diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp | 901 |
1 files changed, 608 insertions, 293 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp index f5e3056..03dda8b 100644 --- a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp +++ b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp @@ -26,6 +26,8 @@ //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "BranchFolding.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" @@ -62,10 +64,12 @@ static cl::opt<unsigned> AlignAllBlock("align-all-blocks", "blocks in the function."), cl::init(0), cl::Hidden); -static cl::opt<unsigned> - AlignAllLoops("align-all-loops", - cl::desc("Force the alignment of all loops in the function."), - cl::init(0), cl::Hidden); +static cl::opt<unsigned> AlignAllNonFallThruBlocks( + "align-all-nofallthru-blocks", + cl::desc("Force the alignment of all " + "blocks that have no fall-through predecessors (i.e. don't add " + "nops that are executed)."), + cl::init(0), cl::Hidden); // FIXME: Find a good default for this flag and remove the flag. static cl::opt<unsigned> ExitBlockBias( @@ -97,10 +101,15 @@ static cl::opt<bool> cl::desc("Model the cost of loop rotation more " "precisely by using profile data."), cl::init(false), cl::Hidden); +static cl::opt<bool> + ForcePreciseRotationCost("force-precise-rotation-cost", + cl::desc("Force the use of precise cost " + "loop rotation strategy."), + cl::init(false), cl::Hidden); static cl::opt<unsigned> MisfetchCost( "misfetch-cost", - cl::desc("Cost that models the probablistic risk of an instruction " + cl::desc("Cost that models the probabilistic risk of an instruction " "misfetch due to a jump comparing to falling through, whose cost " "is zero."), cl::init(1), cl::Hidden); @@ -109,6 +118,15 @@ static cl::opt<unsigned> JumpInstCost("jump-inst-cost", cl::desc("Cost of jump instructions."), cl::init(1), cl::Hidden); +static cl::opt<bool> +BranchFoldPlacement("branch-fold-placement", + cl::desc("Perform branch folding during placement. " + "Reduces code size."), + cl::init(true), cl::Hidden); + +extern cl::opt<unsigned> StaticLikelyProb; +extern cl::opt<unsigned> ProfileLikelyProb; + namespace { class BlockChain; /// \brief Type for our function-wide basic block -> block chain mapping. @@ -149,7 +167,7 @@ public: /// function. It also registers itself as the chain that block participates /// in with the BlockToChain mapping. BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) - : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { + : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { assert(BB && "Cannot create a chain with a null basic block"); BlockToChain[BB] = this; } @@ -201,11 +219,16 @@ public: } #endif // NDEBUG - /// \brief Count of predecessors within the loop currently being processed. + /// \brief Count of predecessors of any block within the chain which have not + /// yet been scheduled. In general, we will delay scheduling this chain + /// until those predecessors are scheduled (or we find a sufficiently good + /// reason to override this heuristic.) Note that when forming loop chains, + /// blocks outside the loop are ignored and treated as if they were already + /// scheduled. /// - /// This count is updated at each loop we process to represent the number of - /// in-loop predecessors of this chain. - unsigned LoopPredecessors; + /// Note: This field is reinitialized multiple times - once for each loop, + /// and then once for the function as a whole. + unsigned UnscheduledPredecessors; }; } @@ -214,14 +237,21 @@ class MachineBlockPlacement : public MachineFunctionPass { /// \brief A typedef for a block filter set. typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; + /// \brief work lists of blocks that are ready to be laid out + SmallVector<MachineBasicBlock *, 16> BlockWorkList; + SmallVector<MachineBasicBlock *, 16> EHPadWorkList; + + /// \brief Machine Function + MachineFunction *F; + /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; /// \brief A handle to the function-wide block frequency pass. - const MachineBlockFrequencyInfo *MBFI; + std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; /// \brief A handle to the loop info. - const MachineLoopInfo *MLI; + MachineLoopInfo *MLI; /// \brief A handle to the target's instruction info. const TargetInstrInfo *TII; @@ -254,33 +284,56 @@ class MachineBlockPlacement : public MachineFunctionPass { DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, - SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, const BlockFilterSet *BlockFilter = nullptr); + BranchProbability + collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, + const BlockFilterSet *BlockFilter, + SmallVector<MachineBasicBlock *, 4> &Successors); + bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, + BlockChain &Chain, + const BlockFilterSet *BlockFilter, + BranchProbability SuccProb, + BranchProbability HotProb); + bool + hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, + BlockChain &SuccChain, BranchProbability SuccProb, + BranchProbability RealSuccProb, BlockChain &Chain, + const BlockFilterSet *BlockFilter); MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter); MachineBasicBlock * selectBestCandidateBlock(BlockChain &Chain, - SmallVectorImpl<MachineBasicBlock *> &WorkList, - const BlockFilterSet *BlockFilter); + SmallVectorImpl<MachineBasicBlock *> &WorkList); MachineBasicBlock * - getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, + getFirstUnplacedBlock(const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter); + + /// \brief Add a basic block to the work list if it is appropriate. + /// + /// If the optional parameter BlockFilter is provided, only MBB + /// present in the set will be added to the worklist. If nullptr + /// is provided, no filtering occurs. + void fillWorkLists(MachineBasicBlock *MBB, + SmallPtrSetImpl<BlockChain *> &UpdatedPreds, + const BlockFilterSet *BlockFilter); void buildChain(MachineBasicBlock *BB, BlockChain &Chain, - SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, const BlockFilterSet *BlockFilter = nullptr); MachineBasicBlock *findBestLoopTop(MachineLoop &L, const BlockFilterSet &LoopBlockSet); - MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, + MachineBasicBlock *findBestLoopExit(MachineLoop &L, const BlockFilterSet &LoopBlockSet); - BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); - void buildLoopChains(MachineFunction &F, MachineLoop &L); + BlockFilterSet collectLoopBlockSet(MachineLoop &L); + void buildLoopChains(MachineLoop &L); void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, const BlockFilterSet &LoopBlockSet); void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet); - void buildCFGChains(MachineFunction &F); + void collectMustExecuteBBs(); + void buildCFGChains(); + void optimizeBranches(); + void alignBlocks(); public: static char ID; // Pass identification, replacement for typeid @@ -295,6 +348,7 @@ public: AU.addRequired<MachineBlockFrequencyInfo>(); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); + AU.addRequired<TargetPassConfig>(); MachineFunctionPass::getAnalysisUsage(AU); } }; @@ -319,18 +373,7 @@ static std::string getBlockName(MachineBasicBlock *BB) { std::string Result; raw_string_ostream OS(Result); OS << "BB#" << BB->getNumber(); - OS << " (derived from LLVM BB '" << BB->getName() << "')"; - OS.flush(); - return Result; -} - -/// \brief Helper to print the number of a MBB. -/// -/// Only used by debug logging. -static std::string getBlockNum(MachineBasicBlock *BB) { - std::string Result; - raw_string_ostream OS(Result); - OS << "BB#" << BB->getNumber(); + OS << " ('" << BB->getName() << "')"; OS.flush(); return Result; } @@ -344,7 +387,6 @@ static std::string getBlockNum(MachineBasicBlock *BB) { /// chain which reach the zero-predecessor state to the worklist passed in. void MachineBlockPlacement::markChainSuccessors( BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, - SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, const BlockFilterSet *BlockFilter) { // Walk all the blocks in this chain, marking their successors as having // a predecessor placed. @@ -363,30 +405,26 @@ void MachineBlockPlacement::markChainSuccessors( // This is a cross-chain edge that is within the loop, so decrement the // loop predecessor count of the destination chain. - if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) - BlockWorkList.push_back(*SuccChain.begin()); + if (SuccChain.UnscheduledPredecessors == 0 || + --SuccChain.UnscheduledPredecessors > 0) + continue; + + auto *MBB = *SuccChain.begin(); + if (MBB->isEHPad()) + EHPadWorkList.push_back(MBB); + else + BlockWorkList.push_back(MBB); } } } -/// \brief Select the best successor for a block. -/// -/// This looks across all successors of a particular block and attempts to -/// select the "best" one to be the layout successor. It only considers direct -/// successors which also pass the block filter. It will attempt to avoid -/// breaking CFG structure, but cave and break such structures in the case of -/// very hot successor edges. -/// -/// \returns The best successor block found, or null if none are viable. -MachineBasicBlock * -MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, - BlockChain &Chain, - const BlockFilterSet *BlockFilter) { - const BranchProbability HotProb(4, 5); // 80% - - MachineBasicBlock *BestSucc = nullptr; - auto BestProb = BranchProbability::getZero(); - +/// This helper function collects the set of successors of block +/// \p BB that are allowed to be its layout successors, and return +/// the total branch probability of edges from \p BB to those +/// blocks. +BranchProbability MachineBlockPlacement::collectViableSuccessors( + MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, + SmallVector<MachineBasicBlock *, 4> &Successors) { // Adjust edge probabilities by excluding edges pointing to blocks that is // either not in BlockFilter or is already in the current chain. Consider the // following CFG: @@ -400,20 +438,17 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after // A->C is chosen as a fall-through, D won't be selected as a successor of C // due to CFG constraint (the probability of C->D is not greater than - // HotProb). If we exclude E that is not in BlockFilter when calculating the - // probability of C->D, D will be selected and we will get A C D B as the - // layout of this loop. + // HotProb to break top-order). If we exclude E that is not in BlockFilter + // when calculating the probability of C->D, D will be selected and we + // will get A C D B as the layout of this loop. auto AdjustedSumProb = BranchProbability::getOne(); - SmallVector<MachineBasicBlock *, 4> Successors; for (MachineBasicBlock *Succ : BB->successors()) { bool SkipSucc = false; - if (BlockFilter && !BlockFilter->count(Succ)) { + if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { SkipSucc = true; } else { BlockChain *SuccChain = BlockToChain[Succ]; if (SuccChain == &Chain) { - DEBUG(dbgs() << " " << getBlockName(Succ) - << " -> Already merged!\n"); SkipSucc = true; } else if (Succ != *SuccChain->begin()) { DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); @@ -426,78 +461,267 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, Successors.push_back(Succ); } - DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); - for (MachineBasicBlock *Succ : Successors) { - BranchProbability SuccProb; - uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); - uint32_t SuccProbD = AdjustedSumProb.getNumerator(); - if (SuccProbN >= SuccProbD) - SuccProb = BranchProbability::getOne(); - else - SuccProb = BranchProbability(SuccProbN, SuccProbD); - - // If we outline optional branches, look whether Succ is unavoidable, i.e. - // dominates all terminators of the MachineFunction. If it does, other - // successors must be optional. Don't do this for cold branches. - if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && - UnavoidableBlocks.count(Succ) > 0) { - auto HasShortOptionalBranch = [&]() { - for (MachineBasicBlock *Pred : Succ->predecessors()) { - // Check whether there is an unplaced optional branch. - if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || - BlockToChain[Pred] == &Chain) - continue; - // Check whether the optional branch has exactly one BB. - if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) - continue; - // Check whether the optional branch is small. - if (Pred->size() < OutlineOptionalThreshold) - return true; - } + return AdjustedSumProb; +} + +/// The helper function returns the branch probability that is adjusted +/// or normalized over the new total \p AdjustedSumProb. +static BranchProbability +getAdjustedProbability(BranchProbability OrigProb, + BranchProbability AdjustedSumProb) { + BranchProbability SuccProb; + uint32_t SuccProbN = OrigProb.getNumerator(); + uint32_t SuccProbD = AdjustedSumProb.getNumerator(); + if (SuccProbN >= SuccProbD) + SuccProb = BranchProbability::getOne(); + else + SuccProb = BranchProbability(SuccProbN, SuccProbD); + + return SuccProb; +} + +/// When the option OutlineOptionalBranches is on, this method +/// checks if the fallthrough candidate block \p Succ (of block +/// \p BB) also has other unscheduled predecessor blocks which +/// are also successors of \p BB (forming triangular shape CFG). +/// If none of such predecessors are small, it returns true. +/// The caller can choose to select \p Succ as the layout successors +/// so that \p Succ's predecessors (optional branches) can be +/// outlined. +/// FIXME: fold this with more general layout cost analysis. +bool MachineBlockPlacement::shouldPredBlockBeOutlined( + MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, + const BlockFilterSet *BlockFilter, BranchProbability SuccProb, + BranchProbability HotProb) { + if (!OutlineOptionalBranches) + return false; + // If we outline optional branches, look whether Succ is unavoidable, i.e. + // dominates all terminators of the MachineFunction. If it does, other + // successors must be optional. Don't do this for cold branches. + if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { + for (MachineBasicBlock *Pred : Succ->predecessors()) { + // Check whether there is an unplaced optional branch. + if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || + BlockToChain[Pred] == &Chain) + continue; + // Check whether the optional branch has exactly one BB. + if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) + continue; + // Check whether the optional branch is small. + if (Pred->size() < OutlineOptionalThreshold) return false; - }; - if (!HasShortOptionalBranch()) - return Succ; } + return true; + } else + return false; +} - // Only consider successors which are either "hot", or wouldn't violate - // any CFG constraints. - BlockChain &SuccChain = *BlockToChain[Succ]; - if (SuccChain.LoopPredecessors != 0) { - if (SuccProb < HotProb) { - DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb - << " (prob) (CFG conflict)\n"); - continue; - } +// When profile is not present, return the StaticLikelyProb. +// When profile is available, we need to handle the triangle-shape CFG. +static BranchProbability getLayoutSuccessorProbThreshold( + MachineBasicBlock *BB) { + if (!BB->getParent()->getFunction()->getEntryCount()) + return BranchProbability(StaticLikelyProb, 100); + if (BB->succ_size() == 2) { + const MachineBasicBlock *Succ1 = *BB->succ_begin(); + const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); + if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { + /* See case 1 below for the cost analysis. For BB->Succ to + * be taken with smaller cost, the following needs to hold: + * Prob(BB->Succ) > 2* Prob(BB->Pred) + * So the threshold T + * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, + * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified + * branch bias, we have + * T = (2/3)*(ProfileLikelyProb/50) + * = (2*ProfileLikelyProb)/150) + */ + return BranchProbability(2 * ProfileLikelyProb, 150); + } + } + return BranchProbability(ProfileLikelyProb, 100); +} - // Make sure that a hot successor doesn't have a globally more - // important predecessor. - auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); - BlockFrequency CandidateEdgeFreq = - MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); - bool BadCFGConflict = false; - for (MachineBasicBlock *Pred : Succ->predecessors()) { - if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || - BlockToChain[Pred] == &Chain) - continue; - BlockFrequency PredEdgeFreq = - MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); - if (PredEdgeFreq >= CandidateEdgeFreq) { - BadCFGConflict = true; - break; - } - } - if (BadCFGConflict) { - DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb - << " (prob) (non-cold CFG conflict)\n"); - continue; - } +/// Checks to see if the layout candidate block \p Succ has a better layout +/// predecessor than \c BB. If yes, returns true. +bool MachineBlockPlacement::hasBetterLayoutPredecessor( + MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, + BranchProbability SuccProb, BranchProbability RealSuccProb, + BlockChain &Chain, const BlockFilterSet *BlockFilter) { + + // There isn't a better layout when there are no unscheduled predecessors. + if (SuccChain.UnscheduledPredecessors == 0) + return false; + + // There are two basic scenarios here: + // ------------------------------------- + // Case 1: triangular shape CFG (if-then): + // BB + // | \ + // | \ + // | Pred + // | / + // Succ + // In this case, we are evaluating whether to select edge -> Succ, e.g. + // set Succ as the layout successor of BB. Picking Succ as BB's + // successor breaks the CFG constraints (FIXME: define these constraints). + // With this layout, Pred BB + // is forced to be outlined, so the overall cost will be cost of the + // branch taken from BB to Pred, plus the cost of back taken branch + // from Pred to Succ, as well as the additional cost associated + // with the needed unconditional jump instruction from Pred To Succ. + + // The cost of the topological order layout is the taken branch cost + // from BB to Succ, so to make BB->Succ a viable candidate, the following + // must hold: + // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost + // < freq(BB->Succ) * taken_branch_cost. + // Ignoring unconditional jump cost, we get + // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., + // prob(BB->Succ) > 2 * prob(BB->Pred) + // + // When real profile data is available, we can precisely compute the + // probability threshold that is needed for edge BB->Succ to be considered. + // Without profile data, the heuristic requires the branch bias to be + // a lot larger to make sure the signal is very strong (e.g. 80% default). + // ----------------------------------------------------------------- + // Case 2: diamond like CFG (if-then-else): + // S + // / \ + // | \ + // BB Pred + // \ / + // Succ + // .. + // + // The current block is BB and edge BB->Succ is now being evaluated. + // Note that edge S->BB was previously already selected because + // prob(S->BB) > prob(S->Pred). + // At this point, 2 blocks can be placed after BB: Pred or Succ. If we + // choose Pred, we will have a topological ordering as shown on the left + // in the picture below. If we choose Succ, we have the solution as shown + // on the right: + // + // topo-order: + // + // S----- ---S + // | | | | + // ---BB | | BB + // | | | | + // | pred-- | Succ-- + // | | | | + // ---succ ---pred-- + // + // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) + // = freq(S->Pred) + freq(S->BB) + // + // If we have profile data (i.e, branch probabilities can be trusted), the + // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * + // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). + // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which + // means the cost of topological order is greater. + // When profile data is not available, however, we need to be more + // conservative. If the branch prediction is wrong, breaking the topo-order + // will actually yield a layout with large cost. For this reason, we need + // strong biased branch at block S with Prob(S->BB) in order to select + // BB->Succ. This is equivalent to looking the CFG backward with backward + // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without + // profile data). + + BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); + + // Forward checking. For case 2, SuccProb will be 1. + if (SuccProb < HotProb) { + DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb + << " (prob) (CFG conflict)\n"); + return true; + } + + // Make sure that a hot successor doesn't have a globally more + // important predecessor. + BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; + bool BadCFGConflict = false; + + for (MachineBasicBlock *Pred : Succ->predecessors()) { + if (Pred == Succ || BlockToChain[Pred] == &SuccChain || + (BlockFilter && !BlockFilter->count(Pred)) || + BlockToChain[Pred] == &Chain) + continue; + // Do backward checking. For case 1, it is actually redundant check. For + // case 2 above, we need a backward checking to filter out edges that are + // not 'strongly' biased. With profile data available, the check is mostly + // redundant too (when threshold prob is set at 50%) unless S has more than + // two successors. + // BB Pred + // \ / + // Succ + // We select edge BB->Succ if + // freq(BB->Succ) > freq(Succ) * HotProb + // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * + // HotProb + // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb + BlockFrequency PredEdgeFreq = + MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); + if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { + BadCFGConflict = true; + break; } + } + if (BadCFGConflict) { DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb - << " (prob)" - << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") - << "\n"); + << " (prob) (non-cold CFG conflict)\n"); + return true; + } + + return false; +} + +/// \brief Select the best successor for a block. +/// +/// This looks across all successors of a particular block and attempts to +/// select the "best" one to be the layout successor. It only considers direct +/// successors which also pass the block filter. It will attempt to avoid +/// breaking CFG structure, but cave and break such structures in the case of +/// very hot successor edges. +/// +/// \returns The best successor block found, or null if none are viable. +MachineBasicBlock * +MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, + BlockChain &Chain, + const BlockFilterSet *BlockFilter) { + const BranchProbability HotProb(StaticLikelyProb, 100); + + MachineBasicBlock *BestSucc = nullptr; + auto BestProb = BranchProbability::getZero(); + + SmallVector<MachineBasicBlock *, 4> Successors; + auto AdjustedSumProb = + collectViableSuccessors(BB, Chain, BlockFilter, Successors); + + DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); + for (MachineBasicBlock *Succ : Successors) { + auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); + BranchProbability SuccProb = + getAdjustedProbability(RealSuccProb, AdjustedSumProb); + + // This heuristic is off by default. + if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, + HotProb)) + return Succ; + + BlockChain &SuccChain = *BlockToChain[Succ]; + // Skip the edge \c BB->Succ if block \c Succ has a better layout + // predecessor that yields lower global cost. + if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, + Chain, BlockFilter)) + continue; + + DEBUG( + dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb + << " (prob)" + << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") + << "\n"); if (BestSucc && BestProb >= SuccProb) continue; BestSucc = Succ; @@ -513,12 +737,11 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, /// profitable only really makes sense in the context of a loop. This returns /// the most frequently visited block in the worklist, which in the case of /// a loop, is the one most desirable to be physically close to the rest of the -/// loop body in order to improve icache behavior. +/// loop body in order to improve i-cache behavior. /// /// \returns The best block found, or null if none are viable. MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( - BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, - const BlockFilterSet *BlockFilter) { + BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { // Once we need to walk the worklist looking for a candidate, cleanup the // worklist of already placed entries. // FIXME: If this shows up on profiles, it could be folded (at the cost of @@ -529,24 +752,51 @@ MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( }), WorkList.end()); + if (WorkList.empty()) + return nullptr; + + bool IsEHPad = WorkList[0]->isEHPad(); + MachineBasicBlock *BestBlock = nullptr; BlockFrequency BestFreq; for (MachineBasicBlock *MBB : WorkList) { + assert(MBB->isEHPad() == IsEHPad); + BlockChain &SuccChain = *BlockToChain[MBB]; - if (&SuccChain == &Chain) { - DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n"); + if (&SuccChain == &Chain) continue; - } - assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); + + assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); - if (BestBlock && BestFreq >= CandidateFreq) + + // For ehpad, we layout the least probable first as to avoid jumping back + // from least probable landingpads to more probable ones. + // + // FIXME: Using probability is probably (!) not the best way to achieve + // this. We should probably have a more principled approach to layout + // cleanup code. + // + // The goal is to get: + // + // +--------------------------+ + // | V + // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume + // + // Rather than: + // + // +-------------------------------------+ + // V | + // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup + if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) continue; + BestBlock = MBB; BestFreq = CandidateFreq; } + return BestBlock; } @@ -558,10 +808,10 @@ MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( /// LastUnplacedBlockIt. We update this iterator on each call to avoid /// re-scanning the entire sequence on repeated calls to this routine. MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( - MachineFunction &F, const BlockChain &PlacedChain, + const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter) { - for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; + for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; ++I) { if (BlockFilter && !BlockFilter->count(&*I)) continue; @@ -576,22 +826,51 @@ MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( return nullptr; } +void MachineBlockPlacement::fillWorkLists( + MachineBasicBlock *MBB, + SmallPtrSetImpl<BlockChain *> &UpdatedPreds, + const BlockFilterSet *BlockFilter = nullptr) { + BlockChain &Chain = *BlockToChain[MBB]; + if (!UpdatedPreds.insert(&Chain).second) + return; + + assert(Chain.UnscheduledPredecessors == 0); + for (MachineBasicBlock *ChainBB : Chain) { + assert(BlockToChain[ChainBB] == &Chain); + for (MachineBasicBlock *Pred : ChainBB->predecessors()) { + if (BlockFilter && !BlockFilter->count(Pred)) + continue; + if (BlockToChain[Pred] == &Chain) + continue; + ++Chain.UnscheduledPredecessors; + } + } + + if (Chain.UnscheduledPredecessors != 0) + return; + + MBB = *Chain.begin(); + if (MBB->isEHPad()) + EHPadWorkList.push_back(MBB); + else + BlockWorkList.push_back(MBB); +} + void MachineBlockPlacement::buildChain( MachineBasicBlock *BB, BlockChain &Chain, - SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, const BlockFilterSet *BlockFilter) { - assert(BB); - assert(BlockToChain[BB] == &Chain); - MachineFunction &F = *BB->getParent(); - MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); + assert(BB && "BB must not be null.\n"); + assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); + MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); MachineBasicBlock *LoopHeaderBB = BB; - markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); + markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); BB = *std::prev(Chain.end()); for (;;) { - assert(BB); - assert(BlockToChain[BB] == &Chain); - assert(*std::prev(Chain.end()) == BB); + assert(BB && "null block found at end of chain in loop."); + assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); + assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); + // Look for the best viable successor if there is one to place immediately // after this block. @@ -601,11 +880,12 @@ void MachineBlockPlacement::buildChain( // block among those we've identified as not violating the loop's CFG at // this point. This won't be a fallthrough, but it will increase locality. if (!BestSucc) - BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); + BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); + if (!BestSucc) + BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); if (!BestSucc) { - BestSucc = - getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); + BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); if (!BestSucc) break; @@ -615,18 +895,18 @@ void MachineBlockPlacement::buildChain( // Place this block, updating the datastructures to reflect its placement. BlockChain &SuccChain = *BlockToChain[BestSucc]; - // Zero out LoopPredecessors for the successor we're about to merge in case + // Zero out UnscheduledPredecessors for the successor we're about to merge in case // we selected a successor that didn't fit naturally into the CFG. - SuccChain.LoopPredecessors = 0; - DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " - << getBlockNum(BestSucc) << "\n"); - markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); + SuccChain.UnscheduledPredecessors = 0; + DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " + << getBlockName(BestSucc) << "\n"); + markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); Chain.merge(BestSucc, &SuccChain); BB = *std::prev(Chain.end()); } DEBUG(dbgs() << "Finished forming chain for header block " - << getBlockNum(*Chain.begin()) << "\n"); + << getBlockName(*Chain.begin()) << "\n"); } /// \brief Find the best loop top block for layout. @@ -673,8 +953,10 @@ MachineBlockPlacement::findBestLoopTop(MachineLoop &L, } // If no direct predecessor is fine, just use the loop header. - if (!BestPred) + if (!BestPred) { + DEBUG(dbgs() << " final top unchanged\n"); return L.getHeader(); + } // Walk backwards through any straight line of predecessors. while (BestPred->pred_size() == 1 && @@ -692,7 +974,7 @@ MachineBlockPlacement::findBestLoopTop(MachineLoop &L, /// block to layout at the top of the loop. Typically this is done to maximize /// fallthrough opportunities. MachineBasicBlock * -MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, +MachineBlockPlacement::findBestLoopExit(MachineLoop &L, const BlockFilterSet &LoopBlockSet) { // We don't want to layout the loop linearly in all cases. If the loop header // is just a normal basic block in the loop, we want to look for what block @@ -710,7 +992,7 @@ MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, unsigned BestExitLoopDepth = 0; MachineBasicBlock *ExitingBB = nullptr; // If there are exits to outer loops, loop rotation can severely limit - // fallthrough opportunites unless it selects such an exit. Keep a set of + // fallthrough opportunities unless it selects such an exit. Keep a set of // blocks where rotating to exit with that block will reach an outer loop. SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; @@ -780,7 +1062,6 @@ MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, // Restore the old exiting state, no viable looping successor was found. ExitingBB = OldExitingBB; BestExitEdgeFreq = OldBestExitEdgeFreq; - continue; } } // Without a candidate exiting block or with only a single block in the @@ -973,7 +1254,7 @@ void MachineBlockPlacement::rotateLoopWithProfile( } } - DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter) + DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) << " to the top: " << Cost.getFrequency() << "\n"); if (Cost < SmallestRotationCost) { @@ -983,7 +1264,7 @@ void MachineBlockPlacement::rotateLoopWithProfile( } if (RotationPos != LoopChain.end()) { - DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos) + DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) << " to the top\n"); std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); } @@ -994,7 +1275,7 @@ void MachineBlockPlacement::rotateLoopWithProfile( /// When profile data is available, exclude cold blocks from the returned set; /// otherwise, collect all blocks in the loop. MachineBlockPlacement::BlockFilterSet -MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { +MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { BlockFilterSet LoopBlockSet; // Filter cold blocks off from LoopBlockSet when profile data is available. @@ -1006,7 +1287,7 @@ MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { // will be merged into the first outer loop chain for which this block is not // cold anymore. This needs precise profile data and we only do this when // profile data is available. - if (F.getFunction()->getEntryCount()) { + if (F->getFunction()->getEntryCount()) { BlockFrequency LoopFreq(0); for (auto LoopPred : L.getHeader()->predecessors()) if (!L.contains(LoopPred)) @@ -1031,21 +1312,22 @@ MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { /// as much as possible. We can then stitch the chains together in a way which /// both preserves the topological structure and minimizes taken conditional /// branches. -void MachineBlockPlacement::buildLoopChains(MachineFunction &F, - MachineLoop &L) { +void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { // First recurse through any nested loops, building chains for those inner // loops. for (MachineLoop *InnerLoop : L) - buildLoopChains(F, *InnerLoop); + buildLoopChains(*InnerLoop); - SmallVector<MachineBasicBlock *, 16> BlockWorkList; - BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); + assert(BlockWorkList.empty()); + assert(EHPadWorkList.empty()); + BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); // Check if we have profile data for this function. If yes, we will rotate // this loop by modeling costs more precisely which requires the profile data // for better layout. bool RotateLoopWithProfile = - PreciseRotationCost && F.getFunction()->getEntryCount(); + ForcePreciseRotationCost || + (PreciseRotationCost && F->getFunction()->getEntryCount()); // First check to see if there is an obviously preferable top block for the // loop. This will default to the header, but may end up as one of the @@ -1060,7 +1342,7 @@ void MachineBlockPlacement::buildLoopChains(MachineFunction &F, // branches by placing an exit edge at the bottom. MachineBasicBlock *ExitingBB = nullptr; if (!RotateLoopWithProfile && LoopTop == L.getHeader()) - ExitingBB = findBestLoopExit(F, L, LoopBlockSet); + ExitingBB = findBestLoopExit(L, LoopBlockSet); BlockChain &LoopChain = *BlockToChain[LoopTop]; @@ -1068,29 +1350,13 @@ void MachineBlockPlacement::buildLoopChains(MachineFunction &F, // walk the blocks, and use a set to prevent visiting a particular chain // twice. SmallPtrSet<BlockChain *, 4> UpdatedPreds; - assert(LoopChain.LoopPredecessors == 0); + assert(LoopChain.UnscheduledPredecessors == 0); UpdatedPreds.insert(&LoopChain); - for (MachineBasicBlock *LoopBB : LoopBlockSet) { - BlockChain &Chain = *BlockToChain[LoopBB]; - if (!UpdatedPreds.insert(&Chain).second) - continue; + for (MachineBasicBlock *LoopBB : LoopBlockSet) + fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); - assert(Chain.LoopPredecessors == 0); - for (MachineBasicBlock *ChainBB : Chain) { - assert(BlockToChain[ChainBB] == &Chain); - for (MachineBasicBlock *Pred : ChainBB->predecessors()) { - if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) - continue; - ++Chain.LoopPredecessors; - } - } - - if (Chain.LoopPredecessors == 0) - BlockWorkList.push_back(*Chain.begin()); - } - - buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); + buildChain(LoopTop, LoopChain, &LoopBlockSet); if (RotateLoopWithProfile) rotateLoopWithProfile(LoopChain, L, LoopBlockSet); @@ -1100,7 +1366,7 @@ void MachineBlockPlacement::buildLoopChains(MachineFunction &F, DEBUG({ // Crash at the end so we get all of the debugging output first. bool BadLoop = false; - if (LoopChain.LoopPredecessors) { + if (LoopChain.UnscheduledPredecessors) { BadLoop = true; dbgs() << "Loop chain contains a block without its preds placed!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" @@ -1129,13 +1395,42 @@ void MachineBlockPlacement::buildLoopChains(MachineFunction &F, } assert(!BadLoop && "Detected problems with the placement of this loop."); }); + + BlockWorkList.clear(); + EHPadWorkList.clear(); +} + +/// When OutlineOpitonalBranches is on, this method collects BBs that +/// dominates all terminator blocks of the function \p F. +void MachineBlockPlacement::collectMustExecuteBBs() { + if (OutlineOptionalBranches) { + // Find the nearest common dominator of all of F's terminators. + MachineBasicBlock *Terminator = nullptr; + for (MachineBasicBlock &MBB : *F) { + if (MBB.succ_size() == 0) { + if (Terminator == nullptr) + Terminator = &MBB; + else + Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); + } + } + + // MBBs dominating this common dominator are unavoidable. + UnavoidableBlocks.clear(); + for (MachineBasicBlock &MBB : *F) { + if (MDT->dominates(&MBB, Terminator)) { + UnavoidableBlocks.insert(&MBB); + } + } + } } -void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { +void MachineBlockPlacement::buildCFGChains() { // Ensure that every BB in the function has an associated chain to simplify // the assumptions of the remaining algorithm. SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. - for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { + for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; + ++FI) { MachineBasicBlock *BB = &*FI; BlockChain *Chain = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); @@ -1144,7 +1439,7 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { for (;;) { Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. - if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) + if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) break; MachineFunction::iterator NextFI = std::next(FI); @@ -1161,55 +1456,22 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { } } - if (OutlineOptionalBranches) { - // Find the nearest common dominator of all of F's terminators. - MachineBasicBlock *Terminator = nullptr; - for (MachineBasicBlock &MBB : F) { - if (MBB.succ_size() == 0) { - if (Terminator == nullptr) - Terminator = &MBB; - else - Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); - } - } - - // MBBs dominating this common dominator are unavoidable. - UnavoidableBlocks.clear(); - for (MachineBasicBlock &MBB : F) { - if (MDT->dominates(&MBB, Terminator)) { - UnavoidableBlocks.insert(&MBB); - } - } - } + // Turned on with OutlineOptionalBranches option + collectMustExecuteBBs(); // Build any loop-based chains. for (MachineLoop *L : *MLI) - buildLoopChains(F, *L); + buildLoopChains(*L); - SmallVector<MachineBasicBlock *, 16> BlockWorkList; + assert(BlockWorkList.empty()); + assert(EHPadWorkList.empty()); SmallPtrSet<BlockChain *, 4> UpdatedPreds; - for (MachineBasicBlock &MBB : F) { - BlockChain &Chain = *BlockToChain[&MBB]; - if (!UpdatedPreds.insert(&Chain).second) - continue; - - assert(Chain.LoopPredecessors == 0); - for (MachineBasicBlock *ChainBB : Chain) { - assert(BlockToChain[ChainBB] == &Chain); - for (MachineBasicBlock *Pred : ChainBB->predecessors()) { - if (BlockToChain[Pred] == &Chain) - continue; - ++Chain.LoopPredecessors; - } - } - - if (Chain.LoopPredecessors == 0) - BlockWorkList.push_back(*Chain.begin()); - } + for (MachineBasicBlock &MBB : *F) + fillWorkLists(&MBB, UpdatedPreds); - BlockChain &FunctionChain = *BlockToChain[&F.front()]; - buildChain(&F.front(), FunctionChain, BlockWorkList); + BlockChain &FunctionChain = *BlockToChain[&F->front()]; + buildChain(&F->front(), FunctionChain); #ifndef NDEBUG typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; @@ -1218,7 +1480,7 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { // Crash at the end so we get all of the debugging output first. bool BadFunc = false; FunctionBlockSetType FunctionBlockSet; - for (MachineBasicBlock &MBB : F) + for (MachineBasicBlock &MBB : *F) FunctionBlockSet.insert(&MBB); for (MachineBasicBlock *ChainBB : FunctionChain) @@ -1238,13 +1500,14 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { }); // Splice the blocks into place. - MachineFunction::iterator InsertPos = F.begin(); + MachineFunction::iterator InsertPos = F->begin(); + DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); for (MachineBasicBlock *ChainBB : FunctionChain) { DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " : " ... ") << getBlockName(ChainBB) << "\n"); if (InsertPos != MachineFunction::iterator(ChainBB)) - F.splice(InsertPos, ChainBB); + F->splice(InsertPos, ChainBB); else ++InsertPos; @@ -1258,69 +1521,90 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { // boiler plate. Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. - if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { - // The "PrevBB" is not yet updated to reflect current code layout, so, - // o. it may fall-through to a block without explict "goto" instruction - // before layout, and no longer fall-through it after layout; or - // o. just opposite. - // - // AnalyzeBranch() may return erroneous value for FBB when these two - // situations take place. For the first scenario FBB is mistakenly set - // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, - // is mistakenly pointing to "*BI". - // - bool needUpdateBr = true; - if (!Cond.empty() && (!FBB || FBB == ChainBB)) { - PrevBB->updateTerminator(); - needUpdateBr = false; - Cond.clear(); - TBB = FBB = nullptr; - if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { - // FIXME: This should never take place. - TBB = FBB = nullptr; - } - } + // The "PrevBB" is not yet updated to reflect current code layout, so, + // o. it may fall-through to a block without explicit "goto" instruction + // before layout, and no longer fall-through it after layout; or + // o. just opposite. + // + // analyzeBranch() may return erroneous value for FBB when these two + // situations take place. For the first scenario FBB is mistakenly set NULL; + // for the 2nd scenario, the FBB, which is expected to be NULL, is + // mistakenly pointing to "*BI". + // Thus, if the future change needs to use FBB before the layout is set, it + // has to correct FBB first by using the code similar to the following: + // + // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { + // PrevBB->updateTerminator(); + // Cond.clear(); + // TBB = FBB = nullptr; + // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { + // // FIXME: This should never take place. + // TBB = FBB = nullptr; + // } + // } + if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) + PrevBB->updateTerminator(); + } + + // Fixup the last block. + Cond.clear(); + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. + if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) + F->back().updateTerminator(); + + BlockWorkList.clear(); + EHPadWorkList.clear(); +} + +void MachineBlockPlacement::optimizeBranches() { + BlockChain &FunctionChain = *BlockToChain[&F->front()]; + SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. + + // Now that all the basic blocks in the chain have the proper layout, + // make a final call to AnalyzeBranch with AllowModify set. + // Indeed, the target may be able to optimize the branches in a way we + // cannot because all branches may not be analyzable. + // E.g., the target may be able to remove an unconditional branch to + // a fallthrough when it occurs after predicated terminators. + for (MachineBasicBlock *ChainBB : FunctionChain) { + Cond.clear(); + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. + if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { // If PrevBB has a two-way branch, try to re-order the branches // such that we branch to the successor with higher probability first. if (TBB && !Cond.empty() && FBB && - MBPI->getEdgeProbability(PrevBB, FBB) > - MBPI->getEdgeProbability(PrevBB, TBB) && + MBPI->getEdgeProbability(ChainBB, FBB) > + MBPI->getEdgeProbability(ChainBB, TBB) && !TII->ReverseBranchCondition(Cond)) { DEBUG(dbgs() << "Reverse order of the two branches: " - << getBlockName(PrevBB) << "\n"); + << getBlockName(ChainBB) << "\n"); DEBUG(dbgs() << " Edge probability: " - << MBPI->getEdgeProbability(PrevBB, FBB) << " vs " - << MBPI->getEdgeProbability(PrevBB, TBB) << "\n"); + << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " + << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); DebugLoc dl; // FIXME: this is nowhere - TII->RemoveBranch(*PrevBB); - TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); - needUpdateBr = true; + TII->RemoveBranch(*ChainBB); + TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); + ChainBB->updateTerminator(); } - if (needUpdateBr) - PrevBB->updateTerminator(); } } +} - // Fixup the last block. - Cond.clear(); - MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. - if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) - F.back().updateTerminator(); - +void MachineBlockPlacement::alignBlocks() { // Walk through the backedges of the function now that we have fully laid out // the basic blocks and align the destination of each backedge. We don't rely // exclusively on the loop info here so that we can align backedges in // unnatural CFGs and backedges that were introduced purely because of the // loop rotations done during this layout pass. - // FIXME: Use Function::optForSize(). - if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) + if (F->getFunction()->optForSize()) return; + BlockChain &FunctionChain = *BlockToChain[&F->front()]; if (FunctionChain.begin() == FunctionChain.end()) return; // Empty chain. const BranchProbability ColdProb(1, 5); // 20% - BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); + BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; for (MachineBasicBlock *ChainBB : FunctionChain) { if (ChainBB == *FunctionChain.begin()) @@ -1334,11 +1618,6 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { if (!L) continue; - if (AlignAllLoops) { - ChainBB->setAlignment(AlignAllLoops); - continue; - } - unsigned Align = TLI->getPrefLoopAlignment(L); if (!Align) continue; // Don't care about loop alignment. @@ -1380,31 +1659,67 @@ void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { } } -bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { - // Check for single-block functions and skip them. - if (std::next(F.begin()) == F.end()) +bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { + if (skipFunction(*MF.getFunction())) return false; - if (skipOptnoneFunction(*F.getFunction())) + // Check for single-block functions and skip them. + if (std::next(MF.begin()) == MF.end()) return false; + F = &MF; MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); - MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); + MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( + getAnalysis<MachineBlockFrequencyInfo>()); MLI = &getAnalysis<MachineLoopInfo>(); - TII = F.getSubtarget().getInstrInfo(); - TLI = F.getSubtarget().getTargetLowering(); + TII = MF.getSubtarget().getInstrInfo(); + TLI = MF.getSubtarget().getTargetLowering(); MDT = &getAnalysis<MachineDominatorTree>(); assert(BlockToChain.empty()); - buildCFGChains(F); + buildCFGChains(); + + // Changing the layout can create new tail merging opportunities. + TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); + // TailMerge can create jump into if branches that make CFG irreducible for + // HW that requires structured CFG. + bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && + PassConfig->getEnableTailMerge() && + BranchFoldPlacement; + // No tail merging opportunities if the block number is less than four. + if (MF.size() > 3 && EnableTailMerge) { + BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, + *MBPI); + + if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), + getAnalysisIfAvailable<MachineModuleInfo>(), MLI, + /*AfterBlockPlacement=*/true)) { + // Redo the layout if tail merging creates/removes/moves blocks. + BlockToChain.clear(); + ChainAllocator.DestroyAll(); + buildCFGChains(); + } + } + + optimizeBranches(); + alignBlocks(); BlockToChain.clear(); ChainAllocator.DestroyAll(); if (AlignAllBlock) // Align all of the blocks in the function to a specific alignment. - for (MachineBasicBlock &MBB : F) + for (MachineBasicBlock &MBB : MF) MBB.setAlignment(AlignAllBlock); + else if (AlignAllNonFallThruBlocks) { + // Align all of the blocks that have no fall-through predecessors to a + // specific alignment. + for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { + auto LayoutPred = std::prev(MBI); + if (!LayoutPred->isSuccessor(&*MBI)) + MBI->setAlignment(AlignAllNonFallThruBlocks); + } + } // We always return true as we have no way to track whether the final order // differs from the original order. |