
@@ -6038,9 +6300,9 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
- unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
- unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
- unsigned DestBits = VT.getScalarType().getSizeInBits();
+ unsigned OpBits = Op.getScalarValueSizeInBits();
+ unsigned MidBits = N0.getScalarValueSizeInBits();
+ unsigned DestBits = VT.getScalarSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
@@ -6201,7 +6463,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
// Here, T can be 1 or -1, depending on the type of the setcc and
// getBooleanContents().
- unsigned SetCCWidth = N0.getValueType().getScalarSizeInBits();
+ unsigned SetCCWidth = N0.getScalarValueSizeInBits();
SDLoc DL(N);
// To determine the "true" side of the select, we need to know the high bit
@@ -6323,7 +6585,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
// fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
@@ -6338,7 +6600,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
// fold (zext (truncate (load x))) -> (zext (smaller load x))
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode *oye = N0.getNode()->getOperand(0).getNode();
+ SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
@@ -6528,7 +6790,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
// elements we can use a matching integer vector type and then
// truncate/sign extend.
EVT MatchingElementType = EVT::getIntegerVT(
- *DAG.getContext(), N00VT.getScalarType().getSizeInBits());
+ *DAG.getContext(), N00VT.getScalarSizeInBits());
EVT MatchingVectorType = EVT::getVectorVT(
*DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements());
SDValue VsetCC =
@@ -6558,8 +6820,8 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue InnerZExt = N0.getOperand(0);
// If the original shl may be shifting out bits, do not perform this
// transformation.
- unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
- InnerZExt.getOperand(0).getValueType().getSizeInBits();
+ unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
+ InnerZExt.getOperand(0).getValueSizeInBits();
if (ShAmtVal > KnownZeroBits)
return SDValue();
}
@@ -6598,7 +6860,7 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
if (N0.getOpcode() == ISD::TRUNCATE) {
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
- SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ SDNode *oye = N0.getOperand(0).getNode();
if (NarrowLoad.getNode() != N0.getNode()) {
CombineTo(N0.getNode(), NarrowLoad);
// CombineTo deleted the truncate, if needed, but not what's under it.
@@ -6625,15 +6887,15 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
N0.getOperand(1).getOpcode() == ISD::Constant &&
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
N0.getValueType())) {
+ SDLoc DL(N);
SDValue X = N0.getOperand(0).getOperand(0);
if (X.getValueType().bitsLT(VT)) {
- X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
+ X = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
} else if (X.getValueType().bitsGT(VT)) {
- X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
+ X = DAG.getNode(ISD::TRUNCATE, DL, VT, X);
}
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
Mask = Mask.zext(VT.getSizeInBits());
- SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT,
X, DAG.getConstant(Mask, DL, VT));
}
@@ -6820,7 +7082,7 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
// Is the load width a multiple of size of VT?
- if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
+ if ((N0.getValueSizeInBits() & (EVTBits-1)) != 0)
return SDValue();
}
@@ -6952,8 +7214,8 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N1)->getVT();
- unsigned VTBits = VT.getScalarType().getSizeInBits();
- unsigned EVTBits = EVT.getScalarType().getSizeInBits();
+ unsigned VTBits = VT.getScalarSizeInBits();
+ unsigned EVTBits = EVT.getScalarSizeInBits();
if (N0.isUndef())
return DAG.getUNDEF(VT);
@@ -6977,14 +7239,23 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
// if x is small enough.
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N00 = N0.getOperand(0);
- if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
+ if (N00.getScalarValueSizeInBits() <= EVTBits &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
+ return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
+ }
+
+ // fold (sext_in_reg (zext x)) -> (sext x)
+ // iff we are extending the source sign bit.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getScalarValueSizeInBits() == EVTBits &&
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
}
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
- return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
+ return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT.getScalarType());
// fold operands of sext_in_reg based on knowledge that the top bits are not
// demanded.
@@ -7111,6 +7382,10 @@ SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
return N0.getOperand(0);
}
+ // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
+ if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
+ return SDValue();
+
// Fold extract-and-trunc into a narrow extract. For example:
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
// i32 y = TRUNCATE(i64 x)
@@ -7148,7 +7423,7 @@ SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
}
// trunc (select c, a, b) -> select c, (trunc a), (trunc b)
- if (N0.getOpcode() == ISD::SELECT) {
+ if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
EVT SrcVT = N0.getValueType();
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
TLI.isTruncateFree(SrcVT, VT)) {
@@ -7160,15 +7435,15 @@ SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
}
}
- // trunc (shl x, K) -> shl (trunc x), K => K < vt.size / 2
+ // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) &&
TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) {
uint64_t Amt = CAmt->getZExtValue();
- unsigned Size = VT.getSizeInBits();
+ unsigned Size = VT.getScalarSizeInBits();
- if (Amt < Size / 2) {
+ if (Amt < Size) {
SDLoc SL(N);
EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
@@ -7525,7 +7800,7 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
- unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
+ unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
if (isTypeLegal(IntXVT)) {
SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
@@ -7848,10 +8123,14 @@ SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
}
// More folding opportunities when target permits.
- if ((AllowFusion || HasFMAD) && Aggressive) {
+ if (Aggressive) {
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
- if (N0.getOpcode() == PreferredFusedOpcode &&
- N0.getOperand(2).getOpcode() == ISD::FMUL) {
+ // FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF
+ // are currently only supported on binary nodes.
+ if (Options.UnsafeFPMath &&
+ N0.getOpcode() == PreferredFusedOpcode &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL &&
+ N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
@@ -7861,8 +8140,12 @@ SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
}
// fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
- if (N1->getOpcode() == PreferredFusedOpcode &&
- N1.getOperand(2).getOpcode() == ISD::FMUL) {
+ // FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF
+ // are currently only supported on binary nodes.
+ if (Options.UnsafeFPMath &&
+ N1->getOpcode() == PreferredFusedOpcode &&
+ N1.getOperand(2).getOpcode() == ISD::FMUL &&
+ N1->hasOneUse() && N1.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N1.getOperand(0), N1.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
@@ -8090,11 +8373,15 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
}
// More folding opportunities when target permits.
- if ((AllowFusion || HasFMAD) && Aggressive) {
+ if (Aggressive) {
// fold (fsub (fma x, y, (fmul u, v)), z)
// -> (fma x, y (fma u, v, (fneg z)))
- if (N0.getOpcode() == PreferredFusedOpcode &&
- N0.getOperand(2).getOpcode() == ISD::FMUL) {
+ // FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF
+ // are currently only supported on binary nodes.
+ if (Options.UnsafeFPMath &&
+ N0.getOpcode() == PreferredFusedOpcode &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL &&
+ N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
return DAG.getNode(PreferredFusedOpcode, SL, VT,
N0.getOperand(0), N0.getOperand(1),
DAG.getNode(PreferredFusedOpcode, SL, VT,
@@ -8106,7 +8393,10 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
// fold (fsub x, (fma y, z, (fmul u, v)))
// -> (fma (fneg y), z, (fma (fneg u), v, x))
- if (N1.getOpcode() == PreferredFusedOpcode &&
+ // FIXME: The UnsafeAlgebra flag should be propagated to FMA/FMAD, but FMF
+ // are currently only supported on binary nodes.
+ if (Options.UnsafeFPMath &&
+ N1.getOpcode() == PreferredFusedOpcode &&
N1.getOperand(2).getOpcode() == ISD::FMUL) {
SDValue N20 = N1.getOperand(2).getOperand(0);
SDValue N21 = N1.getOperand(2).getOperand(1);
@@ -8221,8 +8511,10 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
return SDValue();
}
-/// Try to perform FMA combining on a given FMUL node.
-SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) {
+/// Try to perform FMA combining on a given FMUL node based on the distributive
+/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
+/// subtraction instead of addition).
+SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
@@ -8231,17 +8523,23 @@ SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) {
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
const TargetOptions &Options = DAG.getTarget().Options;
- bool AllowFusion =
- (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
- // Floating-point multiply-add with intermediate rounding.
- bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
+ // The transforms below are incorrect when x == 0 and y == inf, because the
+ // intermediate multiplication produces a nan.
+ if (!Options.NoInfsFPMath)
+ return SDValue();
// Floating-point multiply-add without intermediate rounding.
bool HasFMA =
- AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
+ (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
+ TLI.isFMAFasterThanFMulAndFAdd(VT) &&
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
+ // Floating-point multiply-add with intermediate rounding. This can result
+ // in a less precise result due to the changed rounding order.
+ bool HasFMAD = Options.UnsafeFPMath &&
+ (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
+
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return SDValue();
@@ -8338,17 +8636,20 @@ SDValue DAGCombiner::visitFADD(SDNode *N) {
return DAG.getNode(ISD::FSUB, DL, VT, N1,
GetNegatedExpression(N0, DAG, LegalOperations), Flags);
+ // FIXME: Auto-upgrade the target/function-level option.
+ if (Options.UnsafeFPMath || N->getFlags()->hasNoSignedZeros()) {
+ // fold (fadd A, 0) -> A
+ if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
+ if (N1C->isZero())
+ return N0;
+ }
+
// If 'unsafe math' is enabled, fold lots of things.
if (Options.UnsafeFPMath) {
// No FP constant should be created after legalization as Instruction
// Selection pass has a hard time dealing with FP constants.
bool AllowNewConst = (Level < AfterLegalizeDAG);
- // fold (fadd A, 0) -> A
- if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
- if (N1C->isZero())
- return N0;
-
// fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)))
@@ -8457,7 +8758,7 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
EVT VT = N->getValueType(0);
- SDLoc dl(N);
+ SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
@@ -8468,30 +8769,33 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
// fold (fsub c1, c2) -> c1-c2
if (N0CFP && N1CFP)
- return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags);
+ return DAG.getNode(ISD::FSUB, DL, VT, N0, N1, Flags);
// fold (fsub A, (fneg B)) -> (fadd A, B)
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
- return DAG.getNode(ISD::FADD, dl, VT, N0,
+ return DAG.getNode(ISD::FADD, DL, VT, N0,
GetNegatedExpression(N1, DAG, LegalOperations), Flags);
- // If 'unsafe math' is enabled, fold lots of things.
- if (Options.UnsafeFPMath) {
- // (fsub A, 0) -> A
- if (N1CFP && N1CFP->isZero())
- return N0;
-
+ // FIXME: Auto-upgrade the target/function-level option.
+ if (Options.UnsafeFPMath || N->getFlags()->hasNoSignedZeros()) {
// (fsub 0, B) -> -B
if (N0CFP && N0CFP->isZero()) {
if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
return GetNegatedExpression(N1, DAG, LegalOperations);
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
- return DAG.getNode(ISD::FNEG, dl, VT, N1);
+ return DAG.getNode(ISD::FNEG, DL, VT, N1, Flags);
}
+ }
+
+ // If 'unsafe math' is enabled, fold lots of things.
+ if (Options.UnsafeFPMath) {
+ // (fsub A, 0) -> A
+ if (N1CFP && N1CFP->isZero())
+ return N0;
// (fsub x, x) -> 0.0
if (N0 == N1)
- return DAG.getConstantFP(0.0f, dl, VT);
+ return DAG.getConstantFP(0.0f, DL, VT);
// (fsub x, (fadd x, y)) -> (fneg y)
// (fsub x, (fadd y, x)) -> (fneg y)
@@ -8611,7 +8915,7 @@ SDValue DAGCombiner::visitFMUL(SDNode *N) {
}
// FMUL -> FMA combines:
- if (SDValue Fused = visitFMULForFMACombine(N)) {
+ if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
AddToWorklist(Fused.getNode());
return Fused;
}
@@ -8626,14 +8930,14 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
- SDLoc dl(N);
+ SDLoc DL(N);
const TargetOptions &Options = DAG.getTarget().Options;
// Constant fold FMA.
if (isa<ConstantFPSDNode>(N0) &&
isa<ConstantFPSDNode>(N1) &&
isa<ConstantFPSDNode>(N2)) {
- return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
+ return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
}
if (Options.UnsafeFPMath) {
@@ -8663,8 +8967,8 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
- return DAG.getNode(ISD::FMUL, dl, VT, N0,
- DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1),
+ return DAG.getNode(ISD::FMUL, DL, VT, N0,
+ DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1),
&Flags), &Flags);
}
@@ -8672,9 +8976,9 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
if (N0.getOpcode() == ISD::FMUL &&
isConstantFPBuildVectorOrConstantFP(N1) &&
isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
- return DAG.getNode(ISD::FMA, dl, VT,
+ return DAG.getNode(ISD::FMA, DL, VT,
N0.getOperand(0),
- DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1),
+ DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1),
&Flags),
N2);
}
@@ -8685,32 +8989,32 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
if (N1CFP) {
if (N1CFP->isExactlyValue(1.0))
// TODO: The FMA node should have flags that propagate to this node.
- return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
+ return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
if (N1CFP->isExactlyValue(-1.0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
- SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
+ SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
AddToWorklist(RHSNeg.getNode());
// TODO: The FMA node should have flags that propagate to this node.
- return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
+ return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
}
}
if (Options.UnsafeFPMath) {
// (fma x, c, x) -> (fmul x, (c+1))
if (N1CFP && N0 == N2) {
- return DAG.getNode(ISD::FMUL, dl, VT, N0,
- DAG.getNode(ISD::FADD, dl, VT,
- N1, DAG.getConstantFP(1.0, dl, VT),
- &Flags), &Flags);
+ return DAG.getNode(ISD::FMUL, DL, VT, N0,
+ DAG.getNode(ISD::FADD, DL, VT, N1,
+ DAG.getConstantFP(1.0, DL, VT), &Flags),
+ &Flags);
}
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
- return DAG.getNode(ISD::FMUL, dl, VT, N0,
- DAG.getNode(ISD::FADD, dl, VT,
- N1, DAG.getConstantFP(-1.0, dl, VT),
- &Flags), &Flags);
+ return DAG.getNode(ISD::FMUL, DL, VT, N0,
+ DAG.getNode(ISD::FADD, DL, VT, N1,
+ DAG.getConstantFP(-1.0, DL, VT), &Flags),
+ &Flags);
}
}
@@ -8720,7 +9024,7 @@ SDValue DAGCombiner::visitFMA(SDNode *N) {
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal.
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
-// Notice that this is not always beneficial. One reason is different target
+// Notice that this is not always beneficial. One reason is different targets
// may have different costs for FDIV and FMUL, so sometimes the cost of two
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
@@ -8907,14 +9211,18 @@ SDValue DAGCombiner::visitFREM(SDNode *N) {
}
SDValue DAGCombiner::visitFSQRT(SDNode *N) {
- if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap())
+ if (!DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ if (TLI.isFsqrtCheap(N0, DAG))
return SDValue();
// TODO: FSQRT nodes should have flags that propagate to the created nodes.
// For now, create a Flags object for use with all unsafe math transforms.
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
- return buildSqrtEstimate(N->getOperand(0), &Flags);
+ return buildSqrtEstimate(N0, &Flags);
}
/// copysign(x, fp_extend(y)) -> copysign(x, y)
@@ -8941,11 +9249,11 @@ SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
EVT VT = N->getValueType(0);
- if (N0CFP && N1CFP) // Constant fold
+ if (N0CFP && N1CFP) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
if (N1CFP) {
- const APFloat& V = N1CFP->getValueAPF();
+ const APFloat &V = N1CFP->getValueAPF();
// copysign(x, c1) -> fabs(x) iff ispos(c1)
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
if (!V.isNegative()) {
@@ -8963,8 +9271,7 @@ SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
// copysign(copysign(x,z), y) -> copysign(x, y)
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
N0.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
- N0.getOperand(0), N1);
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
// copysign(x, abs(y)) -> abs(x)
if (N1.getOpcode() == ISD::FABS)
@@ -8972,14 +9279,12 @@ SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
// copysign(x, copysign(y,z)) -> copysign(x, z)
if (N1.getOpcode() == ISD::FCOPYSIGN)
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
- N0, N1.getOperand(1));
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
// copysign(x, fp_extend(y)) -> copysign(x, y)
// copysign(x, fp_round(y)) -> copysign(x, y)
if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
- return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
- N0, N1.getOperand(0));
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
return SDValue();
}
@@ -9159,7 +9464,7 @@ SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
// fold (fp_round (fp_round x)) -> (fp_round x)
if (N0.getOpcode() == ISD::FP_ROUND) {
const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
- const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1;
+ const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
// Skip this folding if it results in an fp_round from f80 to f16.
//
@@ -9232,7 +9537,7 @@ SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
// value of X.
if (N0.getOpcode() == ISD::FP_ROUND
- && N0.getNode()->getConstantOperandVal(1) == 1) {
+ && N0.getConstantOperandVal(1) == 1) {
SDValue In = N0.getOperand(0);
if (In.getValueType() == VT) return In;
if (VT.bitsLT(In.getValueType()))
@@ -9319,7 +9624,7 @@ SDValue DAGCombiner::visitFNEG(SDNode *N) {
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x80... per scalar element
// and splat it.
- SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = APInt::getSignBit(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x80...
@@ -9424,7 +9729,7 @@ SDValue DAGCombiner::visitFABS(SDNode *N) {
if (N0.getValueType().isVector()) {
// For a vector, get a mask such as 0x7f... per scalar element
// and splat it.
- SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = ~APInt::getSignBit(N0.getScalarValueSizeInBits());
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
} else {
// For a scalar, just generate 0x7f...
@@ -10103,7 +10408,8 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
// value.
// TODO: Handle store large -> read small portion.
// TODO: Handle TRUNCSTORE/LOADEXT
- if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
+ if (OptLevel != CodeGenOpt::None &&
+ ISD::isNormalLoad(N) && !LD->isVolatile()) {
if (ISD::isNON_TRUNCStore(Chain.getNode())) {
StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
if (PrevST->getBasePtr() == Ptr &&
@@ -10405,7 +10711,7 @@ struct LoadedSlice {
assert(Inst && Origin && "Unable to replace a non-existing slice.");
const SDValue &OldBaseAddr = Origin->getBasePtr();
SDValue BaseAddr = OldBaseAddr;
- // Get the offset in that chunk of bytes w.r.t. the endianess.
+ // Get the offset in that chunk of bytes w.r.t. the endianness.
int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
assert(Offset >= 0 && "Offset too big to fit in int64_t!");
if (Offset) {
@@ -10705,7 +11011,7 @@ bool DAGCombiner::SliceUpLoad(SDNode *N) {
LSIt != LSItEnd; ++LSIt) {
SDValue SliceInst = LSIt->loadSlice();
CombineTo(LSIt->Inst, SliceInst, true);
- if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
+ if (SliceInst.getOpcode() != ISD::LOAD)
SliceInst = SliceInst.getOperand(0);
assert(SliceInst->getOpcode() == ISD::LOAD &&
"It takes more than a zext to get to the loaded slice!!");
@@ -11033,110 +11339,6 @@ SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
return SDValue();
}
-namespace {
-/// Helper struct to parse and store a memory address as base + index + offset.
-/// We ignore sign extensions when it is safe to do so.
-/// The following two expressions are not equivalent. To differentiate we need
-/// to store whether there was a sign extension involved in the index
-/// computation.
-/// (load (i64 add (i64 copyfromreg %c)
-/// (i64 signextend (add (i8 load %index)
-/// (i8 1))))
-/// vs
-///
-/// (load (i64 add (i64 copyfromreg %c)
-/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
-/// (i32 1)))))
-struct BaseIndexOffset {
- SDValue Base;
- SDValue Index;
- int64_t Offset;
- bool IsIndexSignExt;
-
- BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
-
- BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
- bool IsIndexSignExt) :
- Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
-
- bool equalBaseIndex(const BaseIndexOffset &Other) {
- return Other.Base == Base && Other.Index == Index &&
- Other.IsIndexSignExt == IsIndexSignExt;
- }
-
- /// Parses tree in Ptr for base, index, offset addresses.
- static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) {
- bool IsIndexSignExt = false;
-
- // Split up a folded GlobalAddress+Offset into its component parts.
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr))
- if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) {
- return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(),
- SDLoc(GA),
- GA->getValueType(0),
- /*Offset=*/0,
- /*isTargetGA=*/false,
- GA->getTargetFlags()),
- SDValue(),
- GA->getOffset(),
- IsIndexSignExt);
- }
-
- // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
- // instruction, then it could be just the BASE or everything else we don't
- // know how to handle. Just use Ptr as BASE and give up.
- if (Ptr->getOpcode() != ISD::ADD)
- return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
-
- // We know that we have at least an ADD instruction. Try to pattern match
- // the simple case of BASE + OFFSET.
- if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
- int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
- return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
- IsIndexSignExt);
- }
-
- // Inside a loop the current BASE pointer is calculated using an ADD and a
- // MUL instruction. In this case Ptr is the actual BASE pointer.
- // (i64 add (i64 %array_ptr)
- // (i64 mul (i64 %induction_var)
- // (i64 %element_size)))
- if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
- return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
-
- // Look at Base + Index + Offset cases.
- SDValue Base = Ptr->getOperand(0);
- SDValue IndexOffset = Ptr->getOperand(1);
-
- // Skip signextends.
- if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
- IndexOffset = IndexOffset->getOperand(0);
- IsIndexSignExt = true;
- }
-
- // Either the case of Base + Index (no offset) or something else.
- if (IndexOffset->getOpcode() != ISD::ADD)
- return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
-
- // Now we have the case of Base + Index + offset.
- SDValue Index = IndexOffset->getOperand(0);
- SDValue Offset = IndexOffset->getOperand(1);
-
- if (!isa<ConstantSDNode>(Offset))
- return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
-
- // Ignore signextends.
- if (Index->getOpcode() == ISD::SIGN_EXTEND) {
- Index = Index->getOperand(0);
- IsIndexSignExt = true;
- } else IsIndexSignExt = false;
-
- int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
- return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
- }
-};
-} // namespace
-
// This is a helper function for visitMUL to check the profitability
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
// MulNode is the original multiply, AddNode is (add x, c1),
@@ -11351,6 +11553,7 @@ bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
}
}
+ StoreNodes.erase(StoreNodes.begin() + NumStores, StoreNodes.end());
return true;
}
@@ -11493,7 +11696,8 @@ bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
return true;
}
-bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
+bool DAGCombiner::MergeConsecutiveStores(
+ StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes) {
if (OptLevel == CodeGenOpt::None)
return false;
@@ -11537,16 +11741,13 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
// any of the store nodes.
SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
- // Save the StoreSDNodes that we find in the chain.
- SmallVector<MemOpLink, 8> StoreNodes;
-
getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
// Check if there is anything to merge.
if (StoreNodes.size() < 2)
return false;
- // only do dep endence check in AA case
+ // only do dependence check in AA case
bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
: DAG.getSubtarget().useAA();
if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes))
@@ -11582,10 +11783,9 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
// Check if this store interferes with any of the loads that we found.
// If we find a load that alias with this store. Stop the sequence.
- if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(),
- [&](LSBaseSDNode* Ldn) {
- return isAlias(Ldn, StoreNodes[i].MemNode);
- }))
+ if (any_of(AliasLoadNodes, [&](LSBaseSDNode *Ldn) {
+ return isAlias(Ldn, StoreNodes[i].MemNode);
+ }))
break;
// Mark this node as useful.
@@ -11899,6 +12099,7 @@ bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
}
}
+ StoreNodes.erase(StoreNodes.begin() + NumElem, StoreNodes.end());
return true;
}
@@ -12088,11 +12289,9 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// See if we can simplify the input to this truncstore with knowledge that
// only the low bits are being used. For example:
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
- SDValue Shorter =
- GetDemandedBits(Value,
- APInt::getLowBitsSet(
- Value.getValueType().getScalarType().getSizeInBits(),
- ST->getMemoryVT().getScalarType().getSizeInBits()));
+ SDValue Shorter = GetDemandedBits(
+ Value, APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
+ ST->getMemoryVT().getScalarSizeInBits()));
AddToWorklist(Value.getNode());
if (Shorter.getNode())
return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
@@ -12100,10 +12299,10 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// Otherwise, see if we can simplify the operation with
// SimplifyDemandedBits, which only works if the value has a single use.
- if (SimplifyDemandedBits(Value,
- APInt::getLowBitsSet(
- Value.getValueType().getScalarType().getSizeInBits(),
- ST->getMemoryVT().getScalarType().getSizeInBits())))
+ if (SimplifyDemandedBits(
+ Value,
+ APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
+ ST->getMemoryVT().getScalarSizeInBits())))
return SDValue(N, 0);
}
@@ -12144,19 +12343,20 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// Only perform this optimization before the types are legal, because we
// don't want to perform this optimization on every DAGCombine invocation.
if (!LegalTypes) {
- bool EverChanged = false;
-
- do {
+ for (;;) {
// There can be multiple store sequences on the same chain.
// Keep trying to merge store sequences until we are unable to do so
// or until we merge the last store on the chain.
- bool Changed = MergeConsecutiveStores(ST);
- EverChanged |= Changed;
+ SmallVector<MemOpLink, 8> StoreNodes;
+ bool Changed = MergeConsecutiveStores(ST, StoreNodes);
if (!Changed) break;
- } while (ST->getOpcode() != ISD::DELETED_NODE);
- if (EverChanged)
- return SDValue(N, 0);
+ if (any_of(StoreNodes,
+ [ST](const MemOpLink &Link) { return Link.MemNode == ST; })) {
+ // ST has been merged and no longer exists.
+ return SDValue(N, 0);
+ }
+ }
}
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
@@ -12169,14 +12369,123 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
return NewSt;
}
+ if (SDValue NewSt = splitMergedValStore(ST))
+ return NewSt;
+
return ReduceLoadOpStoreWidth(N);
}
+/// For the instruction sequence of store below, F and I values
+/// are bundled together as an i64 value before being stored into memory.
+/// Sometimes it is more efficent to generate separate stores for F and I,
+/// which can remove the bitwise instructions or sink them to colder places.
+///
+/// (store (or (zext (bitcast F to i32) to i64),
+/// (shl (zext I to i64), 32)), addr) -->
+/// (store F, addr) and (store I, addr+4)
+///
+/// Similarly, splitting for other merged store can also be beneficial, like:
+/// For pair of {i32, i32}, i64 store --> two i32 stores.
+/// For pair of {i32, i16}, i64 store --> two i32 stores.
+/// For pair of {i16, i16}, i32 store --> two i16 stores.
+/// For pair of {i16, i8}, i32 store --> two i16 stores.
+/// For pair of {i8, i8}, i16 store --> two i8 stores.
+///
+/// We allow each target to determine specifically which kind of splitting is
+/// supported.
+///
+/// The store patterns are commonly seen from the simple code snippet below
+/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
+/// void goo(const std::pair<int, float> &);
+/// hoo() {
+/// ...
+/// goo(std::make_pair(tmp, ftmp));
+/// ...
+/// }
+///
+SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
+ if (OptLevel == CodeGenOpt::None)
+ return SDValue();
+
+ SDValue Val = ST->getValue();
+ SDLoc DL(ST);
+
+ // Match OR operand.
+ if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
+ return SDValue();
+
+ // Match SHL operand and get Lower and Higher parts of Val.
+ SDValue Op1 = Val.getOperand(0);
+ SDValue Op2 = Val.getOperand(1);
+ SDValue Lo, Hi;
+ if (Op1.getOpcode() != ISD::SHL) {
+ std::swap(Op1, Op2);
+ if (Op1.getOpcode() != ISD::SHL)
+ return SDValue();
+ }
+ Lo = Op2;
+ Hi = Op1.getOperand(0);
+ if (!Op1.hasOneUse())
+ return SDValue();
+
+ // Match shift amount to HalfValBitSize.
+ unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
+ ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
+ if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
+ return SDValue();
+
+ // Lo and Hi are zero-extended from int with size less equal than 32
+ // to i64.
+ if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
+ !Lo.getOperand(0).getValueType().isScalarInteger() ||
+ Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
+ Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
+ !Hi.getOperand(0).getValueType().isScalarInteger() ||
+ Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
+ return SDValue();
+
+ // Use the EVT of low and high parts before bitcast as the input
+ // of target query.
+ EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
+ ? Lo.getOperand(0).getValueType()
+ : Lo.getValueType();
+ EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
+ ? Hi.getOperand(0).getValueType()
+ : Hi.getValueType();
+ if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
+ return SDValue();
+
+ // Start to split store.
+ unsigned Alignment = ST->getAlignment();
+ MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
+ AAMDNodes AAInfo = ST->getAAInfo();
+
+ // Change the sizes of Lo and Hi's value types to HalfValBitSize.
+ EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
+
+ SDValue Chain = ST->getChain();
+ SDValue Ptr = ST->getBasePtr();
+ // Lower value store.
+ SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
+ ST->getAlignment(), MMOFlags, AAInfo);
+ Ptr =
+ DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(HalfValBitSize / 8, DL, Ptr.getValueType()));
+ // Higher value store.
+ SDValue St1 =
+ DAG.getStore(St0, DL, Hi, Ptr,
+ ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
+ Alignment / 2, MMOFlags, AAInfo);
+ return St1;
+}
+
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
- SDLoc dl(N);
+ SDLoc DL(N);
// If the inserted element is an UNDEF, just use the input vector.
if (InVal.isUndef())
@@ -12206,7 +12515,7 @@ SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
if (Elt < OtherElt) {
// Swap nodes.
- SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
+ SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
InVec.getOperand(0), InVal, EltNo);
AddToWorklist(NewOp.getNode());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
@@ -12237,13 +12546,13 @@ SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
EVT OpVT = Ops[0].getValueType();
if (InVal.getValueType() != OpVT)
InVal = OpVT.bitsGT(InVal.getValueType()) ?
- DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
- DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
+ DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
+ DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
Ops[Elt] = InVal;
}
// Return the new vector
- return DAG.getBuildVector(VT, dl, Ops);
+ return DAG.getBuildVector(VT, DL, Ops);
}
SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
@@ -12544,7 +12853,7 @@ SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
return SDValue();
unsigned NumInScalars = N->getNumOperands();
- SDLoc dl(N);
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
// Check to see if this is a BUILD_VECTOR of a bunch of values
@@ -12603,7 +12912,7 @@ SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
assert(ElemRatio > 1 && "Invalid element size ratio");
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
- DAG.getConstant(0, SDLoc(N), SourceType);
+ DAG.getConstant(0, DL, SourceType);
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
@@ -12634,7 +12943,7 @@ SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
if (!isTypeLegal(VecVT)) return SDValue();
// Make the new BUILD_VECTOR.
- SDValue BV = DAG.getBuildVector(VecVT, dl, Ops);
+ SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
// The new BUILD_VECTOR node has the potential to be further optimized.
AddToWorklist(BV.getNode());
@@ -12646,7 +12955,7 @@ SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumInScalars = N->getNumOperands();
- SDLoc dl(N);
+ SDLoc DL(N);
EVT SrcVT = MVT::Other;
unsigned Opcode = ISD::DELETED_NODE;
@@ -12707,30 +13016,126 @@ SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
else
Opnds.push_back(In.getOperand(0));
}
- SDValue BV = DAG.getBuildVector(NVT, dl, Opnds);
+ SDValue BV = DAG.getBuildVector(NVT, DL, Opnds);
AddToWorklist(BV.getNode());
- return DAG.getNode(Opcode, dl, VT, BV);
+ return DAG.getNode(Opcode, DL, VT, BV);
}
-SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
- unsigned NumInScalars = N->getNumOperands();
- SDLoc dl(N);
+SDValue DAGCombiner::createBuildVecShuffle(SDLoc DL, SDNode *N,
+ ArrayRef<int> VectorMask,
+ SDValue VecIn1, SDValue VecIn2,
+ unsigned LeftIdx) {
+ MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
+ SDValue ZeroIdx = DAG.getConstant(0, DL, IdxTy);
+
EVT VT = N->getValueType(0);
+ EVT InVT1 = VecIn1.getValueType();
+ EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
+
+ unsigned Vec2Offset = InVT1.getVectorNumElements();
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned ShuffleNumElems = NumElems;
+
+ // We can't generate a shuffle node with mismatched input and output types.
+ // Try to make the types match the type of the output.
+ if (InVT1 != VT || InVT2 != VT) {
+ if ((VT.getSizeInBits() % InVT1.getSizeInBits() == 0) && InVT1 == InVT2) {
+ // If the output vector length is a multiple of both input lengths,
+ // we can concatenate them and pad the rest with undefs.
+ unsigned NumConcats = VT.getSizeInBits() / InVT1.getSizeInBits();
+ assert(NumConcats >= 2 && "Concat needs at least two inputs!");
+ SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
+ ConcatOps[0] = VecIn1;
+ ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
+ VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
+ VecIn2 = SDValue();
+ } else if (InVT1.getSizeInBits() == VT.getSizeInBits() * 2) {
+ if (!TLI.isExtractSubvectorCheap(VT, NumElems))
+ return SDValue();
- // A vector built entirely of undefs is undef.
- if (ISD::allOperandsUndef(N))
- return DAG.getUNDEF(VT);
+ if (!VecIn2.getNode()) {
+ // If we only have one input vector, and it's twice the size of the
+ // output, split it in two.
+ VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
+ DAG.getConstant(NumElems, DL, IdxTy));
+ VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
+ // Since we now have shorter input vectors, adjust the offset of the
+ // second vector's start.
+ Vec2Offset = NumElems;
+ } else if (InVT2.getSizeInBits() <= InVT1.getSizeInBits()) {
+ // VecIn1 is wider than the output, and we have another, possibly
+ // smaller input. Pad the smaller input with undefs, shuffle at the
+ // input vector width, and extract the output.
+ // The shuffle type is different than VT, so check legality again.
+ if (LegalOperations &&
+ !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
+ return SDValue();
- if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
- return V;
+ // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
+ // lower it back into a BUILD_VECTOR. So if the inserted type is
+ // illegal, don't even try.
+ if (InVT1 != InVT2) {
+ if (!TLI.isTypeLegal(InVT2))
+ return SDValue();
+ VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
+ DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
+ }
+ ShuffleNumElems = NumElems * 2;
+ } else {
+ // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
+ // than VecIn1. We can't handle this for now - this case will disappear
+ // when we start sorting the vectors by type.
+ return SDValue();
+ }
+ } else {
+ // TODO: Support cases where the length mismatch isn't exactly by a
+ // factor of 2.
+ // TODO: Move this check upwards, so that if we have bad type
+ // mismatches, we don't create any DAG nodes.
+ return SDValue();
+ }
+ }
- if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
- return V;
+ // Initialize mask to undef.
+ SmallVector<int, 8> Mask(ShuffleNumElems, -1);
+
+ // Only need to run up to the number of elements actually used, not the
+ // total number of elements in the shuffle - if we are shuffling a wider
+ // vector, the high lanes should be set to undef.
+ for (unsigned i = 0; i != NumElems; ++i) {
+ if (VectorMask[i] <= 0)
+ continue;
+
+ unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
+ if (VectorMask[i] == (int)LeftIdx) {
+ Mask[i] = ExtIndex;
+ } else if (VectorMask[i] == (int)LeftIdx + 1) {
+ Mask[i] = Vec2Offset + ExtIndex;
+ }
+ }
+
+ // The type the input vectors may have changed above.
+ InVT1 = VecIn1.getValueType();
+
+ // If we already have a VecIn2, it should have the same type as VecIn1.
+ // If we don't, get an undef/zero vector of the appropriate type.
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
+ assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
+
+ SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
+ if (ShuffleNumElems > NumElems)
+ Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
- // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
- // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
- // at most two distinct vectors, turn this into a shuffle node.
+ return Shuffle;
+}
+
+// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
+// operations. If the types of the vectors we're extracting from allow it,
+// turn this into a vector_shuffle node.
+SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
if (!isTypeLegal(VT))
@@ -12740,149 +13145,169 @@ SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
return SDValue();
- SDValue VecIn1, VecIn2;
bool UsesZeroVector = false;
- for (unsigned i = 0; i != NumInScalars; ++i) {
+ unsigned NumElems = N->getNumOperands();
+
+ // Record, for each element of the newly built vector, which input vector
+ // that element comes from. -1 stands for undef, 0 for the zero vector,
+ // and positive values for the input vectors.
+ // VectorMask maps each element to its vector number, and VecIn maps vector
+ // numbers to their initial SDValues.
+
+ SmallVector<int, 8> VectorMask(NumElems, -1);
+ SmallVector<SDValue, 8> VecIn;
+ VecIn.push_back(SDValue());
+
+ for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op = N->getOperand(i);
- // Ignore undef inputs.
- if (Op.isUndef()) continue;
- // See if we can combine this build_vector into a blend with a zero vector.
- if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) {
+ if (Op.isUndef())
+ continue;
+
+ // See if we can use a blend with a zero vector.
+ // TODO: Should we generalize this to a blend with an arbitrary constant
+ // vector?
+ if (isNullConstant(Op) || isNullFPConstant(Op)) {
UsesZeroVector = true;
+ VectorMask[i] = 0;
continue;
}
- // If this input is something other than a EXTRACT_VECTOR_ELT with a
- // constant index, bail out.
+ // Not an undef or zero. If the input is something other than an
+ // EXTRACT_VECTOR_ELT with a constant index, bail out.
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isa<ConstantSDNode>(Op.getOperand(1))) {
- VecIn1 = VecIn2 = SDValue(nullptr, 0);
- break;
- }
+ !isa<ConstantSDNode>(Op.getOperand(1)))
+ return SDValue();
- // We allow up to two distinct input vectors.
SDValue ExtractedFromVec = Op.getOperand(0);
- if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
- continue;
- if (!VecIn1.getNode()) {
- VecIn1 = ExtractedFromVec;
- } else if (!VecIn2.getNode() && !UsesZeroVector) {
- VecIn2 = ExtractedFromVec;
- } else {
- // Too many inputs.
- VecIn1 = VecIn2 = SDValue(nullptr, 0);
- break;
- }
- }
-
- // If everything is good, we can make a shuffle operation.
- if (VecIn1.getNode()) {
- unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
- SmallVector<int, 8> Mask;
- for (unsigned i = 0; i != NumInScalars; ++i) {
- unsigned Opcode = N->getOperand(i).getOpcode();
- if (Opcode == ISD::UNDEF) {
- Mask.push_back(-1);
- continue;
- }
+ // All inputs must have the same element type as the output.
+ if (VT.getVectorElementType() !=
+ ExtractedFromVec.getValueType().getVectorElementType())
+ return SDValue();
- // Operands can also be zero.
- if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
- assert(UsesZeroVector &&
- (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
- "Unexpected node found!");
- Mask.push_back(NumInScalars+i);
- continue;
- }
+ // Have we seen this input vector before?
+ // The vectors are expected to be tiny (usually 1 or 2 elements), so using
+ // a map back from SDValues to numbers isn't worth it.
+ unsigned Idx = std::distance(
+ VecIn.begin(), std::find(VecIn.begin(), VecIn.end(), ExtractedFromVec));
+ if (Idx == VecIn.size())
+ VecIn.push_back(ExtractedFromVec);
- // If extracting from the first vector, just use the index directly.
- SDValue Extract = N->getOperand(i);
- SDValue ExtVal = Extract.getOperand(1);
- unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
- if (Extract.getOperand(0) == VecIn1) {
- Mask.push_back(ExtIndex);
- continue;
- }
+ VectorMask[i] = Idx;
+ }
- // Otherwise, use InIdx + InputVecSize
- Mask.push_back(InNumElements + ExtIndex);
- }
+ // If we didn't find at least one input vector, bail out.
+ if (VecIn.size() < 2)
+ return SDValue();
- // Avoid introducing illegal shuffles with zero.
- if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
+ // TODO: We want to sort the vectors by descending length, so that adjacent
+ // pairs have similar length, and the longer vector is always first in the
+ // pair.
+
+ // TODO: Should this fire if some of the input vectors has illegal type (like
+ // it does now), or should we let legalization run its course first?
+
+ // Shuffle phase:
+ // Take pairs of vectors, and shuffle them so that the result has elements
+ // from these vectors in the correct places.
+ // For example, given:
+ // t10: i32 = extract_vector_elt t1, Constant:i64<0>
+ // t11: i32 = extract_vector_elt t2, Constant:i64<0>
+ // t12: i32 = extract_vector_elt t3, Constant:i64<0>
+ // t13: i32 = extract_vector_elt t1, Constant:i64<1>
+ // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
+ // We will generate:
+ // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
+ // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
+ SmallVector<SDValue, 4> Shuffles;
+ for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
+ unsigned LeftIdx = 2 * In + 1;
+ SDValue VecLeft = VecIn[LeftIdx];
+ SDValue VecRight =
+ (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
+
+ if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
+ VecRight, LeftIdx))
+ Shuffles.push_back(Shuffle);
+ else
return SDValue();
+ }
- // We can't generate a shuffle node with mismatched input and output types.
- // Attempt to transform a single input vector to the correct type.
- if ((VT != VecIn1.getValueType())) {
- // If the input vector type has a different base type to the output
- // vector type, bail out.
- EVT VTElemType = VT.getVectorElementType();
- if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
- (VecIn2.getNode() &&
- (VecIn2.getValueType().getVectorElementType() != VTElemType)))
- return SDValue();
+ // If we need the zero vector as an "ingredient" in the blend tree, add it
+ // to the list of shuffles.
+ if (UsesZeroVector)
+ Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
+ : DAG.getConstantFP(0.0, DL, VT));
- // If the input vector is too small, widen it.
- // We only support widening of vectors which are half the size of the
- // output registers. For example XMM->YMM widening on X86 with AVX.
- EVT VecInT = VecIn1.getValueType();
- if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
- // If we only have one small input, widen it by adding undef values.
- if (!VecIn2.getNode())
- VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
- DAG.getUNDEF(VecIn1.getValueType()));
- else if (VecIn1.getValueType() == VecIn2.getValueType()) {
- // If we have two small inputs of the same type, try to concat them.
- VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
- VecIn2 = SDValue(nullptr, 0);
- } else
- return SDValue();
- } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
- // If the input vector is too large, try to split it.
- // We don't support having two input vectors that are too large.
- // If the zero vector was used, we can not split the vector,
- // since we'd need 3 inputs.
- if (UsesZeroVector || VecIn2.getNode())
- return SDValue();
+ // If we only have one shuffle, we're done.
+ if (Shuffles.size() == 1)
+ return Shuffles[0];
- if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
- return SDValue();
+ // Update the vector mask to point to the post-shuffle vectors.
+ for (int &Vec : VectorMask)
+ if (Vec == 0)
+ Vec = Shuffles.size() - 1;
+ else
+ Vec = (Vec - 1) / 2;
+
+ // More than one shuffle. Generate a binary tree of blends, e.g. if from
+ // the previous step we got the set of shuffles t10, t11, t12, t13, we will
+ // generate:
+ // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
+ // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
+ // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
+ // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
+ // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
+ // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
+ // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
+
+ // Make sure the initial size of the shuffle list is even.
+ if (Shuffles.size() % 2)
+ Shuffles.push_back(DAG.getUNDEF(VT));
+
+ for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
+ if (CurSize % 2) {
+ Shuffles[CurSize] = DAG.getUNDEF(VT);
+ CurSize++;
+ }
+ for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
+ int Left = 2 * In;
+ int Right = 2 * In + 1;
+ SmallVector<int, 8> Mask(NumElems, -1);
+ for (unsigned i = 0; i != NumElems; ++i) {
+ if (VectorMask[i] == Left) {
+ Mask[i] = i;
+ VectorMask[i] = In;
+ } else if (VectorMask[i] == Right) {
+ Mask[i] = i + NumElems;
+ VectorMask[i] = In;
+ }
+ }
- // Try to replace VecIn1 with two extract_subvectors
- // No need to update the masks, they should still be correct.
- VecIn2 = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
- DAG.getConstant(VT.getVectorNumElements(), dl,
- TLI.getVectorIdxTy(DAG.getDataLayout())));
- VecIn1 = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
- DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- } else
- return SDValue();
+ Shuffles[In] =
+ DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
}
+ }
- if (UsesZeroVector)
- VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) :
- DAG.getConstantFP(0.0, dl, VT);
- else
- // If VecIn2 is unused then change it to undef.
- VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+ return Shuffles[0];
+}
- // Check that we were able to transform all incoming values to the same
- // type.
- if (VecIn2.getValueType() != VecIn1.getValueType() ||
- VecIn1.getValueType() != VT)
- return SDValue();
+SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
+ EVT VT = N->getValueType(0);
- // Return the new VECTOR_SHUFFLE node.
- SDValue Ops[2];
- Ops[0] = VecIn1;
- Ops[1] = VecIn2;
- return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], Mask);
- }
+ // A vector built entirely of undefs is undef.
+ if (ISD::allOperandsUndef(N))
+ return DAG.getUNDEF(VT);
+
+ if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
+ return V;
+
+ if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
+ return V;
+
+ if (SDValue V = reduceBuildVecToShuffle(N))
+ return V;
return SDValue();
}
@@ -13071,8 +13496,7 @@ SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
return SDValue();
- SDLoc dl = SDLoc(N);
- SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
+ SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
return DAG.getBitcast(VT, Res);
}
}
@@ -13208,7 +13632,6 @@ SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
V = V.getOperand(0);
if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
- SDLoc dl(N);
// Handle only simple case where vector being inserted and vector
// being extracted are of same type, and are half size of larger vectors.
EVT BigVT = V->getOperand(0).getValueType();
@@ -13228,11 +13651,11 @@ SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
// Into:
// indices are equal or bit offsets are equal => V1
// otherwise => (extract_subvec V1, ExtIdx)
- if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
- ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
+ if (InsIdx->getZExtValue() * SmallVT.getScalarSizeInBits() ==
+ ExtIdx->getZExtValue() * NVT.getScalarSizeInBits())
return DAG.getBitcast(NVT, V->getOperand(1));
return DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, NVT,
+ ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)),
N->getOperand(1));
}
@@ -13391,6 +13814,84 @@ static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
}
+// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
+// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
+//
+// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
+// a simplification in some sense, but it isn't appropriate in general: some
+// BUILD_VECTORs are substantially cheaper than others. The general case
+// of a BUILD_VECTOR requires inserting each element individually (or
+// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
+// all constants is a single constant pool load. A BUILD_VECTOR where each
+// element is identical is a splat. A BUILD_VECTOR where most of the operands
+// are undef lowers to a small number of element insertions.
+//
+// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
+// We don't fold shuffles where one side is a non-zero constant, and we don't
+// fold shuffles if the resulting BUILD_VECTOR would have duplicate
+// non-constant operands. This seems to work out reasonably well in practice.
+static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ EVT VT = SVN->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue N0 = SVN->getOperand(0);
+ SDValue N1 = SVN->getOperand(1);
+
+ if (!N0->hasOneUse() || !N1->hasOneUse())
+ return SDValue();
+ // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
+ // discussed above.
+ if (!N1.isUndef()) {
+ bool N0AnyConst = isAnyConstantBuildVector(N0.getNode());
+ bool N1AnyConst = isAnyConstantBuildVector(N1.getNode());
+ if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
+ return SDValue();
+ if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
+ return SDValue();
+ }
+
+ SmallVector<SDValue, 8> Ops;
+ SmallSet<SDValue, 16> DuplicateOps;
+ for (int M : SVN->getMask()) {
+ SDValue Op = DAG.getUNDEF(VT.getScalarType());
+ if (M >= 0) {
+ int Idx = M < (int)NumElts ? M : M - NumElts;
+ SDValue &S = (M < (int)NumElts ? N0 : N1);
+ if (S.getOpcode() == ISD::BUILD_VECTOR) {
+ Op = S.getOperand(Idx);
+ } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ if (Idx == 0)
+ Op = S.getOperand(0);
+ } else {
+ // Operand can't be combined - bail out.
+ return SDValue();
+ }
+ }
+
+ // Don't duplicate a non-constant BUILD_VECTOR operand; semantically, this is
+ // fine, but it's likely to generate low-quality code if the target can't
+ // reconstruct an appropriate shuffle.
+ if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op))
+ if (!DuplicateOps.insert(Op).second)
+ return SDValue();
+
+ Ops.push_back(Op);
+ }
+ // BUILD_VECTOR requires all inputs to be of the same type, find the
+ // maximum type and extend them all.
+ EVT SVT = VT.getScalarType();
+ if (SVT.isInteger())
+ for (SDValue &Op : Ops)
+ SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
+ if (SVT != VT.getScalarType())
+ for (SDValue &Op : Ops)
+ Op = TLI.isZExtFree(Op.getValueType(), SVT)
+ ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
+ : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
+ return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
+}
+
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
@@ -13506,40 +14007,9 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
- if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
- SmallVector<SDValue, 8> Ops;
- for (int M : SVN->getMask()) {
- SDValue Op = DAG.getUNDEF(VT.getScalarType());
- if (M >= 0) {
- int Idx = M % NumElts;
- SDValue &S = (M < (int)NumElts ? N0 : N1);
- if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) {
- Op = S.getOperand(Idx);
- } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) {
- if (Idx == 0)
- Op = S.getOperand(0);
- } else {
- // Operand can't be combined - bail out.
- break;
- }
- }
- Ops.push_back(Op);
- }
- if (Ops.size() == VT.getVectorNumElements()) {
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- EVT SVT = VT.getScalarType();
- if (SVT.isInteger())
- for (SDValue &Op : Ops)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT != VT.getScalarType())
- for (SDValue &Op : Ops)
- Op = TLI.isZExtFree(Op.getValueType(), SVT)
- ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT)
- : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT);
- return DAG.getBuildVector(VT, SDLoc(N), Ops);
- }
- }
+ if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
+ if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
+ return Res;
// If this shuffle only has a single input that is a bitcasted shuffle,
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output
@@ -13647,6 +14117,11 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
+ // Don't try to fold splats; they're likely to simplify somehow, or they
+ // might be free.
+ if (OtherSV->isSplat())
+ return SDValue();
+
// The incoming shuffle must be of the same type as the result of the
// current shuffle.
assert(OtherSV->getOperand(0).getValueType() == VT &&
@@ -13773,10 +14248,20 @@ SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
}
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
+ EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
+ // Combine INSERT_SUBVECTORs where we are inserting to the same index.
+ // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
+ // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
+ if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ N0.getOperand(1).getValueType() == N1.getValueType() &&
+ N0.getOperand(2) == N2)
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
+ N1, N2);
+
if (N0.getValueType() != N1.getValueType())
return SDValue();
@@ -13785,7 +14270,6 @@ SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 &&
N2.getOpcode() == ISD::Constant) {
APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
- EVT VT = N->getValueType(0);
// Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
// (concat_vectors Z, Y)
@@ -13836,7 +14320,7 @@ SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
- SDLoc dl(N);
+ SDLoc DL(N);
// Make sure we're not running after operation legalization where it
// may have custom lowered the vector shuffles.
@@ -13904,8 +14388,8 @@ SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
return SDValue();
- SDValue Zero = DAG.getConstant(0, dl, ClearVT);
- return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl,
+ SDValue Zero = DAG.getConstant(0, DL, ClearVT);
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
DAG.getBitcast(ClearVT, LHS),
Zero, Indices));
};
@@ -14119,6 +14603,8 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
if (!RLD->isInvariant())
MMOFlags &= ~MachineMemOperand::MOInvariant;
+ if (!RLD->isDereferenceable())
+ MMOFlags &= ~MachineMemOperand::MODereferenceable;
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
// FIXME: Discards pointer and AA info.
Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
@@ -14146,6 +14632,73 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
return false;
}
+/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
+/// bitwise 'and'.
+SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
+ SDValue N1, SDValue N2, SDValue N3,
+ ISD::CondCode CC) {
+ // If this is a select where the false operand is zero and the compare is a
+ // check of the sign bit, see if we can perform the "gzip trick":
+ // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
+ // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
+ EVT XType = N0.getValueType();
+ EVT AType = N2.getValueType();
+ if (!isNullConstant(N3) || !XType.bitsGE(AType))
+ return SDValue();
+
+ // If the comparison is testing for a positive value, we have to invert
+ // the sign bit mask, so only do that transform if the target has a bitwise
+ // 'and not' instruction (the invert is free).
+ if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
+ // (X > -1) ? A : 0
+ // (X > 0) ? X : 0 <-- This is canonical signed max.
+ if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
+ return SDValue();
+ } else if (CC == ISD::SETLT) {
+ // (X < 0) ? A : 0
+ // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
+ if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
+ return SDValue();
+ } else {
+ return SDValue();
+ }
+
+ // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
+ // constant.
+ EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
+ auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+ if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
+ unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
+ SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
+ SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
+ AddToWorklist(Shift.getNode());
+
+ if (XType.bitsGT(AType)) {
+ Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+ AddToWorklist(Shift.getNode());
+ }
+
+ if (CC == ISD::SETGT)
+ Shift = DAG.getNOT(DL, Shift, AType);
+
+ return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+ }
+
+ SDValue ShiftAmt = DAG.getConstant(XType.getSizeInBits() - 1, DL, ShiftAmtTy);
+ SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
+ AddToWorklist(Shift.getNode());
+
+ if (XType.bitsGT(AType)) {
+ Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+ AddToWorklist(Shift.getNode());
+ }
+
+ if (CC == ISD::SETGT)
+ Shift = DAG.getNOT(DL, Shift, AType);
+
+ return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+}
+
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
/// where 'cond' is the comparison specified by CC.
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
@@ -14242,48 +14795,8 @@ SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
}
}
- // Check to see if we can perform the "gzip trick", transforming
- // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
- if (isNullConstant(N3) && CC == ISD::SETLT &&
- (isNullConstant(N1) || // (a < 0) ? b : 0
- (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0
- EVT XType = N0.getValueType();
- EVT AType = N2.getValueType();
- if (XType.bitsGE(AType)) {
- // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
- // single-bit constant.
- if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
- unsigned ShCtV = N2C->getAPIntValue().logBase2();
- ShCtV = XType.getSizeInBits() - ShCtV - 1;
- SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0),
- getShiftAmountTy(N0.getValueType()));
- SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
- XType, N0, ShCt);
- AddToWorklist(Shift.getNode());
-
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
-
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
- }
-
- SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
- XType, N0,
- DAG.getConstant(XType.getSizeInBits() - 1,
- SDLoc(N0),
- getShiftAmountTy(N0.getValueType())));
- AddToWorklist(Shift.getNode());
-
- if (XType.bitsGT(AType)) {
- Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
- AddToWorklist(Shift.getNode());
- }
-
- return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
- }
- }
+ if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
+ return V;
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
// where y is has a single bit set.
@@ -14511,30 +15024,51 @@ SDValue DAGCombiner::BuildUDIV(SDNode *N) {
return S;
}
+/// Determines the LogBase2 value for a non-null input value using the
+/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
+SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
+ EVT VT = V.getValueType();
+ unsigned EltBits = VT.getScalarSizeInBits();
+ SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
+ SDValue Base = DAG.getConstant(EltBits - 1, DL, VT);
+ SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
+ return LogBase2;
+}
+
+/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+/// For the reciprocal, we need to find the zero of the function:
+/// F(X) = A X - 1 [which has a zero at X = 1/A]
+/// =>
+/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
+/// does not require additional intermediate precision]
SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) {
if (Level >= AfterLegalizeDAG)
return SDValue();
- // Expose the DAG combiner to the target combiner implementations.
- TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
+ // TODO: Handle half and/or extended types?
+ EVT VT = Op.getValueType();
+ if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
+ return SDValue();
+
+ // If estimates are explicitly disabled for this function, we're done.
+ MachineFunction &MF = DAG.getMachineFunction();
+ int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
+ if (Enabled == TLI.ReciprocalEstimate::Disabled)
+ return SDValue();
+
+ // Estimates may be explicitly enabled for this type with a custom number of
+ // refinement steps.
+ int Iterations = TLI.getDivRefinementSteps(VT, MF);
+ if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
+ AddToWorklist(Est.getNode());
- unsigned Iterations = 0;
- if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
if (Iterations) {
- // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
- // For the reciprocal, we need to find the zero of the function:
- // F(X) = A X - 1 [which has a zero at X = 1/A]
- // =>
- // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
- // does not require additional intermediate precision]
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
- AddToWorklist(Est.getNode());
-
// Newton iterations: Est = Est + Est (1 - Arg * Est)
- for (unsigned i = 0; i < Iterations; ++i) {
+ for (int i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
AddToWorklist(NewEst.getNode());
@@ -14656,16 +15190,47 @@ SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags,
if (Level >= AfterLegalizeDAG)
return SDValue();
- // Expose the DAG combiner to the target combiner implementations.
- TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
- unsigned Iterations = 0;
+ // TODO: Handle half and/or extended types?
+ EVT VT = Op.getValueType();
+ if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
+ return SDValue();
+
+ // If estimates are explicitly disabled for this function, we're done.
+ MachineFunction &MF = DAG.getMachineFunction();
+ int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
+ if (Enabled == TLI.ReciprocalEstimate::Disabled)
+ return SDValue();
+
+ // Estimates may be explicitly enabled for this type with a custom number of
+ // refinement steps.
+ int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
+
bool UseOneConstNR = false;
- if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
+ if (SDValue Est =
+ TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
+ Reciprocal)) {
AddToWorklist(Est.getNode());
+
if (Iterations) {
Est = UseOneConstNR
- ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
- : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
+ ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
+ : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
+
+ if (!Reciprocal) {
+ // Unfortunately, Est is now NaN if the input was exactly 0.0.
+ // Select out this case and force the answer to 0.0.
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+
+ SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
+ EVT CCVT = getSetCCResultType(VT);
+ SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
+ AddToWorklist(ZeroCmp.getNode());
+
+ Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
+ ZeroCmp, FPZero, Est);
+ AddToWorklist(Est.getNode());
+ }
}
return Est;
}
@@ -14678,23 +15243,7 @@ SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
}
SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
- SDValue Est = buildSqrtEstimateImpl(Op, Flags, false);
- if (!Est)
- return SDValue();
-
- // Unfortunately, Est is now NaN if the input was exactly 0.
- // Select out this case and force the answer to 0.
- EVT VT = Est.getValueType();
- SDLoc DL(Op);
- SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
- EVT CCVT = getSetCCResultType(VT);
- SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, Zero, ISD::SETEQ);
- AddToWorklist(ZeroCmp.getNode());
-
- Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, ZeroCmp,
- Zero, Est);
- AddToWorklist(Est.getNode());
- return Est;
+ return buildSqrtEstimateImpl(Op, Flags, false);
}
/// Return true if base is a frame index, which is known not to alias with
@@ -14771,9 +15320,9 @@ bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
// To catch this case, look up the actual index of frame indices to compute
// the real alias relationship.
if (isFrameIndex1 && isFrameIndex2) {
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
- Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ Offset1 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
+ Offset2 += MFI.getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
(Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
index b10da00..e2f33bb 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -353,8 +353,8 @@ void FastISel::recomputeInsertPt() {
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E) {
- assert(static_cast<MachineInstr *>(I) && static_cast<MachineInstr *>(E) &&
- std::distance(I, E) > 0 && "Invalid iterator!");
+ assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
+ "Invalid iterator!");
while (I != E) {
MachineInstr *Dead = &*I;
++I;
@@ -455,17 +455,6 @@ bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
return true;
}
- // Check if the second operand is a constant float.
- if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
- unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
- ISDOpcode, Op0, Op0IsKill, CF);
- if (ResultReg) {
- // We successfully emitted code for the given LLVM Instruction.
- updateValueMap(I, ResultReg);
- return true;
- }
- }
-
unsigned Op1 = getRegForValue(I->getOperand(1));
if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
return false;
@@ -499,7 +488,7 @@ bool FastISel::selectGetElementPtr(const User *I) {
for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
- if (auto *StTy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
@@ -581,7 +570,7 @@ bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
Ops.push_back(MachineOperand::CreateImm(0));
} else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
- // Values coming from a stack location also require a sepcial encoding,
+ // Values coming from a stack location also require a special encoding,
// but that is added later on by the target specific frame index
// elimination implementation.
auto SI = FuncInfo.StaticAllocaMap.find(AI);
@@ -666,7 +655,7 @@ bool FastISel::selectStackmap(const CallInst *I) {
.addImm(0);
// Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo()->setHasStackMap();
+ FuncInfo.MF->getFrameInfo().setHasStackMap();
return true;
}
@@ -707,7 +696,7 @@ bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
- const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
+ StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
SmallString<32> MangledName;
Mangler::getNameWithPrefix(MangledName, Target, DL);
MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
@@ -845,7 +834,7 @@ bool FastISel::selectPatchpoint(const CallInst *I) {
CLI.Call->eraseFromParent();
// Inform the Frame Information that we have a patchpoint in this function.
- FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
+ FuncInfo.MF->getFrameInfo().setHasPatchPoint();
if (CLI.NumResultRegs)
updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
@@ -1077,7 +1066,7 @@ bool FastISel::selectCall(const User *I) {
}
MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
- ComputeUsesVAFloatArgument(*Call, &MMI);
+ computeUsesVAFloatArgument(*Call, MMI);
// Handle intrinsic function calls.
if (const auto *II = dyn_cast<IntrinsicInst>(Call))
@@ -1104,6 +1093,8 @@ bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
case Intrinsic::lifetime_end:
// The donothing intrinsic does, well, nothing.
case Intrinsic::donothing:
+ // Neither does the assume intrinsic; it's also OK not to codegen its operand.
+ case Intrinsic::assume:
return true;
case Intrinsic::dbg_declare: {
const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
@@ -1225,6 +1216,7 @@ bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
updateValueMap(II, ResultReg);
return true;
}
+ case Intrinsic::invariant_group_barrier:
case Intrinsic::expect: {
unsigned ResultReg = getRegForValue(II->getArgOperand(0));
if (!ResultReg)
@@ -1324,15 +1316,6 @@ bool FastISel::selectBitCast(const User *I) {
return true;
}
-// Return true if we should copy from swift error to the final vreg as specified
-// by SwiftErrorWorklist.
-static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI,
- FunctionLoweringInfo &FuncInfo) {
- if (!TLI.supportSwiftError())
- return false;
- return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB);
-}
-
// Remove local value instructions starting from the instruction after
// SavedLastLocalValue to the current function insert point.
void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
@@ -1357,10 +1340,6 @@ bool FastISel::selectInstruction(const Instruction *I) {
// Just before the terminator instruction, insert instructions to
// feed PHI nodes in successor blocks.
if (isa<TerminatorInst>(I)) {
- // If we need to materialize any vreg from worklist, we bail out of
- // FastISel.
- if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo))
- return false;
if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
// PHI node handling may have generated local value instructions,
// even though it failed to handle all PHI nodes.
@@ -1444,7 +1423,7 @@ void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
// fall-through case, which needs no instructions.
} else {
// The unconditional branch case.
- TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
+ TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
SmallVector<MachineOperand, 0>(), DbgLoc);
}
if (FuncInfo.BPI) {
@@ -1679,7 +1658,7 @@ FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo,
bool SkipTargetIndependentISel)
: FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
- MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
+ MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
TII(*MF->getSubtarget().getInstrInfo()),
TLI(*MF->getSubtarget().getTargetLowering()),
@@ -1723,18 +1702,6 @@ unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
return 0;
}
-unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
- bool /*Op0IsKill*/,
- const ConstantFP * /*FPImm*/) {
- return 0;
-}
-
-unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
- bool /*Op0IsKill*/, unsigned /*Op1*/,
- bool /*Op1IsKill*/, uint64_t /*Imm*/) {
- return 0;
-}
-
/// This method is a wrapper of fastEmit_ri. It first tries to emit an
/// instruction with an immediate operand using fastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
@@ -2181,6 +2148,8 @@ FastISel::createMachineMemOperandFor(const Instruction *I) const {
bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
+ bool IsDereferenceable =
+ I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
AAMDNodes AAInfo;
@@ -2195,6 +2164,8 @@ FastISel::createMachineMemOperandFor(const Instruction *I) const {
Flags |= MachineMemOperand::MOVolatile;
if (IsNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
+ if (IsDereferenceable)
+ Flags |= MachineMemOperand::MODereferenceable;
if (IsInvariant)
Flags |= MachineMemOperand::MOInvariant;
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
index e669ffc..377a523 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -13,7 +13,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
-#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -98,7 +97,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
Fn->isVarArg(), Outs, Fn->getContext());
// If this personality uses funclets, we need to do a bit more work.
- DenseMap<const AllocaInst *, int *> CatchObjects;
+ DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
EHPersonality Personality = classifyEHPersonality(
Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
if (isFuncletEHPersonality(Personality)) {
@@ -115,7 +114,8 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
for (WinEHHandlerType &H : TBME.HandlerArray) {
if (const AllocaInst *AI = H.CatchObj.Alloca)
- CatchObjects.insert({AI, &H.CatchObj.FrameIndex});
+ CatchObjects.insert({AI, {}}).first->second.push_back(
+ &H.CatchObj.FrameIndex);
else
H.CatchObj.FrameIndex = INT_MAX;
}
@@ -125,11 +125,9 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
- Function::const_iterator BB = Fn->begin(), EB = Fn->end();
- for (; BB != EB; ++BB)
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
- I != E; ++I) {
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
+ for (const BasicBlock &BB : *Fn) {
+ for (const Instruction &I : BB) {
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Type *Ty = AI->getAllocatedType();
unsigned Align =
std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
@@ -138,7 +136,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
// Static allocas can be folded into the initial stack frame
// adjustment. For targets that don't realign the stack, don't
// do this if there is an extra alignment requirement.
- if (AI->isStaticAlloca() &&
+ if (AI->isStaticAlloca() &&
(TFI->isStackRealignable() || (Align <= StackAlign))) {
const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
@@ -148,18 +146,20 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
int FrameIndex = INT_MAX;
auto Iter = CatchObjects.find(AI);
if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
- FrameIndex = MF->getFrameInfo()->CreateFixedObject(
+ FrameIndex = MF->getFrameInfo().CreateFixedObject(
TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
- MF->getFrameInfo()->setObjectAlignment(FrameIndex, Align);
+ MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
} else {
FrameIndex =
- MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
+ MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
}
StaticAllocaMap[AI] = FrameIndex;
// Update the catch handler information.
- if (Iter != CatchObjects.end())
- *Iter->second = FrameIndex;
+ if (Iter != CatchObjects.end()) {
+ for (int *CatchObjPtr : Iter->second)
+ *CatchObjPtr = FrameIndex;
+ }
} else {
// FIXME: Overaligned static allocas should be grouped into
// a single dynamic allocation instead of using a separate
@@ -167,20 +167,19 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
if (Align <= StackAlign)
Align = 0;
// Inform the Frame Information that we have variable-sized objects.
- MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
+ MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
}
}
// Look for inline asm that clobbers the SP register.
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- ImmutableCallSite CS(&*I);
+ ImmutableCallSite CS(&I);
if (isa<InlineAsm>(CS.getCalledValue())) {
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
std::vector<TargetLowering::AsmOperandInfo> Ops =
TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
- for (size_t I = 0, E = Ops.size(); I != E; ++I) {
- TargetLowering::AsmOperandInfo &Op = Ops[I];
+ for (TargetLowering::AsmOperandInfo &Op : Ops) {
if (Op.Type == InlineAsm::isClobber) {
// Clobbers don't have SDValue operands, hence SDValue().
TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
@@ -188,7 +187,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
Op.ConstraintVT);
if (PhysReg.first == SP)
- MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
+ MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
}
}
}
@@ -197,28 +196,28 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
// Look for calls to the @llvm.va_start intrinsic. We can omit some
// prologue boilerplate for variadic functions that don't examine their
// arguments.
- if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
+ if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
- MF->getFrameInfo()->setHasVAStart(true);
+ MF->getFrameInfo().setHasVAStart(true);
}
// If we have a musttail call in a variadic function, we need to ensure we
// forward implicit register parameters.
- if (const auto *CI = dyn_cast<CallInst>(I)) {
+ if (const auto *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall() && Fn->isVarArg())
- MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
+ MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
}
// Mark values used outside their block as exported, by allocating
// a virtual register for them.
- if (isUsedOutsideOfDefiningBlock(&*I))
- if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
- InitializeRegForValue(&*I);
+ if (isUsedOutsideOfDefiningBlock(&I))
+ if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
+ InitializeRegForValue(&I);
// Collect llvm.dbg.declare information. This is done now instead of
// during the initial isel pass through the IR so that it is done
// in a predictable order.
- if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
+ if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I)) {
assert(DI->getVariable() && "Missing variable");
assert(DI->getDebugLoc() && "Missing location");
if (MMI.hasDebugInfo()) {
@@ -234,7 +233,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
StaticAllocaMap.find(AI);
if (SI != StaticAllocaMap.end()) { // Check for VLAs.
int FI = SI->second;
- MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
+ MF->setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
FI, DI->getDebugLoc());
}
}
@@ -243,47 +242,52 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
}
// Decide the preferred extend type for a value.
- PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
+ PreferredExtendType[&I] = getPreferredExtendForValue(&I);
}
+ }
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
- for (BB = Fn->begin(); BB != EB; ++BB) {
+ for (const BasicBlock &BB : *Fn) {
// Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
// are really data, and no instructions can live here.
- if (BB->isEHPad()) {
- const Instruction *I = BB->getFirstNonPHI();
+ if (BB.isEHPad()) {
+ const Instruction *PadInst = BB.getFirstNonPHI();
// If this is a non-landingpad EH pad, mark this function as using
// funclets.
// FIXME: SEH catchpads do not create funclets, so we could avoid setting
// this in such cases in order to improve frame layout.
- if (!isa<LandingPadInst>(I)) {
- MMI.setHasEHFunclets(true);
- MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
+ if (!isa<LandingPadInst>(PadInst)) {
+ MF->setHasEHFunclets(true);
+ MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
}
- if (isa<CatchSwitchInst>(I)) {
- assert(&*BB->begin() == I &&
+ if (isa<CatchSwitchInst>(PadInst)) {
+ assert(&*BB.begin() == PadInst &&
"WinEHPrepare failed to remove PHIs from imaginary BBs");
continue;
}
- if (isa<FuncletPadInst>(I))
- assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
+ if (isa<FuncletPadInst>(PadInst))
+ assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
}
- MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
- MBBMap[&*BB] = MBB;
+ MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
+ MBBMap[&BB] = MBB;
MF->push_back(MBB);
// Transfer the address-taken flag. This is necessary because there could
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
// the first one should be marked.
- if (BB->hasAddressTaken())
+ if (BB.hasAddressTaken())
MBB->setHasAddressTaken();
+ // Mark landing pad blocks.
+ if (BB.isEHPad())
+ MBB->setIsEHPad();
+
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
- for (BasicBlock::const_iterator I = BB->begin();
+ for (BasicBlock::const_iterator I = BB.begin();
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
if (PN->use_empty()) continue;
@@ -297,8 +301,7 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
+ for (EVT VT : ValueVTs) {
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
@@ -308,16 +311,6 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
}
}
- // Mark landing pad blocks.
- SmallVector<const LandingPadInst *, 4> LPads;
- for (BB = Fn->begin(); BB != EB; ++BB) {
- const Instruction *FNP = BB->getFirstNonPHI();
- if (BB->isEHPad() && MBBMap.count(&*BB))
- MBBMap[&*BB]->setIsEHPad();
- if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
- LPads.push_back(LPI);
- }
-
if (!isFuncletEHPersonality(Personality))
return;
@@ -541,75 +534,26 @@ unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
return VReg;
}
-/// ComputeUsesVAFloatArgument - Determine if any floating-point values are
-/// being passed to this variadic function, and set the MachineModuleInfo's
-/// usesVAFloatArgument flag if so. This flag is used to emit an undefined
-/// reference to _fltused on Windows, which will link in MSVCRT's
-/// floating-point support.
-void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
- MachineModuleInfo *MMI)
-{
- FunctionType *FT = cast<FunctionType>(
- I.getCalledValue()->getType()->getContainedType(0));
- if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
- for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
- Type* T = I.getArgOperand(i)->getType();
- for (auto i : post_order(T)) {
- if (i->isFloatingPointTy()) {
- MMI->setUsesVAFloatArgument(true);
- return;
- }
- }
- }
- }
-}
-
-/// AddLandingPadInfo - Extract the exception handling information from the
-/// landingpad instruction and add them to the specified machine module info.
-void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
- MachineBasicBlock *MBB) {
- if (const auto *PF = dyn_cast<Function>(
- I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
- MMI.addPersonality(PF);
-
- if (I.isCleanup())
- MMI.addCleanup(MBB);
-
- // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
- // but we need to do it this way because of how the DWARF EH emitter
- // processes the clauses.
- for (unsigned i = I.getNumClauses(); i != 0; --i) {
- Value *Val = I.getClause(i - 1);
- if (I.isCatch(i - 1)) {
- MMI.addCatchTypeInfo(MBB,
- dyn_cast<GlobalValue>(Val->stripPointerCasts()));
- } else {
- // Add filters in a list.
- Constant *CVal = cast<Constant>(Val);
- SmallVector<const GlobalValue*, 4> FilterList;
- for (User::op_iterator
- II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
- FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
-
- MMI.addFilterTypeInfo(MBB, FilterList);
- }
- }
-}
-
-unsigned FunctionLoweringInfo::findSwiftErrorVReg(const MachineBasicBlock *MBB,
- const Value* Val) const {
- // Find the index in SwiftErrorVals.
- SwiftErrorValues::const_iterator I =
- std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
- assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
- return SwiftErrorMap.lookup(MBB)[I - SwiftErrorVals.begin()];
+unsigned
+FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
+ const Value *Val) {
+ auto Key = std::make_pair(MBB, Val);
+ auto It = SwiftErrorVRegDefMap.find(Key);
+ // If this is the first use of this swifterror value in this basic block,
+ // create a new virtual register.
+ // After we processed all basic blocks we will satisfy this "upwards exposed
+ // use" by inserting a copy or phi at the beginning of this block.
+ if (It == SwiftErrorVRegDefMap.end()) {
+ auto &DL = MF->getDataLayout();
+ const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
+ auto VReg = MF->getRegInfo().createVirtualRegister(RC);
+ SwiftErrorVRegDefMap[Key] = VReg;
+ SwiftErrorVRegUpwardsUse[Key] = VReg;
+ return VReg;
+ } else return It->second;
}
-void FunctionLoweringInfo::setSwiftErrorVReg(const MachineBasicBlock *MBB,
- const Value* Val, unsigned VReg) {
- // Find the index in SwiftErrorVals.
- SwiftErrorValues::iterator I =
- std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
- assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
- SwiftErrorMap[MBB][I - SwiftErrorVals.begin()] = VReg;
+void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
+ const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
+ SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
index c8af73a..4a9042c 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
@@ -330,16 +330,24 @@ InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
// shrink VReg's register class within reason. For example, if VReg == GR32
// and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
if (II) {
- const TargetRegisterClass *DstRC = nullptr;
+ const TargetRegisterClass *OpRC = nullptr;
if (IIOpNum < II->getNumOperands())
- DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF));
- assert((!DstRC || TargetRegisterInfo::isVirtualRegister(VReg)) &&
- "Expected VReg");
- if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) {
- unsigned NewVReg = MRI->createVirtualRegister(DstRC);
- BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
- TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
- VReg = NewVReg;
+ OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
+
+ if (OpRC) {
+ const TargetRegisterClass *ConstrainedRC
+ = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
+ if (!ConstrainedRC) {
+ OpRC = TRI->getAllocatableClass(OpRC);
+ assert(OpRC && "Constraints cannot be fulfilled for allocation");
+ unsigned NewVReg = MRI->createVirtualRegister(OpRC);
+ BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
+ VReg = NewVReg;
+ } else {
+ assert(ConstrainedRC->isAllocatable() &&
+ "Constraining an allocatable VReg produced an unallocatable class?");
+ }
}
}
@@ -494,8 +502,17 @@ void InstrEmitter::EmitSubregNode(SDNode *Node,
const TargetRegisterClass *TRC =
TLI->getRegClassFor(Node->getSimpleValueType(0));
- unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
- MachineInstr *DefMI = MRI->getVRegDef(VReg);
+ unsigned Reg;
+ MachineInstr *DefMI;
+ RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
+ if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
+ Reg = R->getReg();
+ DefMI = nullptr;
+ } else {
+ Reg = getVR(Node->getOperand(0), VRBaseMap);
+ DefMI = MRI->getVRegDef(Reg);
+ }
+
unsigned SrcReg, DstReg, DefSubIdx;
if (DefMI &&
TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
@@ -511,20 +528,26 @@ void InstrEmitter::EmitSubregNode(SDNode *Node,
TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
MRI->clearKillFlags(SrcReg);
} else {
- // VReg may not support a SubIdx sub-register, and we may need to
+ // Reg may not support a SubIdx sub-register, and we may need to
// constrain its register class or issue a COPY to a compatible register
// class.
- VReg = ConstrainForSubReg(VReg, SubIdx,
- Node->getOperand(0).getSimpleValueType(),
- Node->getDebugLoc());
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ Reg = ConstrainForSubReg(Reg, SubIdx,
+ Node->getOperand(0).getSimpleValueType(),
+ Node->getDebugLoc());
// Create the destreg if it is missing.
if (VRBase == 0)
VRBase = MRI->createVirtualRegister(TRC);
// Create the extract_subreg machine instruction.
- BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
- TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
+ MachineInstrBuilder CopyMI =
+ BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), VRBase);
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ CopyMI.addReg(Reg, 0, SubIdx);
+ else
+ CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
}
} else if (Opc == TargetOpcode::INSERT_SUBREG ||
Opc == TargetOpcode::SUBREG_TO_REG) {
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index 18ad910..b002825 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -259,19 +259,25 @@ SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
}
+ APFloat APF = CFP->getValueAPF();
EVT OrigVT = VT;
EVT SVT = VT;
- while (SVT != MVT::f32 && SVT != MVT::f16) {
- SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
- if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
- // Only do this if the target has a native EXTLOAD instruction from
- // smaller type.
- TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
- TLI.ShouldShrinkFPConstant(OrigVT)) {
- Type *SType = SVT.getTypeForEVT(*DAG.getContext());
- LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
- VT = SVT;
- Extend = true;
+
+ // We don't want to shrink SNaNs. Converting the SNaN back to its real type
+ // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
+ if (!APF.isSignaling()) {
+ while (SVT != MVT::f32 && SVT != MVT::f16) {
+ SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
+ if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
+ // Only do this if the target has a native EXTLOAD instruction from
+ // smaller type.
+ TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
+ TLI.ShouldShrinkFPConstant(OrigVT)) {
+ Type *SType = SVT.getTypeForEVT(*DAG.getContext());
+ LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
+ VT = SVT;
+ Extend = true;
+ }
}
}
@@ -324,8 +330,6 @@ SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
// supported by the target.
EVT VT = Tmp1.getValueType();
EVT EltVT = VT.getVectorElementType();
- EVT IdxVT = Tmp3.getValueType();
- EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
SDValue StackPtr = DAG.CreateStackTemporary(VT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
@@ -335,13 +339,8 @@ SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
DAG.getEntryNode(), dl, Tmp1, StackPtr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
- // Truncate or zero extend offset to target pointer type.
- Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT);
- // Add the offset to the index.
- unsigned EltSize = EltVT.getSizeInBits()/8;
- Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
- DAG.getConstant(EltSize, dl, IdxVT));
- SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
+ SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
+
// Store the scalar value.
Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
// Load the updated vector.
@@ -795,7 +794,7 @@ void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
- // FALLTHROUGH
+ LLVM_FALLTHROUGH;
case TargetLowering::Legal: {
Value = SDValue(Node, 0);
Chain = SDValue(Node, 1);
@@ -1013,6 +1012,7 @@ void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
case ISD::ADJUST_TRAMPOLINE:
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
+ case ISD::ADDROFRETURNADDR:
// These operations lie about being legal: when they claim to be legal,
// they should actually be custom-lowered.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
@@ -1061,35 +1061,41 @@ void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
case ISD::SRL:
case ISD::SRA:
case ISD::ROTL:
- case ISD::ROTR:
+ case ISD::ROTR: {
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
- if (!Node->getOperand(1).getValueType().isVector()) {
- SDValue SAO =
- DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
- Node->getOperand(1));
- HandleSDNode Handle(SAO);
- LegalizeOp(SAO.getNode());
- NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
- Handle.getValue());
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ if (!Op1.getValueType().isVector()) {
+ SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
+ // The getShiftAmountOperand() may create a new operand node or
+ // return the existing one. If new operand is created we need
+ // to update the parent node.
+ // Do not try to legalize SAO here! It will be automatically legalized
+ // in the next round.
+ if (SAO != Op1)
+ NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
}
- break;
+ }
+ break;
case ISD::SRL_PARTS:
case ISD::SRA_PARTS:
- case ISD::SHL_PARTS:
+ case ISD::SHL_PARTS: {
// Legalizing shifts/rotates requires adjusting the shift amount
// to the appropriate width.
- if (!Node->getOperand(2).getValueType().isVector()) {
- SDValue SAO =
- DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
- Node->getOperand(2));
- HandleSDNode Handle(SAO);
- LegalizeOp(SAO.getNode());
- NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
- Node->getOperand(1),
- Handle.getValue());
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ SDValue Op2 = Node->getOperand(2);
+ if (!Op2.getValueType().isVector()) {
+ SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
+ // The getShiftAmountOperand() may create a new operand node or
+ // return the existing one. If new operand is created we need
+ // to update the parent node.
+ if (SAO != Op2)
+ NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
}
- break;
+ }
+ break;
}
if (NewNode != Node) {
@@ -1118,12 +1124,12 @@ void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
ReplaceNode(Node, ResultVals.data());
return;
}
+ LLVM_FALLTHROUGH;
}
- // FALL THROUGH
case TargetLowering::Expand:
if (ExpandNode(Node))
return;
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
case TargetLowering::LibCall:
ConvertNodeToLibcall(Node);
return;
@@ -1196,21 +1202,16 @@ SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
}
}
+ EVT VecVT = Vec.getValueType();
+
if (!Ch.getNode()) {
// Store the value to a temporary stack slot, then LOAD the returned part.
- StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
+ StackPtr = DAG.CreateStackTemporary(VecVT);
Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo());
}
- // Add the offset to the index.
- unsigned EltSize =
- Vec.getValueType().getVectorElementType().getSizeInBits()/8;
- Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
- DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
-
- Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
- StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
+ StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
SDValue NewLoad;
@@ -1220,7 +1221,7 @@ SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
else
NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
MachinePointerInfo(),
- Vec.getValueType().getVectorElementType());
+ VecVT.getVectorElementType());
// Replace the chain going out of the store, by the one out of the load.
DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
@@ -1244,8 +1245,8 @@ SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
SDLoc dl(Op);
// Store the value to a temporary stack slot, then LOAD the returned part.
-
- SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
+ EVT VecVT = Vec.getValueType();
+ SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
@@ -1254,17 +1255,7 @@ SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
// Then store the inserted part.
-
- // Add the offset to the index.
- unsigned EltSize =
- Vec.getValueType().getVectorElementType().getSizeInBits()/8;
-
- Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
- DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
- Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
-
- SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
- StackPtr);
+ SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
// Store the subvector.
Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
@@ -1593,6 +1584,7 @@ bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
break;
}
// Fallthrough if we are unsigned integer.
+ LLVM_FALLTHROUGH;
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE:
@@ -1650,7 +1642,7 @@ SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
- unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
+ unsigned SrcSize = SrcOp.getValueSizeInBits();
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
@@ -2521,13 +2513,56 @@ SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
}
-/// Open code the operations for BITREVERSE.
+/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
EVT VT = Op.getValueType();
EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
unsigned Sz = VT.getScalarSizeInBits();
- SDValue Tmp, Tmp2;
+ SDValue Tmp, Tmp2, Tmp3;
+
+ // If we can, perform BSWAP first and then the mask+swap the i4, then i2
+ // and finally the i1 pairs.
+ // TODO: We can easily support i4/i2 legal types if any target ever does.
+ if (Sz >= 8 && isPowerOf2_32(Sz)) {
+ // Create the masks - repeating the pattern every byte.
+ APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0);
+ APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0);
+ for (unsigned J = 0; J != Sz; J += 8) {
+ MaskHi4 = MaskHi4.Or(APInt(Sz, 0xF0ull << J));
+ MaskLo4 = MaskLo4.Or(APInt(Sz, 0x0Full << J));
+ MaskHi2 = MaskHi2.Or(APInt(Sz, 0xCCull << J));
+ MaskLo2 = MaskLo2.Or(APInt(Sz, 0x33ull << J));
+ MaskHi1 = MaskHi1.Or(APInt(Sz, 0xAAull << J));
+ MaskLo1 = MaskLo1.Or(APInt(Sz, 0x55ull << J));
+ }
+
+ // BSWAP if the type is wider than a single byte.
+ Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
+
+ // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+
+ // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+
+ // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ return Tmp;
+ }
+
Tmp = DAG.getConstant(0, dl, VT);
for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
if (I < J)
@@ -2551,7 +2586,7 @@ SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
EVT VT = Op.getValueType();
EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
- switch (VT.getSimpleVT().SimpleTy) {
+ switch (VT.getSimpleVT().getScalarType().SimpleTy) {
default: llvm_unreachable("Unhandled Expand type in BSWAP!");
case MVT::i16:
Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
@@ -2780,10 +2815,7 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
SDValue Swap = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Zero, Zero,
- cast<AtomicSDNode>(Node)->getMemOperand(),
- cast<AtomicSDNode>(Node)->getOrdering(),
- cast<AtomicSDNode>(Node)->getOrdering(),
- cast<AtomicSDNode>(Node)->getSynchScope());
+ cast<AtomicSDNode>(Node)->getMemOperand());
Results.push_back(Swap.getValue(0));
Results.push_back(Swap.getValue(1));
break;
@@ -2794,9 +2826,7 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
- cast<AtomicSDNode>(Node)->getMemOperand(),
- cast<AtomicSDNode>(Node)->getOrdering(),
- cast<AtomicSDNode>(Node)->getSynchScope());
+ cast<AtomicSDNode>(Node)->getMemOperand());
Results.push_back(Swap.getValue(1));
break;
}
@@ -2808,10 +2838,7 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
- Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
- cast<AtomicSDNode>(Node)->getSuccessOrdering(),
- cast<AtomicSDNode>(Node)->getFailureOrdering(),
- cast<AtomicSDNode>(Node)->getSynchScope());
+ Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
SDValue ExtRes = Res;
SDValue LHS = Res;
@@ -2879,15 +2906,32 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
Results.push_back(Tmp1);
break;
case ISD::SIGN_EXTEND_INREG: {
- // NOTE: we could fall back on load/store here too for targets without
- // SAR. However, it is doubtful that any exist.
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
EVT VT = Node->getValueType(0);
+
+ // An in-register sign-extend of a boolean is a negation:
+ // 'true' (1) sign-extended is -1.
+ // 'false' (0) sign-extended is 0.
+ // However, we must mask the high bits of the source operand because the
+ // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
+
+ // TODO: Do this for vectors too?
+ if (ExtraVT.getSizeInBits() == 1) {
+ SDValue One = DAG.getConstant(1, dl, VT);
+ SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
+ Results.push_back(Neg);
+ break;
+ }
+
+ // NOTE: we could fall back on load/store here too for targets without
+ // SRA. However, it is doubtful that any exist.
EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
if (VT.isVector())
ShiftAmountTy = VT;
- unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
- ExtraVT.getScalarType().getSizeInBits();
+ unsigned BitsDiff = VT.getScalarSizeInBits() -
+ ExtraVT.getScalarSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
@@ -3248,17 +3292,49 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
}
case ISD::MULHU:
case ISD::MULHS: {
- unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
- ISD::SMUL_LOHI;
+ unsigned ExpandOpcode =
+ Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
- assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
- "If this wasn't legal, it shouldn't have been created!");
+
Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
Results.push_back(Tmp1.getValue(1));
break;
}
+ case ISD::UMUL_LOHI:
+ case ISD::SMUL_LOHI: {
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ MVT VT = LHS.getSimpleValueType();
+ unsigned MULHOpcode =
+ Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
+
+ if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
+ Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
+ Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
+ break;
+ }
+
+ SmallVector<SDValue, 4> Halves;
+ EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
+ assert(TLI.isTypeLegal(HalfType));
+ if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
+ HalfType, DAG,
+ TargetLowering::MulExpansionKind::Always)) {
+ for (unsigned i = 0; i < 2; ++i) {
+ SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
+ SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
+ SDValue Shift = DAG.getConstant(
+ HalfType.getScalarSizeInBits(), dl,
+ TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
+ Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
+ Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
+ }
+ break;
+ }
+ break;
+ }
case ISD::MUL: {
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
@@ -3293,7 +3369,8 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
- TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
+ TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
+ TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
SDValue Shift =
@@ -3416,8 +3493,18 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
// pre-lowered to the correct types. This all depends upon WideVT not
// being a legal type for the architecture and thus has to be split to
// two arguments.
- SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
- SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
+ SDValue Ret;
+ if(DAG.getDataLayout().isLittleEndian()) {
+ // Halves of WideVT are packed into registers in different order
+ // depending on platform endianness. This is usually handled by
+ // the C calling convention, but we can't defer to it in
+ // the legalizer.
+ SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
+ Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
+ } else {
+ SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
+ Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
+ }
BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
DAG.getIntPtrConstant(0, dl));
TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
@@ -3441,6 +3528,15 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
DAG.getConstant(0, dl, VT), ISD::SETNE);
}
+
+ // Truncate the result if SetCC returns a larger type than needed.
+ EVT RType = Node->getValueType(1);
+ if (RType.getSizeInBits() < TopHalf.getValueSizeInBits())
+ TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf);
+
+ assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() &&
+ "Unexpected result type for S/UMULO legalization");
+
Results.push_back(BottomHalf);
Results.push_back(TopHalf);
break;
@@ -3476,9 +3572,9 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
SDValue Table = Node->getOperand(1);
SDValue Index = Node->getOperand(2);
- EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
-
const DataLayout &TD = DAG.getDataLayout();
+ EVT PTy = TLI.getPointerTy(TD);
+
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
@@ -3492,7 +3588,7 @@ bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
ISD::SEXTLOAD, dl, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
Addr = LD;
- if (TM.isPositionIndependent()) {
+ if (TLI.isJumpTableRelative()) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
@@ -4019,10 +4115,11 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
}
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
break;
+ case ISD::BITREVERSE:
case ISD::BSWAP: {
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
- Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
+ Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
Tmp1 = DAG.getNode(
ISD::SRL, dl, NVT, Tmp1,
DAG.getConstant(DiffBits, dl,
@@ -4073,6 +4170,10 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
ReplacedNode(Node);
break;
}
+ case ISD::SDIV:
+ case ISD::SREM:
+ case ISD::UDIV:
+ case ISD::UREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
@@ -4082,7 +4183,20 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
TruncOp = ISD::BITCAST;
} else {
assert(OVT.isInteger() && "Cannot promote logic operation");
- ExtOp = ISD::ANY_EXTEND;
+
+ switch (Node->getOpcode()) {
+ default:
+ ExtOp = ISD::ANY_EXTEND;
+ break;
+ case ISD::SDIV:
+ case ISD::SREM:
+ ExtOp = ISD::SIGN_EXTEND;
+ break;
+ case ISD::UDIV:
+ case ISD::UREM:
+ ExtOp = ISD::ZERO_EXTEND;
+ break;
+ }
TruncOp = ISD::TRUNCATE;
}
// Promote each of the values to the new type.
@@ -4093,6 +4207,24 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
break;
}
+ case ISD::UMUL_LOHI:
+ case ISD::SMUL_LOHI: {
+ // Promote to a multiply in a wider integer type.
+ unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
+ : ISD::SIGN_EXTEND;
+ Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
+ Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
+
+ auto &DL = DAG.getDataLayout();
+ unsigned OriginalSize = OVT.getScalarSizeInBits();
+ Tmp2 = DAG.getNode(
+ ISD::SRL, dl, NVT, Tmp1,
+ DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
+ break;
+ }
case ISD::SELECT: {
unsigned ExtOp, TruncOp;
if (Node->getValueType(0).isVector() ||
@@ -4351,7 +4483,7 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
MVT EltVT = OVT.getVectorElementType();
MVT NewEltVT = NVT.getVectorElementType();
- // Handle bitcasts to different vector type with the smae total bit size.
+ // Handle bitcasts to different vector type with the same total bit size.
//
// e.g. v2i64 = scalar_to_vector x:i64
// =>
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index 31ebf7b..72b56d8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -632,7 +632,8 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo) {
SDLoc dl(N);
auto MMOFlags =
- L->getMemOperand()->getFlags() & ~MachineMemOperand::MOInvariant;
+ L->getMemOperand()->getFlags() &
+ ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
SDValue NewL;
if (L->getExtensionType() == ISD::NON_EXTLOAD) {
NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), NVT, dl,
@@ -1465,7 +1466,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
// TODO: Are there fast-math-flags to propagate to this FADD?
Lo = DAG.getNode(ISD::FADD, dl, VT, Hi,
- DAG.getConstantFP(APFloat(APFloat::PPCDoubleDouble,
+ DAG.getConstantFP(APFloat(APFloat::PPCDoubleDouble(),
APInt(128, Parts)),
dl, MVT::ppcf128));
Lo = DAG.getSelectCC(dl, Src, DAG.getConstant(0, dl, SrcVT),
@@ -1630,7 +1631,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
- APFloat APF = APFloat(APFloat::PPCDoubleDouble, APInt(128, TwoE31));
+ APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
@@ -2085,7 +2086,8 @@ SDValue DAGTypeLegalizer::PromoteFloatRes_LOAD(SDNode *N) {
// Load the value as an integer value with the same number of bits.
EVT IVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
auto MMOFlags =
- L->getMemOperand()->getFlags() & ~MachineMemOperand::MOInvariant;
+ L->getMemOperand()->getFlags() &
+ ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
SDValue newL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), IVT,
SDLoc(N), L->getChain(), L->getBasePtr(),
L->getOffset(), L->getPointerInfo(), IVT,
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index 9a18943..dc436ce 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -57,8 +57,6 @@ void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
- case ISD::CONVERT_RNDSAT:
- Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
@@ -102,6 +100,11 @@ void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
case ISD::CONCAT_VECTORS:
Res = PromoteIntRes_CONCAT_VECTORS(N); break;
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ Res = PromoteIntRes_EXTEND_VECTOR_INREG(N); break;
+
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
@@ -183,8 +186,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(), ResVT,
N->getChain(), N->getBasePtr(),
- N->getMemOperand(), N->getOrdering(),
- N->getSynchScope());
+ N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
@@ -196,8 +198,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(),
N->getChain(), N->getBasePtr(),
- Op2, N->getMemOperand(), N->getOrdering(),
- N->getSynchScope());
+ Op2, N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
@@ -220,8 +221,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
- N->getMemOperand(), N->getSuccessOrdering(), N->getFailureOrdering(),
- N->getSynchScope());
+ N->getMemOperand());
ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
return Res.getValue(1);
@@ -233,8 +233,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
- N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getSuccessOrdering(),
- N->getFailureOrdering(), N->getSynchScope());
+ N->getBasePtr(), Op2, Op3, N->getMemOperand());
// Update the use to N with the newly created Res.
for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
ReplaceValueWith(SDValue(N, i), Res.getValue(i));
@@ -353,18 +352,6 @@ SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
return Result;
}
-SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
- ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
- assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
- CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
- CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
- "can only promote integers");
- EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
- return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0),
- N->getOperand(1), N->getOperand(2),
- N->getOperand(3), N->getOperand(4), CvtCode);
-}
-
SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
@@ -427,6 +414,10 @@ SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
// Assert that the converted value fits in the original type. If it doesn't
// (eg: because the value being converted is too big), then the result of the
// original operation was undefined anyway, so the assert is still correct.
+ //
+ // NOTE: fp-to-uint to fp-to-sint promotion guarantees zero extend. For example:
+ // before legalization: fp-to-uint16, 65534. -> 0xfffe
+ // after legalization: fp-to-sint32, 65534. -> 0x0000fffe
return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
DAG.getValueType(N->getValueType(0).getScalarType()));
@@ -507,7 +498,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) {
N->getIndex()};
SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other),
N->getMemoryVT(), dl, Ops,
- N->getMemOperand());
+ N->getMemOperand());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
@@ -882,8 +873,6 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
- case ISD::CONVERT_RNDSAT:
- Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
case ISD::SCALAR_TO_VECTOR:
@@ -946,14 +935,16 @@ void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
SDValue OpL = GetPromotedInteger(NewLHS);
SDValue OpR = GetPromotedInteger(NewRHS);
- // We would prefer to promote the comparison operand with sign extension,
- // if we find the operand is actually to truncate an AssertSext. With this
- // optimization, we can avoid inserting real truncate instruction, which
- // is redudant eventually.
- if (OpL->getOpcode() == ISD::AssertSext &&
- cast<VTSDNode>(OpL->getOperand(1))->getVT() == NewLHS.getValueType() &&
- OpR->getOpcode() == ISD::AssertSext &&
- cast<VTSDNode>(OpR->getOperand(1))->getVT() == NewRHS.getValueType()) {
+ // We would prefer to promote the comparison operand with sign extension.
+ // If the width of OpL/OpR excluding the duplicated sign bits is no greater
+ // than the width of NewLHS/NewRH, we can avoid inserting real truncate
+ // instruction, which is redudant eventually.
+ unsigned OpLEffectiveBits =
+ OpL.getValueSizeInBits() - DAG.ComputeNumSignBits(OpL) + 1;
+ unsigned OpREffectiveBits =
+ OpR.getValueSizeInBits() - DAG.ComputeNumSignBits(OpR) + 1;
+ if (OpLEffectiveBits <= NewLHS.getValueSizeInBits() &&
+ OpREffectiveBits <= NewRHS.getValueSizeInBits()) {
NewLHS = OpL;
NewRHS = OpR;
} else {
@@ -990,8 +981,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
- N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
- N->getOrdering(), N->getSynchScope());
+ N->getChain(), N->getBasePtr(), Op2, N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
@@ -1051,8 +1041,8 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
// truncated away.
- assert(N->getOperand(0).getValueType().getSizeInBits() >=
- N->getValueType(0).getVectorElementType().getSizeInBits() &&
+ assert(N->getOperand(0).getValueSizeInBits() >=
+ N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
SmallVector<SDValue, 16> NewOps;
@@ -1062,18 +1052,6 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
-SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
- ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
- assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
- CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
- CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
- "can only promote integer arguments");
- SDValue InOp = GetPromotedInteger(N->getOperand(0));
- return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp,
- N->getOperand(1), N->getOperand(2),
- N->getOperand(3), N->getOperand(4), CvtCode);
-}
-
SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
unsigned OpNo) {
if (OpNo == 1) {
@@ -1081,8 +1059,8 @@ SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
// have to match the vector element type.
// Check that any extra bits introduced will be truncated away.
- assert(N->getOperand(1).getValueType().getSizeInBits() >=
- N->getValueType(0).getVectorElementType().getSizeInBits() &&
+ assert(N->getOperand(1).getValueSizeInBits() >=
+ N->getValueType(0).getScalarSizeInBits() &&
"Type of inserted value narrower than vector element type!");
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
GetPromotedInteger(N->getOperand(1)),
@@ -1210,7 +1188,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N,
return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(), Mask,
N->getMemoryVT(), N->getMemOperand(),
- TruncateStore);
+ TruncateStore, N->isCompressingStore());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N,
@@ -1233,7 +1211,15 @@ SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N,
NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
} else
NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
- return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
+
+ SDValue Res = SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
+ // updated in place.
+ if (Res.getNode() == N)
+ return Res;
+
+ ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
+ ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
+ return SDValue();
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N,
@@ -1314,6 +1300,7 @@ void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
+ case ISD::FLT_ROUNDS_: ExpandIntRes_FLT_ROUNDS(N, Lo, Hi); break;
case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
@@ -1352,8 +1339,7 @@ void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
SDValue Tmp = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
- AN->getMemOperand(), AN->getSuccessOrdering(), AN->getFailureOrdering(),
- AN->getSynchScope());
+ AN->getMemOperand());
// Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
// success simply by comparing the loaded value against the ingoing
@@ -1508,8 +1494,8 @@ ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ShTy = Amt.getValueType();
- unsigned ShBits = ShTy.getScalarType().getSizeInBits();
- unsigned NVTBits = NVT.getScalarType().getSizeInBits();
+ unsigned ShBits = ShTy.getScalarSizeInBits();
+ unsigned NVTBits = NVT.getScalarSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
SDLoc dl(N);
@@ -1700,7 +1686,7 @@ void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N,
EVT CCT = getSetCCResultType(NVT);
// Hi part is always the same op
- Hi = DAG.getNode(N->getOpcode(), DL, {NVT, NVT}, {LHSH, RHSH});
+ Hi = DAG.getNode(N->getOpcode(), DL, NVT, {LHSH, RHSH});
// We need to know whether to select Lo part that corresponds to 'winning'
// Hi part or if Hi parts are equal.
@@ -1711,7 +1697,7 @@ void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N,
SDValue LoCmp = DAG.getSelect(DL, NVT, IsHiLeft, LHSL, RHSL);
// Recursed Lo part if Hi parts are equal, this uses unsigned version
- SDValue LoMinMax = DAG.getNode(LoOpc, DL, {NVT, NVT}, {LHSL, RHSL});
+ SDValue LoMinMax = DAG.getNode(LoOpc, DL, NVT, {LHSL, RHSL});
Lo = DAG.getSelect(DL, NVT, IsHiEq, LoMinMax, LoCmp);
}
@@ -1774,7 +1760,7 @@ void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
switch (BoolType) {
case TargetLoweringBase::UndefinedBooleanContent:
OVF = DAG.getNode(ISD::AND, dl, NVT, DAG.getConstant(1, dl, NVT), OVF);
- // Fallthrough
+ LLVM_FALLTHROUGH;
case TargetLoweringBase::ZeroOrOneBooleanContent:
Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF);
break;
@@ -2002,6 +1988,19 @@ void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
Hi = DAG.getConstant(0, dl, NVT);
}
+void DAGTypeLegalizer::ExpandIntRes_FLT_ROUNDS(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDLoc dl(N);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ unsigned NBitWidth = NVT.getSizeInBits();
+
+ EVT ShiftAmtTy = TLI.getShiftAmountTy(NVT, DAG.getDataLayout());
+ Lo = DAG.getNode(ISD::FLT_ROUNDS_, dl, NVT);
+ // The high part is the sign of Lo, as -1 is a valid value for FLT_ROUNDS
+ Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
+ DAG.getConstant(NBitWidth - 1, dl, ShiftAmtTy));
+}
+
void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
@@ -2065,7 +2064,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
- unsigned LoSize = Lo.getValueType().getSizeInBits();
+ unsigned LoSize = Lo.getValueSizeInBits();
Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
DAG.getConstant(LoSize - 1, dl,
TLI.getPointerTy(DAG.getDataLayout())));
@@ -2166,7 +2165,9 @@ void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
GetExpandedInteger(N->getOperand(0), LL, LH);
GetExpandedInteger(N->getOperand(1), RL, RH);
- if (TLI.expandMUL(N, Lo, Hi, NVT, DAG, LL, LH, RL, RH))
+ if (TLI.expandMUL(N, Lo, Hi, NVT, DAG,
+ TargetLowering::MulExpansionKind::OnlyLegalOrCustom,
+ LL, LH, RL, RH))
return;
// If nothing else, we can make a libcall.
@@ -2180,7 +2181,7 @@ void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
else if (VT == MVT::i128)
LC = RTLIB::MUL_I128;
- if (LC == RTLIB::UNKNOWN_LIBCALL) {
+ if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(LC)) {
// We'll expand the multiplication by brute force because we have no other
// options. This is a trivially-generalized version of the code from
// Hacker's Delight (itself derived from Knuth's Algorithm M from section
@@ -2354,8 +2355,8 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
// the new SHL_PARTS operation would need further legalization.
SDValue ShiftOp = N->getOperand(1);
EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
- assert(ShiftTy.getScalarType().getSizeInBits() >=
- Log2_32_Ceil(VT.getScalarType().getSizeInBits()) &&
+ assert(ShiftTy.getScalarSizeInBits() >=
+ Log2_32_Ceil(VT.getScalarSizeInBits()) &&
"ShiftAmountTy is too small to cover the range of this type!");
if (ShiftOp.getValueType() != ShiftTy)
ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
@@ -2436,8 +2437,7 @@ void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
- unsigned ExcessBits =
- Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
+ unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
ExcessBits)));
@@ -2458,13 +2458,12 @@ ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
- DAG.getConstant(Hi.getValueType().getSizeInBits() - 1, dl,
+ DAG.getConstant(Hi.getValueSizeInBits() - 1, dl,
TLI.getPointerTy(DAG.getDataLayout())));
} else {
// For example, extension of an i48 to an i64. Leave the low part alone,
// sext_inreg the high part.
- unsigned ExcessBits =
- EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
+ unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
ExcessBits)));
@@ -2690,8 +2689,7 @@ void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
- unsigned ExcessBits =
- Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
+ unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getZeroExtendInReg(Hi, dl,
EVT::getIntegerVT(*DAG.getContext(),
ExcessBits));
@@ -2707,10 +2705,7 @@ void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
SDValue Swap = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl,
cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0),
- N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand(),
- cast<AtomicSDNode>(N)->getOrdering(),
- cast<AtomicSDNode>(N)->getOrdering(),
- cast<AtomicSDNode>(N)->getSynchScope());
+ N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand());
ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
ReplaceValueWith(SDValue(N, 1), Swap.getValue(2));
@@ -2833,51 +2828,51 @@ void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
- // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
- // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
- // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
+ // LoCmp = lo(op1) < lo(op2) // Always unsigned comparison
+ // HiCmp = hi(op1) < hi(op2) // Signedness depends on operands
+ // dest = hi(op1) == hi(op2) ? LoCmp : HiCmp;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true,
nullptr);
- SDValue Tmp1, Tmp2;
+ SDValue LoCmp, HiCmp;
if (TLI.isTypeLegal(LHSLo.getValueType()) &&
TLI.isTypeLegal(RHSLo.getValueType()))
- Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()),
- LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
- if (!Tmp1.getNode())
- Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()),
- LHSLo, RHSLo, LowCC);
+ LoCmp = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()), LHSLo,
+ RHSLo, LowCC, false, DagCombineInfo, dl);
+ if (!LoCmp.getNode())
+ LoCmp = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo,
+ RHSLo, LowCC);
if (TLI.isTypeLegal(LHSHi.getValueType()) &&
TLI.isTypeLegal(RHSHi.getValueType()))
- Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
- LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
- if (!Tmp2.getNode())
- Tmp2 = DAG.getNode(ISD::SETCC, dl,
- getSetCCResultType(LHSHi.getValueType()),
- LHSHi, RHSHi, DAG.getCondCode(CCCode));
-
- ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
- ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
- if ((Tmp1C && Tmp1C->isNullValue()) ||
- (Tmp2C && Tmp2C->isNullValue() &&
- (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
- CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
- (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
- (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
- CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
- // low part is known false, returns high part.
+ HiCmp = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), LHSHi,
+ RHSHi, CCCode, false, DagCombineInfo, dl);
+ if (!HiCmp.getNode())
+ HiCmp =
+ DAG.getNode(ISD::SETCC, dl, getSetCCResultType(LHSHi.getValueType()),
+ LHSHi, RHSHi, DAG.getCondCode(CCCode));
+
+ ConstantSDNode *LoCmpC = dyn_cast<ConstantSDNode>(LoCmp.getNode());
+ ConstantSDNode *HiCmpC = dyn_cast<ConstantSDNode>(HiCmp.getNode());
+
+ bool EqAllowed = (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
+ CCCode == ISD::SETUGE || CCCode == ISD::SETULE);
+
+ if ((EqAllowed && (HiCmpC && HiCmpC->isNullValue())) ||
+ (!EqAllowed && ((HiCmpC && (HiCmpC->getAPIntValue() == 1)) ||
+ (LoCmpC && LoCmpC->isNullValue())))) {
// For LE / GE, if high part is known false, ignore the low part.
- // For LT / GT, if high part is known true, ignore the low part.
- NewLHS = Tmp2;
+ // For LT / GT: if low part is known false, return the high part.
+ // if high part is known true, ignore the low part.
+ NewLHS = HiCmp;
NewRHS = SDValue();
return;
}
if (LHSHi == RHSHi) {
// Comparing the low bits is enough.
- NewLHS = Tmp1;
+ NewLHS = LoCmp;
NewRHS = SDValue();
return;
}
@@ -2922,8 +2917,8 @@ void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
if (!NewLHS.getNode())
NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()),
LHSHi, RHSHi, ISD::SETEQ);
- NewLHS = DAG.getSelect(dl, Tmp1.getValueType(),
- NewLHS, Tmp1, Tmp2);
+ NewLHS = DAG.getSelect(dl, LoCmp.getValueType(),
+ NewLHS, LoCmp, HiCmp);
NewRHS = SDValue();
}
@@ -3198,9 +3193,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
cast<AtomicSDNode>(N)->getMemoryVT(),
N->getOperand(0),
N->getOperand(1), N->getOperand(2),
- cast<AtomicSDNode>(N)->getMemOperand(),
- cast<AtomicSDNode>(N)->getOrdering(),
- cast<AtomicSDNode>(N)->getSynchScope());
+ cast<AtomicSDNode>(N)->getMemOperand());
return Swap.getValue(1);
}
@@ -3327,6 +3320,41 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
}
+SDValue DAGTypeLegalizer::PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ assert(NVT.isVector() && "This type must be promoted to a vector type");
+
+ SDLoc dl(N);
+
+ // For operands whose TypeAction is to promote, extend the promoted node
+ // appropriately (ZERO_EXTEND or SIGN_EXTEND) from the original pre-promotion
+ // type, and then construct a new *_EXTEND_VECTOR_INREG node to the promote-to
+ // type..
+ if (getTypeAction(N->getOperand(0).getValueType())
+ == TargetLowering::TypePromoteInteger) {
+ SDValue Promoted;
+
+ switch(N->getOpcode()) {
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ Promoted = SExtPromotedInteger(N->getOperand(0));
+ break;
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ Promoted = ZExtPromotedInteger(N->getOperand(0));
+ break;
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ Promoted = GetPromotedInteger(N->getOperand(0));
+ break;
+ default:
+ llvm_unreachable("Node has unexpected Opcode");
+ }
+ return DAG.getNode(N->getOpcode(), dl, NVT, Promoted);
+ }
+
+ // Directly extend to the appropriate transform-to type.
+ return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
+}
+
SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index 144bed2..cf19d75 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -117,6 +117,8 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
Mapped |= 64;
if (WidenedVectors.find(Res) != WidenedVectors.end())
Mapped |= 128;
+ if (PromotedFloats.find(Res) != PromotedFloats.end())
+ Mapped |= 256;
if (Node.getNodeId() != Processed) {
// Since we allow ReplacedValues to map deleted nodes, it may map nodes
@@ -159,6 +161,8 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
dbgs() << " SplitVectors";
if (Mapped & 128)
dbgs() << " WidenedVectors";
+ if (Mapped & 256)
+ dbgs() << " PromotedFloats";
dbgs() << "\n";
llvm_unreachable(nullptr);
}
@@ -484,7 +488,7 @@ SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
// updated after all operands have been analyzed. Since this is rare,
// the code tries to minimize overhead in the non-morphing case.
- SmallVector<SDValue, 8> NewOps;
+ std::vector<SDValue> NewOps;
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue OrigOp = N->getOperand(i);
@@ -500,7 +504,7 @@ SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
NewOps.push_back(Op);
} else if (Op != OrigOp) {
// This is the first operand to change - add all operands so far.
- NewOps.append(N->op_begin(), N->op_begin() + i);
+ NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
NewOps.push_back(Op);
}
}
@@ -794,8 +798,7 @@ void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
// Note that in some cases vector operation operands may be greater than
// the vector element type. For example BUILD_VECTOR of type <1 x i1> with
// a constant i8 operand.
- assert(Result.getValueType().getSizeInBits() >=
- Op.getValueType().getVectorElementType().getSizeInBits() &&
+ assert(Result.getValueSizeInBits() >= Op.getScalarValueSizeInBits() &&
"Invalid type for scalarized vector");
AnalyzeNewValue(Result);
@@ -905,7 +908,7 @@ void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
/// Convert to an integer of the same size.
SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
- unsigned BitWidth = Op.getValueType().getSizeInBits();
+ unsigned BitWidth = Op.getValueSizeInBits();
return DAG.getNode(ISD::BITCAST, SDLoc(Op),
EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
}
@@ -913,7 +916,7 @@ SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
/// Convert to a vector of integers of the same size.
SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
assert(Op.getValueType().isVector() && "Only applies to vectors!");
- unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
+ unsigned EltWidth = Op.getScalarValueSizeInBits();
EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
unsigned NumElts = Op.getValueType().getVectorNumElements();
return DAG.getNode(ISD::BITCAST, SDLoc(Op),
@@ -1018,22 +1021,6 @@ void DAGTypeLegalizer::GetPairElements(SDValue Pair,
DAG.getIntPtrConstant(1, dl));
}
-SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
- SDValue Index) {
- SDLoc dl(Index);
- // Make sure the index type is big enough to compute in.
- Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy(DAG.getDataLayout()));
-
- // Calculate the element offset and add it to the pointer.
- unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
- assert(EltSize * 8 == EltVT.getSizeInBits() &&
- "Converting bits to bytes lost precision");
-
- Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
- DAG.getConstant(EltSize, dl, Index.getValueType()));
- return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
-}
-
/// Build an integer with low bits Lo and high bits Hi.
SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
// Arbitrarily use dlHi for result SDLoc
@@ -1145,7 +1132,7 @@ void DAGTypeLegalizer::SplitInteger(SDValue Op,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(Op);
assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
- Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
+ Op.getValueSizeInBits() && "Invalid integer splitting!");
Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
DAG.getConstant(LoVT.getSizeInBits(), dl,
@@ -1157,8 +1144,8 @@ void DAGTypeLegalizer::SplitInteger(SDValue Op,
/// size of Op's.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
SDValue &Lo, SDValue &Hi) {
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
- Op.getValueType().getSizeInBits()/2);
+ EVT HalfVT =
+ EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index 84ad8f8..ec55662 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -173,7 +173,6 @@ private:
/// input operand is returned.
SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
- SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
@@ -242,6 +241,7 @@ private:
SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
+ SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntRes_BITCAST(SDNode *N);
@@ -249,7 +249,6 @@ private:
SDValue PromoteIntRes_BITREVERSE(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
- SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
@@ -288,7 +287,6 @@ private:
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
- SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
@@ -339,6 +337,7 @@ private:
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
+ void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -601,7 +600,6 @@ private:
SDValue ScalarizeVecRes_BITCAST(SDNode *N);
SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
- SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_FPOWI(SDNode *N);
@@ -707,7 +705,6 @@ private:
SDValue WidenVecRes_BITCAST(SDNode* N);
SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
- SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
index 665180e..3682c32 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
@@ -141,11 +141,10 @@ void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
if (DAG.getDataLayout().isBigEndian())
std::swap(LHS, RHS);
- Vals.push_back(DAG.getNode(ISD::BUILD_PAIR, dl,
- EVT::getIntegerVT(
- *DAG.getContext(),
- LHS.getValueType().getSizeInBits() << 1),
- LHS, RHS));
+ Vals.push_back(DAG.getNode(
+ ISD::BUILD_PAIR, dl,
+ EVT::getIntegerVT(*DAG.getContext(), LHS.getValueSizeInBits() << 1),
+ LHS, RHS));
}
Lo = Vals[Slot++];
Hi = Vals[Slot++];
@@ -337,7 +336,8 @@ void DAGTypeLegalizer::IntegerToVector(SDValue Op, unsigned NumElements,
SDValue DAGTypeLegalizer::ExpandOp_BITCAST(SDNode *N) {
SDLoc dl(N);
- if (N->getValueType(0).isVector()) {
+ if (N->getValueType(0).isVector() &&
+ N->getOperand(0).getValueType().isInteger()) {
// An illegal expanding type is being converted to a legal vector type.
// Make a two element vector out of the expanded parts and convert that
// instead, but only if the new vector type is legal (otherwise there
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index 3c9cb17..d4fa20f 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -106,7 +106,8 @@ class VectorLegalizer {
SDValue ExpandStore(SDValue Op);
SDValue ExpandFNEG(SDValue Op);
SDValue ExpandBITREVERSE(SDValue Op);
- SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);
+ SDValue ExpandCTLZ(SDValue Op);
+ SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op);
/// \brief Implements vector promotion.
///
@@ -332,6 +333,8 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
+ case ISD::SMUL_LOHI:
+ case ISD::UMUL_LOHI:
QueryType = Node->getValueType(0);
break;
case ISD::FP_ROUND_INREG:
@@ -362,7 +365,7 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
Result = Tmp1;
break;
}
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
}
case TargetLowering::Expand:
Result = Expand(Op);
@@ -693,9 +696,11 @@ SDValue VectorLegalizer::Expand(SDValue Op) {
return UnrollVSETCC(Op);
case ISD::BITREVERSE:
return ExpandBITREVERSE(Op);
+ case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
+ return ExpandCTLZ(Op);
case ISD::CTTZ_ZERO_UNDEF:
- return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
+ return ExpandCTTZ_ZERO_UNDEF(Op);
default:
return DAG.UnrollVectorOp(Op.getNode());
}
@@ -770,8 +775,8 @@ SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
SDLoc DL(Op);
EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
- unsigned BW = VT.getScalarType().getSizeInBits();
- unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
+ unsigned BW = VT.getScalarSizeInBits();
+ unsigned OrigBW = OrigTy.getScalarSizeInBits();
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
Op = Op.getOperand(0);
@@ -817,8 +822,8 @@ SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
// Now we need sign extend. Do this by shifting the elements. Even if these
// aren't legal operations, they have a better chance of being legalized
// without full scalarization than the sign extension does.
- unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
- unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
+ unsigned EltWidth = VT.getScalarSizeInBits();
+ unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
return DAG.getNode(ISD::SRA, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
@@ -951,7 +956,7 @@ SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
// If the mask and the type are different sizes, unroll the vector op. This
// can occur when getSetCCResultType returns something that is different in
// size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
- if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
+ if (VT.getSizeInBits() != Op1.getValueSizeInBits())
return DAG.UnrollVectorOp(Op.getNode());
// Bitcast the operands to be the same type as the mask.
@@ -961,7 +966,7 @@ SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
SDValue AllOnes = DAG.getConstant(
- APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
+ APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
@@ -979,21 +984,20 @@ SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
- EVT SVT = VT.getScalarType();
- assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
- "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
+ unsigned BW = VT.getScalarSizeInBits();
+ assert((BW == 64 || BW == 32) &&
+ "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
- unsigned BW = SVT.getSizeInBits();
- SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
+ SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
// Constants to clear the upper part of the word.
// Notice that we can also use SHL+SHR, but using a constant is slightly
// faster on x86.
- uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
+ uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
// Two to the power of half-word-size.
- SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
+ SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType());
// Clear upper part of LO, lower HI
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
@@ -1010,7 +1014,6 @@ SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
}
-
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
SDLoc DL(Op);
@@ -1022,12 +1025,53 @@ SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
return DAG.UnrollVectorOp(Op.getNode());
}
-SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
+SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
+ EVT VT = Op.getValueType();
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // If the non-ZERO_UNDEF version is supported we can use that instead.
+ if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
+ TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) {
+ SDLoc DL(Op);
+ return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0));
+ }
+
+ // If CTPOP is available we can lower with a CTPOP based method:
+ // u16 ctlz(u16 x) {
+ // x |= (x >> 1);
+ // x |= (x >> 2);
+ // x |= (x >> 4);
+ // x |= (x >> 8);
+ // return ctpop(~x);
+ // }
+ // Ref: "Hacker's Delight" by Henry Warren
+ if (isPowerOf2_32(NumBitsPerElt) &&
+ TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
+ TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) &&
+ TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) {
+ SDLoc DL(Op);
+ SDValue Res = Op.getOperand(0);
+ EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
+
+ for (unsigned i = 1; i != NumBitsPerElt; i *= 2)
+ Res = DAG.getNode(
+ ISD::OR, DL, VT, Res,
+ DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy)));
+
+ Res = DAG.getNOT(DL, Res, VT);
+ return DAG.getNode(ISD::CTPOP, DL, VT, Res);
+ }
+
+ // Otherwise go ahead and unroll.
+ return DAG.UnrollVectorOp(Op.getNode());
+}
+
+SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) {
// If the non-ZERO_UNDEF version is supported we can use that instead.
- unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
- if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) {
+ if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) {
SDLoc DL(Op);
- return DAG.getNode(Opc, DL, Op.getValueType(), Op.getOperand(0));
+ return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0));
}
// Otherwise go ahead and unroll.
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index f3adca4..6906f67 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -51,7 +51,6 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
- case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
@@ -179,17 +178,6 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
return InOp;
}
-SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
- EVT NewVT = N->getValueType(0).getVectorElementType();
- SDValue Op0 = GetScalarizedVector(N->getOperand(0));
- return DAG.getConvertRndSat(NewVT, SDLoc(N),
- Op0, DAG.getValueType(NewVT),
- DAG.getValueType(Op0.getValueType()),
- N->getOperand(3),
- N->getOperand(4),
- cast<CvtRndSatSDNode>(N)->getCvtCode());
-}
-
SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
N->getValueType(0).getVectorElementType(),
@@ -621,7 +609,6 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::BITREVERSE:
case ISD::BSWAP:
- case ISD::CONVERT_RNDSAT:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::CTLZ_ZERO_UNDEF:
@@ -846,7 +833,6 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
GetSplitVector(Vec, Lo, Hi);
EVT VecVT = Vec.getValueType();
- EVT VecElemVT = VecVT.getVectorElementType();
unsigned VecElems = VecVT.getVectorNumElements();
unsigned SubElems = SubVec.getValueType().getVectorNumElements();
@@ -872,7 +858,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo());
// Store the new subvector into the specified index.
- SDValue SubVecPtr = GetVectorElementPointer(StackPtr, VecElemVT, Idx);
+ SDValue SubVecPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo());
@@ -882,7 +868,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo());
// Increment the pointer to the other part.
- unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
+ unsigned IncrementSize = Lo.getValueSizeInBits() / 8;
StackPtr =
DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, dl, StackPtr.getValueType()));
@@ -1003,7 +989,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
// Store the new element. This may be larger than the vector element type,
// so use a truncating store.
- SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
+ SDValue EltPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
Store =
@@ -1014,7 +1000,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo());
// Increment the pointer to the other part.
- unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
+ unsigned IncrementSize = Lo.getValueSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, dl,
StackPtr.getValueType()));
@@ -1114,11 +1100,10 @@ void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
- ExtType);
+ ExtType, MLD->isExpandingLoad());
- unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
- Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
+ Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, dl, LoMemVT, DAG,
+ MLD->isExpandingLoad());
MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
@@ -1126,7 +1111,7 @@ void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
- ExtType);
+ ExtType, MLD->isExpandingLoad());
// Build a factor node to remember that this load is independent of the
@@ -1237,18 +1222,6 @@ void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
if (N->getOpcode() == ISD::FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
- } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
- SDValue DTyOpLo = DAG.getValueType(LoVT);
- SDValue DTyOpHi = DAG.getValueType(HiVT);
- SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
- SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
- SDValue RndOp = N->getOperand(3);
- SDValue SatOp = N->getOperand(4);
- ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
- Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
- CvtCode);
- Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
- CvtCode);
} else {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
@@ -1282,7 +1255,7 @@ void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
LLVMContext &Ctx = *DAG.getContext();
EVT NewSrcVT = EVT::getVectorVT(
Ctx, EVT::getIntegerVT(
- Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
+ Ctx, SrcVT.getScalarSizeInBits() * 2),
NumElements);
EVT SplitSrcVT =
EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
@@ -1651,7 +1624,7 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo());
// Load back the required element.
- StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
+ StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
MachinePointerInfo(), EltVT);
}
@@ -1769,19 +1742,18 @@ SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
Alignment, N->getAAInfo(), N->getRanges());
Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
- N->isTruncatingStore());
-
- unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
- Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
- DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
+ N->isTruncatingStore(),
+ N->isCompressingStore());
+ Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
+ N->isCompressingStore());
MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
SecondHalfAlignment, N->getAAInfo(), N->getRanges());
Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
- N->isTruncatingStore());
+ N->isTruncatingStore(), N->isCompressingStore());
// Build a factor node to remember that this store is independent of the
// other one.
@@ -1940,8 +1912,8 @@ SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
// if we're trying to split it at all. assert() that's true, just in case.
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
- unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
- unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
+ unsigned InElementSize = InVT.getScalarSizeInBits();
+ unsigned OutElementSize = OutVT.getScalarSizeInBits();
// If the input elements are only 1/2 the width of the result elements,
// just use the normal splitting. Our trick only work if there's room
@@ -2047,7 +2019,6 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
- case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
@@ -2695,86 +2666,6 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
}
-SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
- SDLoc dl(N);
- SDValue InOp = N->getOperand(0);
- SDValue RndOp = N->getOperand(3);
- SDValue SatOp = N->getOperand(4);
-
- EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
- unsigned WidenNumElts = WidenVT.getVectorNumElements();
-
- EVT InVT = InOp.getValueType();
- EVT InEltVT = InVT.getVectorElementType();
- EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
-
- SDValue DTyOp = DAG.getValueType(WidenVT);
- SDValue STyOp = DAG.getValueType(InWidenVT);
- ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
-
- unsigned InVTNumElts = InVT.getVectorNumElements();
- if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
- InOp = GetWidenedVector(InOp);
- InVT = InOp.getValueType();
- InVTNumElts = InVT.getVectorNumElements();
- if (InVTNumElts == WidenNumElts)
- return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
- SatOp, CvtCode);
- }
-
- if (TLI.isTypeLegal(InWidenVT)) {
- // Because the result and the input are different vector types, widening
- // the result could create a legal type but widening the input might make
- // it an illegal type that might lead to repeatedly splitting the input
- // and then widening it. To avoid this, we widen the input only if
- // it results in a legal type.
- if (WidenNumElts % InVTNumElts == 0) {
- // Widen the input and call convert on the widened input vector.
- unsigned NumConcat = WidenNumElts/InVTNumElts;
- SmallVector<SDValue, 16> Ops(NumConcat);
- Ops[0] = InOp;
- SDValue UndefVal = DAG.getUNDEF(InVT);
- for (unsigned i = 1; i != NumConcat; ++i)
- Ops[i] = UndefVal;
-
- InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
- return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
- SatOp, CvtCode);
- }
-
- if (InVTNumElts % WidenNumElts == 0) {
- // Extract the input and convert the shorten input vector.
- InOp = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
- DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
- SatOp, CvtCode);
- }
- }
-
- // Otherwise unroll into some nasty scalar code and rebuild the vector.
- SmallVector<SDValue, 16> Ops(WidenNumElts);
- EVT EltVT = WidenVT.getVectorElementType();
- DTyOp = DAG.getValueType(EltVT);
- STyOp = DAG.getValueType(InEltVT);
-
- unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
- unsigned i;
- for (i=0; i < MinElts; ++i) {
- SDValue ExtVal = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
- DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
- SatOp, CvtCode);
- }
-
- SDValue UndefVal = DAG.getUNDEF(EltVT);
- for (; i < WidenNumElts; ++i)
- Ops[i] = UndefVal;
-
- return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
-}
-
SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
@@ -2881,7 +2772,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
Mask, Src0, N->getMemoryVT(),
- N->getMemOperand(), ExtType);
+ N->getMemOperand(), ExtType,
+ N->isExpandingLoad());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
@@ -3317,7 +3209,7 @@ SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
"Mask and data vectors should have the same number of elements");
return DAG.getMaskedStore(MST->getChain(), dl, WideVal, MST->getBasePtr(),
Mask, MST->getMemoryVT(), MST->getMemOperand(),
- false);
+ false, MST->isCompressingStore());
}
SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
@@ -3547,7 +3439,10 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LD->getPointerInfo().getWithOffset(Offset),
MinAlign(Align, Increment), MMOFlags, AAInfo);
LdChain.push_back(L.getValue(1));
- if (L->getValueType(0).isVector()) {
+ if (L->getValueType(0).isVector() && NewVTWidth >= LdWidth) {
+ // Later code assumes the vector loads produced will be mergeable, so we
+ // must pad the final entry up to the previous width. Scalars are
+ // combined separately.
SmallVector<SDValue, 16> Loads;
Loads.push_back(L);
unsigned size = L->getValueSizeInBits(0);
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
index 1e5c4a7..ded8e68 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ResourcePriorityQueue.cpp
@@ -631,7 +631,7 @@ SUnit *ResourcePriorityQueue::pop() {
void ResourcePriorityQueue::remove(SUnit *SU) {
assert(!Queue.empty() && "Queue is empty!");
- std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
+ std::vector<SUnit *>::iterator I = find(Queue, SU);
if (I != std::prev(Queue.end()))
std::swap(*I, Queue.back());
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index 802c459..3549ccd 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -1339,7 +1339,7 @@ void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
if (Reg) {
SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
- if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
+ if (!is_contained(LRegs, Reg))
continue;
}
SU->isPending = false;
@@ -1704,8 +1704,7 @@ public:
void remove(SUnit *SU) override {
assert(!Queue.empty() && "Queue is empty!");
assert(SU->NodeQueueId != 0 && "Not in queue!");
- std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
- SU);
+ std::vector<SUnit *>::iterator I = find(Queue, SU);
if (I != std::prev(Queue.end()))
std::swap(*I, Queue.back());
Queue.pop_back();
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
index 5cc8066..a058942 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
@@ -15,10 +15,20 @@
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SCHEDULEDAGSDNODES_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_SCHEDULEDAGSDNODES_H
+#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/Support/Casting.h"
+#include <cassert>
+#include <string>
+#include <vector>
namespace llvm {
+
+class InstrItineraryData;
+
/// ScheduleDAGSDNodes - A ScheduleDAG for scheduling SDNode-based DAGs.
///
/// Edges between SUnits are initially based on edges in the SelectionDAG,
@@ -44,7 +54,7 @@ namespace llvm {
explicit ScheduleDAGSDNodes(MachineFunction &mf);
- ~ScheduleDAGSDNodes() override {}
+ ~ScheduleDAGSDNodes() override = default;
/// Run - perform scheduling.
///
@@ -131,6 +141,7 @@ namespace llvm {
unsigned DefIdx;
unsigned NodeNumDefs;
MVT ValueType;
+
public:
RegDefIter(const SUnit *SU, const ScheduleDAGSDNodes *SD);
@@ -150,6 +161,7 @@ namespace llvm {
}
void Advance();
+
private:
void InitNodeNumDefs();
};
@@ -175,6 +187,7 @@ namespace llvm {
void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
MachineBasicBlock::iterator InsertPos);
};
-}
-#endif
+} // end namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SCHEDULEDAGSDNODES_H
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 29d11c7..e225ba8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -134,7 +134,7 @@ bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// we care if the resultant vector is all ones, not whether the individual
// constants are.
SDValue NotZero = N->getOperand(i);
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
+ unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
if (CN->getAPIntValue().countTrailingOnes() < EltSize)
return false;
@@ -173,7 +173,7 @@ bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all zeros, not whether the individual
// constants are.
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
+ unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
if (CN->getAPIntValue().countTrailingZeros() < EltSize)
return false;
@@ -403,7 +403,6 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
ID.AddInteger(GA->getTargetFlags());
- ID.AddInteger(GA->getAddressSpace());
break;
}
case ISD::BasicBlock:
@@ -521,24 +520,6 @@ static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDCustom(ID, N);
}
-/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
-/// the CSE map that carries volatility, temporalness, indexing mode, and
-/// extension/truncation information.
-///
-static inline unsigned
-encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
- bool isNonTemporal, bool isInvariant) {
- assert((ConvType & 3) == ConvType &&
- "ConvType may not require more than 2 bits!");
- assert((AM & 7) == AM &&
- "AM may not require more than 3 bits!");
- return ConvType |
- (AM << 2) |
- (isVolatile << 5) |
- (isNonTemporal << 6) |
- (isInvariant << 7);
-}
-
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
@@ -1030,7 +1011,7 @@ SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
"getZeroExtendInReg should use the vector element type instead of "
"the vector type!");
if (Op.getValueType() == VT) return Op;
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt Imm = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
return getNode(ISD::AND, DL, Op.getValueType(), Op,
@@ -1040,7 +1021,7 @@ SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
+ assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
@@ -1051,7 +1032,7 @@ SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
+ assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
@@ -1062,7 +1043,7 @@ SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
EVT VT) {
assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
+ assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
"The sizes of the input and result must match in order to perform the "
"extend in-register.");
assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
@@ -1123,7 +1104,7 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypePromoteInteger) {
EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
+ APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
// In other cases the element type is illegal and needs to be expanded, for
@@ -1149,7 +1130,7 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
SmallVector<SDValue, 2> EltParts;
for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
- .trunc(ViaEltSizeInBits), DL,
+ .zextOrTrunc(ViaEltSizeInBits), DL,
ViaEltVT, isT, isO));
}
@@ -1166,12 +1147,9 @@ SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
// This situation occurs in MIPS MSA.
SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
-
- SDValue Result = getNode(ISD::BITCAST, DL, VT,
- getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops));
- return Result;
+ return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
}
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
@@ -1280,7 +1258,6 @@ SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
ID.AddPointer(GV);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
- ID.AddInteger(GV->getType()->getAddressSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
return SDValue(E, 0);
@@ -1333,7 +1310,9 @@ SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
- Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
+ Alignment = MF->getFunction()->optForSize()
+ ? getDataLayout().getABITypeAlignment(C->getType())
+ : getDataLayout().getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), None);
@@ -1650,31 +1629,6 @@ SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
}
-SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val,
- SDValue DTy, SDValue STy, SDValue Rnd,
- SDValue Sat, ISD::CvtCode Code) {
- // If the src and dest types are the same and the conversion is between
- // integer types of the same sign or two floats, no conversion is necessary.
- if (DTy == STy &&
- (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
- return Val;
-
- FoldingSetNodeID ID;
- SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
- AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
-
- auto *N =
- newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code);
- createOperands(N, Ops);
-
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
-}
-
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
@@ -1863,13 +1817,13 @@ SDValue SelectionDAG::expandVACopy(SDNode *Node) {
}
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
+ MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
- int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
+ int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
}
@@ -1881,8 +1835,8 @@ SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
unsigned Align =
std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
+ MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
+ int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
}
@@ -1943,29 +1897,29 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, dl, VT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, dl, VT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
- // fall through
+ LLVM_FALLTHROUGH;
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, dl, VT);
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT);
@@ -1998,11 +1952,7 @@ SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- // This predicate is not safe for vector operations.
- if (Op.getValueType().isVector())
- return false;
-
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}
@@ -2016,28 +1966,244 @@ bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
return (KnownZero & Mask) == Mask;
}
+/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
+/// is less than the element bit-width of the shift node, return it.
+static const APInt *getValidShiftAmountConstant(SDValue V) {
+ if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
+ // Shifting more than the bitwidth is not valid.
+ const APInt &ShAmt = SA->getAPIntValue();
+ if (ShAmt.ult(V.getScalarValueSizeInBits()))
+ return &ShAmt;
+ }
+ return nullptr;
+}
+
/// Determine which bits of Op are known to be either zero or one and return
-/// them in the KnownZero/KnownOne bitsets.
+/// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
+/// those that are shared by every vector element.
void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
APInt &KnownOne, unsigned Depth) const {
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnesValue(VT.getVectorNumElements())
+ : APInt(1, 1);
+ computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
+}
+
+/// Determine which bits of Op are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
+/// us to only collect the known bits that are shared by the requested vector
+/// elements.
+/// TODO: We only support DemandedElts on a few opcodes so far, the remainder
+/// should be added when they become necessary.
+void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
+ APInt &KnownOne, const APInt &DemandedElts,
+ unsigned Depth) const {
+ unsigned BitWidth = Op.getScalarValueSizeInBits();
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
if (Depth == 6)
return; // Limit search depth.
APInt KnownZero2, KnownOne2;
+ unsigned NumElts = DemandedElts.getBitWidth();
- switch (Op.getOpcode()) {
+ if (!DemandedElts)
+ return; // No demanded elts, better to assume we don't know anything.
+
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
KnownZero = ~KnownOne;
break;
+ case ISD::BUILD_VECTOR:
+ // Collect the known bits that are shared by every demanded vector element.
+ assert(NumElts == Op.getValueType().getVectorNumElements() &&
+ "Unexpected vector size");
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+
+ SDValue SrcOp = Op.getOperand(i);
+ computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
+
+ // BUILD_VECTOR can implicitly truncate sources, we must handle this.
+ if (SrcOp.getValueSizeInBits() != BitWidth) {
+ assert(SrcOp.getValueSizeInBits() > BitWidth &&
+ "Expected BUILD_VECTOR implicit truncation");
+ KnownOne2 = KnownOne2.trunc(BitWidth);
+ KnownZero2 = KnownZero2.trunc(BitWidth);
+ }
+
+ // Known bits are the values that are shared by every demanded element.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
+ }
+ break;
+ case ISD::VECTOR_SHUFFLE: {
+ // Collect the known bits that are shared by every vector element referenced
+ // by the shuffle.
+ APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
+ assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+
+ int M = SVN->getMaskElt(i);
+ if (M < 0) {
+ // For UNDEF elements, we don't know anything about the common state of
+ // the shuffle result.
+ KnownOne.clearAllBits();
+ KnownZero.clearAllBits();
+ DemandedLHS.clearAllBits();
+ DemandedRHS.clearAllBits();
+ break;
+ }
+
+ if ((unsigned)M < NumElts)
+ DemandedLHS.setBit((unsigned)M % NumElts);
+ else
+ DemandedRHS.setBit((unsigned)M % NumElts);
+ }
+ // Known bits are the values that are shared by every demanded element.
+ if (!!DemandedLHS) {
+ SDValue LHS = Op.getOperand(0);
+ computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ }
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
+ if (!!DemandedRHS) {
+ SDValue RHS = Op.getOperand(1);
+ computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ // Split DemandedElts and test each of the demanded subvectors.
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ EVT SubVectorVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
+ unsigned NumSubVectors = Op.getNumOperands();
+ for (unsigned i = 0; i != NumSubVectors; ++i) {
+ APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
+ DemandedSub = DemandedSub.trunc(NumSubVectorElts);
+ if (!!DemandedSub) {
+ SDValue Sub = Op.getOperand(i);
+ computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ }
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
+ }
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ // If we know the element index, just demand that subvector elements,
+ // otherwise demand them all.
+ SDValue Src = Op.getOperand(0);
+ ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
+ // Offset the demanded elts by the subvector index.
+ uint64_t Idx = SubIdx->getZExtValue();
+ APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
+ computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
+ } else {
+ computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
+ }
+ break;
+ }
+ case ISD::BITCAST: {
+ SDValue N0 = Op.getOperand(0);
+ unsigned SubBitWidth = N0.getScalarValueSizeInBits();
+
+ // Ignore bitcasts from floating point.
+ if (!N0.getValueType().isInteger())
+ break;
+
+ // Fast handling of 'identity' bitcasts.
+ if (BitWidth == SubBitWidth) {
+ computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
+ break;
+ }
+
+ // Support big-endian targets when it becomes useful.
+ bool IsLE = getDataLayout().isLittleEndian();
+ if (!IsLE)
+ break;
+
+ // Bitcast 'small element' vector to 'large element' scalar/vector.
+ if ((BitWidth % SubBitWidth) == 0) {
+ assert(N0.getValueType().isVector() && "Expected bitcast from vector");
+
+ // Collect known bits for the (larger) output by collecting the known
+ // bits from each set of sub elements and shift these into place.
+ // We need to separately call computeKnownBits for each set of
+ // sub elements as the knownbits for each is likely to be different.
+ unsigned SubScale = BitWidth / SubBitWidth;
+ APInt SubDemandedElts(NumElts * SubScale, 0);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SubDemandedElts.setBit(i * SubScale);
+
+ for (unsigned i = 0; i != SubScale; ++i) {
+ computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i),
+ Depth + 1);
+ KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i);
+ KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i);
+ }
+ }
+
+ // Bitcast 'large element' scalar/vector to 'small element' vector.
+ if ((SubBitWidth % BitWidth) == 0) {
+ assert(Op.getValueType().isVector() && "Expected bitcast to vector");
+
+ // Collect known bits for the (smaller) output by collecting the known
+ // bits from the overlapping larger input elements and extracting the
+ // sub sections we actually care about.
+ unsigned SubScale = SubBitWidth / BitWidth;
+ APInt SubDemandedElts(NumElts / SubScale, 0);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i])
+ SubDemandedElts.setBit(i / SubScale);
+
+ computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1);
+
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Offset = (i % SubScale) * BitWidth;
+ KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth);
+ KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth);
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
+ }
+ }
+ break;
+ }
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
@@ -2045,8 +2211,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
KnownZero |= KnownZero2;
break;
case ISD::OR:
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
@@ -2054,8 +2222,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
KnownOne |= KnownOne2;
break;
case ISD::XOR: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
@@ -2065,11 +2235,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
}
case ISD::MUL: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
+ // Also compute a conservative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clearAllBits();
@@ -2089,12 +2261,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clearAllBits();
- KnownZero2.clearAllBits();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
@@ -2105,6 +2277,9 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::SELECT:
computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
// Only known if known in both the LHS and RHS.
@@ -2113,6 +2288,9 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
case ISD::SELECT_CC:
computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
// Only known if known in both the LHS and RHS.
@@ -2144,58 +2322,37 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ISD::SHL:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
-
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
-
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero <<= ShAmt;
- KnownOne <<= ShAmt;
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ KnownZero = KnownZero << *ShAmt;
+ KnownOne = KnownOne << *ShAmt;
+ // Low bits are known zero.
+ KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue());
}
break;
case ISD::SRL:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
-
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
-
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
-
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- KnownZero |= HighBits; // High bits known zero.
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ KnownZero = KnownZero.lshr(*ShAmt);
+ KnownOne = KnownOne.lshr(*ShAmt);
+ // High bits are known zero.
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
+ KnownZero |= HighBits;
}
break;
case ISD::SRA:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
-
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
-
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
-
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
-
- // Handle the sign bits.
+ if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ KnownZero = KnownZero.lshr(*ShAmt);
+ KnownOne = KnownOne.lshr(*ShAmt);
+ // If we know the value of the sign bit, then we know it is copied across
+ // the high bits by the shift amount.
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
APInt SignBit = APInt::getSignBit(BitWidth);
- SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
-
+ SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask.
if (KnownZero.intersects(SignBit)) {
KnownZero |= HighBits; // New bits are known zero.
} else if (KnownOne.intersects(SignBit)) {
@@ -2205,7 +2362,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getScalarType().getSizeInBits();
+ unsigned EBits = EVT.getScalarSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
@@ -2220,7 +2377,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (NewBits.getBoolValue())
InputDemandedBits |= InSignBit;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
KnownOne &= InputDemandedBits;
KnownZero &= InputDemandedBits;
@@ -2253,7 +2411,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// If this is a ZEXTLoad and we are looking at the loaded value.
if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getScalarType().getSizeInBits();
+ unsigned MemBits = VT.getScalarSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
if (LD->getExtensionType() == ISD::NON_EXTLOAD)
@@ -2263,11 +2421,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::ZERO_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
+ unsigned InBits = InVT.getScalarSizeInBits();
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
KnownZero |= NewBits;
@@ -2275,30 +2434,22 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
+ unsigned InBits = InVT.getScalarSizeInBits();
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
- // Note if the sign bit is known to be zero or one.
- bool SignBitKnownZero = KnownZero.isNegative();
- bool SignBitKnownOne = KnownOne.isNegative();
-
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
-
- // If the sign bit is known zero or one, the top bits match.
- if (SignBitKnownZero)
- KnownZero |= NewBits;
- else if (SignBitKnownOne)
- KnownOne |= NewBits;
+ // If the sign bit is known to be zero or one, then sext will extend
+ // it to the top bits, else it will just zext.
+ KnownZero = KnownZero.sext(BitWidth);
+ KnownOne = KnownOne.sext(BitWidth);
break;
}
case ISD::ANY_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
+ unsigned InBits = InVT.getScalarSizeInBits();
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
@@ -2308,10 +2459,11 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::TRUNCATE: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
+ unsigned InBits = InVT.getScalarSizeInBits();
KnownZero = KnownZero.zext(InBits);
KnownOne = KnownOne.zext(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
break;
@@ -2330,7 +2482,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
case ISD::SUB: {
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
+ if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
@@ -2338,7 +2490,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -2350,8 +2503,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
}
}
+ LLVM_FALLTHROUGH;
}
- // fall through
case ISD::ADD:
case ISD::ADDE: {
// Output known-0 bits are known if clear or set in both the low clear bits
@@ -2361,17 +2514,19 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// known to be clear. For example, if one input has the top 10 bits clear
// and the other has the top 8 bits clear, we know the top 7 bits of the
// output must be clear.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
KnownZeroHigh = std::min(KnownZeroHigh,
KnownZero2.countLeadingOnes());
KnownZeroLow = std::min(KnownZeroLow,
KnownZero2.countTrailingOnes());
- if (Op.getOpcode() == ISD::ADD) {
+ if (Opcode == ISD::ADD) {
KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
if (KnownZeroHigh > 1)
KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
@@ -2387,11 +2542,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
}
case ISD::SREM:
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -2411,11 +2567,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
break;
case ISD::UREM: {
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
// The upper bits are all zero, the lower ones are unchanged.
KnownZero = KnownZero2 | ~LowBits;
@@ -2426,8 +2583,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -2437,9 +2596,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::EXTRACT_ELEMENT: {
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- const unsigned Index =
- cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- const unsigned BitWidth = Op.getValueType().getSizeInBits();
+ const unsigned Index = Op.getConstantOperandVal(1);
+ const unsigned BitWidth = Op.getValueSizeInBits();
// Remove low part of known bits mask
KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
@@ -2450,8 +2608,74 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
KnownOne = KnownOne.trunc(BitWidth);
break;
}
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue EltNo = Op.getOperand(1);
+ EVT VecVT = InVec.getValueType();
+ const unsigned BitWidth = Op.getValueSizeInBits();
+ const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
+ const unsigned NumSrcElts = VecVT.getVectorNumElements();
+ // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
+ // anything about the extended bits.
+ if (BitWidth > EltBitWidth) {
+ KnownZero = KnownZero.trunc(EltBitWidth);
+ KnownOne = KnownOne.trunc(EltBitWidth);
+ }
+ ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
+ // If we know the element index, just demand that vector element.
+ unsigned Idx = ConstEltNo->getZExtValue();
+ APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
+ computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
+ } else {
+ // Unknown element index, so ignore DemandedElts and demand them all.
+ computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
+ }
+ if (BitWidth > EltBitWidth) {
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue InVec = Op.getOperand(0);
+ SDValue InVal = Op.getOperand(1);
+ SDValue EltNo = Op.getOperand(2);
+
+ ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
+ if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
+ // If we know the element index, split the demand between the
+ // source vector and the inserted element.
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ unsigned EltIdx = CEltNo->getZExtValue();
+
+ // If we demand the inserted element then add its common known bits.
+ if (DemandedElts[EltIdx]) {
+ computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
+ KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
+ KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
+ }
+
+ // If we demand the source vector then add its common known bits, ensuring
+ // that we don't demand the inserted element.
+ APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
+ if (!!VectorElts) {
+ computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1);
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ }
+ } else {
+ // Unknown element index, so ignore DemandedElts and demand them all.
+ computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
+ computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
+ KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
+ KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
+ }
+ break;
+ }
case ISD::BSWAP: {
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
KnownZero = KnownZero2.byteSwap();
KnownOne = KnownOne2.byteSwap();
break;
@@ -2460,13 +2684,15 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: {
- APInt Op0Zero, Op0One;
- APInt Op1Zero, Op1One;
- computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth);
- computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth);
-
- KnownZero = Op0Zero & Op1Zero;
- KnownOne = Op0One & Op1One;
+ computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ Depth + 1);
+ // If we don't know any bits, early out.
+ if (!KnownOne && !KnownZero)
+ break;
+ computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ Depth + 1);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
break;
}
case ISD::FrameIndex:
@@ -2479,9 +2705,9 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
break;
default:
- if (Op.getOpcode() < ISD::BUILTIN_OP_END)
+ if (Opcode < ISD::BUILTIN_OP_END)
break;
- // Fallthrough
+ LLVM_FALLTHROUGH;
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
@@ -2494,6 +2720,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
+ EVT OpVT = Val.getValueType();
+ unsigned BitWidth = OpVT.getScalarSizeInBits();
+
+ // Is the constant a known power of 2?
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
+ return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
+
// A left-shift of a constant one will have exactly one bit set because
// shifting the bit off the end is undefined.
if (Val.getOpcode() == ISD::SHL) {
@@ -2510,12 +2743,19 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
return true;
}
+ // Are all operands of a build vector constant powers of two?
+ if (Val.getOpcode() == ISD::BUILD_VECTOR)
+ if (llvm::all_of(Val->ops(), [this, BitWidth](SDValue E) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
+ return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
+ return false;
+ }))
+ return true;
+
// More could be done here, though the above checks are enough
// to handle some common cases.
// Fall back to computeKnownBits to catch other known cases.
- EVT OpVT = Val.getValueType();
- unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
APInt KnownZero, KnownOne;
computeKnownBits(Val, KnownZero, KnownOne);
return (KnownZero.countPopulation() == BitWidth - 1) &&
@@ -2525,7 +2765,7 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
EVT VT = Op.getValueType();
assert(VT.isInteger() && "Invalid VT!");
- unsigned VTBits = VT.getScalarType().getSizeInBits();
+ unsigned VTBits = VT.getScalarSizeInBits();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
@@ -2547,14 +2787,12 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
}
case ISD::SIGN_EXTEND:
- Tmp =
- VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
- Tmp =
- cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
@@ -2563,17 +2801,18 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
// SRA X, C -> adds C sign bits.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- Tmp += C->getZExtValue();
- if (Tmp > VTBits) Tmp = VTBits;
+ if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
+ APInt ShiftVal = C->getAPIntValue();
+ ShiftVal += Tmp;
+ Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
}
return Tmp;
case ISD::SHL:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (C->getZExtValue() >= VTBits || // Bad shift.
- C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
+ if (C->getAPIntValue().uge(VTBits) || // Bad shift.
+ C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
return Tmp - C->getZExtValue();
}
break;
@@ -2679,7 +2918,7 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
if (Tmp2 == 1) return 1;
// Handle NEG.
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
+ if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero, KnownOne;
computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
@@ -2701,25 +2940,50 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
- case ISD::TRUNCATE:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
+ case ISD::TRUNCATE: {
+ // Check if the sign bits of source go down as far as the truncated value.
+ unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
+ unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ if (NumSrcSignBits > (NumSrcBits - VTBits))
+ return NumSrcSignBits - (NumSrcBits - VTBits);
break;
+ }
case ISD::EXTRACT_ELEMENT: {
const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- const int BitWidth = Op.getValueType().getSizeInBits();
- const int Items =
- Op.getOperand(0).getValueType().getSizeInBits() / BitWidth;
+ const int BitWidth = Op.getValueSizeInBits();
+ const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
// Get reverse index (starting from 1), Op1 value indexes elements from
// little end. Sign starts at big end.
- const int rIndex = Items - 1 -
- cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
// If the sign portion ends in our element the subtraction gives correct
// result. Otherwise it gives either negative or > bitwidth result
return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
}
+ case ISD::EXTRACT_VECTOR_ELT: {
+ // At the moment we keep this simple and skip tracking the specific
+ // element. This way we get the lowest common denominator for all elements
+ // of the vector.
+ // TODO: get information for given vector element
+ const unsigned BitWidth = Op.getValueSizeInBits();
+ const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
+ // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
+ // anything about sign bits. But if the sizes match we can derive knowledge
+ // about sign bits from the vector operand.
+ if (BitWidth == EltBitWidth)
+ return ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR:
+ return ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ case ISD::CONCAT_VECTORS:
+ // Determine the minimum number of sign bits across all input vectors.
+ // Early out if the result is already 1.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
+ Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
+ return Tmp;
}
// If we are looking at the loaded value of the SDNode.
@@ -2730,10 +2994,10 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+ Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+ Tmp = LD->getMemoryVT().getScalarSizeInBits();
return VTBits-Tmp;
}
}
@@ -2842,6 +3106,16 @@ bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
llvm::SelectionDAG &DAG) {
+ assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
+ assert(llvm::all_of(Ops,
+ [Ops](SDValue Op) {
+ return Ops[0].getValueType() == Op.getValueType();
+ }) &&
+ "Concatenation of vectors with inconsistent value types!");
+ assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
+ VT.getVectorNumElements() &&
+ "Incorrect element count in vector concatenation!");
+
if (Ops.size() == 1)
return Ops[0];
@@ -2875,7 +3149,7 @@ static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
? DAG.getZExtOrTrunc(Op, DL, SVT)
: DAG.getSExtOrTrunc(Op, DL, SVT);
- return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
+ return DAG.getBuildVector(VT, DL, Elts);
}
/// Gets or creates the specified node.
@@ -2924,13 +3198,13 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
}
case ISD::BITCAST:
if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
- return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
- return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT);
+ return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
break;
case ISD::BSWAP:
return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
@@ -3162,8 +3436,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
break;
case ISD::BITCAST:
// Basic sanity checking.
- assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
- && "Cannot BITCAST between types of different sizes!");
+ assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
+ "Cannot BITCAST between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
@@ -3333,25 +3607,22 @@ SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
EVT SVT = VT.getScalarType();
SmallVector<SDValue, 4> Outputs;
for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
- ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
- ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
- if (!V1 || !V2) // Not a constant, bail.
- return SDValue();
-
- if (V1->isOpaque() || V2->isOpaque())
- return SDValue();
+ SDValue V1 = BV1->getOperand(I);
+ SDValue V2 = BV2->getOperand(I);
// Avoid BUILD_VECTOR nodes that perform implicit truncation.
- // FIXME: This is valid and could be handled by truncating the APInts.
+ // FIXME: This is valid and could be handled by truncation.
if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
return SDValue();
// Fold one vector element.
- std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(),
- V2->getAPIntValue());
- if (!Folded.second)
+ SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
+
+ // Scalar folding only succeeded if the result is a constant or UNDEF.
+ if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
+ ScalarResult.getOpcode() != ISD::ConstantFP)
return SDValue();
- Outputs.push_back(getConstant(Folded.first, DL, SVT));
+ Outputs.push_back(ScalarResult);
}
assert(VT.getVectorNumElements() == Outputs.size() &&
@@ -3394,8 +3665,8 @@ SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
// All operands must be vector types with the same number of elements as
// the result type and must be either UNDEF or a build vector of constant
// or UNDEF scalars.
- if (!std::all_of(Ops.begin(), Ops.end(), IsConstantBuildVectorOrUndef) ||
- !std::all_of(Ops.begin(), Ops.end(), IsScalarOrSameVectorSize))
+ if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
+ !all_of(Ops, IsScalarOrSameVectorSize))
return SDValue();
// If we are comparing vectors, then the result needs to be a i1 boolean
@@ -3577,8 +3848,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
// amounts. This catches things like trying to shift an i1024 value by an
// i8, which is easy to fall into in generic code that uses
// TLI.getShiftAmount().
- assert(N2.getValueType().getSizeInBits() >=
- Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
+ assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
"Invalid use of small shift amount with oversized value!");
// Always fold shifts of i1 values so the code generator doesn't need to
@@ -3609,7 +3879,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
assert(VT.isFloatingPoint() &&
N1.getValueType().isFloatingPoint() &&
VT.bitsLE(N1.getValueType()) &&
- N2C && "Invalid FP_ROUND!");
+ N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
+ "Invalid FP_ROUND!");
if (N1.getValueType() == VT) return N1; // noop conversion.
break;
case ISD::AssertSext:
@@ -3640,7 +3911,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
if (EVT == VT) return N1; // Not actually extending
auto SignExtendInReg = [&](APInt Val) {
- unsigned FromBits = EVT.getScalarType().getSizeInBits();
+ unsigned FromBits = EVT.getScalarSizeInBits();
Val <<= Val.getBitWidth() - FromBits;
Val = Val.ashr(Val.getBitWidth() - FromBits);
return getConstant(Val, DL, VT.getScalarType());
@@ -3768,6 +4039,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
// Trivial extraction.
if (VT.getSimpleVT() == N1.getSimpleValueType())
return N1;
+
+ // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
+ // during shuffle legalization.
+ if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
+ VT == N1.getOperand(1).getValueType())
+ return N1.getOperand(1);
}
break;
}
@@ -3868,7 +4145,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
return getConstant(0, DL, VT);
- // fallthrough
+ LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
@@ -3977,6 +4254,13 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
break;
case ISD::VECTOR_SHUFFLE:
llvm_unreachable("should use getVectorShuffle constructor!");
+ case ISD::INSERT_VECTOR_ELT: {
+ ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
+ // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
+ if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
+ return getUNDEF(VT);
+ break;
+ }
case ISD::INSERT_SUBVECTOR: {
SDValue Index = N3;
if (VT.isSimple() && N1.getValueType().isSimple()
@@ -4072,7 +4356,7 @@ static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
const SDLoc &dl) {
assert(!Value.isUndef());
- unsigned NumBits = VT.getScalarType().getSizeInBits();
+ unsigned NumBits = VT.getScalarSizeInBits();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
assert(C->getAPIntValue().getBitWidth() == 8);
APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
@@ -4306,10 +4590,10 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
@@ -4342,8 +4626,8 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
@@ -4422,10 +4706,10 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
@@ -4445,8 +4729,8 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
@@ -4519,10 +4803,10 @@ static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
bool IsZeroVal =
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
@@ -4538,8 +4822,8 @@ static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI.setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
@@ -4796,10 +5080,7 @@ SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- AtomicOrdering SuccessOrdering,
- AtomicOrdering FailureOrdering,
- SynchronizationScope SynchScope) {
+ MachineMemOperand *MMO) {
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
AddNodeIDNode(ID, Opcode, VTList, Ops);
@@ -4811,8 +5092,7 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
}
auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO, SuccessOrdering,
- FailureOrdering, SynchScope);
+ VTList, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
@@ -4820,14 +5100,6 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO, AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
- Ordering, SynchScope);
-}
-
SDValue SelectionDAG::getAtomicCmpSwap(
unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
@@ -4847,26 +5119,23 @@ SDValue SelectionDAG::getAtomicCmpSwap(
auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
MachineMemOperand::MOStore;
MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
+ MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
+ AAMDNodes(), nullptr, SynchScope, SuccessOrdering,
+ FailureOrdering);
- return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
- SuccessOrdering, FailureOrdering, SynchScope);
+ return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
}
SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
EVT MemVT, SDVTList VTs, SDValue Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp,
- MachineMemOperand *MMO,
- AtomicOrdering SuccessOrdering,
- AtomicOrdering FailureOrdering,
- SynchronizationScope SynchScope) {
+ MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
- SuccessOrdering, FailureOrdering, SynchScope);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
@@ -4892,16 +5161,15 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
- MemVT.getStoreSize(), Alignment);
+ MemVT.getStoreSize(), Alignment, AAMDNodes(),
+ nullptr, SynchScope, Ordering);
- return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
- Ordering, SynchScope);
+ return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Val,
- MachineMemOperand *MMO, AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
+ MachineMemOperand *MMO) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
@@ -4921,18 +5189,17 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr, Val};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
EVT VT, SDValue Chain, SDValue Ptr,
- MachineMemOperand *MMO, AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
+ MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = {Chain, Ptr};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
+ return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
}
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
@@ -5056,7 +5323,7 @@ SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
+ Alignment = getEVTAlignment(MemVT);
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
@@ -5101,9 +5368,8 @@ SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
+ dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5160,12 +5426,14 @@ SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
- // Don't propagate the invariant flag.
+ // Don't propagate the invariant or dereferenceable flags.
auto MMOFlags =
- LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOInvariant;
+ LD->getMemOperand()->getFlags() &
+ ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getPointerInfo(),
- LD->getMemoryVT(), LD->getAlignment(), MMOFlags);
+ LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
+ LD->getAAInfo());
}
SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
@@ -5200,8 +5468,8 @@ SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
+ dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5265,8 +5533,8 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
+ dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5311,17 +5579,15 @@ SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue Src0,
EVT MemVT, MachineMemOperand *MMO,
- ISD::LoadExtType ExtTy) {
+ ISD::LoadExtType ExtTy, bool isExpanding) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED,
- MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
+ dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5329,7 +5595,7 @@ SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ExtTy, MemVT, MMO);
+ ExtTy, isExpanding, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
@@ -5340,7 +5606,7 @@ SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
SDValue Val, SDValue Ptr, SDValue Mask,
EVT MemVT, MachineMemOperand *MMO,
- bool isTrunc) {
+ bool IsTruncating, bool IsCompressing) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
@@ -5349,8 +5615,8 @@ SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
+ dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5358,7 +5624,7 @@ SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
return SDValue(E, 0);
}
auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- isTrunc, MemVT, MMO);
+ IsTruncating, IsCompressing, MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
@@ -5374,10 +5640,8 @@ SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED,
- MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
+ dl.getIROrder(), VTs, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5411,9 +5675,8 @@ SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
+ ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
+ dl.getIROrder(), VTs, VT, MMO));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
@@ -5545,7 +5808,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
- unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
+ unsigned NumBits = VT.getScalarSizeInBits()*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
@@ -5870,21 +6133,6 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3, EVT VT4,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
-}
-
-SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
-}
-
-SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
@@ -5893,24 +6141,6 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
-}
-
-SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
-}
-
-SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
SDVTList VTs,ArrayRef<SDValue> Ops) {
SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
// Reset the NodeID to -1.
@@ -5922,14 +6152,14 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
return New;
}
-/// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
+/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
/// the line number information on the merged node since it is not possible to
/// preserve the information that operation is associated with multiple lines.
/// This will make the debugger working better at -O0, were there is a higher
/// probability having other instructions associated with that line.
///
/// For IROrder, we keep the smaller of the two
-SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) {
+SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
DebugLoc NLoc = N->getDebugLoc();
if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
N->setDebugLoc(DebugLoc());
@@ -5963,7 +6193,7 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, VTs, Ops);
if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
- return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
+ return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
}
if (!RemoveNodeFromCSEMaps(N))
@@ -6050,19 +6280,6 @@ MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, None);
-}
-
-MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops);
-}
-
-MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
@@ -6110,13 +6327,6 @@ MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
}
MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3, EVT VT4,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return getMachineNode(Opcode, dl, VTs, Ops);
-}
-
-MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops) {
SDVTList VTs = getVTList(ResultTys);
@@ -6135,7 +6345,7 @@ MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
AddNodeIDNode(ID, ~Opcode, VTs, Ops);
IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
+ return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
}
}
@@ -6255,6 +6465,9 @@ void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
"Cannot replace with this method!");
assert(From != To.getNode() && "Cannot replace uses of with self");
+ // Preserve Debug Values
+ TransferDbgValues(FromN, To);
+
// Iterate over all the existing uses of From. New uses will be added
// to the beginning of the use list, which we avoid visiting.
// This specifically avoids visiting uses of From that arise while the
@@ -6285,8 +6498,6 @@ void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
AddModifiedNodeToCSEMaps(User);
}
- // Preserve Debug Values
- TransferDbgValues(FromN, To);
// If we just RAUW'd the root, take note.
if (FromN == getRoot())
@@ -6689,6 +6900,40 @@ bool llvm::isBitwiseNot(SDValue V) {
return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
}
+ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
+
+ // BuildVectors can truncate their operands. Ignore that case here.
+ // FIXME: We blindly ignore splats which include undef which is overly
+ // pessimistic.
+ if (CN && UndefElements.none() &&
+ CN->getValueType(0) == N.getValueType().getScalarType())
+ return CN;
+ }
+
+ return nullptr;
+}
+
+ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
+
+ if (CN && UndefElements.none())
+ return CN;
+ }
+
+ return nullptr;
+}
+
HandleSDNode::~HandleSDNode() {
DropOperands();
}
@@ -6710,11 +6955,11 @@ AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
: SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant());
- assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(isNonTemporal() == MMO->isNonTemporal() &&
- "Non-temporal encoding error!");
+ MemSDNodeBits.IsVolatile = MMO->isVolatile();
+ MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
+ MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
+ MemSDNodeBits.IsInvariant = MMO->isInvariant();
+
// We check here that the size of the memory operand fits within the size of
// the MMO. This is because the MMO might indicate only a possible address
// range instead of specifying the affected memory addresses precisely.
@@ -6939,8 +7184,8 @@ SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
for (; i < ResNE; ++i)
Scalars.push_back(getUNDEF(EltVT));
- return getNode(ISD::BUILD_VECTOR, dl,
- EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
+ EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
+ return getBuildVector(VecVT, dl, Scalars);
}
bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
@@ -6962,13 +7207,13 @@ bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
- const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
+ const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
- int FS = MFI->getObjectSize(FI);
- int BFS = MFI->getObjectSize(BFI);
+ int FS = MFI.getObjectSize(FI);
+ int BFS = MFI.getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
- return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
+ return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
}
// Handle X + C.
@@ -7033,7 +7278,7 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
}
if (FrameIdx != (1 << 31)) {
- const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
+ const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
FrameOffset);
return FIInfoAlign;
@@ -7124,7 +7369,7 @@ bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
// false.
unsigned int nOps = getNumOperands();
assert(nOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
+ unsigned EltBitSize = VT.getScalarSizeInBits();
for (unsigned j = 0; j < nOps; ++j) {
unsigned i = isBigEndian ? nOps-1-j : j;
@@ -7265,6 +7510,16 @@ SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
return nullptr;
}
+SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
+ if (isa<ConstantFPSDNode>(N))
+ return N.getNode();
+
+ if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
+ return N.getNode();
+
+ return nullptr;
+}
+
#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode*> &Visited,
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index e1fc37d..996c95b 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -40,6 +40,7 @@
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
@@ -183,7 +184,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
Hi =
DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
+ DAG.getConstant(Lo.getValueSizeInBits(), DL,
TLI.getPointerTy(DAG.getDataLayout())));
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
@@ -833,8 +834,7 @@ void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
// If we clobbered the stack pointer, MFI should know about it.
- assert(DAG.getMachineFunction().getFrameInfo()->
- hasOpaqueSPAdjustment());
+ assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
}
}
}
@@ -931,46 +931,9 @@ SDValue SelectionDAGBuilder::getControlRoot() {
return Root;
}
-/// Copy swift error to the final virtual register at end of a basic block, as
-/// specified by SwiftErrorWorklist, if necessary.
-static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
- const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
- if (!TLI.supportSwiftError())
- return;
-
- if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
- return;
-
- // Go through entries in SwiftErrorWorklist, and create copy as necessary.
- FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
- SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
- FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
- SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
- for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
- unsigned WorkReg = WorklistEntry[I];
-
- // Find the swifterror virtual register for the value in SwiftErrorMap.
- unsigned MapReg = MapEntry[I];
- assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
- "Entries in SwiftErrorMap should be virtual registers");
-
- if (WorkReg == MapReg)
- continue;
-
- // Create copy from SwiftErrorMap to SwiftWorklist.
- auto &DL = SDB.DAG.getDataLayout();
- SDValue CopyNode = SDB.DAG.getCopyToReg(
- SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
- SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
- MapEntry[I] = WorkReg;
- SDB.DAG.setRoot(CopyNode);
- }
-}
-
void SelectionDAGBuilder::visit(const Instruction &I) {
// Set up outgoing PHI node register values before emitting the terminator.
if (isa<TerminatorInst>(&I)) {
- copySwiftErrorsToFinalVRegs(*this);
HandlePHINodesInSuccessorBlocks(I.getParent());
}
@@ -1021,8 +984,7 @@ void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
if (Val.getNode()) {
if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
Val)) {
- SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
- false, Offset, dl, DbgSDNodeOrder);
+ SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
DAG.AddDbgValue(SDV, Val.getNode(), false);
}
} else
@@ -1491,6 +1453,7 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
const Function *F = I.getParent()->getParent();
if (TLI.supportSwiftError() &&
F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
+ assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
Flags.setSwiftError();
Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
@@ -1498,7 +1461,8 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
true /*isfixed*/, 1 /*origidx*/,
0 /*partOffs*/));
// Create SDNode for the swifterror virtual register.
- OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
+ OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
+ FuncInfo.MBB, FuncInfo.SwiftErrorArg),
EVT(TLI.getPointerTy(DL))));
}
@@ -2012,7 +1976,8 @@ static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
if (Global) {
MachinePointerInfo MPInfo(Global);
MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
- auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
+ MachineMemOperand::MODereferenceable;
*MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
DAG.getEVTAlignment(PtrTy));
Node->setMemRefs(MemRefs, MemRefs + 1);
@@ -2033,8 +1998,8 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
- MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
- int FI = MFI->getStackProtectorIndex();
+ MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
+ int FI = MFI.getStackProtectorIndex();
SDValue Guard;
SDLoc dl = getCurSDLoc();
@@ -2329,8 +2294,7 @@ void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
"Call to landingpad not in landing pad!");
MachineBasicBlock *MBB = FuncInfo.MBB;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- AddLandingPadInfo(LP, MMI, MBB);
+ addLandingPadInfo(LP, *MBB);
// If there aren't registers to copy the values into (e.g., during SjLj
// exceptions), then don't bother to create these DAG nodes.
@@ -2484,7 +2448,7 @@ static bool isVectorReductionOp(const User *I) {
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
if (FPOp->getFastMathFlags().unsafeAlgebra())
break;
- // Fall through.
+ LLVM_FALLTHROUGH;
default:
return false;
}
@@ -2639,7 +2603,7 @@ void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
// Coerce the shift amount to the right type if we can.
if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
unsigned ShiftSize = ShiftTy.getSizeInBits();
- unsigned Op2Size = Op2.getValueType().getSizeInBits();
+ unsigned Op2Size = Op2.getValueSizeInBits();
SDLoc DL = getCurSDLoc();
// If the operand is smaller than the shift count type, promote it.
@@ -2650,7 +2614,7 @@ void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
// count type has enough bits to represent any shift value, truncate
// it now. This is a common case and it exposes the truncate to
// optimization early.
- else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
+ else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
// Otherwise we'll need to temporarily settle for some other convenient
// type. Type legalization will make adjustments once the shiftee is split.
@@ -2731,7 +2695,7 @@ void SelectionDAGBuilder::visitFCmp(const User &I) {
// Check if the condition of the select has one use or two users that are both
// selects with the same condition.
static bool hasOnlySelectUsers(const Value *Cond) {
- return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
+ return all_of(Cond->users(), [](const Value *V) {
return isa<SelectInst>(V);
});
}
@@ -2998,6 +2962,7 @@ void SelectionDAGBuilder::visitExtractElement(const User &I) {
void SelectionDAGBuilder::visitShuffleVector(const User &I) {
SDValue Src1 = getValue(I.getOperand(0));
SDValue Src2 = getValue(I.getOperand(1));
+ SDLoc DL = getCurSDLoc();
SmallVector<int, 8> Mask;
ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
@@ -3009,54 +2974,60 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
unsigned SrcNumElts = SrcVT.getVectorNumElements();
if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask));
+ setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
return;
}
// Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
-
- unsigned NumConcat = MaskNumElts / SrcNumElts;
-
- // Check if the shuffle is some kind of concatenation of the input vectors.
- bool IsConcat = true;
- SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < 0)
- continue;
- // Ensure the indices in each SrcVT sized piece are sequential and that
- // the same source is used for the whole piece.
- if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
- (ConcatSrcs[i / SrcNumElts] >= 0 &&
- ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
- IsConcat = false;
- break;
+ if (SrcNumElts < MaskNumElts) {
+ // Mask is longer than the source vectors. We can use concatenate vector to
+ // make the mask and vectors lengths match.
+
+ if (MaskNumElts % SrcNumElts == 0) {
+ // Mask length is a multiple of the source vector length.
+ // Check if the shuffle is some kind of concatenation of the input
+ // vectors.
+ unsigned NumConcat = MaskNumElts / SrcNumElts;
+ bool IsConcat = true;
+ SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ if (Idx < 0)
+ continue;
+ // Ensure the indices in each SrcVT sized piece are sequential and that
+ // the same source is used for the whole piece.
+ if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
+ (ConcatSrcs[i / SrcNumElts] >= 0 &&
+ ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
+ IsConcat = false;
+ break;
+ }
+ // Remember which source this index came from.
+ ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
}
- // Remember which source this index came from.
- ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
- }
- // The shuffle is concatenating multiple vectors together. Just emit
- // a CONCAT_VECTORS operation.
- if (IsConcat) {
- SmallVector<SDValue, 8> ConcatOps;
- for (auto Src : ConcatSrcs) {
- if (Src < 0)
- ConcatOps.push_back(DAG.getUNDEF(SrcVT));
- else if (Src == 0)
- ConcatOps.push_back(Src1);
- else
- ConcatOps.push_back(Src2);
+ // The shuffle is concatenating multiple vectors together. Just emit
+ // a CONCAT_VECTORS operation.
+ if (IsConcat) {
+ SmallVector<SDValue, 8> ConcatOps;
+ for (auto Src : ConcatSrcs) {
+ if (Src < 0)
+ ConcatOps.push_back(DAG.getUNDEF(SrcVT));
+ else if (Src == 0)
+ ConcatOps.push_back(Src1);
+ else
+ ConcatOps.push_back(Src2);
+ }
+ setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
+ return;
}
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
- VT, ConcatOps));
- return;
}
+ unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
+ unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
+ EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
+ PaddedMaskNumElts);
+
// Pad both vectors with undefs to make them the same length as the mask.
SDValue UndefVal = DAG.getUNDEF(SrcVT);
@@ -3065,24 +3036,32 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
MOps1[0] = Src1;
MOps2[0] = Src2;
- Src1 = Src1.isUndef() ? DAG.getUNDEF(VT)
- : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT, MOps1);
- Src2 = Src2.isUndef() ? DAG.getUNDEF(VT)
- : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT, MOps2);
+ Src1 = Src1.isUndef()
+ ? DAG.getUNDEF(PaddedVT)
+ : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
+ Src2 = Src2.isUndef()
+ ? DAG.getUNDEF(PaddedVT)
+ : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
// Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
+ SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
for (unsigned i = 0; i != MaskNumElts; ++i) {
int Idx = Mask[i];
if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts - MaskNumElts;
- MappedOps.push_back(Idx);
+ Idx -= SrcNumElts - PaddedMaskNumElts;
+ MappedOps[i] = Idx;
}
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- MappedOps));
+ SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
+
+ // If the concatenated vector was padded, extract a subvector with the
+ // correct number of elements.
+ if (MaskNumElts != PaddedMaskNumElts)
+ Result = DAG.getNode(
+ ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
+ DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
+
+ setValue(&I, Result);
return;
}
@@ -3141,10 +3120,9 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
if (RangeUse[Input] == 0)
Src = DAG.getUNDEF(VT);
else {
- SDLoc dl = getCurSDLoc();
Src = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
- DAG.getConstant(StartIdx[Input], dl,
+ ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
+ DAG.getConstant(StartIdx[Input], DL,
TLI.getVectorIdxTy(DAG.getDataLayout())));
}
}
@@ -3162,8 +3140,7 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
MappedOps.push_back(Idx);
}
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- MappedOps));
+ setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
return;
}
}
@@ -3173,7 +3150,6 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
// to insert and build vector.
EVT EltVT = VT.getVectorElementType();
EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
- SDLoc dl = getCurSDLoc();
SmallVector<SDValue,8> Ops;
for (unsigned i = 0; i != MaskNumElts; ++i) {
int Idx = Mask[i];
@@ -3185,14 +3161,14 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
}
Ops.push_back(Res);
}
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
+ setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
}
void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
@@ -3293,13 +3269,13 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
if (VectorWidth && !N.getValueType().isVector()) {
LLVMContext &Context = *DAG.getContext();
EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
- SmallVector<SDValue, 16> Ops(VectorWidth, N);
- N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ N = DAG.getSplatBuildVector(VT, dl, N);
}
+
for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
- if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
if (Field) {
// N = N + Offset
@@ -3331,8 +3307,9 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
if (CI->isZero())
continue;
APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
+ LLVMContext &Context = *DAG.getContext();
SDValue OffsVal = VectorWidth ?
- DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
+ DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
DAG.getConstant(Offs, dl, PtrTy);
// In an inbouds GEP with an offset that is nonnegative even when
@@ -3350,9 +3327,9 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
if (!IdxN.getValueType().isVector() && VectorWidth) {
MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
- SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
- IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
}
+
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
@@ -3433,7 +3410,7 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
setValue(&I, DSA);
DAG.setRoot(DSA.getValue(1));
- assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
+ assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
}
void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
@@ -3462,17 +3439,8 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
bool isVolatile = I.isVolatile();
bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
-
- // The IR notion of invariant_load only guarantees that all *non-faulting*
- // invariant loads result in the same value. The MI notion of invariant load
- // guarantees that the load can be legally moved to any location within its
- // containing function. The MI notion of invariant_load is stronger than the
- // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
- // with a guarantee that the location being loaded from is dereferenceable
- // throughout the function's lifetime.
-
- bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
- isDereferenceablePointer(SV, DAG.getDataLayout());
+ bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
+ bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
unsigned Alignment = I.getAlignment();
AAMDNodes AAInfo;
@@ -3540,6 +3508,8 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
MMOFlags |= MachineMemOperand::MONonTemporal;
if (isInvariant)
MMOFlags |= MachineMemOperand::MOInvariant;
+ if (isDereferenceable)
+ MMOFlags |= MachineMemOperand::MODereferenceable;
SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
MachinePointerInfo(SV, Offsets[i]), Alignment,
@@ -3585,7 +3555,7 @@ void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
SDValue(Src.getNode(), Src.getResNo()));
DAG.setRoot(CopyNode);
- FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
+ FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
}
void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
@@ -3613,9 +3583,9 @@ void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
"expect a single EVT for swifterror");
// Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
- SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
- FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
- ValueVTs[0]);
+ SDValue L = DAG.getCopyFromReg(
+ getRoot(), getCurSDLoc(),
+ FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
setValue(&I, L);
}
@@ -3697,16 +3667,39 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
DAG.setRoot(StoreNode);
}
-void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
+void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
+ bool IsCompressing) {
SDLoc sdl = getCurSDLoc();
- // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
- Value *PtrOperand = I.getArgOperand(1);
+ auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
+ unsigned& Alignment) {
+ // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
+ Src0 = I.getArgOperand(0);
+ Ptr = I.getArgOperand(1);
+ Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
+ Mask = I.getArgOperand(3);
+ };
+ auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
+ unsigned& Alignment) {
+ // llvm.masked.compressstore.*(Src0, Ptr, Mask)
+ Src0 = I.getArgOperand(0);
+ Ptr = I.getArgOperand(1);
+ Mask = I.getArgOperand(2);
+ Alignment = 0;
+ };
+
+ Value *PtrOperand, *MaskOperand, *Src0Operand;
+ unsigned Alignment;
+ if (IsCompressing)
+ getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
+ else
+ getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
+
SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(I.getArgOperand(0));
- SDValue Mask = getValue(I.getArgOperand(3));
+ SDValue Src0 = getValue(Src0Operand);
+ SDValue Mask = getValue(MaskOperand);
+
EVT VT = Src0.getValueType();
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
if (!Alignment)
Alignment = DAG.getEVTAlignment(VT);
@@ -3719,7 +3712,8 @@ void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
MachineMemOperand::MOStore, VT.getStoreSize(),
Alignment, AAInfo);
SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
- MMO, false);
+ MMO, false /* Truncating */,
+ IsCompressing);
DAG.setRoot(StoreNode);
setValue(&I, StoreNode);
}
@@ -3740,7 +3734,7 @@ void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
// extract the spalt value and use it as a uniform base.
// In all other cases the function returns 'false'.
//
-static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
+static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
SelectionDAGBuilder* SDB) {
SelectionDAG& DAG = SDB->DAG;
@@ -3777,8 +3771,7 @@ static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
if (!Index.getValueType().isVector()) {
unsigned GEPWidth = GEP->getType()->getVectorNumElements();
EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
- SmallVector<SDValue, 16> Ops(GEPWidth, Index);
- Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
+ Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
}
return true;
}
@@ -3820,18 +3813,38 @@ void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
setValue(&I, Scatter);
}
-void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
+void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
SDLoc sdl = getCurSDLoc();
- // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
- Value *PtrOperand = I.getArgOperand(0);
+ auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
+ unsigned& Alignment) {
+ // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
+ Ptr = I.getArgOperand(0);
+ Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
+ Mask = I.getArgOperand(2);
+ Src0 = I.getArgOperand(3);
+ };
+ auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
+ unsigned& Alignment) {
+ // @llvm.masked.expandload.*(Ptr, Mask, Src0)
+ Ptr = I.getArgOperand(0);
+ Alignment = 0;
+ Mask = I.getArgOperand(1);
+ Src0 = I.getArgOperand(2);
+ };
+
+ Value *PtrOperand, *MaskOperand, *Src0Operand;
+ unsigned Alignment;
+ if (IsExpanding)
+ getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
+ else
+ getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
+
SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(I.getArgOperand(3));
- SDValue Mask = getValue(I.getArgOperand(2));
+ SDValue Src0 = getValue(Src0Operand);
+ SDValue Mask = getValue(MaskOperand);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
+ EVT VT = Src0.getValueType();
if (!Alignment)
Alignment = DAG.getEVTAlignment(VT);
@@ -3851,7 +3864,7 @@ void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
Alignment, AAInfo, Ranges);
SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
- ISD::NON_EXTLOAD);
+ ISD::NON_EXTLOAD, IsExpanding);
if (AddToChain) {
SDValue OutChain = Load.getValue(1);
DAG.setRoot(OutChain);
@@ -4003,13 +4016,13 @@ void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
MachineMemOperand::MOLoad,
VT.getStoreSize(),
I.getAlignment() ? I.getAlignment() :
- DAG.getEVTAlignment(VT));
+ DAG.getEVTAlignment(VT),
+ AAMDNodes(), nullptr, Scope, Order);
InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
SDValue L =
DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
- getValue(I.getPointerOperand()), MMO,
- Order, Scope);
+ getValue(I.getPointerOperand()), MMO);
SDValue OutChain = L.getValue(1);
@@ -4047,8 +4060,12 @@ void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
/// node.
void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
+ // Ignore the callsite's attributes. A specific call site may be marked with
+ // readnone, but the lowering code will expect the chain based on the
+ // definition.
+ const Function *F = I.getCalledFunction();
+ bool HasChain = !F->doesNotAccessMemory();
+ bool OnlyLoad = HasChain && F->onlyReadsMemory();
// Build the operand list.
SmallVector<SDValue, 8> Ops;
@@ -4156,7 +4173,7 @@ static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
/// getF32Constant - Get 32-bit floating point constant.
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
const SDLoc &dl) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
+ return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
MVT::f32);
}
@@ -4743,6 +4760,32 @@ bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
return true;
}
+/// Return the appropriate SDDbgValue based on N.
+SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
+ DILocalVariable *Variable,
+ DIExpression *Expr, int64_t Offset,
+ DebugLoc dl,
+ unsigned DbgSDNodeOrder) {
+ SDDbgValue *SDV;
+ auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
+ if (FISDN && Expr->startsWithDeref()) {
+ // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
+ // stack slot locations as such instead of as indirectly addressed
+ // locations.
+ ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
+ Expr->elements_end());
+ DIExpression *DerefedDIExpr =
+ DIExpression::get(*DAG.getContext(), TrailingElements);
+ int FI = FISDN->getIndex();
+ SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
+ DbgSDNodeOrder);
+ } else {
+ SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
+ Offset, dl, DbgSDNodeOrder);
+ }
+ return SDV;
+}
+
// VisualStudio defines setjmp as _setjmp
#if defined(_MSC_VER) && defined(setjmp) && \
!defined(setjmp_undefined_for_msvc)
@@ -4774,6 +4817,10 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
TLI.getPointerTy(DAG.getDataLayout()),
getValue(I.getArgOperand(0))));
return nullptr;
+ case Intrinsic::addressofreturnaddress:
+ setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
+ TLI.getPointerTy(DAG.getDataLayout())));
+ return nullptr;
case Intrinsic::frameaddress:
setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
TLI.getPointerTy(DAG.getDataLayout()),
@@ -4850,6 +4897,51 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
updateDAGForMaybeTailCall(MM);
return nullptr;
}
+ case Intrinsic::memcpy_element_atomic: {
+ SDValue Dst = getValue(I.getArgOperand(0));
+ SDValue Src = getValue(I.getArgOperand(1));
+ SDValue NumElements = getValue(I.getArgOperand(2));
+ SDValue ElementSize = getValue(I.getArgOperand(3));
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
+ Entry.Node = Dst;
+ Args.push_back(Entry);
+
+ Entry.Node = Src;
+ Args.push_back(Entry);
+
+ Entry.Ty = I.getArgOperand(2)->getType();
+ Entry.Node = NumElements;
+ Args.push_back(Entry);
+
+ Entry.Ty = Type::getInt32Ty(*DAG.getContext());
+ Entry.Node = ElementSize;
+ Args.push_back(Entry);
+
+ uint64_t ElementSizeConstant =
+ cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
+ RTLIB::Libcall LibraryCall =
+ RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
+ if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported element size");
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(sdl)
+ .setChain(getRoot())
+ .setCallee(TLI.getLibcallCallingConv(LibraryCall),
+ Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol(
+ TLI.getLibcallName(LibraryCall),
+ TLI.getPointerTy(DAG.getDataLayout())),
+ std::move(Args));
+
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
+ DAG.setRoot(CallResult.second);
+ return nullptr;
+ }
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
DILocalVariable *Variable = DI.getVariable();
@@ -4944,8 +5036,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (N.getNode()) {
if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
false, N)) {
- SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
- false, Offset, dl, SDNodeOrder);
+ SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
DAG.AddDbgValue(SDV, N.getNode(), false);
}
} else if (!V->use_empty() ) {
@@ -4980,7 +5071,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::eh_typeid_for: {
// Find the type id for the given typeinfo.
GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
- unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
+ unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
Res = DAG.getConstant(TypeID, sdl, MVT::i32);
setValue(&I, Res);
return nullptr;
@@ -4988,7 +5079,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::eh_return_i32:
case Intrinsic::eh_return_i64:
- DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
+ DAG.getMachineFunction().setCallsEHReturn(true);
DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
MVT::Other,
getControlRoot(),
@@ -4996,7 +5087,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
getValue(I.getArgOperand(1))));
return nullptr;
case Intrinsic::eh_unwind_init:
- DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
+ DAG.getMachineFunction().setCallsUnwindInit(true);
return nullptr;
case Intrinsic::eh_dwarf_cfa: {
setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
@@ -5015,11 +5106,11 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::eh_sjlj_functioncontext: {
// Get and store the index of the function context.
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
AllocaInst *FnCtx =
cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
int FI = FuncInfo.StaticAllocaMap[FnCtx];
- MFI->setFunctionContextIndex(FI);
+ MFI.setFunctionContextIndex(FI);
return nullptr;
}
case Intrinsic::eh_sjlj_setjmp: {
@@ -5055,6 +5146,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::masked_store:
visitMaskedStore(I);
return nullptr;
+ case Intrinsic::masked_expandload:
+ visitMaskedLoad(I, true /* IsExpanding */);
+ return nullptr;
+ case Intrinsic::masked_compressstore:
+ visitMaskedStore(I, true /* IsCompressing */);
+ return nullptr;
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:
@@ -5114,39 +5211,6 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
setValue(&I, Res);
return nullptr;
}
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- const Value *Op1 = I.getArgOperand(0);
- Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)),
- Code);
- setValue(&I, Res);
- return nullptr;
- }
case Intrinsic::powi:
setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
getValue(I.getArgOperand(1)), DAG));
@@ -5368,7 +5432,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::stackprotector: {
// Emit code into the DAG to store the stack guard onto the stack.
MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
SDValue Src, Chain = getRoot();
@@ -5380,7 +5444,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
+ MFI.setStackProtectorIndex(FI);
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
@@ -5411,6 +5475,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::annotation:
case Intrinsic::ptr_annotation:
+ case Intrinsic::invariant_group_barrier:
// Drop the intrinsic, but forward the value
setValue(&I, getValue(I.getOperand(0)));
return nullptr;
@@ -5687,7 +5752,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
std::pair<SDValue, SDValue>
SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
const BasicBlock *EHPadBB) {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineModuleInfo &MMI = MF.getMMI();
MCSymbol *BeginLabel = nullptr;
if (EHPadBB) {
@@ -5699,7 +5765,7 @@ SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
// so as to maintain the ordering of pads in the LSDA.
unsigned CallSiteIndex = MMI.getCurrentCallSite();
if (CallSiteIndex) {
- MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
+ MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
// Now that the call site is handled, stop tracking it.
@@ -5740,13 +5806,13 @@ SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
// Inform MachineModuleInfo of range.
- if (MMI.hasEHFunclets()) {
+ if (MF.hasEHFunclets()) {
assert(CLI.CS);
WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
BeginLabel, EndLabel);
} else {
- MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
+ MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
}
}
@@ -5766,6 +5832,15 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
const Value *SwiftErrorVal = nullptr;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // We can't tail call inside a function with a swifterror argument. Lowering
+ // does not support this yet. It would have to move into the swifterror
+ // register before the call.
+ auto *Caller = CS.getInstruction()->getParent()->getParent();
+ if (TLI.supportSwiftError() &&
+ Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
+ isTailCall = false;
+
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
const Value *V = *i;
@@ -5785,9 +5860,9 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
SwiftErrorVal = V;
// We find the virtual register for the actual swifterror argument.
// Instead of using the Value, we use the virtual register instead.
- Entry.Node = DAG.getRegister(
- FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
- EVT(TLI.getPointerTy(DL)));
+ Entry.Node =
+ DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
+ EVT(TLI.getPointerTy(DL)));
}
Args.push_back(Entry);
@@ -5803,6 +5878,11 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
isTailCall = false;
+ // Disable tail calls if there is an swifterror argument. Targets have not
+ // been updated to support tail calls.
+ if (TLI.supportSwiftError() && SwiftErrorVal)
+ isTailCall = false;
+
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(getCurSDLoc())
.setChain(getRoot())
@@ -5827,7 +5907,7 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
// We update the virtual register for the actual swifterror argument.
- FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
+ FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
DAG.setRoot(CopyNode);
}
}
@@ -6035,6 +6115,49 @@ bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
return false;
}
+///
+/// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
+/// to adjust the dst pointer by the size of the copied memory.
+bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
+
+ // Verify argument count: void *mempcpy(void *, const void *, size_t)
+ if (I.getNumArgOperands() != 3)
+ return false;
+
+ SDValue Dst = getValue(I.getArgOperand(0));
+ SDValue Src = getValue(I.getArgOperand(1));
+ SDValue Size = getValue(I.getArgOperand(2));
+
+ unsigned DstAlign = DAG.InferPtrAlignment(Dst);
+ unsigned SrcAlign = DAG.InferPtrAlignment(Src);
+ unsigned Align = std::min(DstAlign, SrcAlign);
+ if (Align == 0) // Alignment of one or both could not be inferred.
+ Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
+
+ bool isVol = false;
+ SDLoc sdl = getCurSDLoc();
+
+ // In the mempcpy context we need to pass in a false value for isTailCall
+ // because the return pointer needs to be adjusted by the size of
+ // the copied memory.
+ SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
+ false, /*isTailCall=*/false,
+ MachinePointerInfo(I.getArgOperand(0)),
+ MachinePointerInfo(I.getArgOperand(1)));
+ assert(MC.getNode() != nullptr &&
+ "** memcpy should not be lowered as TailCall in mempcpy context **");
+ DAG.setRoot(MC);
+
+ // Check if Size needs to be truncated or extended.
+ Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
+
+ // Adjust return pointer to point just past the last dst byte.
+ SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
+ Dst, Size);
+ setValue(&I, DstPlusSize);
+ return true;
+}
+
/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
/// optimized form. If so, return true and lower it, otherwise return false
/// and it will be lowered like a normal call.
@@ -6191,7 +6314,7 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
}
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ComputeUsesVAFloatArgument(I, &MMI);
+ computeUsesVAFloatArgument(I, MMI);
const char *RenameFn = nullptr;
if (Function *F = I.getCalledFunction()) {
@@ -6325,6 +6448,10 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
if (visitMemCmpCall(I))
return;
break;
+ case LibFunc::mempcpy:
+ if (visitMemPCpyCall(I))
+ return;
+ break;
case LibFunc::memchr:
if (visitMemChrCall(I))
return;
@@ -6395,6 +6522,19 @@ public:
: TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
}
+ /// Whether or not this operand accesses memory
+ bool hasMemory(const TargetLowering &TLI) const {
+ // Indirect operand accesses access memory.
+ if (isIndirect)
+ return true;
+
+ for (const auto &Code : Codes)
+ if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
+ return true;
+
+ return false;
+ }
+
/// getCallOperandValEVT - Return the EVT of the Value* that this operand
/// corresponds to. If there is no Value* for this operand, it returns
/// MVT::Other.
@@ -6447,6 +6587,75 @@ typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
} // end anonymous namespace
+/// Make sure that the output operand \p OpInfo and its corresponding input
+/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
+/// out).
+static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
+ SDISelAsmOperandInfo &MatchingOpInfo,
+ SelectionDAG &DAG) {
+ if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
+ return;
+
+ const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
+ const auto &TLI = DAG.getTargetLoweringInfo();
+
+ std::pair<unsigned, const TargetRegisterClass *> MatchRC =
+ TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> InputRC =
+ TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
+ MatchingOpInfo.ConstraintVT);
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ MatchingOpInfo.ConstraintVT.isInteger()) ||
+ (MatchRC.second != InputRC.second)) {
+ // FIXME: error out in a more elegant fashion
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
+}
+
+/// Get a direct memory input to behave well as an indirect operand.
+/// This may introduce stores, hence the need for a \p Chain.
+/// \return The (possibly updated) chain.
+static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
+ SDISelAsmOperandInfo &OpInfo,
+ SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we don't have an indirect input, put it in the constpool if we can,
+ // otherwise spill it to a stack slot.
+ // TODO: This isn't quite right. We need to handle these according to
+ // the addressing mode that the constraint wants. Also, this may take
+ // an additional register for the computation and we don't want that
+ // either.
+
+ // If the operand is a float, integer, or vector constant, spill to a
+ // constant pool entry to get its address.
+ const Value *OpVal = OpInfo.CallOperandVal;
+ if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
+ isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
+ OpInfo.CallOperand = DAG.getConstantPool(
+ cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
+ return Chain;
+ }
+
+ // Otherwise, create a stack slot and emit a store to it before the asm.
+ Type *Ty = OpVal->getType();
+ auto &DL = DAG.getDataLayout();
+ uint64_t TySize = DL.getTypeAllocSize(Ty);
+ unsigned Align = DL.getPrefTypeAlignment(Ty);
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
+ Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
+ MachinePointerInfo::getFixedStack(MF, SSFI));
+ OpInfo.CallOperand = StackSlot;
+
+ return Chain;
+}
+
/// GetRegistersForValue - Assign registers (virtual or physical) for the
/// specified operand. We prefer to assign virtual registers, to allow the
/// register allocator to handle the assignment process. However, if the asm
@@ -6555,6 +6764,73 @@ static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
// Otherwise, we couldn't allocate enough registers for this.
}
+static unsigned
+findMatchingInlineAsmOperand(unsigned OperandNo,
+ const std::vector<SDValue> &AsmNodeOperands) {
+ // Scan until we find the definition we already emitted of this operand.
+ unsigned CurOp = InlineAsm::Op_FirstOperand;
+ for (; OperandNo; --OperandNo) {
+ // Advance to the next operand.
+ unsigned OpFlag =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+ assert((InlineAsm::isRegDefKind(OpFlag) ||
+ InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
+ InlineAsm::isMemKind(OpFlag)) &&
+ "Skipped past definitions?");
+ CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
+ }
+ return CurOp;
+}
+
+/// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
+/// \return true if it has succeeded, false otherwise
+static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
+ MVT RegVT, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
+ for (unsigned i = 0, e = NumRegs; i != e; ++i) {
+ if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
+ Regs.push_back(RegInfo.createVirtualRegister(RC));
+ else
+ return false;
+ }
+ return true;
+}
+
+class ExtraFlags {
+ unsigned Flags = 0;
+
+public:
+ explicit ExtraFlags(ImmutableCallSite CS) {
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+ if (IA->hasSideEffects())
+ Flags |= InlineAsm::Extra_HasSideEffects;
+ if (IA->isAlignStack())
+ Flags |= InlineAsm::Extra_IsAlignStack;
+ if (CS.isConvergent())
+ Flags |= InlineAsm::Extra_IsConvergent;
+ Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
+ }
+
+ void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
+ // Ideally, we would only check against memory constraints. However, the
+ // meaning of an Other constraint can be target-specific and we can't easily
+ // reason about it. Therefore, be conservative and set MayLoad/MayStore
+ // for Other constraints as well.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
+ OpInfo.ConstraintType == TargetLowering::C_Other) {
+ if (OpInfo.Type == InlineAsm::isInput)
+ Flags |= InlineAsm::Extra_MayLoad;
+ else if (OpInfo.Type == InlineAsm::isOutput)
+ Flags |= InlineAsm::Extra_MayStore;
+ else if (OpInfo.Type == InlineAsm::isClobber)
+ Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
+ }
+ }
+
+ unsigned get() const { return Flags; }
+};
+
/// visitInlineAsm - Handle a call to an InlineAsm object.
///
void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
@@ -6569,6 +6845,9 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
bool hasMemory = false;
+ // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
+ ExtraFlags ExtraInfo(CS);
+
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
@@ -6578,14 +6857,25 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
MVT OpVT = MVT::Other;
// Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
+ if (OpInfo.Type == InlineAsm::isInput ||
+ (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+
+ // Process the call argument. BasicBlocks are labels, currently appearing
+ // only in asm's.
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
+ OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
+ } else {
+ OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
}
+ OpVT =
+ OpInfo
+ .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
+ .getSimpleVT();
+ }
+
+ if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
@@ -6597,43 +6887,21 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
}
++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
}
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
+ OpInfo.ConstraintVT = OpVT;
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
- DAG.getDataLayout()).getSimpleVT();
- }
+ if (!hasMemory)
+ hasMemory = OpInfo.hasMemory(TLI);
- OpInfo.ConstraintVT = OpVT;
+ // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
+ // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
+ auto TargetConstraint = TargetConstraints[i];
- // Indirect operand accesses access memory.
- if (OpInfo.isIndirect)
- hasMemory = true;
- else {
- for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType
- CType = TLI.getConstraintType(OpInfo.Codes[j]);
- if (CType == TargetLowering::C_Memory) {
- hasMemory = true;
- break;
- }
- }
- }
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
+
+ ExtraInfo.update(TargetConstraint);
}
SDValue Chain, Flag;
@@ -6656,24 +6924,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// error.
if (OpInfo.hasMatchingInput()) {
SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
-
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
+ patchMatchingInput(OpInfo, Input, DAG);
}
// Compute the constraint code and ConstraintType to use.
@@ -6691,37 +6942,8 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
(OpInfo.Type == InlineAsm::isInput)) &&
"Can only indirectify direct input operands!");
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
- // TODO: This isn't quite right. We need to handle these according to
- // the addressing mode that the constraint wants. Also, this may take
- // an additional register for the computation and we don't want that
- // either.
-
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- const Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(
- cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- Type *Ty = OpVal->getType();
- auto &DL = DAG.getDataLayout();
- uint64_t TySize = DL.getTypeAllocSize(Ty);
- unsigned Align = DL.getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot =
- DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
- Chain = DAG.getStore(
- Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
- MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
- OpInfo.CallOperand = StackSlot;
- }
+ // Memory operands really want the address of the value.
+ Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
// There is no longer a Value* corresponding to this operand.
OpInfo.CallOperandVal = nullptr;
@@ -6736,7 +6958,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
}
- // Second pass - Loop over all of the operands, assigning virtual or physregs
+ // Third pass - Loop over all of the operands, assigning virtual or physregs
// to register class operands.
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
@@ -6761,40 +6983,8 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
// bits as operand 3.
- unsigned ExtraInfo = 0;
- if (IA->hasSideEffects())
- ExtraInfo |= InlineAsm::Extra_HasSideEffects;
- if (IA->isAlignStack())
- ExtraInfo |= InlineAsm::Extra_IsAlignStack;
- if (CS.isConvergent())
- ExtraInfo |= InlineAsm::Extra_IsConvergent;
- // Set the asm dialect.
- ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
-
- // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
-
- // Ideally, we would only check against memory constraints. However, the
- // meaning of an other constraint can be target-specific and we can't easily
- // reason about it. Therefore, be conservative and set MayLoad/MayStore
- // for other constriants as well.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- if (OpInfo.Type == InlineAsm::isInput)
- ExtraInfo |= InlineAsm::Extra_MayLoad;
- else if (OpInfo.Type == InlineAsm::isOutput)
- ExtraInfo |= InlineAsm::Extra_MayStore;
- else if (OpInfo.Type == InlineAsm::isClobber)
- ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
- }
- }
-
AsmNodeOperands.push_back(DAG.getTargetConstant(
- ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
+ ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
// Loop over all of the inputs, copying the operand values into the
// appropriate registers and processing the output regs.
@@ -6862,24 +7052,11 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
case InlineAsm::isInput: {
SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
+ if (OpInfo.isMatchingInputConstraint()) {
// If this is required to match an output register we have already set,
// just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
-
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = InlineAsm::Op_FirstOperand;
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert((InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
- InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
-
+ auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
+ AsmNodeOperands);
unsigned OpFlag =
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
if (InlineAsm::isRegDefKind(OpFlag) ||
@@ -6893,22 +7070,19 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
return;
}
- RegsForValue MatchedRegs;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i) {
- if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
- MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
- else {
- emitInlineAsmError(
- CS, "inline asm error: This value"
- " type register class is not natively supported!");
- return;
- }
+ SmallVector<unsigned, 4> Regs;
+
+ if (!createVirtualRegs(Regs,
+ InlineAsm::getNumOperandRegisters(OpFlag),
+ RegVT, DAG)) {
+ emitInlineAsmError(CS, "inline asm error: This value type register "
+ "class is not natively supported!");
+ return;
}
+
+ RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
+
SDLoc dl = getCurSDLoc();
// Use the produced MatchedRegs object to
MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
@@ -7142,19 +7316,23 @@ SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
if (!Range)
return Op;
- Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
- if (!Lo->isNullValue())
+ ConstantRange CR = getConstantRangeFromMetadata(*Range);
+ if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
+ return Op;
+
+ APInt Lo = CR.getUnsignedMin();
+ if (!Lo.isMinValue())
return Op;
- Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
- unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
+ APInt Hi = CR.getUnsignedMax();
+ unsigned Bits = Hi.getActiveBits();
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
SDLoc SL = getCurSDLoc();
- SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
- Op, DAG.getValueType(SmallVT));
+ SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
+ DAG.getValueType(SmallVT));
unsigned NumVals = Op.getNode()->getNumValues();
if (NumVals == 1)
return ZExt;
@@ -7299,7 +7477,7 @@ void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
DAG.setRoot(Chain);
// Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo()->setHasStackMap();
+ FuncInfo.MF->getFrameInfo().setHasStackMap();
}
/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
@@ -7450,7 +7628,7 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
DAG.DeleteNode(Call);
// Inform the Frame Information that we have a patchpoint in this function.
- FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
+ FuncInfo.MF->getFrameInfo().setHasPatchPoint();
}
/// Returns an AttributeSet representing the attributes applied to the return
@@ -7498,7 +7676,7 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
MachineFunction &MF = CLI.DAG.getMachineFunction();
- DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+ DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
@@ -7580,8 +7758,19 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
Flags.setZExt();
if (Args[i].isSExt)
Flags.setSExt();
- if (Args[i].isInReg)
+ if (Args[i].isInReg) {
+ // If we are using vectorcall calling convention, a structure that is
+ // passed InReg - is surely an HVA
+ if (CLI.CallConv == CallingConv::X86_VectorCall &&
+ isa<StructType>(FinalType)) {
+ // The first value of a structure is marked
+ if (0 == Value)
+ Flags.setHvaStart();
+ Flags.setHva();
+ }
+ // Set InReg Flag
Flags.setInReg();
+ }
if (Args[i].isSRet)
Flags.setSRet();
if (Args[i].isSwiftSelf)
@@ -7867,8 +8056,19 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
Flags.setZExt();
if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
Flags.setSExt();
- if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
+ if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) {
+ // If we are using vectorcall calling convention, a structure that is
+ // passed InReg - is surely an HVA
+ if (F.getCallingConv() == CallingConv::X86_VectorCall &&
+ isa<StructType>(I->getType())) {
+ // The first value of a structure is marked
+ if (0 == Value)
+ Flags.setHvaStart();
+ Flags.setHva();
+ }
+ // Set InReg Flag
Flags.setInReg();
+ }
if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
Flags.setSRet();
if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
@@ -7990,7 +8190,10 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
// If this argument is unused then remember its value. It is used to generate
// debugging information.
- if (I->use_empty() && NumValues) {
+ bool isSwiftErrorArg =
+ TLI->supportSwiftError() &&
+ F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
+ if (I->use_empty() && NumValues && !isSwiftErrorArg) {
SDB->setUnusedArgValue(&*I, InVals[i]);
// Also remember any frame index for use in FastISel.
@@ -8004,7 +8207,10 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
- if (!I->use_empty()) {
+ // Even an apparant 'unused' swifterror argument needs to be returned. So
+ // we do generate a copy for it that can be used on return from the
+ // function.
+ if (!I->use_empty() || isSwiftErrorArg) {
Optional<ISD::NodeType> AssertOp;
if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
AssertOp = ISD::AssertSext;
@@ -8040,12 +8246,12 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
}
- // Update SwiftErrorMap.
- if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
- F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
+ // Update the SwiftErrorVRegDefMap.
+ if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
- FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
+ FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
+ FuncInfo->SwiftErrorArg, Reg);
}
// If this argument is live outside of the entry block, insert a copy from
@@ -8197,14 +8403,14 @@ void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
}
bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
- unsigned *TotalCases, unsigned First,
- unsigned Last,
- unsigned Density) {
+ const SmallVectorImpl<unsigned> &TotalCases,
+ unsigned First, unsigned Last,
+ unsigned Density) const {
assert(Last >= First);
assert(TotalCases[Last] >= TotalCases[First]);
- APInt LowCase = Clusters[First].Low->getValue();
- APInt HighCase = Clusters[Last].High->getValue();
+ const APInt &LowCase = Clusters[First].Low->getValue();
+ const APInt &HighCase = Clusters[Last].High->getValue();
assert(LowCase.getBitWidth() == HighCase.getBitWidth());
// FIXME: A range of consecutive cases has 100% density, but only requires one
@@ -8233,7 +8439,7 @@ static inline bool areJTsAllowed(const TargetLowering &TLI,
TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
-bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
+bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
unsigned First, unsigned Last,
const SwitchInst *SI,
MachineBasicBlock *DefaultMBB,
@@ -8252,12 +8458,12 @@ bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
for (unsigned I = First; I <= Last; ++I) {
assert(Clusters[I].Kind == CC_Range);
Prob += Clusters[I].Prob;
- APInt Low = Clusters[I].Low->getValue();
- APInt High = Clusters[I].High->getValue();
+ const APInt &Low = Clusters[I].Low->getValue();
+ const APInt &High = Clusters[I].High->getValue();
NumCmps += (Low == High) ? 1 : 2;
if (I != First) {
// Fill the gap between this and the previous cluster.
- APInt PreviousHigh = Clusters[I - 1].High->getValue();
+ const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
assert(PreviousHigh.slt(Low));
uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
for (uint64_t J = 0; J < Gap; J++)
@@ -8325,26 +8531,37 @@ void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
if (!areJTsAllowed(TLI, SI))
return;
+ const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
+
const int64_t N = Clusters.size();
- const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
+ const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
+ const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
+ const unsigned MaxJumpTableSize =
+ OptForSize || TLI.getMaximumJumpTableSize() == 0
+ ? UINT_MAX : TLI.getMaximumJumpTableSize();
+
+ if (N < 2 || N < MinJumpTableEntries)
+ return;
// TotalCases[i]: Total nbr of cases in Clusters[0..i].
SmallVector<unsigned, 8> TotalCases(N);
-
for (unsigned i = 0; i < N; ++i) {
- APInt Hi = Clusters[i].High->getValue();
- APInt Lo = Clusters[i].Low->getValue();
+ const APInt &Hi = Clusters[i].High->getValue();
+ const APInt &Lo = Clusters[i].Low->getValue();
TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
if (i != 0)
TotalCases[i] += TotalCases[i - 1];
}
- unsigned MinDensity = JumpTableDensity;
- if (DefaultMBB->getParent()->getFunction()->optForSize())
- MinDensity = OptsizeJumpTableDensity;
- if (N >= MinJumpTableSize
- && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
- // Cheap case: the whole range might be suitable for jump table.
+ const unsigned MinDensity =
+ OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
+
+ // Cheap case: the whole range may be suitable for jump table.
+ unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
+ Clusters[0].Low->getValue())
+ .getLimitedValue(UINT_MAX - 1) + 1;
+ if (JumpTableSize <= MaxJumpTableSize &&
+ isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
CaseCluster JTCluster;
if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
Clusters[0] = JTCluster;
@@ -8368,14 +8585,23 @@ void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
SmallVector<unsigned, 8> MinPartitions(N);
// LastElement[i] is the last element of the partition starting at i.
SmallVector<unsigned, 8> LastElement(N);
- // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
- SmallVector<unsigned, 8> NumTables(N);
+ // PartitionsScore[i] is used to break ties when choosing between two
+ // partitionings resulting in the same number of partitions.
+ SmallVector<unsigned, 8> PartitionsScore(N);
+ // For PartitionsScore, a small number of comparisons is considered as good as
+ // a jump table and a single comparison is considered better than a jump
+ // table.
+ enum PartitionScores : unsigned {
+ NoTable = 0,
+ Table = 1,
+ FewCases = 1,
+ SingleCase = 2
+ };
// Base case: There is only one way to partition Clusters[N-1].
MinPartitions[N - 1] = 1;
LastElement[N - 1] = N - 1;
- assert(MinJumpTableSize > 1);
- NumTables[N - 1] = 0;
+ PartitionsScore[N - 1] = PartitionScores::SingleCase;
// Note: loop indexes are signed to avoid underflow.
for (int64_t i = N - 2; i >= 0; i--) {
@@ -8383,23 +8609,34 @@ void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
// Baseline: Put Clusters[i] into a partition on its own.
MinPartitions[i] = MinPartitions[i + 1] + 1;
LastElement[i] = i;
- NumTables[i] = NumTables[i + 1];
+ PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
// Search for a solution that results in fewer partitions.
for (int64_t j = N - 1; j > i; j--) {
// Try building a partition from Clusters[i..j].
- if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
+ JumpTableSize = (Clusters[j].High->getValue() -
+ Clusters[i].Low->getValue())
+ .getLimitedValue(UINT_MAX - 1) + 1;
+ if (JumpTableSize <= MaxJumpTableSize &&
+ isDense(Clusters, TotalCases, i, j, MinDensity)) {
unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
- bool IsTable = j - i + 1 >= MinJumpTableSize;
- unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
-
- // If this j leads to fewer partitions, or same number of partitions
- // with more lookup tables, it is a better partitioning.
+ unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
+ int64_t NumEntries = j - i + 1;
+
+ if (NumEntries == 1)
+ Score += PartitionScores::SingleCase;
+ else if (NumEntries <= SmallNumberOfEntries)
+ Score += PartitionScores::FewCases;
+ else if (NumEntries >= MinJumpTableEntries)
+ Score += PartitionScores::Table;
+
+ // If this leads to fewer partitions, or to the same number of
+ // partitions with better score, it is a better partitioning.
if (NumPartitions < MinPartitions[i] ||
- (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
+ (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
MinPartitions[i] = NumPartitions;
LastElement[i] = j;
- NumTables[i] = Tables;
+ PartitionsScore[i] = Score;
}
}
}
@@ -8414,7 +8651,7 @@ void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
unsigned NumClusters = Last - First + 1;
CaseCluster JTCluster;
- if (NumClusters >= MinJumpTableSize &&
+ if (NumClusters >= MinJumpTableEntries &&
buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
Clusters[DstIndex++] = JTCluster;
} else {
@@ -9107,7 +9344,8 @@ void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
WorkList.pop_back();
unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
- if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
+ if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
+ !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
// For optimized builds, lower large range as a balanced binary tree.
splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
continue;
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
index b9888ae..abde8a8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
@@ -305,12 +305,13 @@ private:
};
/// Check whether a range of clusters is dense enough for a jump table.
- bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases,
- unsigned First, unsigned Last, unsigned MinDensity);
+ bool isDense(const CaseClusterVector &Clusters,
+ const SmallVectorImpl<unsigned> &TotalCases,
+ unsigned First, unsigned Last, unsigned MinDensity) const;
/// Build a jump table cluster from Clusters[First..Last]. Returns false if it
/// decides it's not a good idea.
- bool buildJumpTable(CaseClusterVector &Clusters, unsigned First,
+ bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First,
unsigned Last, const SwitchInst *SI,
MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
@@ -652,8 +653,6 @@ public:
return CurInst ? CurInst->getDebugLoc() : DebugLoc();
}
- unsigned getSDNodeOrder() const { return SDNodeOrder; }
-
void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
void visit(const Instruction &I);
@@ -875,8 +874,8 @@ private:
void visitAlloca(const AllocaInst &I);
void visitLoad(const LoadInst &I);
void visitStore(const StoreInst &I);
- void visitMaskedLoad(const CallInst &I);
- void visitMaskedStore(const CallInst &I);
+ void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
+ void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
void visitMaskedGather(const CallInst &I);
void visitMaskedScatter(const CallInst &I);
void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
@@ -885,6 +884,7 @@ private:
void visitPHI(const PHINode &I);
void visitCall(const CallInst &I);
bool visitMemCmpCall(const CallInst &I);
+ bool visitMemPCpyCall(const CallInst &I);
bool visitMemChrCall(const CallInst &I);
bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
bool visitStrCmpCall(const CallInst &I);
@@ -941,6 +941,11 @@ private:
/// Update the DAG and DAG builder with the relevant information after
/// a new root node has been created which could be a tail call.
void updateDAGForMaybeTailCall(SDValue MaybeTC);
+
+ /// Return the appropriate SDDbgValue based on N.
+ SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
+ DIExpression *Expr, int64_t Offset, DebugLoc dl,
+ unsigned DbgSDNodeOrder);
};
/// RegsForValue - This struct represents the registers (physical or virtual)
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
index 93ac6d6..0faaad8 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp
@@ -100,6 +100,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::JumpTable: return "JumpTable";
case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
case ISD::RETURNADDR: return "RETURNADDR";
+ case ISD::ADDROFRETURNADDR: return "ADDROFRETURNADDR";
case ISD::FRAMEADDR: return "FRAMEADDR";
case ISD::LOCAL_RECOVER: return "LOCAL_RECOVER";
case ISD::READ_REGISTER: return "READ_REGISTER";
@@ -120,7 +121,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
if (IID < Intrinsic::num_intrinsics)
- return Intrinsic::getName((Intrinsic::ID)IID);
+ return Intrinsic::getName((Intrinsic::ID)IID, None);
else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
return TII->getName(IID);
llvm_unreachable("Invalid intrinsic ID");
@@ -261,21 +262,6 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::FP16_TO_FP: return "fp16_to_fp";
case ISD::FP_TO_FP16: return "fp_to_fp16";
- case ISD::CONVERT_RNDSAT: {
- switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
- default: llvm_unreachable("Unknown cvt code!");
- case ISD::CVT_FF: return "cvt_ff";
- case ISD::CVT_FS: return "cvt_fs";
- case ISD::CVT_FU: return "cvt_fu";
- case ISD::CVT_SF: return "cvt_sf";
- case ISD::CVT_UF: return "cvt_uf";
- case ISD::CVT_SS: return "cvt_ss";
- case ISD::CVT_SU: return "cvt_su";
- case ISD::CVT_US: return "cvt_us";
- case ISD::CVT_UU: return "cvt_uu";
- }
- }
-
// Control flow instructions
case ISD::BR: return "br";
case ISD::BRIND: return "brind";
@@ -321,7 +307,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::CTTZ_ZERO_UNDEF: return "cttz_zero_undef";
case ISD::CTLZ: return "ctlz";
case ISD::CTLZ_ZERO_UNDEF: return "ctlz_zero_undef";
-
+
// Trampolines
case ISD::INIT_TRAMPOLINE: return "init_trampoline";
case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
@@ -424,9 +410,9 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
} else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
OS << '<' << CSDN->getAPIntValue() << '>';
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
- if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
+ if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle())
OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
- else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
+ else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble())
OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
else {
OS << "<APFloat(";
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 1d61657..64e6c22 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -426,6 +426,10 @@ static void SplitCriticalSideEffectEdges(Function &Fn) {
}
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
+ // If we already selected that function, we do not need to run SDISel.
+ if (mf.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected))
+ return false;
// Do some sanity-checking on the command-line options.
assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
"-fast-isel-verbose requires -fast-isel");
@@ -594,16 +598,16 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
}
// Determine if there are any calls in this machine function.
- MachineFrameInfo *MFI = MF->getFrameInfo();
+ MachineFrameInfo &MFI = MF->getFrameInfo();
for (const auto &MBB : *MF) {
- if (MFI->hasCalls() && MF->hasInlineAsm())
+ if (MFI.hasCalls() && MF->hasInlineAsm())
break;
for (const auto &MI : MBB) {
const MCInstrDesc &MCID = TII->get(MI.getOpcode());
if ((MCID.isCall() && !MCID.isReturn()) ||
MI.isStackAligningInlineAsm()) {
- MFI->setHasCalls(true);
+ MFI.setHasCalls(true);
}
if (MI.isInlineAsm()) {
MF->setHasInlineAsm(true);
@@ -645,7 +649,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
}
if (TLI->hasCopyImplyingStackAdjustment(MF))
- MFI->setHasCopyImplyingStackAdjustment(true);
+ MFI.setHasCopyImplyingStackAdjustment(true);
// Freeze the set of reserved registers now that MachineFrameInfo has been
// set up. All the information required by getReservedRegs() should be
@@ -721,9 +725,8 @@ void SelectionDAGISel::ComputeLiveOutVRegInfo() {
}
void SelectionDAGISel::CodeGenAndEmitDAG() {
- std::string GroupName;
- if (TimePassesIsEnabled)
- GroupName = "Instruction Selection and Scheduling";
+ StringRef GroupName = "sdag";
+ StringRef GroupDescription = "Instruction Selection and Scheduling";
std::string BlockName;
int BlockNumber = -1;
(void)BlockNumber;
@@ -751,7 +754,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Run the DAG combiner in pre-legalize mode.
{
- NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
+ GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
}
@@ -765,7 +769,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
bool Changed;
{
- NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
Changed = CurDAG->LegalizeTypes();
}
@@ -780,8 +785,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Run the DAG combiner in post-type-legalize mode.
{
- NamedRegionTimer T("DAG Combining after legalize types", GroupName,
- TimePassesIsEnabled);
+ NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
+ GroupName, GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
}
@@ -791,13 +796,15 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
}
{
- NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
Changed = CurDAG->LegalizeVectors();
}
if (Changed) {
{
- NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
+ GroupDescription, TimePassesIsEnabled);
CurDAG->LegalizeTypes();
}
@@ -806,8 +813,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Run the DAG combiner in post-type-legalize mode.
{
- NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
- TimePassesIsEnabled);
+ NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
+ GroupName, GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
}
@@ -819,7 +826,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->viewGraph("legalize input for " + BlockName);
{
- NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
CurDAG->Legalize();
}
@@ -831,7 +839,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Run the DAG combiner in post-legalize mode.
{
- NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
+ GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
}
@@ -847,7 +856,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
{
- NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("isel", "Instruction Selection", GroupName,
+ GroupDescription, TimePassesIsEnabled);
DoInstructionSelection();
}
@@ -860,8 +870,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Schedule machine code.
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
{
- NamedRegionTimer T("Instruction Scheduling", GroupName,
- TimePassesIsEnabled);
+ NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
+ GroupDescription, TimePassesIsEnabled);
Scheduler->Run(CurDAG, FuncInfo->MBB);
}
@@ -872,7 +882,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// inserted into.
MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
{
- NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
+ NamedRegionTimer T("emit", "Instruction Creation", GroupName,
+ GroupDescription, TimePassesIsEnabled);
// FuncInfo->InsertPt is passed by reference and set to the end of the
// scheduled instructions.
@@ -886,8 +897,8 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
// Free the scheduler state.
{
- NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
- TimePassesIsEnabled);
+ NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
+ GroupDescription, TimePassesIsEnabled);
delete Scheduler;
}
@@ -1003,10 +1014,10 @@ bool SelectionDAGISel::PrepareEHLandingPad() {
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
- MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
+ MCSymbol *Label = MF->addLandingPad(MBB);
// Assign the call site to the landing pad's begin label.
- MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
+ MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
@@ -1153,14 +1164,22 @@ static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
return;
FuncInfo->SwiftErrorVals.clear();
- FuncInfo->SwiftErrorMap.clear();
- FuncInfo->SwiftErrorWorklist.clear();
+ FuncInfo->SwiftErrorVRegDefMap.clear();
+ FuncInfo->SwiftErrorVRegUpwardsUse.clear();
+ FuncInfo->SwiftErrorArg = nullptr;
// Check if function has a swifterror argument.
+ bool HaveSeenSwiftErrorArg = false;
for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
AI != AE; ++AI)
- if (AI->hasSwiftErrorAttr())
+ if (AI->hasSwiftErrorAttr()) {
+ assert(!HaveSeenSwiftErrorArg &&
+ "Must have only one swifterror parameter");
+ (void)HaveSeenSwiftErrorArg; // silence warning.
+ HaveSeenSwiftErrorArg = true;
+ FuncInfo->SwiftErrorArg = &*AI;
FuncInfo->SwiftErrorVals.push_back(&*AI);
+ }
for (const auto &LLVMBB : Fn)
for (const auto &Inst : LLVMBB) {
@@ -1170,95 +1189,152 @@ static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
}
}
-/// For each basic block, merge incoming swifterror values or simply propagate
-/// them. The merged results will be saved in SwiftErrorMap. For predecessors
-/// that are not yet visited, we create virtual registers to hold the swifterror
-/// values and save them in SwiftErrorWorklist.
-static void mergeIncomingSwiftErrors(FunctionLoweringInfo *FuncInfo,
- const TargetLowering *TLI,
- const TargetInstrInfo *TII,
- const BasicBlock *LLVMBB,
- SelectionDAGBuilder *SDB) {
+static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
+ const TargetLowering *TLI,
+ const TargetInstrInfo *TII,
+ const BasicBlock *LLVMBB,
+ SelectionDAGBuilder *SDB) {
if (!TLI->supportSwiftError())
return;
- // We should only do this when we have swifterror parameter or swifterror
+ // We only need to do this when we have swifterror parameter or swifterror
// alloc.
if (FuncInfo->SwiftErrorVals.empty())
return;
- // At beginning of a basic block, insert PHI nodes or get the virtual
- // register from the only predecessor, and update SwiftErrorMap; if one
- // of the predecessors is not visited, update SwiftErrorWorklist.
- // At end of a basic block, if a block is in SwiftErrorWorklist, insert copy
- // to sync up the virtual register assignment.
-
- // Always create a virtual register for each swifterror value in entry block.
- auto &DL = SDB->DAG.getDataLayout();
- const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
if (pred_begin(LLVMBB) == pred_end(LLVMBB)) {
- for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
+ auto &DL = FuncInfo->MF->getDataLayout();
+ auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
+ for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
+ // We will always generate a copy from the argument. It is always used at
+ // least by the 'return' of the swifterror.
+ if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
+ continue;
unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
// Assign Undef to Vreg. We construct MI directly to make sure it works
// with FastISel.
- BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
- TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
- FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
+ BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
+ SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
+ VReg);
+ FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
}
- return;
}
+}
- if (auto *UniquePred = LLVMBB->getUniquePredecessor()) {
- auto *UniquePredMBB = FuncInfo->MBBMap[UniquePred];
- if (!FuncInfo->SwiftErrorMap.count(UniquePredMBB)) {
- // Update SwiftErrorWorklist with a new virtual register.
- for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
- unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
- FuncInfo->SwiftErrorWorklist[UniquePredMBB].push_back(VReg);
- // Propagate the information from the single predecessor.
- FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
- }
- return;
- }
- // Propagate the information from the single predecessor.
- FuncInfo->SwiftErrorMap[FuncInfo->MBB] =
- FuncInfo->SwiftErrorMap[UniquePredMBB];
+/// Propagate swifterror values through the machine function CFG.
+static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
+ auto *TLI = FuncInfo->TLI;
+ if (!TLI->supportSwiftError())
return;
- }
- // For the case of multiple predecessors, update SwiftErrorWorklist.
- // Handle the case where we have two or more predecessors being the same.
- for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
- PI != PE; ++PI) {
- auto *PredMBB = FuncInfo->MBBMap[*PI];
- if (!FuncInfo->SwiftErrorMap.count(PredMBB) &&
- !FuncInfo->SwiftErrorWorklist.count(PredMBB)) {
- for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
- unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
- // When we actually visit the basic block PredMBB, we will materialize
- // the virtual register assignment in copySwiftErrorsToFinalVRegs.
- FuncInfo->SwiftErrorWorklist[PredMBB].push_back(VReg);
+ // We only need to do this when we have swifterror parameter or swifterror
+ // alloc.
+ if (FuncInfo->SwiftErrorVals.empty())
+ return;
+
+ // For each machine basic block in reverse post order.
+ ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
+ for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
+ It = RPOT.begin(),
+ E = RPOT.end();
+ It != E; ++It) {
+ MachineBasicBlock *MBB = *It;
+
+ // For each swifterror value in the function.
+ for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
+ auto Key = std::make_pair(MBB, SwiftErrorVal);
+ auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
+ auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
+ bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
+ unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
+ bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
+ assert(!(UpwardsUse && !DownwardDef) &&
+ "We can't have an upwards use but no downwards def");
+
+ // If there is no upwards exposed use and an entry for the swifterror in
+ // the def map for this value we don't need to do anything: We already
+ // have a downward def for this basic block.
+ if (!UpwardsUse && DownwardDef)
+ continue;
+
+ // Otherwise we either have an upwards exposed use vreg that we need to
+ // materialize or need to forward the downward def from predecessors.
+
+ // Check whether we have a single vreg def from all predecessors.
+ // Otherwise we need a phi.
+ SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
+ SmallSet<const MachineBasicBlock*, 8> Visited;
+ for (auto *Pred : MBB->predecessors()) {
+ if (!Visited.insert(Pred).second)
+ continue;
+ VRegs.push_back(std::make_pair(
+ Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
+ if (Pred != MBB)
+ continue;
+ // We have a self-edge.
+ // If there was no upwards use in this basic block there is now one: the
+ // phi needs to use it self.
+ if (!UpwardsUse) {
+ UpwardsUse = true;
+ UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
+ assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
+ UUseVReg = UUseIt->second;
+ }
+ }
+
+ // We need a phi node if we have more than one predecessor with different
+ // downward defs.
+ bool needPHI =
+ VRegs.size() >= 1 &&
+ std::find_if(
+ VRegs.begin(), VRegs.end(),
+ [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
+ -> bool { return V.second != VRegs[0].second; }) !=
+ VRegs.end();
+
+ // If there is no upwards exposed used and we don't need a phi just
+ // forward the swifterror vreg from the predecessor(s).
+ if (!UpwardsUse && !needPHI) {
+ assert(!VRegs.empty() &&
+ "No predecessors? The entry block should bail out earlier");
+ // Just forward the swifterror vreg from the predecessor(s).
+ FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
+ continue;
}
- }
- }
- // For the case of multiple predecessors, create a virtual register for
- // each swifterror value and generate Phi node.
- for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
- unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
- FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
-
- MachineInstrBuilder SwiftErrorPHI = BuildMI(*FuncInfo->MBB,
- FuncInfo->MBB->begin(), SDB->getCurDebugLoc(),
- TII->get(TargetOpcode::PHI), VReg);
- for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
- PI != PE; ++PI) {
- auto *PredMBB = FuncInfo->MBBMap[*PI];
- unsigned SwiftErrorReg = FuncInfo->SwiftErrorMap.count(PredMBB) ?
- FuncInfo->SwiftErrorMap[PredMBB][I] :
- FuncInfo->SwiftErrorWorklist[PredMBB][I];
- SwiftErrorPHI.addReg(SwiftErrorReg)
- .addMBB(PredMBB);
+ auto DLoc = isa<Instruction>(SwiftErrorVal)
+ ? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc()
+ : DebugLoc();
+ const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
+
+ // If we don't need a phi create a copy to the upward exposed vreg.
+ if (!needPHI) {
+ assert(UpwardsUse);
+ unsigned DestReg = UUseVReg;
+ BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
+ DestReg)
+ .addReg(VRegs[0].second);
+ continue;
+ }
+
+ // We need a phi: if there is an upwards exposed use we already have a
+ // destination virtual register number otherwise we generate a new one.
+ auto &DL = FuncInfo->MF->getDataLayout();
+ auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
+ unsigned PHIVReg =
+ UpwardsUse ? UUseVReg
+ : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
+ MachineInstrBuilder SwiftErrorPHI =
+ BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
+ TII->get(TargetOpcode::PHI), PHIVReg);
+ for (auto BBRegPair : VRegs) {
+ SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
+ }
+
+ // We did not have a definition in this block before: store the phi's vreg
+ // as this block downward exposed def.
+ if (!UpwardsUse)
+ FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
}
}
}
@@ -1309,7 +1385,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
if (!FuncInfo->MBB)
continue; // Some blocks like catchpads have no code or MBB.
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
- mergeIncomingSwiftErrors(FuncInfo, TLI, TII, LLVMBB, SDB);
+ createSwiftErrorEntriesInEntryBlock(FuncInfo, TLI, TII, LLVMBB, SDB);
// Setup an EH landing-pad block.
FuncInfo->ExceptionPointerVirtReg = 0;
@@ -1486,6 +1562,8 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
FuncInfo->PHINodesToUpdate.clear();
}
+ propagateSwiftErrorVRegs(FuncInfo);
+
delete FastIS;
SDB->clearDanglingDebugInfo();
SDB->SPDescriptor.resetPerFunctionState();
@@ -2170,7 +2248,7 @@ GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
/// to use the new results.
void SelectionDAGISel::UpdateChains(
SDNode *NodeToMatch, SDValue InputChain,
- const SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
+ SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
SmallVector<SDNode*, 4> NowDeadNodes;
// Now that all the normal results are replaced, we replace the chain and
@@ -2182,6 +2260,11 @@ void SelectionDAGISel::UpdateChains(
// Replace all the chain results with the final chain we ended up with.
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
SDNode *ChainNode = ChainNodesMatched[i];
+ // If ChainNode is null, it's because we replaced it on a previous
+ // iteration and we cleared it out of the map. Just skip it.
+ if (!ChainNode)
+ continue;
+
assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
"Deleted node left in chain");
@@ -2194,6 +2277,11 @@ void SelectionDAGISel::UpdateChains(
if (ChainVal.getValueType() == MVT::Glue)
ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
+ SelectionDAG::DAGNodeDeletedListener NDL(
+ *CurDAG, [&](SDNode *N, SDNode *E) {
+ std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
+ static_cast<SDNode *>(nullptr));
+ });
CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
// If the node became dead and we haven't already seen it, delete it.
@@ -2694,14 +2782,15 @@ struct MatchScope {
/// for this.
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
{
- SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
- SmallVectorImpl<MatchScope> &MatchScopes;
+ SDNode **NodeToMatch;
+ SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
+ SmallVectorImpl<MatchScope> &MatchScopes;
public:
- MatchStateUpdater(SelectionDAG &DAG,
- SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
- SmallVectorImpl<MatchScope> &MS) :
- SelectionDAG::DAGUpdateListener(DAG),
- RecordedNodes(RN), MatchScopes(MS) { }
+ MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
+ SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
+ SmallVectorImpl<MatchScope> &MS)
+ : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
+ RecordedNodes(RN), MatchScopes(MS) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
// Some early-returns here to avoid the search if we deleted the node or
@@ -2711,6 +2800,9 @@ public:
// update listener during matching a complex patterns.
if (!E || E->isMachineOpcode())
return;
+ // Check if NodeToMatch was updated.
+ if (N == *NodeToMatch)
+ *NodeToMatch = E;
// Performing linear search here does not matter because we almost never
// run this code. You'd have to have a CSE during complex pattern
// matching.
@@ -3003,7 +3095,7 @@ void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
// consistent.
std::unique_ptr<MatchStateUpdater> MSU;
if (ComplexPatternFuncMutatesDAG())
- MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
+ MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
MatchScopes));
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
@@ -3388,7 +3480,7 @@ void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
SDNode *E) {
auto &Chain = ChainNodesMatched;
- assert((!E || llvm::find(Chain, N) == Chain.end()) &&
+ assert((!E || !is_contained(Chain, N)) &&
"Chain node replaced during MorphNode");
Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
});
@@ -3487,7 +3579,7 @@ void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
NodeToMatch->getValueType(i) == MVT::iPTR ||
Res.getValueType() == MVT::iPTR ||
NodeToMatch->getValueType(i).getSizeInBits() ==
- Res.getValueType().getSizeInBits()) &&
+ Res.getValueSizeInBits()) &&
"invalid replacement");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
}
@@ -3579,7 +3671,7 @@ void SelectionDAGISel::CannotYetSelect(SDNode *N) {
unsigned iid =
cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
if (iid < Intrinsic::num_intrinsics)
- Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
+ Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
Msg << "target intrinsic %" << TII->getName(iid);
else
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
index 90aaba2..d27e245 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
@@ -55,7 +55,8 @@ void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
NextSlotToAllocate = 0;
// Need to resize this on each safepoint - we need the two to stay in sync and
// the clear patterns of a SelectionDAGBuilder have no relation to
- // FunctionLoweringInfo. SmallBitVector::reset initializes all bits to false.
+ // FunctionLoweringInfo. Also need to ensure used bits get cleared.
+ AllocatedStackSlots.clear();
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
}
@@ -70,7 +71,7 @@ SDValue
StatepointLoweringState::allocateStackSlot(EVT ValueType,
SelectionDAGBuilder &Builder) {
NumSlotsAllocatedForStatepoints++;
- auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
+ MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
unsigned SpillSize = ValueType.getSizeInBits() / 8;
assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
@@ -82,16 +83,16 @@ StatepointLoweringState::allocateStackSlot(EVT ValueType,
const size_t NumSlots = AllocatedStackSlots.size();
assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
- // The stack slots in StatepointStackSlots beyond the first NumSlots were
- // added in this instance of StatepointLoweringState, and cannot be re-used.
- assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() &&
+ assert(AllocatedStackSlots.size() ==
+ Builder.FuncInfo.StatepointStackSlots.size() &&
"Broken invariant");
for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
- if (MFI->getObjectSize(FI) == SpillSize) {
+ if (MFI.getObjectSize(FI) == SpillSize) {
AllocatedStackSlots.set(NextSlotToAllocate);
+ // TODO: Is ValueType the right thing to use here?
return Builder.DAG.getFrameIndex(FI, ValueType);
}
}
@@ -101,9 +102,13 @@ StatepointLoweringState::allocateStackSlot(EVT ValueType,
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
- MFI->markAsStatepointSpillSlotObjectIndex(FI);
+ MFI.markAsStatepointSpillSlotObjectIndex(FI);
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
+ AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
+ assert(AllocatedStackSlots.size() ==
+ Builder.FuncInfo.StatepointStackSlots.size() &&
+ "Broken invariant");
StatepointMaxSlotsRequired = std::max<unsigned long>(
StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size());
@@ -350,9 +355,8 @@ spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
// vary since we spill vectors of pointers too). At some point we
// can consider allowing spills of smaller values to larger slots
// (i.e. change the '==' in the assert below to a '>=').
- auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
- assert((MFI->getObjectSize(Index) * 8) ==
- Incoming.getValueType().getSizeInBits() &&
+ MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
+ assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
"Bad spill: stack slot does not match!");
#endif
@@ -370,7 +374,7 @@ spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
/// Lower a single value incoming to a statepoint node. This value can be
/// either a deopt value or a gc value, the handling is the same. We special
/// case constants and allocas, then fall back to spilling if required.
-static void lowerIncomingStatepointValue(SDValue Incoming,
+static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
SDValue Chain = Builder.getRoot();
@@ -389,6 +393,14 @@ static void lowerIncomingStatepointValue(SDValue Incoming,
// relocate the address of the alloca itself?)
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
Incoming.getValueType()));
+ } else if (LiveInOnly) {
+ // If this value is live in (not live-on-return, or live-through), we can
+ // treat it the same way patchpoint treats it's "live in" values. We'll
+ // end up folding some of these into stack references, but they'll be
+ // handled by the register allocator. Note that we do not have the notion
+ // of a late use so these values might be placed in registers which are
+ // clobbered by the call. This is fine for live-in.
+ Ops.push_back(Incoming);
} else {
// Otherwise, locate a spill slot and explicitly spill it so it
// can be found by the runtime later. We currently do not support
@@ -439,19 +451,38 @@ lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
"non gc managed derived pointer found in statepoint");
}
}
+ assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
} else {
assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
}
#endif
+ // Figure out what lowering strategy we're going to use for each part
+ // Note: Is is conservatively correct to lower both "live-in" and "live-out"
+ // as "live-through". A "live-through" variable is one which is "live-in",
+ // "live-out", and live throughout the lifetime of the call (i.e. we can find
+ // it from any PC within the transitive callee of the statepoint). In
+ // particular, if the callee spills callee preserved registers we may not
+ // be able to find a value placed in that register during the call. This is
+ // fine for live-out, but not for live-through. If we were willing to make
+ // assumptions about the code generator producing the callee, we could
+ // potentially allow live-through values in callee saved registers.
+ const bool LiveInDeopt =
+ SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
+
+ auto isGCValue =[&](const Value *V) {
+ return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
+ };
+
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (const Value *V : SI.DeoptState) {
- reservePreviousStackSlotForValue(V, Builder);
+ if (!LiveInDeopt || isGCValue(V))
+ reservePreviousStackSlotForValue(V, Builder);
}
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
reservePreviousStackSlotForValue(SI.Bases[i], Builder);
@@ -468,7 +499,8 @@ lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
// what type of values are contained within.
for (const Value *V : SI.DeoptState) {
SDValue Incoming = Builder.getValue(V);
- lowerIncomingStatepointValue(Incoming, Ops, Builder);
+ const bool LiveInValue = LiveInDeopt && !isGCValue(V);
+ lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
@@ -478,10 +510,12 @@ lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
const Value *Base = SI.Bases[i];
- lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
+ lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
+ Ops, Builder);
const Value *Ptr = SI.Ptrs[i];
- lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
+ lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
+ Ops, Builder);
}
// If there are any explicit spill slots passed to the statepoint, record
@@ -889,7 +923,7 @@ void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
#ifndef NDEBUG
// Consistency check
- // We skip this check for relocates not in the same basic block as thier
+ // We skip this check for relocates not in the same basic block as their
// statepoint. It would be too expensive to preserve validation info through
// different basic blocks.
if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 806646f..690f0d2 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -216,7 +216,7 @@ void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
case ISD::SETUEQ:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
(VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
+ (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
(VT == MVT::f64) ? RTLIB::OEQ_F64 :
(VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
@@ -418,6 +418,58 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
return false;
}
+bool
+TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
+ unsigned OpIdx,
+ const APInt &Demanded,
+ DAGCombinerInfo &DCI) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Op = User->getOperand(OpIdx);
+ APInt KnownZero, KnownOne;
+
+ if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
+ *this, 0, true))
+ return false;
+
+
+ // Old will not always be the same as Op. For example:
+ //
+ // Demanded = 0xffffff
+ // Op = i64 truncate (i32 and x, 0xffffff)
+ // In this case simplify demand bits will want to replace the 'and' node
+ // with the value 'x', which will give us:
+ // Old = i32 and x, 0xffffff
+ // New = x
+ if (Old.hasOneUse()) {
+ // For the one use case, we just commit the change.
+ DCI.CommitTargetLoweringOpt(*this);
+ return true;
+ }
+
+ // If Old has more than one use then it must be Op, because the
+ // AssumeSingleUse flag is not propogated to recursive calls of
+ // SimplifyDemanded bits, so the only node with multiple use that
+ // it will attempt to combine will be opt.
+ assert(Old == Op);
+
+ SmallVector <SDValue, 4> NewOps;
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
+ if (i == OpIdx) {
+ NewOps.push_back(New);
+ continue;
+ }
+ NewOps.push_back(User->getOperand(i));
+ }
+ DAG.UpdateNodeOperands(User, NewOps);
+ // Op has less users now, so we may be able to perform additional combines
+ // with it.
+ DCI.AddToWorklist(Op.getNode());
+ // User's operands have been updated, so we may be able to do new combines
+ // with it.
+ DCI.AddToWorklist(User);
+ return true;
+}
+
/// Look at Op. At this point, we know that only the DemandedMask bits of the
/// result of Op are ever used downstream. If we can use this information to
/// simplify Op, create a new simplified DAG node and return true, returning the
@@ -430,9 +482,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
TargetLoweringOpt &TLO,
- unsigned Depth) const {
+ unsigned Depth,
+ bool AssumeSingleUse) const {
unsigned BitWidth = DemandedMask.getBitWidth();
- assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
+ assert(Op.getScalarValueSizeInBits() == BitWidth &&
"Mask size mismatches value type size!");
APInt NewMask = DemandedMask;
SDLoc dl(Op);
@@ -442,7 +495,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownZero = KnownOne = APInt(BitWidth, 0);
// Other users may use these bits.
- if (!Op.getNode()->hasOneUse()) {
+ if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
if (Depth != 0) {
// If not at the root, Just compute the KnownZero/KnownOne bits to
// simplify things downstream.
@@ -468,22 +521,63 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
KnownZero = ~KnownOne;
return false; // Don't fall through, will infinitely loop.
+ case ISD::BUILD_VECTOR:
+ // Collect the known bits that are shared by every constant vector element.
+ KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (SDValue SrcOp : Op->ops()) {
+ if (!isa<ConstantSDNode>(SrcOp)) {
+ // We can only handle all constant values - bail out with no known bits.
+ KnownZero = KnownOne = APInt(BitWidth, 0);
+ return false;
+ }
+ KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
+ KnownZero2 = ~KnownOne2;
+
+ // BUILD_VECTOR can implicitly truncate sources, we must handle this.
+ if (KnownOne2.getBitWidth() != BitWidth) {
+ assert(KnownOne2.getBitWidth() > BitWidth &&
+ KnownZero2.getBitWidth() > BitWidth &&
+ "Expected BUILD_VECTOR implicit truncation");
+ KnownOne2 = KnownOne2.trunc(BitWidth);
+ KnownZero2 = KnownZero2.trunc(BitWidth);
+ }
+
+ // Known bits are the values that are shared by every element.
+ // TODO: support per-element known bits.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ }
+ return false; // Don't fall through, will infinitely loop.
case ISD::AND:
// If the RHS is a constant, check to see if the LHS would be zero without
// using the bits from the RHS. Below, we use knowledge about the RHS to
// simplify the LHS, here we're using information from the LHS to simplify
// the RHS.
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ SDValue Op0 = Op.getOperand(0);
APInt LHSZero, LHSOne;
// Do not increment Depth here; that can cause an infinite loop.
- TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
+ TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth);
// If the LHS already has zeros where RHSC does, this and is dead.
if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
+ return TLO.CombineTo(Op, Op0);
+
// If any of the set bits in the RHS are known zero on the LHS, shrink
// the constant.
if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
return true;
+
+ // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
+ // constant, but if this 'and' is only clearing bits that were just set by
+ // the xor, then this 'and' can be eliminated by shrinking the mask of
+ // the xor. For example, for a 32-bit X:
+ // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
+ if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
+ LHSOne == ~RHSC->getAPIntValue()) {
+ SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
+ Op0.getOperand(0), Op.getOperand(1));
+ return TLO.CombineTo(Op, Xor);
+ }
}
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
@@ -599,10 +693,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// If the RHS is a constant, see if we can simplify it.
// for XOR, we prefer to force bits to 1 if they will make a -1.
- // if we can't force bits, try to shrink constant
+ // If we can't force bits, try to shrink the constant.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
APInt Expanded = C->getAPIntValue() | (~NewMask);
- // if we can expand it to have all bits set, do it
+ // If we can expand it to have all bits set, do it.
if (Expanded.isAllOnesValue()) {
if (Expanded != C->getAPIntValue()) {
EVT VT = Op.getValueType();
@@ -610,7 +704,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
TLO.DAG.getConstant(Expanded, dl, VT));
return TLO.CombineTo(Op, New);
}
- // if it already has all the bits set, nothing to change
+ // If it already has all the bits set, nothing to change
// but don't shrink either!
} else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
return true;
@@ -823,7 +917,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// demand the input sign bit.
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
if (HighBits.intersects(NewMask))
- InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
+ InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits());
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
KnownZero, KnownOne, TLO, Depth+1))
@@ -866,9 +960,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
// If we only care about the highest bit, don't bother shifting right.
if (MsbMask == NewMask) {
- unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
+ unsigned ShAmt = ExVT.getScalarSizeInBits();
SDValue InOp = Op.getOperand(0);
- unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
+ unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
bool AlreadySignExtended =
TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
// However if the input is already sign extended we expect the sign
@@ -892,17 +986,17 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// present in the input.
APInt NewBits =
APInt::getHighBitsSet(BitWidth,
- BitWidth - ExVT.getScalarType().getSizeInBits());
+ BitWidth - ExVT.getScalarSizeInBits());
// If none of the extended bits are demanded, eliminate the sextinreg.
if ((NewBits & NewMask) == 0)
return TLO.CombineTo(Op, Op.getOperand(0));
APInt InSignBit =
- APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
+ APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth);
APInt InputDemandedBits =
APInt::getLowBitsSet(BitWidth,
- ExVT.getScalarType().getSizeInBits()) &
+ ExVT.getScalarSizeInBits()) &
NewMask;
// Since the sign extended bits are demanded, we know that the sign
@@ -919,8 +1013,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// If the input sign bit is known zero, convert this into a zero extension.
if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op,
- TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
+ return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
+ Op.getOperand(0), dl, ExVT.getScalarType()));
if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
KnownOne |= NewBits;
@@ -957,8 +1051,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::ZERO_EXTEND: {
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
APInt InMask = NewMask.trunc(OperandBitWidth);
// If none of the top bits are demanded, convert this into an any_extend.
@@ -980,7 +1073,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
+ unsigned InBits = InVT.getScalarSizeInBits();
APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
APInt NewBits = ~InMask & NewMask;
@@ -1020,8 +1113,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::ANY_EXTEND: {
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
APInt InMask = NewMask.trunc(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
KnownZero, KnownOne, TLO, Depth+1))
@@ -1034,8 +1126,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
case ISD::TRUNCATE: {
// Simplify the input, using demanded bit information, and compute the known
// zero/one bits live out.
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
APInt TruncMask = NewMask.zext(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
KnownZero, KnownOne, TLO, Depth+1))
@@ -1109,7 +1200,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (!TLO.LegalOperations() &&
!Op.getValueType().isVector() &&
!Op.getOperand(0).getValueType().isVector() &&
- NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
+ NewMask == APInt::getSignBit(Op.getValueSizeInBits()) &&
Op.getOperand(0).getValueType().isFloatingPoint()) {
bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
@@ -1120,10 +1211,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// Make a FGETSIGN + SHL to move the sign bit into the appropriate
// place. We expect the SHL to be eliminated by other optimizations.
SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
- unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
+ unsigned OpVTSizeInBits = Op.getValueSizeInBits();
if (!OpVTLegal && OpVTSizeInBits > 32)
Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
- unsigned ShVal = Op.getValueType().getSizeInBits()-1;
+ unsigned ShVal = Op.getValueSizeInBits() - 1;
SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
Op.getValueType(),
@@ -1139,16 +1230,27 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
APInt LoMask = APInt::getLowBitsSet(BitWidth,
BitWidth - NewMask.countLeadingZeros());
if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- // See if the operation should be performed at a smaller bit width.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ KnownOne2, TLO, Depth+1) ||
+ SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
+ KnownOne2, TLO, Depth+1) ||
+ // See if the operation should be performed at a smaller bit width.
+ TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
+ const SDNodeFlags *Flags = Op.getNode()->getFlags();
+ if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ SDNodeFlags NewFlags = *Flags;
+ NewFlags.setNoSignedWrap(false);
+ NewFlags.setNoUnsignedWrap(false);
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
+ Op.getOperand(0), Op.getOperand(1),
+ &NewFlags);
+ return TLO.CombineTo(Op, NewOp);
+ }
return true;
+ }
+ LLVM_FALLTHROUGH;
}
- // FALL THROUGH
default:
// Just use computeKnownBits to compute output bits.
TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
@@ -1214,11 +1316,11 @@ bool TargetLowering::isConstTrueVal(const SDNode *N) const {
if (!BV)
return false;
- BitVector UndefElements;
- CN = BV->getConstantSplatNode(&UndefElements);
- // Only interested in constant splats, and we don't try to handle undef
- // elements in identifying boolean constants.
- if (!CN || UndefElements.none())
+ // Only interested in constant splats, we don't care about undef
+ // elements in identifying boolean constants and getConstantSplatNode
+ // returns NULL if all ops are undef;
+ CN = BV->getConstantSplatNode();
+ if (!CN)
return false;
}
@@ -1254,11 +1356,11 @@ bool TargetLowering::isConstFalseVal(const SDNode *N) const {
if (!BV)
return false;
- BitVector UndefElements;
- CN = BV->getConstantSplatNode(&UndefElements);
- // Only interested in constant splats, and we don't try to handle undef
- // elements in identifying boolean constants.
- if (!CN || UndefElements.none())
+ // Only interested in constant splats, we don't care about undef
+ // elements in identifying boolean constants and getConstantSplatNode
+ // returns NULL if all ops are undef;
+ CN = BV->getConstantSplatNode();
+ if (!CN)
return false;
}
@@ -1390,7 +1492,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
const APInt &ShAmt
= cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
+ ShAmt == Log2_32(N0.getValueSizeInBits())) {
if ((C1 == 0) == (Cond == ISD::SETEQ)) {
// (srl (ctlz x), 5) == 0 -> X != 0
// (srl (ctlz x), 5) != 1 -> X != 0
@@ -1412,8 +1514,8 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
CTPOP = N0.getOperand(0);
if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
- (N0 == CTPOP || N0.getValueType().getSizeInBits() >
- Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
+ (N0 == CTPOP ||
+ N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
EVT CTVT = CTPOP.getValueType();
SDValue CTOp = CTPOP.getOperand(0);
@@ -1478,6 +1580,10 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
// Will get folded away.
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
+ if (MinBits == 1 && C1 == 1)
+ // Invert the condition.
+ return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
return DAG.getSetCC(dl, VT, Trunc, C, Cond);
}
@@ -1530,7 +1636,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
APInt bestMask;
unsigned bestWidth = 0, bestOffset = 0;
if (!Lod->isVolatile() && Lod->isUnindexed()) {
- unsigned origWidth = N0.getValueType().getSizeInBits();
+ unsigned origWidth = N0.getValueSizeInBits();
unsigned maskWidth = origWidth;
// We can narrow (e.g.) 16-bit extending loads on 32-bit target to
// 8 bits, but have to be careful...
@@ -1577,7 +1683,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
+ unsigned InSize = N0.getOperand(0).getValueSizeInBits();
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
@@ -2297,7 +2403,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
Ops.push_back(Op);
return;
}
- // fall through
+ LLVM_FALLTHROUGH;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 's': { // Relocatable Constant
@@ -2946,7 +3052,7 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
else
- return SDValue(); // No mulhu or equvialent
+ return SDValue(); // No mulhu or equivalent
Created->push_back(Q.getNode());
@@ -2987,108 +3093,190 @@ verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
// Legalization Utilities
//===----------------------------------------------------------------------===//
-bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, SDValue LL, SDValue LH,
- SDValue RL, SDValue RH) const {
- EVT VT = N->getValueType(0);
- SDLoc dl(N);
-
- bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
- bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
- bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
- bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
- if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
- unsigned OuterBitSize = VT.getSizeInBits();
- unsigned InnerBitSize = HiLoVT.getSizeInBits();
- unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
- unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
-
- // LL, LH, RL, and RH must be either all NULL or all set to a value.
- assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
- (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
-
- if (!LL.getNode() && !RL.getNode() &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
- RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
- }
-
- if (!LL.getNode())
- return false;
+bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
+ SDValue LHS, SDValue RHS,
+ SmallVectorImpl<SDValue> &Result,
+ EVT HiLoVT, SelectionDAG &DAG,
+ MulExpansionKind Kind, SDValue LL,
+ SDValue LH, SDValue RL, SDValue RH) const {
+ assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
+ Opcode == ISD::SMUL_LOHI);
+
+ bool HasMULHS = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
+ bool HasMULHU = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
+ bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
+ bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
+
+ if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
+ return false;
- APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
- if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
- DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
- // The inputs are both zero-extended.
- if (HasUMUL_LOHI) {
- // We can emit a umul_lohi.
- Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
- RL);
- Hi = SDValue(Lo.getNode(), 1);
- return true;
- }
- if (HasMULHU) {
- // We can emit a mulhu+mul.
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
- Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
- return true;
- }
+ unsigned OuterBitSize = VT.getScalarSizeInBits();
+ unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
+ unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
+ unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
+
+ // LL, LH, RL, and RH must be either all NULL or all set to a value.
+ assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
+ (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
+
+ SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
+ auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
+ bool Signed) -> bool {
+ if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
+ Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
+ Hi = SDValue(Lo.getNode(), 1);
+ return true;
}
- if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
- // The input values are both sign-extended.
- if (HasSMUL_LOHI) {
- // We can emit a smul_lohi.
- Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
- RL);
- Hi = SDValue(Lo.getNode(), 1);
- return true;
- }
- if (HasMULHS) {
- // We can emit a mulhs+mul.
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
- Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
- return true;
- }
+ if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
+ Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
+ Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
+ return true;
}
+ return false;
+ };
- if (!LH.getNode() && !RH.getNode() &&
- isOperationLegalOrCustom(ISD::SRL, VT) &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- auto &DL = DAG.getDataLayout();
- unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
- SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
- LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
- LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
- RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
- RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
- }
+ SDValue Lo, Hi;
- if (!LH.getNode())
- return false;
+ if (!LL.getNode() && !RL.getNode() &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
+ RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
+ }
+
+ if (!LL.getNode())
+ return false;
- if (HasUMUL_LOHI) {
- // Lo,Hi = umul LHS, RHS.
- SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
- DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
- Lo = UMulLOHI;
- Hi = UMulLOHI.getValue(1);
- RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
- LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
+ APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
+ if (DAG.MaskedValueIsZero(LHS, HighMask) &&
+ DAG.MaskedValueIsZero(RHS, HighMask)) {
+ // The inputs are both zero-extended.
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
+ if (Opcode != ISD::MUL) {
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ Result.push_back(Zero);
+ Result.push_back(Zero);
+ }
return true;
}
- if (HasMULHU) {
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
- Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
- RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
- LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
+ }
+
+ if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
+ RHSSB > InnerBitSize) {
+ // The input values are both sign-extended.
+ // TODO non-MUL case?
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
return true;
}
}
- return false;
+
+ unsigned ShiftAmount = OuterBitSize - InnerBitSize;
+ EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
+ if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
+ // FIXME getShiftAmountTy does not always return a sensible result when VT
+ // is an illegal type, and so the type may be too small to fit the shift
+ // amount. Override it with i32. The shift will have to be legalized.
+ ShiftAmountTy = MVT::i32;
+ }
+ SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
+
+ if (!LH.getNode() && !RH.getNode() &&
+ isOperationLegalOrCustom(ISD::SRL, VT) &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
+ LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
+ RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
+ RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
+ }
+
+ if (!LH.getNode())
+ return false;
+
+ if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
+ return false;
+
+ Result.push_back(Lo);
+
+ if (Opcode == ISD::MUL) {
+ RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
+ LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
+ Result.push_back(Hi);
+ return true;
+ }
+
+ // Compute the full width result.
+ auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
+ return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
+ };
+
+ SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
+ return false;
+
+ // This is effectively the add part of a multiply-add of half-sized operands,
+ // so it cannot overflow.
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
+ return false;
+
+ Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
+ Merge(Lo, Hi));
+
+ SDValue Carry = Next.getValue(1);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+
+ if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
+ return false;
+
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
+ Carry);
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (Opcode == ISD::SMUL_LOHI) {
+ SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
+ Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
+
+ NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
+ Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
+ }
+
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ return true;
+}
+
+bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
+ SelectionDAG &DAG, MulExpansionKind Kind,
+ SDValue LL, SDValue LH, SDValue RL,
+ SDValue RH) const {
+ SmallVector<SDValue, 2> Result;
+ bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
+ N->getOperand(0), N->getOperand(1), Result, HiLoVT,
+ DAG, Kind, LL, LH, RL, RH);
+ if (Ok) {
+ assert(Result.size() == 2);
+ Lo = Result[0];
+ Hi = Result[1];
+ }
+ return Ok;
}
bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
@@ -3190,7 +3378,7 @@ SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
- SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
+ SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
return DAG.getMergeValues({ Value, NewChain }, SL);
}
@@ -3518,6 +3706,81 @@ SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
return Result;
}
+SDValue
+TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
+ const SDLoc &DL, EVT DataVT,
+ SelectionDAG &DAG,
+ bool IsCompressedMemory) const {
+ SDValue Increment;
+ EVT AddrVT = Addr.getValueType();
+ EVT MaskVT = Mask.getValueType();
+ assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
+ "Incompatible types of Data and Mask");
+ if (IsCompressedMemory) {
+ // Incrementing the pointer according to number of '1's in the mask.
+ EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
+ SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
+ if (MaskIntVT.getSizeInBits() < 32) {
+ MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
+ MaskIntVT = MVT::i32;
+ }
+
+ // Count '1's with POPCNT.
+ Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
+ Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
+ // Scale is an element size in bytes.
+ SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
+ AddrVT);
+ Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
+ } else
+ Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
+
+ return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
+}
+
+static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
+ SDValue Idx,
+ EVT VecVT,
+ const SDLoc &dl) {
+ if (isa<ConstantSDNode>(Idx))
+ return Idx;
+
+ EVT IdxVT = Idx.getValueType();
+ unsigned NElts = VecVT.getVectorNumElements();
+ if (isPowerOf2_32(NElts)) {
+ APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
+ Log2_32(NElts));
+ return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
+ DAG.getConstant(Imm, dl, IdxVT));
+ }
+
+ return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
+ DAG.getConstant(NElts - 1, dl, IdxVT));
+}
+
+SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
+ SDValue VecPtr, EVT VecVT,
+ SDValue Index) const {
+ SDLoc dl(Index);
+ // Make sure the index type is big enough to compute in.
+ Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
+
+ EVT EltVT = VecVT.getVectorElementType();
+
+ // Calculate the element offset and add it to the pointer.
+ unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
+ assert(EltSize * 8 == EltVT.getSizeInBits() &&
+ "Converting bits to bytes lost precision");
+
+ Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
+
+ EVT IdxVT = Index.getValueType();
+
+ Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
+ DAG.getConstant(EltSize, dl, IdxVT));
+ return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
+}
+
//===----------------------------------------------------------------------===//
// Implementation of Emulated TLS Model
//===----------------------------------------------------------------------===//
@@ -3550,11 +3813,36 @@ SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
// At last for X86 targets, maybe good for other targets too?
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- MFI->setAdjustsStack(true); // Is this only for X86 target?
- MFI->setHasCalls(true);
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setAdjustsStack(true); // Is this only for X86 target?
+ MFI.setHasCalls(true);
assert((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode");
return CallResult.first;
}
+
+SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
+ if (!isCtlzFast())
+ return SDValue();
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (C->isNullValue() && CC == ISD::SETEQ) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDValue Zext = Op.getOperand(0);
+ if (VT.bitsLT(MVT::i32)) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
+ DAG.getConstant(Log2b, dl, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
+ }
+ }
+ return SDValue();
+}
diff --git a/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp b/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp
index 1efc440..ff7d205 100644
--- a/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp
@@ -23,6 +23,7 @@
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/EscapeEnumerator.h"
using namespace llvm;
@@ -81,121 +82,6 @@ ShadowStackGCLowering::ShadowStackGCLowering()
initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
}
-namespace {
-/// EscapeEnumerator - This is a little algorithm to find all escape points
-/// from a function so that "finally"-style code can be inserted. In addition
-/// to finding the existing return and unwind instructions, it also (if
-/// necessary) transforms any call instructions into invokes and sends them to
-/// a landing pad.
-///
-/// It's wrapped up in a state machine using the same transform C# uses for
-/// 'yield return' enumerators, This transform allows it to be non-allocating.
-class EscapeEnumerator {
- Function &F;
- const char *CleanupBBName;
-
- // State.
- int State;
- Function::iterator StateBB, StateE;
- IRBuilder<> Builder;
-
-public:
- EscapeEnumerator(Function &F, const char *N = "cleanup")
- : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
-
- IRBuilder<> *Next() {
- switch (State) {
- default:
- return nullptr;
-
- case 0:
- StateBB = F.begin();
- StateE = F.end();
- State = 1;
-
- case 1:
- // Find all 'return', 'resume', and 'unwind' instructions.
- while (StateBB != StateE) {
- BasicBlock *CurBB = &*StateBB++;
-
- // Branches and invokes do not escape, only unwind, resume, and return
- // do.
- TerminatorInst *TI = CurBB->getTerminator();
- if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
- continue;
-
- Builder.SetInsertPoint(TI);
- return &Builder;
- }
-
- State = 2;
-
- // Find all 'call' instructions.
- SmallVector<Instruction *, 16> Calls;
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
- ++II)
- if (CallInst *CI = dyn_cast<CallInst>(II))
- if (!CI->getCalledFunction() ||
- !CI->getCalledFunction()->getIntrinsicID())
- Calls.push_back(CI);
-
- if (Calls.empty())
- return nullptr;
-
- // Create a cleanup block.
- LLVMContext &C = F.getContext();
- BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
- Type *ExnTy =
- StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
- if (!F.hasPersonalityFn()) {
- Constant *PersFn = F.getParent()->getOrInsertFunction(
- "__gcc_personality_v0",
- FunctionType::get(Type::getInt32Ty(C), true));
- F.setPersonalityFn(PersFn);
- }
- LandingPadInst *LPad =
- LandingPadInst::Create(ExnTy, 1, "cleanup.lpad", CleanupBB);
- LPad->setCleanup(true);
- ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
-
- // Transform the 'call' instructions into 'invoke's branching to the
- // cleanup block. Go in reverse order to make prettier BB names.
- SmallVector<Value *, 16> Args;
- for (unsigned I = Calls.size(); I != 0;) {
- CallInst *CI = cast<CallInst>(Calls[--I]);
-
- // Split the basic block containing the function call.
- BasicBlock *CallBB = CI->getParent();
- BasicBlock *NewBB = CallBB->splitBasicBlock(
- CI->getIterator(), CallBB->getName() + ".cont");
-
- // Remove the unconditional branch inserted at the end of CallBB.
- CallBB->getInstList().pop_back();
- NewBB->getInstList().remove(CI);
-
- // Create a new invoke instruction.
- Args.clear();
- CallSite CS(CI);
- Args.append(CS.arg_begin(), CS.arg_end());
-
- InvokeInst *II =
- InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
- CI->getName(), CallBB);
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
- CI->replaceAllUsesWith(II);
- delete CI;
- }
-
- Builder.SetInsertPoint(RI);
- return &Builder;
- }
- }
-};
-}
-
-
Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
// doInitialization creates the abstract type of this value.
Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
diff --git a/contrib/llvm/lib/CodeGen/ShrinkWrap.cpp b/contrib/llvm/lib/CodeGen/ShrinkWrap.cpp
index d361a6c..4837495 100644
--- a/contrib/llvm/lib/CodeGen/ShrinkWrap.cpp
+++ b/contrib/llvm/lib/CodeGen/ShrinkWrap.cpp
@@ -199,9 +199,7 @@ public:
MachineFunctionPass::getAnalysisUsage(AU);
}
- const char *getPassName() const override {
- return "Shrink Wrapping analysis";
- }
+ StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
/// \brief Perform the shrink-wrapping analysis and update
/// the MachineFrameInfo attached to \p MF with the results.
@@ -256,8 +254,8 @@ bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
/// \brief Helper function to find the immediate (post) dominator.
template <typename ListOfBBs, typename DominanceAnalysis>
-MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
- DominanceAnalysis &Dom) {
+static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
+ DominanceAnalysis &Dom) {
MachineBasicBlock *IDom = &Block;
for (MachineBasicBlock *BB : BBs) {
IDom = Dom.findNearestCommonDominator(IDom, BB);
@@ -521,9 +519,9 @@ bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
<< ' ' << Save->getName() << "\nRestore: "
<< Restore->getNumber() << ' ' << Restore->getName() << '\n');
- MachineFrameInfo *MFI = MF.getFrameInfo();
- MFI->setSavePoint(Save);
- MFI->setRestorePoint(Restore);
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setSavePoint(Save);
+ MFI.setRestorePoint(Restore);
++NumCandidates;
return false;
}
diff --git a/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp b/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
index ce01c5f..209bbe5 100644
--- a/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/SjLjEHPrepare.cpp
@@ -58,7 +58,7 @@ public:
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {}
- const char *getPassName() const override {
+ StringRef getPassName() const override {
return "SJLJ Exception Handling preparation";
}
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
index 07be24b..1c6a84e 100644
--- a/contrib/llvm/lib/CodeGen/SplitKit.cpp
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -381,9 +381,59 @@ LLVM_DUMP_METHOD void SplitEditor::dump() const {
}
#endif
+LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
+ LiveInterval &LI) {
+ for (LiveInterval::SubRange &S : LI.subranges())
+ if (S.LaneMask == LM)
+ return S;
+ llvm_unreachable("SubRange for this mask not found");
+}
+
+void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
+ if (!LI.hasSubRanges()) {
+ LI.createDeadDef(VNI);
+ return;
+ }
+
+ SlotIndex Def = VNI->def;
+ if (Original) {
+ // If we are transferring a def from the original interval, make sure
+ // to only update the subranges for which the original subranges had
+ // a def at this location.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
+ VNInfo *PV = PS.getVNInfoAt(Def);
+ if (PV != nullptr && PV->def == Def)
+ S.createDeadDef(Def, LIS.getVNInfoAllocator());
+ }
+ } else {
+ // This is a new def: either from rematerialization, or from an inserted
+ // copy. Since rematerialization can regenerate a definition of a sub-
+ // register, we need to check which subranges need to be updated.
+ const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
+ assert(DefMI != nullptr);
+ LaneBitmask LM;
+ for (const MachineOperand &DefOp : DefMI->defs()) {
+ unsigned R = DefOp.getReg();
+ if (R != LI.reg)
+ continue;
+ if (unsigned SR = DefOp.getSubReg())
+ LM |= TRI.getSubRegIndexLaneMask(SR);
+ else {
+ LM = MRI.getMaxLaneMaskForVReg(R);
+ break;
+ }
+ }
+ for (LiveInterval::SubRange &S : LI.subranges())
+ if ((S.LaneMask & LM).any())
+ S.createDeadDef(Def, LIS.getVNInfoAllocator());
+ }
+}
+
VNInfo *SplitEditor::defValue(unsigned RegIdx,
const VNInfo *ParentVNI,
- SlotIndex Idx) {
+ SlotIndex Idx,
+ bool Original) {
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
@@ -392,28 +442,28 @@ VNInfo *SplitEditor::defValue(unsigned RegIdx,
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
+ bool Force = LI->hasSubRanges();
+ ValueForcePair FP(Force ? nullptr : VNI, Force);
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator, bool> InsP =
- Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
- ValueForcePair(VNI, false)));
+ Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
- // This was the first time (RegIdx, ParentVNI) was mapped.
- // Keep it as a simple def without any liveness.
- if (InsP.second)
+ // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
+ // forced. Keep it as a simple def without any liveness.
+ if (!Force && InsP.second)
return VNI;
// If the previous value was a simple mapping, add liveness for it now.
if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
- SlotIndex Def = OldVNI->def;
- LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
- // No longer a simple mapping. Switch to a complex, non-forced mapping.
- InsP.first->second = ValueForcePair();
+ addDeadDef(*LI, OldVNI, Original);
+
+ // No longer a simple mapping. Switch to a complex mapping. If the
+ // interval has subranges, make it a forced mapping.
+ InsP.first->second = ValueForcePair(nullptr, Force);
}
// This is a complex mapping, add liveness for VNI
- SlotIndex Def = VNI->def;
- LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
-
+ addDeadDef(*LI, VNI, Original);
return VNI;
}
@@ -431,9 +481,8 @@ void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
// This was previously a single mapping. Make sure the old def is represented
// by a trivial live range.
- SlotIndex Def = VNI->def;
- LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
- LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
+ addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
+
// Mark as complex mapped, forced.
VFP = ValueForcePair(nullptr, true);
}
@@ -455,13 +504,18 @@ VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
LiveInterval &OrigLI = LIS.getInterval(Original);
VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
- LiveRangeEdit::Remat RM(ParentVNI);
- RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
- if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
- Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
- ++NumRemats;
- } else {
+ bool DidRemat = false;
+ if (OrigVNI) {
+ LiveRangeEdit::Remat RM(ParentVNI);
+ RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
+ if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
+ Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
+ ++NumRemats;
+ DidRemat = true;
+ }
+ }
+ if (!DidRemat) {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit->getReg());
@@ -472,7 +526,7 @@ VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
}
// Define the value in Reg.
- return defValue(RegIdx, ParentVNI, Def);
+ return defValue(RegIdx, ParentVNI, Def, false);
}
/// Create a new virtual register and live interval.
@@ -621,7 +675,7 @@ SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
}
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
- MBB.SkipPHIsAndLabels(MBB.begin()));
+ MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
return VNI->def;
@@ -944,14 +998,15 @@ bool SplitEditor::transferValues() {
}
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
- DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
- LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
+ DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx
+ << '(' << PrintReg(Edit->get(RegIdx)) << ')');
+ LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
// Check for a simply defined value that can be blitted directly.
ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
if (VNInfo *VNI = VFP.getPointer()) {
DEBUG(dbgs() << ':' << VNI->id);
- LR.addSegment(LiveInterval::Segment(Start, End, VNI));
+ LI.addSegment(LiveInterval::Segment(Start, End, VNI));
Start = End;
continue;
}
@@ -975,7 +1030,7 @@ bool SplitEditor::transferValues() {
// The first block may be live-in, or it may have its own def.
if (Start != BlockStart) {
- VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
+ VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped value");
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
// MBB has its own def. Is it also live-out?
@@ -995,7 +1050,7 @@ bool SplitEditor::transferValues() {
if (BlockStart == ParentVNI->def) {
// This block has the def of a parent PHI, so it isn't live-in.
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
- VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
+ VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped parent PHI");
if (End >= BlockEnd)
LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
@@ -1003,10 +1058,10 @@ bool SplitEditor::transferValues() {
// This block needs a live-in value. The last block covered may not
// be live-out.
if (End < BlockEnd)
- LRC.addLiveInBlock(LR, MDT[&*MBB], End);
+ LRC.addLiveInBlock(LI, MDT[&*MBB], End);
else {
// Live-through, and we don't know the value.
- LRC.addLiveInBlock(LR, MDT[&*MBB]);
+ LRC.addLiveInBlock(LI, MDT[&*MBB]);
LRC.setLiveOutValue(&*MBB, nullptr);
}
}
@@ -1025,42 +1080,90 @@ bool SplitEditor::transferValues() {
return Skipped;
}
+static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
+ const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
+ if (Seg == nullptr)
+ return true;
+ if (Seg->end != Def.getDeadSlot())
+ return false;
+ // This is a dead PHI. Remove it.
+ LR.removeSegment(*Seg, true);
+ return true;
+}
+
+void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
+ LiveRange &LR, LaneBitmask LM,
+ ArrayRef<SlotIndex> Undefs) {
+ for (MachineBasicBlock *P : B.predecessors()) {
+ SlotIndex End = LIS.getMBBEndIdx(P);
+ SlotIndex LastUse = End.getPrevSlot();
+ // The predecessor may not have a live-out value. That is OK, like an
+ // undef PHI operand.
+ LiveInterval &PLI = Edit->getParent();
+ // Need the cast because the inputs to ?: would otherwise be deemed
+ // "incompatible": SubRange vs LiveInterval.
+ LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
+ : static_cast<LiveRange&>(PLI);
+ if (PSR.liveAt(LastUse))
+ LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
+ }
+}
+
void SplitEditor::extendPHIKillRanges() {
// Extend live ranges to be live-out for successor PHI values.
- for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
- if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
- continue;
- unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
- LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
-
- // Check whether PHI is dead.
- const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def);
- assert(Segment != nullptr && "Missing segment for VNI");
- if (Segment->end == PHIVNI->def.getDeadSlot()) {
- // This is a dead PHI. Remove it.
- LR.removeSegment(*Segment, true);
+
+ // Visit each PHI def slot in the parent live interval. If the def is dead,
+ // remove it. Otherwise, extend the live interval to reach the end indexes
+ // of all predecessor blocks.
+
+ LiveInterval &ParentLI = Edit->getParent();
+ for (const VNInfo *V : ParentLI.valnos) {
+ if (V->isUnused() || !V->isPHIDef())
continue;
- }
+ unsigned RegIdx = RegAssign.lookup(V->def);
+ LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
LiveRangeCalc &LRC = getLRCalc(RegIdx);
- MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
- for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- SlotIndex End = LIS.getMBBEndIdx(*PI);
- SlotIndex LastUse = End.getPrevSlot();
- // The predecessor may not have a live-out value. That is OK, like an
- // undef PHI operand.
- if (Edit->getParent().liveAt(LastUse)) {
- assert(RegAssign.lookup(LastUse) == RegIdx &&
- "Different register assignment in phi predecessor");
- LRC.extend(LR, End);
- }
+ MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
+ if (!removeDeadSegment(V->def, LI))
+ extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
+ }
+
+ SmallVector<SlotIndex, 4> Undefs;
+ LiveRangeCalc SubLRC;
+
+ for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
+ for (const VNInfo *V : PS.valnos) {
+ if (V->isUnused() || !V->isPHIDef())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(V->def);
+ LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
+ LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
+ if (removeDeadSegment(V->def, S))
+ continue;
+
+ MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
+ SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
+ &LIS.getVNInfoAllocator());
+ Undefs.clear();
+ LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
+ extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
}
}
}
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
+ struct ExtPoint {
+ ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
+ : MO(O), RegIdx(R), Next(N) {}
+ MachineOperand MO;
+ unsigned RegIdx;
+ SlotIndex Next;
+ };
+
+ SmallVector<ExtPoint,4> ExtPoints;
+
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = *RI;
@@ -1082,8 +1185,8 @@ void SplitEditor::rewriteAssigned(bool ExtendRanges) {
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
- LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
- MO.setReg(LI->reg);
+ LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
+ MO.setReg(LI.reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
@@ -1095,7 +1198,7 @@ void SplitEditor::rewriteAssigned(bool ExtendRanges) {
if (MO.isDef()) {
if (!MO.getSubReg() && !MO.isEarlyClobber())
continue;
- // We may wan't to extend a live range for a partial redef, or for a use
+ // We may want to extend a live range for a partial redef, or for a use
// tied to an early clobber.
Idx = Idx.getPrevSlot();
if (!Edit->getParent().liveAt(Idx))
@@ -1103,7 +1206,53 @@ void SplitEditor::rewriteAssigned(bool ExtendRanges) {
} else
Idx = Idx.getRegSlot(true);
- getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
+ SlotIndex Next = Idx.getNextSlot();
+ if (LI.hasSubRanges()) {
+ // We have to delay extending subranges until we have seen all operands
+ // defining the register. This is because a <def,read-undef> operand
+ // will create an "undef" point, and we cannot extend any subranges
+ // until all of them have been accounted for.
+ if (MO.isUse())
+ ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
+ } else {
+ LiveRangeCalc &LRC = getLRCalc(RegIdx);
+ LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
+ }
+ }
+
+ for (ExtPoint &EP : ExtPoints) {
+ LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
+ assert(LI.hasSubRanges());
+
+ LiveRangeCalc SubLRC;
+ unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
+ LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
+ : MRI.getMaxLaneMaskForVReg(Reg);
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & LM).none())
+ continue;
+ // The problem here can be that the new register may have been created
+ // for a partially defined original register. For example:
+ // %vreg827:subreg_hireg<def,read-undef> = ...
+ // ...
+ // %vreg828<def> = COPY %vreg827
+ if (S.empty())
+ continue;
+ SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
+ &LIS.getVNInfoAllocator());
+ SmallVector<SlotIndex, 4> Undefs;
+ LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
+ SubLRC.extend(S, EP.Next, 0, Undefs);
+ }
+ }
+
+ for (unsigned R : *Edit) {
+ LiveInterval &LI = LIS.getInterval(R);
+ if (!LI.hasSubRanges())
+ continue;
+ LI.clear();
+ LI.removeEmptySubRanges();
+ LIS.constructMainRangeFromSubranges(LI);
}
}
@@ -1146,7 +1295,7 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
if (ParentVNI->isUnused())
continue;
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
- defValue(RegIdx, ParentVNI, ParentVNI->def);
+ defValue(RegIdx, ParentVNI, ParentVNI->def, true);
// Force rematted values to be recomputed everywhere.
// The new live ranges may be truncated.
@@ -1182,8 +1331,9 @@ void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
deleteRematVictims();
// Get rid of unused values and set phi-kill flags.
- for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
- LiveInterval &LI = LIS.getInterval(*I);
+ for (unsigned Reg : *Edit) {
+ LiveInterval &LI = LIS.getInterval(Reg);
+ LI.removeEmptySubRanges();
LI.RenumberValues();
}
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.h b/contrib/llvm/lib/CodeGen/SplitKit.h
index a968494..a75738a 100644
--- a/contrib/llvm/lib/CodeGen/SplitKit.h
+++ b/contrib/llvm/lib/CodeGen/SplitKit.h
@@ -325,12 +325,30 @@ private:
return LRCalc[SpillMode != SM_Partition && RegIdx != 0];
}
+ /// Find a subrange corresponding to the lane mask @p LM in the live
+ /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
+ /// This function is used to find corresponding subranges between the
+ /// original interval and the new intervals.
+ LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, LiveInterval &LI);
+
+ /// Add a segment to the interval LI for the value number VNI. If LI has
+ /// subranges, corresponding segments will be added to them as well, but
+ /// with newly created value numbers. If Original is true, dead def will
+ /// only be added a subrange of LI if the corresponding subrange of the
+ /// original interval has a def at this index. Otherwise, all subranges
+ /// of LI will be updated.
+ void addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original);
+
/// defValue - define a value in RegIdx from ParentVNI at Idx.
/// Idx does not have to be ParentVNI->def, but it must be contained within
/// ParentVNI's live range in ParentLI. The new value is added to the value
- /// map.
+ /// map. The value being defined may either come from rematerialization
+ /// (or an inserted copy), or it may be coming from the original interval.
+ /// The parameter Original should be true in the latter case, otherwise
+ /// it should be false.
/// Return the new LI value.
- VNInfo *defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx);
+ VNInfo *defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx,
+ bool Original);
/// forceRecompute - Force the live range of ParentVNI in RegIdx to be
/// recomputed by LiveRangeCalc::extend regardless of the number of defs.
@@ -368,6 +386,15 @@ private:
/// Return true if any ranges were skipped.
bool transferValues();
+ /// Live range @p LR corresponding to the lane Mask @p LM has a live
+ /// PHI def at the beginning of block @p B. Extend the range @p LR of
+ /// all predecessor values that reach this def. If @p LR is a subrange,
+ /// the array @p Undefs is the set of all locations where it is undefined
+ /// via <def,read-undef> in other subranges for the same register.
+ void extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
+ LiveRange &LR, LaneBitmask LM,
+ ArrayRef<SlotIndex> Undefs);
+
/// extendPHIKillRanges - Extend the ranges of all values killed by original
/// parent PHIDefs.
void extendPHIKillRanges();
diff --git a/contrib/llvm/lib/CodeGen/StackColoring.cpp b/contrib/llvm/lib/CodeGen/StackColoring.cpp
index 87cd470..89c4b57 100644
--- a/contrib/llvm/lib/CodeGen/StackColoring.cpp
+++ b/contrib/llvm/lib/CodeGen/StackColoring.cpp
@@ -778,10 +778,9 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
unsigned FixedInstr = 0;
unsigned FixedMemOp = 0;
unsigned FixedDbg = 0;
- MachineModuleInfo *MMI = &MF->getMMI();
// Remap debug information that refers to stack slots.
- for (auto &VI : MMI->getVariableDbgInfo()) {
+ for (auto &VI : MF->getVariableDbgInfo()) {
if (!VI.Var)
continue;
if (SlotRemap.count(VI.Slot)) {
@@ -980,7 +979,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
<< "********** Function: "
<< ((const Value*)Func.getFunction())->getName() << '\n');
MF = &Func;
- MFI = MF->getFrameInfo();
+ MFI = &MF->getFrameInfo();
Indexes = &getAnalysis<SlotIndexes>();
SP = &getAnalysis<StackProtector>();
BlockLiveness.clear();
diff --git a/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp b/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
index 87e4eb6..a5ef7c8 100644
--- a/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
+++ b/contrib/llvm/lib/CodeGen/StackMapLivenessAnalysis.cpp
@@ -17,7 +17,6 @@
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
@@ -64,7 +63,7 @@ public:
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
/// \brief Calculate the liveness information for the given machine function.
@@ -113,7 +112,7 @@ bool StackMapLiveness::runOnMachineFunction(MachineFunction &MF) {
++NumStackMapFuncVisited;
// Skip this function if there are no patchpoints to process.
- if (!MF.getFrameInfo()->hasPatchPoint()) {
+ if (!MF.getFrameInfo().hasPatchPoint()) {
++NumStackMapFuncSkipped;
return false;
}
@@ -126,7 +125,7 @@ bool StackMapLiveness::calculateLiveness(MachineFunction &MF) {
// For all basic blocks in the function.
for (auto &MBB : MF) {
DEBUG(dbgs() << "****** BB " << MBB.getName() << " ******\n");
- LiveRegs.init(TRI);
+ LiveRegs.init(*TRI);
// FIXME: This should probably be addLiveOuts().
LiveRegs.addLiveOutsNoPristines(MBB);
bool HasStackMap = false;
diff --git a/contrib/llvm/lib/CodeGen/StackMaps.cpp b/contrib/llvm/lib/CodeGen/StackMaps.cpp
index d91bb80..9b7dd400 100644
--- a/contrib/llvm/lib/CodeGen/StackMaps.cpp
+++ b/contrib/llvm/lib/CodeGen/StackMaps.cpp
@@ -30,16 +30,20 @@ using namespace llvm;
#define DEBUG_TYPE "stackmaps"
static cl::opt<int> StackMapVersion(
- "stackmap-version", cl::init(1),
- cl::desc("Specify the stackmap encoding version (default = 1)"));
+ "stackmap-version", cl::init(2),
+ cl::desc("Specify the stackmap encoding version (default = 2)"));
const char *StackMaps::WSMP = "Stack Maps: ";
+StackMapOpers::StackMapOpers(const MachineInstr *MI)
+ : MI(MI) {
+ assert(getVarIdx() <= MI->getNumOperands() &&
+ "invalid stackmap definition");
+}
+
PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
: MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
- !MI->getOperand(0).isImplicit()),
- IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() ==
- CallingConv::AnyReg) {
+ !MI->getOperand(0).isImplicit()) {
#ifndef NDEBUG
unsigned CheckStartIdx = 0, e = MI->getNumOperands();
while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
@@ -70,7 +74,7 @@ unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
}
StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) {
- if (StackMapVersion != 1)
+ if (StackMapVersion != 2)
llvm_unreachable("Unsupported stackmap version!");
}
@@ -272,8 +276,7 @@ StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
}
LiveOuts.erase(
- std::remove_if(LiveOuts.begin(), LiveOuts.end(),
- [](const LiveOutReg &LO) { return LO.Reg == 0; }),
+ remove_if(LiveOuts, [](const LiveOutReg &LO) { return LO.Reg == 0; }),
LiveOuts.end());
return LiveOuts;
@@ -332,20 +335,26 @@ void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
std::move(LiveOuts));
- // Record the stack size of the current function.
- const MachineFrameInfo *MFI = AP.MF->getFrameInfo();
+ // Record the stack size of the current function and update callsite count.
+ const MachineFrameInfo &MFI = AP.MF->getFrameInfo();
const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
bool HasDynamicFrameSize =
- MFI->hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF));
- FnStackSize[AP.CurrentFnSym] =
- HasDynamicFrameSize ? UINT64_MAX : MFI->getStackSize();
+ MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF));
+ uint64_t FrameSize = HasDynamicFrameSize ? UINT64_MAX : MFI.getStackSize();
+
+ auto CurrentIt = FnInfos.find(AP.CurrentFnSym);
+ if (CurrentIt != FnInfos.end())
+ CurrentIt->second.RecordCount++;
+ else
+ FnInfos.insert(std::make_pair(AP.CurrentFnSym, FunctionInfo(FrameSize)));
}
void StackMaps::recordStackMap(const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");
- int64_t ID = MI.getOperand(0).getImm();
- recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), 2),
+ StackMapOpers opers(&MI);
+ const int64_t ID = MI.getOperand(PatchPointOpers::IDPos).getImm();
+ recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), opers.getVarIdx()),
MI.operands_end());
}
@@ -353,8 +362,7 @@ void StackMaps::recordPatchPoint(const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");
PatchPointOpers opers(&MI);
- int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm();
-
+ const int64_t ID = opers.getID();
auto MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx());
recordStackMapOpers(MI, ID, MOI, MI.operands_end(),
opers.isAnyReg() && opers.hasDef());
@@ -363,7 +371,7 @@ void StackMaps::recordPatchPoint(const MachineInstr &MI) {
// verify anyregcc
auto &Locations = CSInfos.back().Locations;
if (opers.isAnyReg()) {
- unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm();
+ unsigned NArgs = opers.getNumCallArgs();
for (unsigned i = 0, e = (opers.hasDef() ? NArgs + 1 : NArgs); i != e; ++i)
assert(Locations[i].Type == Location::Register &&
"anyreg arg must be in reg.");
@@ -384,7 +392,7 @@ void StackMaps::recordStatepoint(const MachineInstr &MI) {
/// Emit the stackmap header.
///
/// Header {
-/// uint8 : Stack Map Version (currently 1)
+/// uint8 : Stack Map Version (currently 2)
/// uint8 : Reserved (expected to be 0)
/// uint16 : Reserved (expected to be 0)
/// }
@@ -398,8 +406,8 @@ void StackMaps::emitStackmapHeader(MCStreamer &OS) {
OS.EmitIntValue(0, 2); // Reserved.
// Num functions.
- DEBUG(dbgs() << WSMP << "#functions = " << FnStackSize.size() << '\n');
- OS.EmitIntValue(FnStackSize.size(), 4);
+ DEBUG(dbgs() << WSMP << "#functions = " << FnInfos.size() << '\n');
+ OS.EmitIntValue(FnInfos.size(), 4);
// Num constants.
DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n');
OS.EmitIntValue(ConstPool.size(), 4);
@@ -413,15 +421,18 @@ void StackMaps::emitStackmapHeader(MCStreamer &OS) {
/// StkSizeRecord[NumFunctions] {
/// uint64 : Function Address
/// uint64 : Stack Size
+/// uint64 : Record Count
/// }
void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) {
// Function Frame records.
DEBUG(dbgs() << WSMP << "functions:\n");
- for (auto const &FR : FnStackSize) {
+ for (auto const &FR : FnInfos) {
DEBUG(dbgs() << WSMP << "function addr: " << FR.first
- << " frame size: " << FR.second);
+ << " frame size: " << FR.second.StackSize
+ << " callsite count: " << FR.second.RecordCount << '\n');
OS.EmitSymbolValue(FR.first, 8);
- OS.EmitIntValue(FR.second, 8);
+ OS.EmitIntValue(FR.second.StackSize, 8);
+ OS.EmitIntValue(FR.second.RecordCount, 8);
}
}
@@ -522,7 +533,7 @@ void StackMaps::serializeToStackMapSection() {
// Bail out if there's no stack map data.
assert((!CSInfos.empty() || ConstPool.empty()) &&
"Expected empty constant pool too!");
- assert((!CSInfos.empty() || FnStackSize.empty()) &&
+ assert((!CSInfos.empty() || FnInfos.empty()) &&
"Expected empty function record too!");
if (CSInfos.empty())
return;
diff --git a/contrib/llvm/lib/CodeGen/StackProtector.cpp b/contrib/llvm/lib/CodeGen/StackProtector.cpp
index 89868e4..c2c010a 100644
--- a/contrib/llvm/lib/CodeGen/StackProtector.cpp
+++ b/contrib/llvm/lib/CodeGen/StackProtector.cpp
@@ -50,7 +50,7 @@ static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
cl::init(true), cl::Hidden);
char StackProtector::ID = 0;
-INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
+INITIALIZE_TM_PASS(StackProtector, "stack-protector", "Insert stack protectors",
false, true)
FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
@@ -236,11 +236,6 @@ bool StackProtector::RequiresStackProtector() {
for (const Instruction &I : BB) {
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (AI->isArrayAllocation()) {
- // SSP-Strong: Enable protectors for any call to alloca, regardless
- // of size.
- if (Strong)
- return true;
-
if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
// A call to alloca with size >= SSPBufferSize requires
diff --git a/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp b/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
index d996714..234b204 100644
--- a/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
+++ b/contrib/llvm/lib/CodeGen/StackSlotColoring.cpp
@@ -381,7 +381,6 @@ bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) {
I != E; ++I) {
if (DCELimit != -1 && (int)NumDead >= DCELimit)
break;
-
int FirstSS, SecondSS;
if (TII->isStackSlotCopy(*I, FirstSS, SecondSS) && FirstSS == SecondSS &&
FirstSS != -1) {
@@ -392,12 +391,18 @@ bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) {
}
MachineBasicBlock::iterator NextMI = std::next(I);
- if (NextMI == MBB->end()) continue;
+ MachineBasicBlock::iterator ProbableLoadMI = I;
unsigned LoadReg = 0;
unsigned StoreReg = 0;
if (!(LoadReg = TII->isLoadFromStackSlot(*I, FirstSS)))
continue;
+ // Skip the ...pseudo debugging... instructions between a load and store.
+ while ((NextMI != E) && NextMI->isDebugValue()) {
+ ++NextMI;
+ ++I;
+ }
+ if (NextMI == E) continue;
if (!(StoreReg = TII->isStoreToStackSlot(*NextMI, SecondSS)))
continue;
if (FirstSS != SecondSS || LoadReg != StoreReg || FirstSS == -1) continue;
@@ -407,7 +412,7 @@ bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) {
if (NextMI->findRegisterUseOperandIdx(LoadReg, true, nullptr) != -1) {
++NumDead;
- toErase.push_back(&*I);
+ toErase.push_back(&*ProbableLoadMI);
}
toErase.push_back(&*NextMI);
@@ -428,7 +433,7 @@ bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) {
<< "********** Function: " << MF.getName() << '\n';
});
- MFI = MF.getFrameInfo();
+ MFI = &MF.getFrameInfo();
TII = MF.getSubtarget().getInstrInfo();
LS = &getAnalysis<LiveStacks>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
diff --git a/contrib/llvm/lib/CodeGen/TailDuplication.cpp b/contrib/llvm/lib/CodeGen/TailDuplication.cpp
index 2b1fb12..e2377d8 100644
--- a/contrib/llvm/lib/CodeGen/TailDuplication.cpp
+++ b/contrib/llvm/lib/CodeGen/TailDuplication.cpp
@@ -47,13 +47,12 @@ bool TailDuplicatePass::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
- auto MMI = getAnalysisIfAvailable<MachineModuleInfo>();
auto MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- Duplicator.initMF(MF, MMI, MBPI);
+ Duplicator.initMF(MF, MBPI, /* LayoutMode */ false);
bool MadeChange = false;
- while (Duplicator.tailDuplicateBlocks(MF))
+ while (Duplicator.tailDuplicateBlocks())
MadeChange = true;
return MadeChange;
diff --git a/contrib/llvm/lib/CodeGen/TailDuplicator.cpp b/contrib/llvm/lib/CodeGen/TailDuplicator.cpp
index 847a093..7709236 100644
--- a/contrib/llvm/lib/CodeGen/TailDuplicator.cpp
+++ b/contrib/llvm/lib/CodeGen/TailDuplicator.cpp
@@ -20,6 +20,7 @@
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
@@ -40,12 +41,20 @@ STATISTIC(NumTailDupRemoved,
STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumAddedPHIs, "Number of phis added");
+namespace llvm {
+
// Heuristic for tail duplication.
static cl::opt<unsigned> TailDuplicateSize(
"tail-dup-size",
cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
cl::Hidden);
+cl::opt<unsigned> TailDupIndirectBranchSize(
+ "tail-dup-indirect-size",
+ cl::desc("Maximum instructions to consider tail duplicating blocks that "
+ "end with indirect branches."), cl::init(20),
+ cl::Hidden);
+
static cl::opt<bool>
TailDupVerify("tail-dup-verify",
cl::desc("Verify sanity of PHI instructions during taildup"),
@@ -54,18 +63,20 @@ static cl::opt<bool>
static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
cl::Hidden);
-namespace llvm {
-
-void TailDuplicator::initMF(MachineFunction &MF, const MachineModuleInfo *MMIin,
- const MachineBranchProbabilityInfo *MBPIin) {
- TII = MF.getSubtarget().getInstrInfo();
- TRI = MF.getSubtarget().getRegisterInfo();
- MRI = &MF.getRegInfo();
- MMI = MMIin;
+void TailDuplicator::initMF(MachineFunction &MFin,
+ const MachineBranchProbabilityInfo *MBPIin,
+ bool LayoutModeIn, unsigned TailDupSizeIn) {
+ MF = &MFin;
+ TII = MF->getSubtarget().getInstrInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ MRI = &MF->getRegInfo();
+ MMI = &MF->getMMI();
MBPI = MBPIin;
+ TailDupSize = TailDupSizeIn;
assert(MBPI != nullptr && "Machine Branch Probability Info required");
+ LayoutMode = LayoutModeIn;
PreRegAlloc = MRI->isSSA();
}
@@ -78,10 +89,7 @@ static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
while (MI != MBB->end()) {
if (!MI->isPHI())
break;
- for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
- PE = Preds.end();
- PI != PE; ++PI) {
- MachineBasicBlock *PredBB = *PI;
+ for (MachineBasicBlock *PredBB : Preds) {
bool Found = false;
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
@@ -119,21 +127,31 @@ static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
}
/// Tail duplicate the block and cleanup.
-bool TailDuplicator::tailDuplicateAndUpdate(MachineFunction &MF, bool IsSimple,
- MachineBasicBlock *MBB) {
+/// \p IsSimple - return value of isSimpleBB
+/// \p MBB - block to be duplicated
+/// \p ForcedLayoutPred - If non-null, treat this block as the layout
+/// predecessor, instead of using the ordering in MF
+/// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
+/// all Preds that received a copy of \p MBB.
+/// \p RemovalCallback - if non-null, called just before MBB is deleted.
+bool TailDuplicator::tailDuplicateAndUpdate(
+ bool IsSimple, MachineBasicBlock *MBB,
+ MachineBasicBlock *ForcedLayoutPred,
+ SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
+ llvm::function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
// Save the successors list.
SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
MBB->succ_end());
SmallVector<MachineBasicBlock *, 8> TDBBs;
SmallVector<MachineInstr *, 16> Copies;
- if (!tailDuplicate(MF, IsSimple, MBB, TDBBs, Copies))
+ if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, TDBBs, Copies))
return false;
++NumTails;
SmallVector<MachineInstr *, 8> NewPHIs;
- MachineSSAUpdater SSAUpdate(MF, &NewPHIs);
+ MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
// TailBB's immediate successors are now successors of those predecessors
// which duplicated TailBB. Add the predecessors as sources to the PHI
@@ -145,7 +163,7 @@ bool TailDuplicator::tailDuplicateAndUpdate(MachineFunction &MF, bool IsSimple,
// If it is dead, remove it.
if (isDead) {
NumTailDupRemoved += MBB->size();
- removeDeadBlock(MBB);
+ removeDeadBlock(MBB, RemovalCallback);
++NumDeadBlocks;
}
@@ -216,21 +234,24 @@ bool TailDuplicator::tailDuplicateAndUpdate(MachineFunction &MF, bool IsSimple,
if (NewPHIs.size())
NumAddedPHIs += NewPHIs.size();
+ if (DuplicatedPreds)
+ *DuplicatedPreds = std::move(TDBBs);
+
return true;
}
/// Look for small blocks that are unconditionally branched to and do not fall
/// through. Tail-duplicate their instructions into their predecessors to
/// eliminate (dynamic) branches.
-bool TailDuplicator::tailDuplicateBlocks(MachineFunction &MF) {
+bool TailDuplicator::tailDuplicateBlocks() {
bool MadeChange = false;
if (PreRegAlloc && TailDupVerify) {
DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
- VerifyPHIs(MF, true);
+ VerifyPHIs(*MF, true);
}
- for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E;) {
+ for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
MachineBasicBlock *MBB = &*I++;
if (NumTails == TailDupLimit)
@@ -238,14 +259,14 @@ bool TailDuplicator::tailDuplicateBlocks(MachineFunction &MF) {
bool IsSimple = isSimpleBB(MBB);
- if (!shouldTailDuplicate(MF, IsSimple, *MBB))
+ if (!shouldTailDuplicate(IsSimple, *MBB))
continue;
- MadeChange |= tailDuplicateAndUpdate(MF, IsSimple, MBB);
+ MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
}
if (PreRegAlloc && TailDupVerify)
- VerifyPHIs(MF, false);
+ VerifyPHIs(*MF, false);
return MadeChange;
}
@@ -334,10 +355,9 @@ void TailDuplicator::processPHI(
/// the source operands due to earlier PHI translation.
void TailDuplicator::duplicateInstruction(
MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
- MachineFunction &MF,
DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
const DenseSet<unsigned> &UsedByPhi) {
- MachineInstr *NewMI = TII->duplicate(*MI, MF);
+ MachineInstr *NewMI = TII->duplicate(*MI, *MF);
if (PreRegAlloc) {
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
@@ -421,18 +441,14 @@ void TailDuplicator::updateSuccessorsPHIs(
MachineBasicBlock *FromBB, bool isDead,
SmallVectorImpl<MachineBasicBlock *> &TDBBs,
SmallSetVector<MachineBasicBlock *, 8> &Succs) {
- for (SmallSetVector<MachineBasicBlock *, 8>::iterator SI = Succs.begin(),
- SE = Succs.end();
- SI != SE; ++SI) {
- MachineBasicBlock *SuccBB = *SI;
- for (MachineBasicBlock::iterator II = SuccBB->begin(), EE = SuccBB->end();
- II != EE; ++II) {
- if (!II->isPHI())
+ for (MachineBasicBlock *SuccBB : Succs) {
+ for (MachineInstr &MI : *SuccBB) {
+ if (!MI.isPHI())
break;
- MachineInstrBuilder MIB(*FromBB->getParent(), II);
+ MachineInstrBuilder MIB(*FromBB->getParent(), MI);
unsigned Idx = 0;
- for (unsigned i = 1, e = II->getNumOperands(); i != e; i += 2) {
- MachineOperand &MO = II->getOperand(i + 1);
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
+ MachineOperand &MO = MI.getOperand(i + 1);
if (MO.getMBB() == FromBB) {
Idx = i;
break;
@@ -440,17 +456,17 @@ void TailDuplicator::updateSuccessorsPHIs(
}
assert(Idx != 0);
- MachineOperand &MO0 = II->getOperand(Idx);
+ MachineOperand &MO0 = MI.getOperand(Idx);
unsigned Reg = MO0.getReg();
if (isDead) {
// Folded into the previous BB.
// There could be duplicate phi source entries. FIXME: Should sdisel
// or earlier pass fixed this?
- for (unsigned i = II->getNumOperands() - 2; i != Idx; i -= 2) {
- MachineOperand &MO = II->getOperand(i + 1);
+ for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
+ MachineOperand &MO = MI.getOperand(i + 1);
if (MO.getMBB() == FromBB) {
- II->RemoveOperand(i + 1);
- II->RemoveOperand(i);
+ MI.RemoveOperand(i + 1);
+ MI.RemoveOperand(i);
}
}
} else
@@ -474,8 +490,8 @@ void TailDuplicator::updateSuccessorsPHIs(
unsigned SrcReg = LI->second[j].second;
if (Idx != 0) {
- II->getOperand(Idx).setReg(SrcReg);
- II->getOperand(Idx + 1).setMBB(SrcBB);
+ MI.getOperand(Idx).setReg(SrcReg);
+ MI.getOperand(Idx + 1).setMBB(SrcBB);
Idx = 0;
} else {
MIB.addReg(SrcReg).addMBB(SrcBB);
@@ -486,8 +502,8 @@ void TailDuplicator::updateSuccessorsPHIs(
for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
MachineBasicBlock *SrcBB = TDBBs[j];
if (Idx != 0) {
- II->getOperand(Idx).setReg(Reg);
- II->getOperand(Idx + 1).setMBB(SrcBB);
+ MI.getOperand(Idx).setReg(Reg);
+ MI.getOperand(Idx + 1).setMBB(SrcBB);
Idx = 0;
} else {
MIB.addReg(Reg).addMBB(SrcBB);
@@ -495,19 +511,20 @@ void TailDuplicator::updateSuccessorsPHIs(
}
}
if (Idx != 0) {
- II->RemoveOperand(Idx + 1);
- II->RemoveOperand(Idx);
+ MI.RemoveOperand(Idx + 1);
+ MI.RemoveOperand(Idx);
}
}
}
}
/// Determine if it is profitable to duplicate this block.
-bool TailDuplicator::shouldTailDuplicate(const MachineFunction &MF,
- bool IsSimple,
+bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
MachineBasicBlock &TailBB) {
- // Only duplicate blocks that end with unconditional branches.
- if (TailBB.canFallThrough())
+ // When doing tail-duplication during layout, the block ordering is in flux,
+ // so canFallThrough returns a result based on incorrect information and
+ // should just be ignored.
+ if (!LayoutMode && TailBB.canFallThrough())
return false;
// Don't try to tail-duplicate single-block loops.
@@ -518,12 +535,24 @@ bool TailDuplicator::shouldTailDuplicate(const MachineFunction &MF,
// duplicate only one, because one branch instruction can be eliminated to
// compensate for the duplication.
unsigned MaxDuplicateCount;
- if (TailDuplicateSize.getNumOccurrences() == 0 &&
- // FIXME: Use Function::optForSize().
- MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
+ if (TailDupSize == 0 &&
+ TailDuplicateSize.getNumOccurrences() == 0 &&
+ MF->getFunction()->optForSize())
MaxDuplicateCount = 1;
- else
+ else if (TailDupSize == 0)
MaxDuplicateCount = TailDuplicateSize;
+ else
+ MaxDuplicateCount = TailDupSize;
+
+ // If the block to be duplicated ends in an unanalyzable fallthrough, don't
+ // duplicate it.
+ // A similar check is necessary in MachineBlockPlacement to make sure pairs of
+ // blocks with unanalyzable fallthrough get layed out contiguously.
+ MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
+ SmallVector<MachineOperand, 4> PredCond;
+ if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
+ TailBB.canFallThrough())
+ return false;
// If the target has hardware branch prediction that can handle indirect
// branches, duplicating them can often make them predictable when there
@@ -536,7 +565,7 @@ bool TailDuplicator::shouldTailDuplicate(const MachineFunction &MF,
HasIndirectbr = TailBB.back().isIndirectBranch();
if (HasIndirectbr && PreRegAlloc)
- MaxDuplicateCount = 20;
+ MaxDuplicateCount = TailDupIndirectBranchSize;
// Check the instructions in the block to determine whether tail-duplication
// is invalid or unlikely to be profitable.
@@ -631,7 +660,7 @@ bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
SmallVector<MachineOperand, 4> PredCond;
- if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
+ if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
return false;
if (!PredCond.empty())
@@ -649,11 +678,7 @@ bool TailDuplicator::duplicateSimpleBB(
SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
bool Changed = false;
- for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
- PE = Preds.end();
- PI != PE; ++PI) {
- MachineBasicBlock *PredBB = *PI;
-
+ for (MachineBasicBlock *PredBB : Preds) {
if (PredBB->hasEHPadSuccessor())
continue;
@@ -662,7 +687,7 @@ bool TailDuplicator::duplicateSimpleBB(
MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
SmallVector<MachineOperand, 4> PredCond;
- if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
+ if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
continue;
Changed = true;
@@ -670,7 +695,7 @@ bool TailDuplicator::duplicateSimpleBB(
<< "From simple Succ: " << *TailBB);
MachineBasicBlock *NewTarget = *TailBB->succ_begin();
- MachineBasicBlock *NextBB = &*std::next(PredBB->getIterator());
+ MachineBasicBlock *NextBB = PredBB->getNextNode();
// Make PredFBB explicit.
if (PredCond.empty())
@@ -700,7 +725,7 @@ bool TailDuplicator::duplicateSimpleBB(
if (PredTBB == NextBB && PredFBB == nullptr)
PredTBB = nullptr;
- TII->RemoveBranch(*PredBB);
+ TII->removeBranch(*PredBB);
if (!PredBB->isSuccessor(NewTarget))
PredBB->replaceSuccessor(TailBB, NewTarget);
@@ -710,17 +735,40 @@ bool TailDuplicator::duplicateSimpleBB(
}
if (PredTBB)
- TII->InsertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc());
+ TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc());
TDBBs.push_back(PredBB);
}
return Changed;
}
+bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
+ MachineBasicBlock *PredBB) {
+ // EH edges are ignored by analyzeBranch.
+ if (PredBB->succ_size() > 1)
+ return false;
+
+ MachineBasicBlock *PredTBB, *PredFBB;
+ SmallVector<MachineOperand, 4> PredCond;
+ if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
+ return false;
+ if (!PredCond.empty())
+ return false;
+ return true;
+}
+
/// If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
-bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
- MachineBasicBlock *TailBB,
+/// \p IsSimple result of isSimpleBB
+/// \p TailBB Block to be duplicated.
+/// \p ForcedLayoutPred When non-null, use this block as the layout predecessor
+/// instead of the previous block in MF's order.
+/// \p TDBBs A vector to keep track of all blocks tail-duplicated
+/// into.
+/// \p Copies A vector of copy instructions inserted. Used later to
+/// walk all the inserted copies and remove redundant ones.
+bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
+ MachineBasicBlock *ForcedLayoutPred,
SmallVectorImpl<MachineBasicBlock *> &TDBBs,
SmallVectorImpl<MachineInstr *> &Copies) {
DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
@@ -737,25 +785,20 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
bool Changed = false;
SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
- for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
- PE = Preds.end();
- PI != PE; ++PI) {
- MachineBasicBlock *PredBB = *PI;
-
+ for (MachineBasicBlock *PredBB : Preds) {
assert(TailBB != PredBB &&
"Single-block loop should have been rejected earlier!");
- // EH edges are ignored by AnalyzeBranch.
- if (PredBB->succ_size() > 1)
- continue;
- MachineBasicBlock *PredTBB, *PredFBB;
- SmallVector<MachineOperand, 4> PredCond;
- if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
- continue;
- if (!PredCond.empty())
+ if (!canTailDuplicate(TailBB, PredBB))
continue;
+
// Don't duplicate into a fall-through predecessor (at least for now).
- if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
+ bool IsLayoutSuccessor = false;
+ if (ForcedLayoutPred)
+ IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
+ else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
+ IsLayoutSuccessor = true;
+ if (IsLayoutSuccessor)
continue;
DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
@@ -764,7 +807,7 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
TDBBs.push_back(PredBB);
// Remove PredBB's unconditional branch.
- TII->RemoveBranch(*PredBB);
+ TII->removeBranch(*PredBB);
// Clone the contents of TailBB into PredBB.
DenseMap<unsigned, RegSubRegPair> LocalVRMap;
@@ -782,13 +825,15 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
} else {
// Replace def of virtual registers with new registers, and update
// uses with PHI source register or the new registers.
- duplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi);
+ duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
}
}
appendCopies(PredBB, CopyInfos, Copies);
// Simplify
- TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);
+ MachineBasicBlock *PredTBB, *PredFBB;
+ SmallVector<MachineOperand, 4> PredCond;
+ TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond);
NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
@@ -796,10 +841,8 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
PredBB->removeSuccessor(PredBB->succ_begin());
assert(PredBB->succ_empty() &&
"TailDuplicate called on block with multiple successors!");
- for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
- E = TailBB->succ_end();
- I != E; ++I)
- PredBB->addSuccessor(*I, MBPI->getEdgeProbability(TailBB, I));
+ for (MachineBasicBlock *Succ : TailBB->successors())
+ PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
Changed = true;
++NumTailDups;
@@ -808,17 +851,27 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
// If TailBB was duplicated into all its predecessors except for the prior
// block, which falls through unconditionally, move the contents of this
// block into the prior block.
- MachineBasicBlock *PrevBB = &*std::prev(TailBB->getIterator());
+ MachineBasicBlock *PrevBB = ForcedLayoutPred;
+ if (!PrevBB)
+ PrevBB = &*std::prev(TailBB->getIterator());
MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
SmallVector<MachineOperand, 4> PriorCond;
// This has to check PrevBB->succ_size() because EH edges are ignored by
- // AnalyzeBranch.
+ // analyzeBranch.
if (PrevBB->succ_size() == 1 &&
- !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
- PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
+ // Layout preds are not always CFG preds. Check.
+ *PrevBB->succ_begin() == TailBB &&
+ !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
+ PriorCond.empty() &&
+ (!PriorTBB || PriorTBB == TailBB) &&
+ TailBB->pred_size() == 1 &&
!TailBB->hasAddressTaken()) {
DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
<< "From MBB: " << *TailBB);
+ // There may be a branch to the layout successor. This is unlikely but it
+ // happens. The correct thing to do is to remove the branch before
+ // duplicating the instructions in all cases.
+ TII->removeBranch(*PrevBB);
if (PreRegAlloc) {
DenseMap<unsigned, RegSubRegPair> LocalVRMap;
SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
@@ -837,11 +890,12 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
// uses with PHI source register or the new registers.
MachineInstr *MI = &*I++;
assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
- duplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap, UsedByPhi);
+ duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
MI->eraseFromParent();
}
appendCopies(PrevBB, CopyInfos, Copies);
} else {
+ TII->removeBranch(*PrevBB);
// No PHIs to worry about, just splice the instructions over.
PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
}
@@ -874,11 +928,8 @@ bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple,
// What we do here is introduce a copy in 3 of the register defined by the
// phi, just like when we are duplicating 2 into 3, but we don't copy any
// real instructions or remove the 3 -> 2 edge from the phi in 2.
- for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
- PE = Preds.end();
- PI != PE; ++PI) {
- MachineBasicBlock *PredBB = *PI;
- if (std::find(TDBBs.begin(), TDBBs.end(), PredBB) != TDBBs.end())
+ for (MachineBasicBlock *PredBB : Preds) {
+ if (is_contained(TDBBs, PredBB))
continue;
// EH edges
@@ -917,10 +968,15 @@ void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
/// Remove the specified dead machine basic block from the function, updating
/// the CFG.
-void TailDuplicator::removeDeadBlock(MachineBasicBlock *MBB) {
+void TailDuplicator::removeDeadBlock(
+ MachineBasicBlock *MBB,
+ llvm::function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
assert(MBB->pred_empty() && "MBB must be dead!");
DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
+ if (RemovalCallback)
+ (*RemovalCallback)(MBB);
+
// Remove all successors.
while (!MBB->succ_empty())
MBB->removeSuccessor(MBB->succ_end() - 1);
diff --git a/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp b/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
index cac7e63..f082add 100644
--- a/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetFrameLoweringImpl.cpp
@@ -40,7 +40,7 @@ bool TargetFrameLowering::noFramePointerElim(const MachineFunction &MF) const {
/// is overridden for some targets.
int TargetFrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI, unsigned &FrameReg) const {
- const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
// By default, assume all frame indices are referenced via whatever
@@ -48,13 +48,13 @@ int TargetFrameLowering::getFrameIndexReference(const MachineFunction &MF,
// something different.
FrameReg = RI->getFrameRegister(MF);
- return MFI->getObjectOffset(FI) + MFI->getStackSize() -
- getOffsetOfLocalArea() + MFI->getOffsetAdjustment();
+ return MFI.getObjectOffset(FI) + MFI.getStackSize() -
+ getOffsetOfLocalArea() + MFI.getOffsetAdjustment();
}
bool TargetFrameLowering::needsFrameIndexResolution(
const MachineFunction &MF) const {
- return MF.getFrameInfo()->hasStackObjects();
+ return MF.getFrameInfo().hasStackObjects();
}
void TargetFrameLowering::determineCalleeSaves(MachineFunction &MF,
@@ -84,7 +84,7 @@ void TargetFrameLowering::determineCalleeSaves(MachineFunction &MF,
return;
// Functions which call __builtin_unwind_init get all their registers saved.
- bool CallsUnwindInit = MF.getMMI().callsUnwindInit();
+ bool CallsUnwindInit = MF.callsUnwindInit();
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
diff --git a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp b/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
index e7330c6..01f91b9 100644
--- a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp
@@ -84,8 +84,8 @@ unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0) {
atInsnStart = true;
- } else if (strncmp(Str, MAI.getCommentString(),
- strlen(MAI.getCommentString())) == 0) {
+ } else if (strncmp(Str, MAI.getCommentString().data(),
+ MAI.getCommentString().size()) == 0) {
// Stop counting as an instruction after a comment until the next
// separator.
atInsnStart = false;
@@ -119,7 +119,7 @@ TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
// If MBB isn't immediately before MBB, insert a branch to it.
if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
- InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
+ insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
MBB->addSuccessor(NewDest);
}
@@ -437,13 +437,20 @@ static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
const TargetInstrInfo &TII) {
unsigned StartIdx = 0;
switch (MI.getOpcode()) {
- case TargetOpcode::STACKMAP:
- StartIdx = 2; // Skip ID, nShadowBytes.
+ case TargetOpcode::STACKMAP: {
+ // StackMapLiveValues are foldable
+ StartIdx = StackMapOpers(&MI).getVarIdx();
break;
+ }
case TargetOpcode::PATCHPOINT: {
- // For PatchPoint, the call args are not foldable.
- PatchPointOpers opers(&MI);
- StartIdx = opers.getVarIdx();
+ // For PatchPoint, the call args are not foldable (even if reported in the
+ // stackmap e.g. via anyregcc).
+ StartIdx = PatchPointOpers(&MI).getVarIdx();
+ break;
+ }
+ case TargetOpcode::STATEPOINT: {
+ // For statepoints, fold deopt and gc arguments, but not call arguments.
+ StartIdx = StatepointOpers(&MI).getVarIdx();
break;
}
default:
@@ -467,7 +474,7 @@ static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
MachineOperand &MO = MI.getOperand(i);
- if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
+ if (is_contained(Ops, i)) {
unsigned SpillSize;
unsigned SpillOffset;
// Compute the spill slot size and offset.
@@ -508,10 +515,36 @@ MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
assert(MBB && "foldMemoryOperand needs an inserted instruction");
MachineFunction &MF = *MBB->getParent();
+ // If we're not folding a load into a subreg, the size of the load is the
+ // size of the spill slot. But if we are, we need to figure out what the
+ // actual load size is.
+ int64_t MemSize = 0;
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+
+ if (Flags & MachineMemOperand::MOStore) {
+ MemSize = MFI.getObjectSize(FI);
+ } else {
+ for (unsigned Idx : Ops) {
+ int64_t OpSize = MFI.getObjectSize(FI);
+
+ if (auto SubReg = MI.getOperand(Idx).getSubReg()) {
+ unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
+ if (SubRegSize > 0 && !(SubRegSize % 8))
+ OpSize = SubRegSize / 8;
+ }
+
+ MemSize = std::max(MemSize, OpSize);
+ }
+ }
+
+ assert(MemSize && "Did not expect a zero-sized stack slot");
+
MachineInstr *NewMI = nullptr;
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT) {
+ MI.getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI.getOpcode() == TargetOpcode::STATEPOINT) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
if (NewMI)
@@ -530,10 +563,9 @@ MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
assert((!(Flags & MachineMemOperand::MOLoad) ||
NewMI->mayLoad()) &&
"Folded a use to a non-load!");
- const MachineFrameInfo &MFI = *MF.getFrameInfo();
assert(MFI.getObjectOffset(FI) != -1);
MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
+ MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
MFI.getObjectAlignment(FI));
NewMI->addMemOperand(MF, MMO);
@@ -550,7 +582,6 @@ MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
MachineBasicBlock::iterator Pos = MI;
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (Flags == MachineMemOperand::MOStore)
storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
@@ -792,7 +823,8 @@ MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
int FrameIndex = 0;
if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT) &&
+ MI.getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI.getOpcode() == TargetOpcode::STATEPOINT) &&
isLoadFromStackSlot(LoadMI, FrameIndex)) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
@@ -844,7 +876,7 @@ bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
// simple, and a common case.
int FrameIdx = 0;
if (isLoadFromStackSlot(MI, FrameIdx) &&
- MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
+ MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
return true;
// Avoid instructions obviously unsafe for remat.
@@ -857,7 +889,7 @@ bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
return false;
// Avoid instructions which load from potentially varying memory.
- if (MI.mayLoad() && !MI.isInvariantLoad(AA))
+ if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
return false;
// If any of the registers accessed are non-constant, conservatively assume
@@ -875,7 +907,7 @@ bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
- if (!MRI.isConstantPhysReg(Reg, MF))
+ if (!MRI.isConstantPhysReg(Reg))
return false;
} else {
// A physreg def. We can't remat it.
@@ -1091,35 +1123,6 @@ int TargetInstrInfo::computeDefOperandLatency(
return -1;
}
-unsigned TargetInstrInfo::computeOperandLatency(
- const InstrItineraryData *ItinData, const MachineInstr &DefMI,
- unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const {
-
- int DefLatency = computeDefOperandLatency(ItinData, DefMI);
- if (DefLatency >= 0)
- return DefLatency;
-
- assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
-
- int OperLatency = 0;
- if (UseMI)
- OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, *UseMI, UseIdx);
- else {
- unsigned DefClass = DefMI.getDesc().getSchedClass();
- OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
- }
- if (OperLatency >= 0)
- return OperLatency;
-
- // No operand latency was found.
- unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
-
- // Expected latency is the max of the stage latency and itinerary props.
- InstrLatency = std::max(InstrLatency,
- defaultDefLatency(ItinData->SchedModel, DefMI));
- return InstrLatency;
-}
-
bool TargetInstrInfo::getRegSequenceInputs(
const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
index 6d3fe8c..003311b 100644
--- a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
@@ -14,6 +14,7 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -44,6 +45,14 @@ static cl::opt<bool> JumpIsExpensiveOverride(
cl::desc("Do not create extra branches to split comparison logic."),
cl::Hidden);
+static cl::opt<unsigned> MinimumJumpTableEntries
+ ("min-jump-table-entries", cl::init(4), cl::Hidden,
+ cl::desc("Set minimum number of entries to use a jump table."));
+
+static cl::opt<unsigned> MaximumJumpTableSize
+ ("max-jump-table-size", cl::init(0), cl::Hidden,
+ cl::desc("Set maximum size of jump tables; zero for no limit."));
+
// Although this default value is arbitrary, it is not random. It is assumed
// that a condition that evaluates the same way by a higher percentage than this
// is best represented as control flow. Therefore, the default value N should be
@@ -352,6 +361,11 @@ static void InitLibcallNames(const char **Names, const Triple &TT) {
Names[RTLIB::MEMCPY] = "memcpy";
Names[RTLIB::MEMMOVE] = "memmove";
Names[RTLIB::MEMSET] = "memset";
+ Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_1] = "__llvm_memcpy_element_atomic_1";
+ Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_2] = "__llvm_memcpy_element_atomic_2";
+ Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_4] = "__llvm_memcpy_element_atomic_4";
+ Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_8] = "__llvm_memcpy_element_atomic_8";
+ Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_16] = "__llvm_memcpy_element_atomic_16";
Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
@@ -488,12 +502,10 @@ static void InitLibcallNames(const char **Names, const Triple &TT) {
Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
}
-/// InitLibcallCallingConvs - Set default libcall CallingConvs.
-///
+/// Set default libcall CallingConvs.
static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
- for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
- CCs[i] = CallingConv::C;
- }
+ for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
+ CCs[LC] = CallingConv::C;
}
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
@@ -756,6 +768,24 @@ RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
return UNKNOWN_LIBCALL;
}
+RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_ATOMIC(uint64_t ElementSize) {
+ switch (ElementSize) {
+ case 1:
+ return MEMCPY_ELEMENT_ATOMIC_1;
+ case 2:
+ return MEMCPY_ELEMENT_ATOMIC_2;
+ case 4:
+ return MEMCPY_ELEMENT_ATOMIC_4;
+ case 8:
+ return MEMCPY_ELEMENT_ATOMIC_8;
+ case 16:
+ return MEMCPY_ELEMENT_ATOMIC_16;
+ default:
+ return UNKNOWN_LIBCALL;
+ }
+
+}
+
/// InitCmpLibcallCCs - Set default comparison libcall CC.
///
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
@@ -804,10 +834,8 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
= MaxStoresPerMemmoveOptSize = 4;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
- SelectIsExpensive = false;
HasMultipleConditionRegisters = false;
HasExtractBitsInsn = false;
- FsqrtIsCheap = false;
JumpIsExpensive = JumpIsExpensiveOverride;
PredictableSelectIsExpensive = false;
MaskAndBranchFoldingIsLegal = false;
@@ -825,7 +853,6 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
PrefLoopAlignment = 0;
GatherAllAliasesMaxDepth = 6;
MinStackArgumentAlignment = 1;
- MinimumJumpTableEntries = 4;
// TODO: the default will be switched to 0 in the next commit, along
// with the Target-specific changes necessary.
MaxAtomicSizeInBitsSupported = 1024;
@@ -956,15 +983,11 @@ EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
return getScalarShiftAmountTy(DL, LHSTy);
}
-/// canOpTrap - Returns true if the operation can trap for the value type.
-/// VT must be a legal type.
bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
assert(isTypeLegal(VT));
switch (Op) {
default:
return false;
- case ISD::FDIV:
- case ISD::FREM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
@@ -1177,7 +1200,7 @@ TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
MachineBasicBlock *MBB) const {
MachineInstr *MI = &InitialMI;
MachineFunction &MF = *MI->getParent()->getParent();
- MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
// We're handling multiple types of operands here:
// PATCHPOINT MetaArgs - live-in, read only, direct
@@ -1402,7 +1425,7 @@ void TargetLoweringBase::computeRegisterProperties(
MVT SVT = (MVT::SimpleValueType) nVT;
// Promote vectors of integers to vectors with the same number
// of elements, with a wider element type.
- if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() &&
+ if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
@@ -1754,9 +1777,41 @@ TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
}
}
+Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
+ bool UseTLS) const {
+ // compiler-rt provides a variable with a magic name. Targets that do not
+ // link with compiler-rt may also provide such a variable.
+ Module *M = IRB.GetInsertBlock()->getParent()->getParent();
+ const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
+ auto UnsafeStackPtr =
+ dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
+
+ Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
+
+ if (!UnsafeStackPtr) {
+ auto TLSModel = UseTLS ?
+ GlobalValue::InitialExecTLSModel :
+ GlobalValue::NotThreadLocal;
+ // The global variable is not defined yet, define it ourselves.
+ // We use the initial-exec TLS model because we do not support the
+ // variable living anywhere other than in the main executable.
+ UnsafeStackPtr = new GlobalVariable(
+ *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
+ UnsafeStackPtrVar, nullptr, TLSModel);
+ } else {
+ // The variable exists, check its type and attributes.
+ if (UnsafeStackPtr->getValueType() != StackPtrTy)
+ report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
+ if (UseTLS != UnsafeStackPtr->isThreadLocal())
+ report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
+ (UseTLS ? "" : "not ") + "be thread-local");
+ }
+ return UnsafeStackPtr;
+}
+
Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
if (!TM.getTargetTriple().isAndroid())
- return nullptr;
+ return getDefaultSafeStackPointerLocation(IRB, true);
// Android provides a libc function to retrieve the address of the current
// thread's unsafe stack pointer.
@@ -1818,9 +1873,7 @@ Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
- auto Guard = cast<GlobalValue>(M.getOrInsertGlobal("__guard_local", PtrTy));
- Guard->setVisibility(GlobalValue::HiddenVisibility);
- return Guard;
+ return M.getOrInsertGlobal("__guard_local", PtrTy);
}
return nullptr;
}
@@ -1840,3 +1893,207 @@ Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
return nullptr;
}
+
+unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
+ return MinimumJumpTableEntries;
+}
+
+void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
+ MinimumJumpTableEntries = Val;
+}
+
+unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
+ return MaximumJumpTableSize;
+}
+
+void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
+ MaximumJumpTableSize = Val;
+}
+
+//===----------------------------------------------------------------------===//
+// Reciprocal Estimates
+//===----------------------------------------------------------------------===//
+
+/// Get the reciprocal estimate attribute string for a function that will
+/// override the target defaults.
+static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
+ const Function *F = MF.getFunction();
+ StringRef RecipAttrName = "reciprocal-estimates";
+ if (!F->hasFnAttribute(RecipAttrName))
+ return StringRef();
+
+ return F->getFnAttribute(RecipAttrName).getValueAsString();
+}
+
+/// Construct a string for the given reciprocal operation of the given type.
+/// This string should match the corresponding option to the front-end's
+/// "-mrecip" flag assuming those strings have been passed through in an
+/// attribute string. For example, "vec-divf" for a division of a vXf32.
+static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
+ std::string Name = VT.isVector() ? "vec-" : "";
+
+ Name += IsSqrt ? "sqrt" : "div";
+
+ // TODO: Handle "half" or other float types?
+ if (VT.getScalarType() == MVT::f64) {
+ Name += "d";
+ } else {
+ assert(VT.getScalarType() == MVT::f32 &&
+ "Unexpected FP type for reciprocal estimate");
+ Name += "f";
+ }
+
+ return Name;
+}
+
+/// Return the character position and value (a single numeric character) of a
+/// customized refinement operation in the input string if it exists. Return
+/// false if there is no customized refinement step count.
+static bool parseRefinementStep(StringRef In, size_t &Position,
+ uint8_t &Value) {
+ const char RefStepToken = ':';
+ Position = In.find(RefStepToken);
+ if (Position == StringRef::npos)
+ return false;
+
+ StringRef RefStepString = In.substr(Position + 1);
+ // Allow exactly one numeric character for the additional refinement
+ // step parameter.
+ if (RefStepString.size() == 1) {
+ char RefStepChar = RefStepString[0];
+ if (RefStepChar >= '0' && RefStepChar <= '9') {
+ Value = RefStepChar - '0';
+ return true;
+ }
+ }
+ report_fatal_error("Invalid refinement step for -recip.");
+}
+
+/// For the input attribute string, return one of the ReciprocalEstimate enum
+/// status values (enabled, disabled, or not specified) for this operation on
+/// the specified data type.
+static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
+ if (Override.empty())
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+
+ SmallVector<StringRef, 4> OverrideVector;
+ SplitString(Override, OverrideVector, ",");
+ unsigned NumArgs = OverrideVector.size();
+
+ // Check if "all", "none", or "default" was specified.
+ if (NumArgs == 1) {
+ // Look for an optional setting of the number of refinement steps needed
+ // for this type of reciprocal operation.
+ size_t RefPos;
+ uint8_t RefSteps;
+ if (parseRefinementStep(Override, RefPos, RefSteps)) {
+ // Split the string for further processing.
+ Override = Override.substr(0, RefPos);
+ }
+
+ // All reciprocal types are enabled.
+ if (Override == "all")
+ return TargetLoweringBase::ReciprocalEstimate::Enabled;
+
+ // All reciprocal types are disabled.
+ if (Override == "none")
+ return TargetLoweringBase::ReciprocalEstimate::Disabled;
+
+ // Target defaults for enablement are used.
+ if (Override == "default")
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+ }
+
+ // The attribute string may omit the size suffix ('f'/'d').
+ std::string VTName = getReciprocalOpName(IsSqrt, VT);
+ std::string VTNameNoSize = VTName;
+ VTNameNoSize.pop_back();
+ static const char DisabledPrefix = '!';
+
+ for (StringRef RecipType : OverrideVector) {
+ size_t RefPos;
+ uint8_t RefSteps;
+ if (parseRefinementStep(RecipType, RefPos, RefSteps))
+ RecipType = RecipType.substr(0, RefPos);
+
+ // Ignore the disablement token for string matching.
+ bool IsDisabled = RecipType[0] == DisabledPrefix;
+ if (IsDisabled)
+ RecipType = RecipType.substr(1);
+
+ if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
+ return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
+ : TargetLoweringBase::ReciprocalEstimate::Enabled;
+ }
+
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+}
+
+/// For the input attribute string, return the customized refinement step count
+/// for this operation on the specified data type. If the step count does not
+/// exist, return the ReciprocalEstimate enum value for unspecified.
+static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
+ if (Override.empty())
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+
+ SmallVector<StringRef, 4> OverrideVector;
+ SplitString(Override, OverrideVector, ",");
+ unsigned NumArgs = OverrideVector.size();
+
+ // Check if "all", "default", or "none" was specified.
+ if (NumArgs == 1) {
+ // Look for an optional setting of the number of refinement steps needed
+ // for this type of reciprocal operation.
+ size_t RefPos;
+ uint8_t RefSteps;
+ if (!parseRefinementStep(Override, RefPos, RefSteps))
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+
+ // Split the string for further processing.
+ Override = Override.substr(0, RefPos);
+ assert(Override != "none" &&
+ "Disabled reciprocals, but specifed refinement steps?");
+
+ // If this is a general override, return the specified number of steps.
+ if (Override == "all" || Override == "default")
+ return RefSteps;
+ }
+
+ // The attribute string may omit the size suffix ('f'/'d').
+ std::string VTName = getReciprocalOpName(IsSqrt, VT);
+ std::string VTNameNoSize = VTName;
+ VTNameNoSize.pop_back();
+
+ for (StringRef RecipType : OverrideVector) {
+ size_t RefPos;
+ uint8_t RefSteps;
+ if (!parseRefinementStep(RecipType, RefPos, RefSteps))
+ continue;
+
+ RecipType = RecipType.substr(0, RefPos);
+ if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
+ return RefSteps;
+ }
+
+ return TargetLoweringBase::ReciprocalEstimate::Unspecified;
+}
+
+int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
+ MachineFunction &MF) const {
+ return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
+}
+
+int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
+ MachineFunction &MF) const {
+ return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
+}
+
+int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
+ MachineFunction &MF) const {
+ return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
+}
+
+int TargetLoweringBase::getDivRefinementSteps(EVT VT,
+ MachineFunction &MF) const {
+ return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
+}
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
index 5f814c9..eb2a28f 100644
--- a/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp
@@ -50,14 +50,14 @@ using namespace dwarf;
//===----------------------------------------------------------------------===//
MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
- const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
+ const GlobalValue *GV, const TargetMachine &TM,
MachineModuleInfo *MMI) const {
unsigned Encoding = getPersonalityEncoding();
if ((Encoding & 0x80) == dwarf::DW_EH_PE_indirect)
return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
- TM.getSymbol(GV, Mang)->getName());
+ TM.getSymbol(GV)->getName());
if ((Encoding & 0x70) == dwarf::DW_EH_PE_absptr)
- return TM.getSymbol(GV, Mang);
+ return TM.getSymbol(GV);
report_fatal_error("We do not support this DWARF encoding yet!");
}
@@ -84,20 +84,19 @@ void TargetLoweringObjectFileELF::emitPersonalityValue(
}
const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
- const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
- const TargetMachine &TM, MachineModuleInfo *MMI,
- MCStreamer &Streamer) const {
+ const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
+ MachineModuleInfo *MMI, MCStreamer &Streamer) const {
if (Encoding & dwarf::DW_EH_PE_indirect) {
MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
- MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", Mang, TM);
+ MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
// Add information about the stub reference to ELFMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
- MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -106,8 +105,8 @@ const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
Encoding & ~dwarf::DW_EH_PE_indirect, Streamer);
}
- return TargetLoweringObjectFile::
- getTTypeGlobalReference(GV, Encoding, Mang, TM, MMI, Streamer);
+ return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
+ MMI, Streamer);
}
static SectionKind
@@ -152,6 +151,11 @@ getELFKindForNamedSection(StringRef Name, SectionKind K) {
static unsigned getELFSectionType(StringRef Name, SectionKind K) {
+ // Use SHT_NOTE for section whose name starts with ".note" to allow
+ // emitting ELF notes from C variable declaration.
+ // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
+ if (Name.startswith(".note"))
+ return ELF::SHT_NOTE;
if (Name == ".init_array")
return ELF::SHT_INIT_ARRAY;
@@ -177,6 +181,9 @@ static unsigned getELFSectionFlags(SectionKind K) {
if (K.isText())
Flags |= ELF::SHF_EXECINSTR;
+ if (K.isExecuteOnly())
+ Flags |= ELF::SHF_ARM_PURECODE;
+
if (K.isWriteable())
Flags |= ELF::SHF_WRITE;
@@ -205,16 +212,15 @@ static const Comdat *getELFComdat(const GlobalValue *GV) {
}
MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
- StringRef SectionName = GV->getSection();
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
+ StringRef SectionName = GO->getSection();
// Infer section flags from the section name if we can.
Kind = getELFKindForNamedSection(SectionName, Kind);
StringRef Group = "";
unsigned Flags = getELFSectionFlags(Kind);
- if (const Comdat *C = getELFComdat(GV)) {
+ if (const Comdat *C = getELFComdat(GO)) {
Group = C->getName();
Flags |= ELF::SHF_GROUP;
}
@@ -243,7 +249,7 @@ static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
}
static MCSectionELF *
-selectELFSectionForGlobal(MCContext &Ctx, const GlobalValue *GV,
+selectELFSectionForGlobal(MCContext &Ctx, const GlobalObject *GO,
SectionKind Kind, Mangler &Mang,
const TargetMachine &TM, bool EmitUniqueSection,
unsigned Flags, unsigned *NextUniqueID) {
@@ -271,7 +277,7 @@ selectELFSectionForGlobal(MCContext &Ctx, const GlobalValue *GV,
}
StringRef Group = "";
- if (const Comdat *C = getELFComdat(GV)) {
+ if (const Comdat *C = getELFComdat(GO)) {
Flags |= ELF::SHF_GROUP;
Group = C->getName();
}
@@ -282,8 +288,8 @@ selectELFSectionForGlobal(MCContext &Ctx, const GlobalValue *GV,
// We also need alignment here.
// FIXME: this is getting the alignment of the character, not the
// alignment of the global!
- unsigned Align = GV->getParent()->getDataLayout().getPreferredAlignment(
- cast<GlobalVariable>(GV));
+ unsigned Align = GO->getParent()->getDataLayout().getPreferredAlignment(
+ cast<GlobalVariable>(GO));
std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
Name = SizeSpec + utostr(Align);
@@ -293,25 +299,31 @@ selectELFSectionForGlobal(MCContext &Ctx, const GlobalValue *GV,
} else {
Name = getSectionPrefixForGlobal(Kind);
}
- // FIXME: Extend the section prefix to include hotness catagories such as .hot
- // or .unlikely for functions.
+
+ if (const auto *F = dyn_cast<Function>(GO)) {
+ const auto &OptionalPrefix = F->getSectionPrefix();
+ if (OptionalPrefix)
+ Name += *OptionalPrefix;
+ }
if (EmitUniqueSection && UniqueSectionNames) {
Name.push_back('.');
- TM.getNameWithPrefix(Name, GV, Mang, true);
+ TM.getNameWithPrefix(Name, GO, Mang, true);
}
unsigned UniqueID = MCContext::GenericSectionID;
if (EmitUniqueSection && !UniqueSectionNames) {
UniqueID = *NextUniqueID;
(*NextUniqueID)++;
}
+ // Use 0 as the unique ID for execute-only text
+ if (Kind.isExecuteOnly())
+ UniqueID = 0;
return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
EntrySize, Group, UniqueID);
}
MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
unsigned Flags = getELFSectionFlags(Kind);
// If we have -ffunction-section or -fdata-section then we should emit the
@@ -323,14 +335,14 @@ MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
else
EmitUniqueSection = TM.getDataSections();
}
- EmitUniqueSection |= GV->hasComdat();
+ EmitUniqueSection |= GO->hasComdat();
- return selectELFSectionForGlobal(getContext(), GV, Kind, Mang, TM,
+ return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
EmitUniqueSection, Flags, &NextUniqueID);
}
MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
- const Function &F, Mangler &Mang, const TargetMachine &TM) const {
+ const Function &F, const TargetMachine &TM) const {
// If the function can be removed, produce a unique section so that
// the table doesn't prevent the removal.
const Comdat *C = F.getComdat();
@@ -339,7 +351,7 @@ MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
return ReadOnlySection;
return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
- Mang, TM, EmitUniqueSection, ELF::SHF_ALLOC,
+ getMangler(), TM, EmitUniqueSection, ELF::SHF_ALLOC,
&NextUniqueID);
}
@@ -423,7 +435,7 @@ MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
}
const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
- const GlobalValue *LHS, const GlobalValue *RHS, Mangler &Mang,
+ const GlobalValue *LHS, const GlobalValue *RHS,
const TargetMachine &TM) const {
// We may only use a PLT-relative relocation to refer to unnamed_addr
// functions.
@@ -437,22 +449,28 @@ const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
return nullptr;
return MCBinaryExpr::createSub(
- MCSymbolRefExpr::create(TM.getSymbol(LHS, Mang), PLTRelativeVariantKind,
+ MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
getContext()),
- MCSymbolRefExpr::create(TM.getSymbol(RHS, Mang), getContext()),
- getContext());
+ MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
}
void
TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
UseInitArray = UseInitArray_;
- if (!UseInitArray)
+ MCContext &Ctx = getContext();
+ if (!UseInitArray) {
+ StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE);
+
+ StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE);
return;
+ }
- StaticCtorSection = getContext().getELFSection(
- ".init_array", ELF::SHT_INIT_ARRAY, ELF::SHF_WRITE | ELF::SHF_ALLOC);
- StaticDtorSection = getContext().getELFSection(
- ".fini_array", ELF::SHT_FINI_ARRAY, ELF::SHF_WRITE | ELF::SHF_ALLOC);
+ StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
+ ELF::SHF_WRITE | ELF::SHF_ALLOC);
+ StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
+ ELF::SHF_WRITE | ELF::SHF_ALLOC);
}
//===----------------------------------------------------------------------===//
@@ -464,11 +482,28 @@ TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
SupportIndirectSymViaGOTPCRel = true;
}
+void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ TargetLoweringObjectFile::Initialize(Ctx, TM);
+ if (TM.getRelocationModel() == Reloc::Static) {
+ StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
+ SectionKind::getData());
+ StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
+ SectionKind::getData());
+ } else {
+ StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
+ MachO::S_MOD_INIT_FUNC_POINTERS,
+ SectionKind::getData());
+ StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
+ MachO::S_MOD_TERM_FUNC_POINTERS,
+ SectionKind::getData());
+ }
+}
+
/// emitModuleFlags - Perform code emission for module flags.
-void TargetLoweringObjectFileMachO::
-emitModuleFlags(MCStreamer &Streamer,
- ArrayRef<Module::ModuleFlagEntry> ModuleFlags,
- Mangler &Mang, const TargetMachine &TM) const {
+void TargetLoweringObjectFileMachO::emitModuleFlags(
+ MCStreamer &Streamer, ArrayRef<Module::ModuleFlagEntry> ModuleFlags,
+ const TargetMachine &TM) const {
unsigned VersionVal = 0;
unsigned ImageInfoFlags = 0;
MDNode *LinkerOptions = nullptr;
@@ -542,23 +577,22 @@ static void checkMachOComdat(const GlobalValue *GV) {
}
MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
// Parse the section specifier and create it if valid.
StringRef Segment, Section;
unsigned TAA = 0, StubSize = 0;
bool TAAParsed;
- checkMachOComdat(GV);
+ checkMachOComdat(GO);
std::string ErrorCode =
- MCSectionMachO::ParseSectionSpecifier(GV->getSection(), Segment, Section,
+ MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
TAA, TAAParsed, StubSize);
if (!ErrorCode.empty()) {
// If invalid, report the error with report_fatal_error.
- report_fatal_error("Global variable '" + GV->getName() +
+ report_fatal_error("Global variable '" + GO->getName() +
"' has an invalid section specifier '" +
- GV->getSection() + "': " + ErrorCode + ".");
+ GO->getSection() + "': " + ErrorCode + ".");
}
// Get the section.
@@ -575,7 +609,7 @@ MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
// to reject it here.
if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
// If invalid, report the error with report_fatal_error.
- report_fatal_error("Global variable '" + GV->getName() +
+ report_fatal_error("Global variable '" + GO->getName() +
"' section type or attributes does not match previous"
" section specifier");
}
@@ -584,20 +618,19 @@ MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
}
MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
- checkMachOComdat(GV);
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
+ checkMachOComdat(GO);
// Handle thread local data.
if (Kind.isThreadBSS()) return TLSBSSSection;
if (Kind.isThreadData()) return TLSDataSection;
if (Kind.isText())
- return GV->isWeakForLinker() ? TextCoalSection : TextSection;
+ return GO->isWeakForLinker() ? TextCoalSection : TextSection;
// If this is weak/linkonce, put this in a coalescable section, either in text
// or data depending on if it is writable.
- if (GV->isWeakForLinker()) {
+ if (GO->isWeakForLinker()) {
if (Kind.isReadOnly())
return ConstTextCoalSection;
return DataCoalSection;
@@ -605,21 +638,21 @@ MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
// FIXME: Alignment check should be handled by section classifier.
if (Kind.isMergeable1ByteCString() &&
- GV->getParent()->getDataLayout().getPreferredAlignment(
- cast<GlobalVariable>(GV)) < 32)
+ GO->getParent()->getDataLayout().getPreferredAlignment(
+ cast<GlobalVariable>(GO)) < 32)
return CStringSection;
// Do not put 16-bit arrays in the UString section if they have an
// externally visible label, this runs into issues with certain linker
// versions.
- if (Kind.isMergeable2ByteCString() && !GV->hasExternalLinkage() &&
- GV->getParent()->getDataLayout().getPreferredAlignment(
- cast<GlobalVariable>(GV)) < 32)
+ if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
+ GO->getParent()->getDataLayout().getPreferredAlignment(
+ cast<GlobalVariable>(GO)) < 32)
return UStringSection;
// With MachO only variables whose corresponding symbol starts with 'l' or
// 'L' can be merged, so we only try merging GVs with private linkage.
- if (GV->hasPrivateLinkage() && Kind.isMergeableConst()) {
+ if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
if (Kind.isMergeableConst4())
return FourByteConstantSection;
if (Kind.isMergeableConst8())
@@ -670,23 +703,21 @@ MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
}
const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
- const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
- const TargetMachine &TM, MachineModuleInfo *MMI,
- MCStreamer &Streamer) const {
+ const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
+ MachineModuleInfo *MMI, MCStreamer &Streamer) const {
// The mach-o version of this method defaults to returning a stub reference.
if (Encoding & DW_EH_PE_indirect) {
MachineModuleInfoMachO &MachOMMI =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
- MCSymbol *SSym =
- getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", Mang, TM);
+ MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
// Add information about the stub reference to MachOMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
- MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -695,24 +726,24 @@ const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
Encoding & ~dwarf::DW_EH_PE_indirect, Streamer);
}
- return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, Mang,
- TM, MMI, Streamer);
+ return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
+ MMI, Streamer);
}
MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
- const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
+ const GlobalValue *GV, const TargetMachine &TM,
MachineModuleInfo *MMI) const {
// The mach-o version of this method defaults to returning a stub reference.
MachineModuleInfoMachO &MachOMMI =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
- MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", Mang, TM);
+ MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
// Add information about the stub reference to MachOMMI so that the stub
// gets emitted by the asmprinter.
MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
if (!StubSym.getPointer()) {
- MCSymbol *Sym = TM.getSymbol(GV, Mang);
+ MCSymbol *Sym = TM.getSymbol(GV);
StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
}
@@ -793,13 +824,16 @@ static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
}
void TargetLoweringObjectFileMachO::getNameWithPrefix(
- SmallVectorImpl<char> &OutName, const GlobalValue *GV, Mangler &Mang,
+ SmallVectorImpl<char> &OutName, const GlobalValue *GV,
const TargetMachine &TM) const {
- SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
- const MCSection *TheSection = SectionForGlobal(GV, GVKind, Mang, TM);
- bool CannotUsePrivateLabel =
- !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
- Mang.getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
+ bool CannotUsePrivateLabel = true;
+ if (auto *GO = GV->getBaseObject()) {
+ SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
+ const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
+ CannotUsePrivateLabel =
+ !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
+ }
+ getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
}
//===----------------------------------------------------------------------===//
@@ -886,22 +920,21 @@ static int getSelectionForCOFF(const GlobalValue *GV) {
}
MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
int Selection = 0;
unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
- StringRef Name = GV->getSection();
+ StringRef Name = GO->getSection();
StringRef COMDATSymName = "";
- if (GV->hasComdat()) {
- Selection = getSelectionForCOFF(GV);
+ if (GO->hasComdat()) {
+ Selection = getSelectionForCOFF(GO);
const GlobalValue *ComdatGV;
if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
- ComdatGV = getComdatGVForCOFF(GV);
+ ComdatGV = getComdatGVForCOFF(GO);
else
- ComdatGV = GV;
+ ComdatGV = GO;
if (!ComdatGV->hasPrivateLinkage()) {
- MCSymbol *Sym = TM.getSymbol(ComdatGV, Mang);
+ MCSymbol *Sym = TM.getSymbol(ComdatGV);
COMDATSymName = Sym->getName();
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
} else {
@@ -926,8 +959,7 @@ static const char *getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
}
MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
- const GlobalValue *GV, SectionKind Kind, Mangler &Mang,
- const TargetMachine &TM) const {
+ const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
// If we have -ffunction-sections then we should emit the global value to a
// uniqued section specifically for it.
bool EmitUniquedSection;
@@ -936,32 +968,32 @@ MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
else
EmitUniquedSection = TM.getDataSections();
- if ((EmitUniquedSection && !Kind.isCommon()) || GV->hasComdat()) {
+ if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
const char *Name = getCOFFSectionNameForUniqueGlobal(Kind);
unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
- int Selection = getSelectionForCOFF(GV);
+ int Selection = getSelectionForCOFF(GO);
if (!Selection)
Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
const GlobalValue *ComdatGV;
- if (GV->hasComdat())
- ComdatGV = getComdatGVForCOFF(GV);
+ if (GO->hasComdat())
+ ComdatGV = getComdatGVForCOFF(GO);
else
- ComdatGV = GV;
+ ComdatGV = GO;
unsigned UniqueID = MCContext::GenericSectionID;
if (EmitUniquedSection)
UniqueID = NextUniqueID++;
if (!ComdatGV->hasPrivateLinkage()) {
- MCSymbol *Sym = TM.getSymbol(ComdatGV, Mang);
+ MCSymbol *Sym = TM.getSymbol(ComdatGV);
StringRef COMDATSymName = Sym->getName();
return getContext().getCOFFSection(Name, Characteristics, Kind,
COMDATSymName, Selection, UniqueID);
} else {
SmallString<256> TmpData;
- Mang.getNameWithPrefix(TmpData, GV, /*CannotUsePrivateLabel=*/true);
+ getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
Selection, UniqueID);
}
@@ -986,7 +1018,7 @@ MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
}
void TargetLoweringObjectFileCOFF::getNameWithPrefix(
- SmallVectorImpl<char> &OutName, const GlobalValue *GV, Mangler &Mang,
+ SmallVectorImpl<char> &OutName, const GlobalValue *GV,
const TargetMachine &TM) const {
bool CannotUsePrivateLabel = false;
if (GV->hasPrivateLinkage() &&
@@ -994,11 +1026,11 @@ void TargetLoweringObjectFileCOFF::getNameWithPrefix(
(isa<GlobalVariable>(GV) && TM.getDataSections())))
CannotUsePrivateLabel = true;
- Mang.getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
+ getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
}
MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
- const Function &F, Mangler &Mang, const TargetMachine &TM) const {
+ const Function &F, const TargetMachine &TM) const {
// If the function can be removed, produce a unique section so that
// the table doesn't prevent the removal.
const Comdat *C = F.getComdat();
@@ -1010,7 +1042,7 @@ MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
if (F.hasPrivateLinkage())
return ReadOnlySection;
- MCSymbol *Sym = TM.getSymbol(&F, Mang);
+ MCSymbol *Sym = TM.getSymbol(&F);
StringRef COMDATSymName = Sym->getName();
SectionKind Kind = SectionKind::getReadOnly();
@@ -1023,10 +1055,9 @@ MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
}
-void TargetLoweringObjectFileCOFF::
-emitModuleFlags(MCStreamer &Streamer,
- ArrayRef<Module::ModuleFlagEntry> ModuleFlags,
- Mangler &Mang, const TargetMachine &TM) const {
+void TargetLoweringObjectFileCOFF::emitModuleFlags(
+ MCStreamer &Streamer, ArrayRef<Module::ModuleFlagEntry> ModuleFlags,
+ const TargetMachine &TM) const {
MDNode *LinkerOptions = nullptr;
for (const auto &MFE : ModuleFlags) {
@@ -1052,6 +1083,31 @@ emitModuleFlags(MCStreamer &Streamer,
}
}
+void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ TargetLoweringObjectFile::Initialize(Ctx, TM);
+ const Triple &T = TM.getTargetTriple();
+ if (T.isKnownWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
+ StaticCtorSection =
+ Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getReadOnly());
+ StaticDtorSection =
+ Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_MEM_READ,
+ SectionKind::getReadOnly());
+ } else {
+ StaticCtorSection = Ctx.getCOFFSection(
+ ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
+ SectionKind::getData());
+ StaticDtorSection = Ctx.getCOFFSection(
+ ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
+ COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
+ SectionKind::getData());
+ }
+}
+
MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
unsigned Priority, const MCSymbol *KeySym) const {
return getContext().getAssociativeCOFFSection(
@@ -1065,7 +1121,7 @@ MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
}
void TargetLoweringObjectFileCOFF::emitLinkerFlagsForGlobal(
- raw_ostream &OS, const GlobalValue *GV, const Mangler &Mang) const {
+ raw_ostream &OS, const GlobalValue *GV) const {
if (!GV->hasDLLExportStorageClass() || GV->isDeclaration())
return;
@@ -1079,14 +1135,14 @@ void TargetLoweringObjectFileCOFF::emitLinkerFlagsForGlobal(
if (TT.isWindowsGNUEnvironment() || TT.isWindowsCygwinEnvironment()) {
std::string Flag;
raw_string_ostream FlagOS(Flag);
- Mang.getNameWithPrefix(FlagOS, GV, false);
+ getMangler().getNameWithPrefix(FlagOS, GV, false);
FlagOS.flush();
if (Flag[0] == GV->getParent()->getDataLayout().getGlobalPrefix())
OS << Flag.substr(1);
else
OS << Flag;
} else {
- Mang.getNameWithPrefix(OS, GV, false);
+ getMangler().getNameWithPrefix(OS, GV, false);
}
if (!GV->getValueType()->isFunctionTy()) {
diff --git a/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp b/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
index 8d2048f..b6da8e0 100644
--- a/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetOptionsImpl.cpp
@@ -29,7 +29,7 @@ bool TargetOptions::DisableFramePointerElim(const MachineFunction &MF) const {
// Check to see if we should eliminate non-leaf frame pointers.
if (MF.getFunction()->hasFnAttribute("no-frame-pointer-elim-non-leaf"))
- return MF.getFrameInfo()->hasCalls();
+ return MF.getFrameInfo().hasCalls();
return false;
}
diff --git a/contrib/llvm/lib/CodeGen/TargetPassConfig.cpp b/contrib/llvm/lib/CodeGen/TargetPassConfig.cpp
index b8c8209..e7ea2b4 100644
--- a/contrib/llvm/lib/CodeGen/TargetPassConfig.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetPassConfig.cpp
@@ -38,8 +38,8 @@
using namespace llvm;
-static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden,
- cl::desc("Disable Post Regalloc"));
+static cl::opt<bool> DisablePostRASched("disable-post-ra", cl::Hidden,
+ cl::desc("Disable Post Regalloc Scheduler"));
static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
cl::desc("Disable branch folding"));
static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
@@ -98,6 +98,14 @@ PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
cl::desc("Print machine instrs"),
cl::value_desc("pass-name"), cl::init("option-unspecified"));
+static cl::opt<int> EnableGlobalISelAbort(
+ "global-isel-abort", cl::Hidden,
+ cl::desc("Enable abort calls when \"global\" instruction selection "
+ "fails to lower/select an instruction: 0 disable the abort, "
+ "1 enable the abort, and "
+ "2 disable the abort but emit a diagnostic on failure"),
+ cl::init(1));
+
// Temporary option to allow experimenting with MachineScheduler as a post-RA
// scheduler. Targets can "properly" enable this with
// substitutePass(&PostRASchedulerID, &PostMachineSchedulerID).
@@ -121,8 +129,7 @@ static cl::opt<CFLAAType> UseCFLAA(
clEnumValN(CFLAAType::Andersen, "anders",
"Enable inclusion-based CFL-AA"),
clEnumValN(CFLAAType::Both, "both",
- "Enable both variants of CFL-AA"),
- clEnumValEnd));
+ "Enable both variants of CFL-AA")));
/// Allow standard passes to be disabled by command line options. This supports
/// simple binary flags that either suppress the pass or do nothing.
@@ -150,7 +157,7 @@ static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID,
static IdentifyingPassPtr overridePass(AnalysisID StandardID,
IdentifyingPassPtr TargetID) {
if (StandardID == &PostRASchedulerID)
- return applyDisable(TargetID, DisablePostRA);
+ return applyDisable(TargetID, DisablePostRASched);
if (StandardID == &BranchFolderPassID)
return applyDisable(TargetID, DisableBranchFold);
@@ -252,8 +259,7 @@ TargetPassConfig::~TargetPassConfig() {
// Out of line constructor provides default values for pass options and
// registers all common codegen passes.
TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
- : ImmutablePass(ID), PM(&pm), StartBefore(nullptr), StartAfter(nullptr),
- StopAfter(nullptr), Started(true), Stopped(false),
+ : ImmutablePass(ID), PM(&pm), Started(true), Stopped(false),
AddingMachinePasses(false), TM(tm), Impl(nullptr), Initialized(false),
DisableVerify(false), EnableTailMerge(true) {
@@ -347,6 +353,8 @@ void TargetPassConfig::addPass(Pass *P, bool verifyAfter, bool printAfter) {
if (StartBefore == PassID)
Started = true;
+ if (StopBefore == PassID)
+ Stopped = true;
if (Started && !Stopped) {
std::string Banner;
// Construct banner message before PM->add() as that may delete the pass.
@@ -469,12 +477,17 @@ void TargetPassConfig::addIRPasses() {
if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining)
addPass(createPartiallyInlineLibCallsPass());
+
+ // Insert calls to mcount-like functions.
+ addPass(createCountingFunctionInserterPass());
}
/// Turn exception handling constructs into something the code generators can
/// handle.
void TargetPassConfig::addPassesToHandleExceptions() {
- switch (TM->getMCAsmInfo()->getExceptionHandlingType()) {
+ const MCAsmInfo *MCAI = TM->getMCAsmInfo();
+ assert(MCAI && "No MCAsmInfo");
+ switch (MCAI->getExceptionHandlingType()) {
case ExceptionHandling::SjLj:
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
// Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
@@ -483,7 +496,7 @@ void TargetPassConfig::addPassesToHandleExceptions() {
// pad is shared by multiple invokes and is also a target of a normal
// edge from elsewhere.
addPass(createSjLjEHPreparePass());
- // FALLTHROUGH
+ LLVM_FALLTHROUGH;
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
addPass(createDwarfEHPass(TM));
@@ -557,9 +570,6 @@ void TargetPassConfig::addISelPrepare() {
void TargetPassConfig::addMachinePasses() {
AddingMachinePasses = true;
- if (TM->Options.EnableIPRA)
- addPass(createRegUsageInfoPropPass());
-
// Insert a machine instr printer pass after the specified pass.
if (!StringRef(PrintMachineInstrs.getValue()).equals("") &&
!StringRef(PrintMachineInstrs.getValue()).equals("option-unspecified")) {
@@ -575,6 +585,9 @@ void TargetPassConfig::addMachinePasses() {
// Print the instruction selected machine code...
printAndVerify("After Instruction Selection");
+ if (TM->Options.EnableIPRA)
+ addPass(createRegUsageInfoPropPass());
+
// Expand pseudo-instructions emitted by ISel.
addPass(&ExpandISelPseudosID);
@@ -886,3 +899,14 @@ void TargetPassConfig::addBlockPlacement() {
addPass(&MachineBlockPlacementStatsID);
}
}
+
+//===---------------------------------------------------------------------===//
+/// GlobalISel Configuration
+//===---------------------------------------------------------------------===//
+bool TargetPassConfig::isGlobalISelAbortEnabled() const {
+ return EnableGlobalISelAbort == 1;
+}
+
+bool TargetPassConfig::reportDiagnosticWhenGlobalISelFallback() const {
+ return EnableGlobalISelAbort == 2;
+}
diff --git a/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp b/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
index e1d90cb..cd50c5b 100644
--- a/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetRegisterInfo.cpp
@@ -30,8 +30,8 @@ using namespace llvm;
TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RCB, regclass_iterator RCE,
const char *const *SRINames,
- const unsigned *SRILaneMasks,
- unsigned SRICoveringLanes)
+ const LaneBitmask *SRILaneMasks,
+ LaneBitmask SRICoveringLanes)
: InfoDesc(ID), SubRegIndexNames(SRINames),
SubRegIndexLaneMasks(SRILaneMasks),
RegClassBegin(RCB), RegClassEnd(RCE),
@@ -40,6 +40,36 @@ TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
TargetRegisterInfo::~TargetRegisterInfo() {}
+void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
+ const {
+ for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
+ RegisterSet.set(*AI);
+}
+
+bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
+ ArrayRef<MCPhysReg> Exceptions) const {
+ // Check that all super registers of reserved regs are reserved as well.
+ BitVector Checked(getNumRegs());
+ for (int Reg = RegisterSet.find_first(); Reg>=0;
+ Reg = RegisterSet.find_next(Reg)) {
+ if (Checked[Reg])
+ continue;
+ for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
+ if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
+ dbgs() << "Error: Super register " << PrintReg(*SR, this)
+ << " of reserved register " << PrintReg(Reg, this)
+ << " is not reserved.\n";
+ return false;
+ }
+
+ // We transitively check superregs. So we can remember this for later
+ // to avoid compiletime explosion in deep register hierarchies.
+ Checked.set(*SR);
+ }
+ }
+ return true;
+}
+
namespace llvm {
Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
@@ -97,12 +127,6 @@ Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
});
}
-Printable PrintLaneMask(LaneBitmask LaneMask) {
- return Printable([LaneMask](raw_ostream &OS) {
- OS << format("%08X", LaneMask);
- });
-}
-
} // End of llvm namespace
/// getAllocatableClass - Return the maximal subclass of the given register
@@ -354,7 +378,7 @@ TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
// Check that Phys is in the allocation order. We shouldn't heed hints
// from VirtReg's register class if they aren't in the allocation order. The
// target probably has a reason for removing the register.
- if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
+ if (!is_contained(Order, Phys))
return;
// All clear, tell the register allocator to prefer this register.
@@ -367,11 +391,11 @@ bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
bool TargetRegisterInfo::needsStackRealignment(
const MachineFunction &MF) const {
- const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const Function *F = MF.getFunction();
unsigned StackAlign = TFI->getStackAlignment();
- bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
+ bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
F->hasFnAttribute(Attribute::StackAlignment));
if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
if (canRealignStack(MF))
diff --git a/contrib/llvm/lib/CodeGen/TargetSchedule.cpp b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
index 022e912..83e52d3 100644
--- a/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
+++ b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp
@@ -144,7 +144,7 @@ static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
unsigned UseIdx = 0;
for (unsigned i = 0; i != UseOperIdx; ++i) {
const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.readsReg())
+ if (MO.isReg() && MO.readsReg() && !MO.isDef())
++UseIdx;
}
return UseIdx;
diff --git a/contrib/llvm/lib/CodeGen/TargetSubtargetInfo.cpp b/contrib/llvm/lib/CodeGen/TargetSubtargetInfo.cpp
new file mode 100644
index 0000000..c74707d
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/TargetSubtargetInfo.cpp
@@ -0,0 +1,54 @@
+//===-- TargetSubtargetInfo.cpp - General Target Information ---------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file describes the general parts of a Subtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetSubtargetInfo.h"
+using namespace llvm;
+
+//---------------------------------------------------------------------------
+// TargetSubtargetInfo Class
+//
+TargetSubtargetInfo::TargetSubtargetInfo(
+ const Triple &TT, StringRef CPU, StringRef FS,
+ ArrayRef<SubtargetFeatureKV> PF, ArrayRef<SubtargetFeatureKV> PD,
+ const SubtargetInfoKV *ProcSched, const MCWriteProcResEntry *WPR,
+ const MCWriteLatencyEntry *WL, const MCReadAdvanceEntry *RA,
+ const InstrStage *IS, const unsigned *OC, const unsigned *FP)
+ : MCSubtargetInfo(TT, CPU, FS, PF, PD, ProcSched, WPR, WL, RA, IS, OC, FP) {
+}
+
+TargetSubtargetInfo::~TargetSubtargetInfo() {}
+
+bool TargetSubtargetInfo::enableAtomicExpand() const {
+ return true;
+}
+
+bool TargetSubtargetInfo::enableMachineScheduler() const {
+ return false;
+}
+
+bool TargetSubtargetInfo::enableJoinGlobalCopies() const {
+ return enableMachineScheduler();
+}
+
+bool TargetSubtargetInfo::enableRALocalReassignment(
+ CodeGenOpt::Level OptLevel) const {
+ return true;
+}
+
+bool TargetSubtargetInfo::enablePostRAScheduler() const {
+ return getSchedModel().PostRAScheduler;
+}
+
+bool TargetSubtargetInfo::useAA() const {
+ return false;
+}
diff --git a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
index 8feb18b..0f1b2ed 100644
--- a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -109,7 +109,7 @@ class TwoAddressInstructionPass : public MachineFunctionPass {
bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
MachineInstr *MI, unsigned Dist);
- bool commuteInstruction(MachineInstr *MI,
+ bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
@@ -651,6 +651,7 @@ isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
/// Commute a two-address instruction and update the basic block, distance map,
/// and live variables if needed. Return true if it is successful.
bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
+ unsigned DstIdx,
unsigned RegBIdx,
unsigned RegCIdx,
unsigned Dist) {
@@ -671,7 +672,7 @@ bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
// Update source register map.
unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
if (FromRegC) {
- unsigned RegA = MI->getOperand(0).getReg();
+ unsigned RegA = MI->getOperand(DstIdx).getReg();
SrcRegMap[RegA] = FromRegC;
}
@@ -1171,6 +1172,9 @@ bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
unsigned BaseOpIdx,
bool BaseOpKilled,
unsigned Dist) {
+ if (!MI->isCommutable())
+ return false;
+
unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
unsigned OpsNum = MI->getDesc().getNumOperands();
@@ -1180,7 +1184,7 @@ bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
// and OtherOpIdx are commutable, it does not really search for
// other commutable operands and does not change the values of passed
// variables.
- if (OtherOpIdx == BaseOpIdx ||
+ if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
!TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
continue;
@@ -1199,7 +1203,8 @@ bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
}
// If it's profitable to commute, try to do so.
- if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) {
+ if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
+ Dist)) {
++NumCommuted;
if (AggressiveCommute)
++NumAggrCommuted;
@@ -1567,14 +1572,14 @@ TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
if (!IsEarlyClobber) {
// Replace other (un-tied) uses of regB with LastCopiedReg.
for (MachineOperand &MO : MI->operands()) {
- if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
+ if (MO.isReg() && MO.getReg() == RegB &&
MO.isUse()) {
if (MO.isKill()) {
MO.setIsKill(false);
RemovedKillFlag = true;
}
MO.setReg(LastCopiedReg);
- MO.setSubReg(0);
+ MO.setSubReg(MO.getSubReg());
}
}
}
diff --git a/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp b/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
index 501e01c..c2db56a 100644
--- a/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
+++ b/contrib/llvm/lib/CodeGen/UnreachableBlockElim.cpp
@@ -40,7 +40,7 @@
using namespace llvm;
static bool eliminateUnreachableBlock(Function &F) {
- SmallPtrSet<BasicBlock*, 8> Reachable;
+ df_iterator_default_set<BasicBlock*> Reachable;
// Mark all reachable blocks.
for (BasicBlock *BB : depth_first_ext(&F, Reachable))
@@ -130,7 +130,7 @@ void UnreachableMachineBlockElim::getAnalysisUsage(AnalysisUsage &AU) const {
}
bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
- SmallPtrSet<MachineBasicBlock*, 8> Reachable;
+ df_iterator_default_set<MachineBasicBlock*> Reachable;
bool ModifiedPHI = false;
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
diff --git a/contrib/llvm/lib/CodeGen/VirtRegMap.cpp b/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
index 8a3a032..0d506d6 100644
--- a/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
+++ b/contrib/llvm/lib/CodeGen/VirtRegMap.cpp
@@ -73,8 +73,8 @@ void VirtRegMap::grow() {
}
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
- int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
- RC->getAlignment());
+ int SS = MF->getFrameInfo().CreateSpillStackObject(RC->getSize(),
+ RC->getAlignment());
++NumSpillSlots;
return SS;
}
@@ -110,7 +110,7 @@ void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
assert((SS >= 0 ||
- (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
+ (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
"illegal fixed frame index");
Virt2StackSlotMap[virtReg] = SS;
}
@@ -177,7 +177,7 @@ public:
bool runOnMachineFunction(MachineFunction&) override;
MachineFunctionProperties getSetProperties() const override {
return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::AllVRegsAllocated);
+ MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
@@ -266,7 +266,7 @@ void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
SlotIndex MBBBegin = MBBI->first;
// Advance all subrange iterators so that their end position is just
// behind MBBBegin (or the iterator is at the end).
- LaneBitmask LaneMask = 0;
+ LaneBitmask LaneMask;
for (auto &RangeIterPair : SubRanges) {
const LiveInterval::SubRange *SR = RangeIterPair.first;
LiveInterval::const_iterator &SRI = RangeIterPair.second;
@@ -277,7 +277,7 @@ void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
if (SRI->start <= MBBBegin)
LaneMask |= SR->LaneMask;
}
- if (LaneMask == 0)
+ if (LaneMask.none())
continue;
MachineBasicBlock *MBB = MBBI->second;
MBB->addLiveIn(PhysReg, LaneMask);
@@ -338,10 +338,11 @@ bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
assert(LI.liveAt(BaseIndex) &&
"Reads of completely dead register should be marked undef already");
unsigned SubRegIdx = MO.getSubReg();
+ assert(SubRegIdx != 0 && LI.hasSubRanges());
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
// See if any of the relevant subregister liveranges is defined at this point.
for (const LiveInterval::SubRange &SR : LI.subranges()) {
- if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex))
+ if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
return false;
}
return true;
diff --git a/contrib/llvm/lib/CodeGen/WinEHPrepare.cpp b/contrib/llvm/lib/CodeGen/WinEHPrepare.cpp
index 041fb7b..568720c 100644
--- a/contrib/llvm/lib/CodeGen/WinEHPrepare.cpp
+++ b/contrib/llvm/lib/CodeGen/WinEHPrepare.cpp
@@ -62,7 +62,7 @@ public:
void getAnalysisUsage(AnalysisUsage &AU) const override;
- const char *getPassName() const override {
+ StringRef getPassName() const override {
return "Windows exception handling preparation";
}
@@ -521,7 +521,7 @@ void llvm::calculateClrEHStateNumbers(const Function *Fn,
if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
// Create the entry for this cleanup with the appropriate handler
- // properties. Finaly and fault handlers are distinguished by arity.
+ // properties. Finally and fault handlers are distinguished by arity.
ClrHandlerType HandlerType =
(Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
: ClrHandlerType::Finally);
@@ -708,7 +708,7 @@ void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
void WinEHPrepare::cloneCommonBlocks(Function &F) {
// We need to clone all blocks which belong to multiple funclets. Values are
- // remapped throughout the funclet to propogate both the new instructions
+ // remapped throughout the funclet to propagate both the new instructions
// *and* the new basic blocks themselves.
for (auto &Funclets : FuncletBlocks) {
BasicBlock *FuncletPadBB = Funclets.first;
@@ -1202,8 +1202,12 @@ void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
Goto->setSuccessor(0, PHIBlock);
CatchRet->setSuccessor(NewBlock);
// Update the color mapping for the newly split edge.
+ // Grab a reference to the ColorVector to be inserted before getting the
+ // reference to the vector we are copying because inserting the new
+ // element in BlockColors might cause the map to be reallocated.
+ ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
- BlockColors[NewBlock] = ColorsForPHIBlock;
+ ColorsForNewBlock = ColorsForPHIBlock;
for (BasicBlock *FuncletPad : ColorsForPHIBlock)
FuncletBlocks[FuncletPad].push_back(NewBlock);
// Treat the new block as incoming for load insertion.
diff --git a/contrib/llvm/lib/CodeGen/XRayInstrumentation.cpp b/contrib/llvm/lib/CodeGen/XRayInstrumentation.cpp
index 1f95708..63bd762 100644
--- a/contrib/llvm/lib/CodeGen/XRayInstrumentation.cpp
+++ b/contrib/llvm/lib/CodeGen/XRayInstrumentation.cpp
@@ -34,7 +34,82 @@ struct XRayInstrumentation : public MachineFunctionPass {
}
bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ // Replace the original RET instruction with the exit sled code ("patchable
+ // ret" pseudo-instruction), so that at runtime XRay can replace the sled
+ // with a code jumping to XRay trampoline, which calls the tracing handler
+ // and, in the end, issues the RET instruction.
+ // This is the approach to go on CPUs which have a single RET instruction,
+ // like x86/x86_64.
+ void replaceRetWithPatchableRet(MachineFunction &MF,
+ const TargetInstrInfo *TII);
+
+ // Prepend the original return instruction with the exit sled code ("patchable
+ // function exit" pseudo-instruction), preserving the original return
+ // instruction just after the exit sled code.
+ // This is the approach to go on CPUs which have multiple options for the
+ // return instruction, like ARM. For such CPUs we can't just jump into the
+ // XRay trampoline and issue a single return instruction there. We rather
+ // have to call the trampoline and return from it to the original return
+ // instruction of the function being instrumented.
+ void prependRetWithPatchableExit(MachineFunction &MF,
+ const TargetInstrInfo *TII);
};
+} // anonymous namespace
+
+void XRayInstrumentation::replaceRetWithPatchableRet(MachineFunction &MF,
+ const TargetInstrInfo *TII)
+{
+ // We look for *all* terminators and returns, then replace those with
+ // PATCHABLE_RET instructions.
+ SmallVector<MachineInstr *, 4> Terminators;
+ for (auto &MBB : MF) {
+ for (auto &T : MBB.terminators()) {
+ unsigned Opc = 0;
+ if (T.isReturn() && T.getOpcode() == TII->getReturnOpcode()) {
+ // Replace return instructions with:
+ // PATCHABLE_RET <Opcode>, <Operand>...
+ Opc = TargetOpcode::PATCHABLE_RET;
+ }
+ if (TII->isTailCall(T)) {
+ // Treat the tail call as a return instruction, which has a
+ // different-looking sled than the normal return case.
+ Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
+ }
+ if (Opc != 0) {
+ auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
+ .addImm(T.getOpcode());
+ for (auto &MO : T.operands())
+ MIB.addOperand(MO);
+ Terminators.push_back(&T);
+ }
+ }
+ }
+
+ for (auto &I : Terminators)
+ I->eraseFromParent();
+}
+
+void XRayInstrumentation::prependRetWithPatchableExit(MachineFunction &MF,
+ const TargetInstrInfo *TII)
+{
+ for (auto &MBB : MF) {
+ for (auto &T : MBB.terminators()) {
+ unsigned Opc = 0;
+ if (T.isReturn()) {
+ Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
+ }
+ if (TII->isTailCall(T)) {
+ Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
+ }
+ if (Opc != 0) {
+ // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
+ // PATCHABLE_TAIL_CALL .
+ BuildMI(MBB, T, T.getDebugLoc(),TII->get(Opc));
+ }
+ }
+ }
}
bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
@@ -54,39 +129,43 @@ bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
return false; // Function is too small.
}
+ // We look for the first non-empty MachineBasicBlock, so that we can insert
+ // the function instrumentation in the appropriate place.
+ auto MBI =
+ find_if(MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
+ if (MBI == MF.end())
+ return false; // The function is empty.
+
+ auto *TII = MF.getSubtarget().getInstrInfo();
+ auto &FirstMBB = *MBI;
+ auto &FirstMI = *FirstMBB.begin();
+
+ if (!MF.getSubtarget().isXRaySupported()) {
+ FirstMI.emitError("An attempt to perform XRay instrumentation for an"
+ " unsupported target.");
+ return false;
+ }
+
// FIXME: Do the loop triviality analysis here or in an earlier pass.
// First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
// MachineFunction.
- auto &FirstMBB = *MF.begin();
- auto &FirstMI = *FirstMBB.begin();
- auto *TII = MF.getSubtarget().getInstrInfo();
BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
- // Then we look for *all* terminators and returns, then replace those with
- // PATCHABLE_RET instructions.
- SmallVector<MachineInstr *, 4> Terminators;
- for (auto &MBB : MF) {
- for (auto &T : MBB.terminators()) {
- // FIXME: Handle tail calls here too?
- if (T.isReturn() && T.getOpcode() == TII->getReturnOpcode()) {
- // Replace return instructions with:
- // PATCHABLE_RET <Opcode>, <Operand>...
- auto MIB = BuildMI(MBB, T, T.getDebugLoc(),
- TII->get(TargetOpcode::PATCHABLE_RET))
- .addImm(T.getOpcode());
- for (auto &MO : T.operands())
- MIB.addOperand(MO);
- Terminators.push_back(&T);
- break;
- }
- }
+ switch (MF.getTarget().getTargetTriple().getArch()) {
+ case Triple::ArchType::arm:
+ case Triple::ArchType::thumb:
+ case Triple::ArchType::aarch64:
+ // For the architectures which don't have a single return instruction
+ prependRetWithPatchableExit(MF, TII);
+ break;
+ default:
+ // For the architectures that have a single return instruction (such as
+ // RETQ on x86_64).
+ replaceRetWithPatchableRet(MF, TII);
+ break;
}
-
- for (auto &I : Terminators)
- I->eraseFromParent();
-
return true;
}
OpenPOWER on IntegriCloud