summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
committerdim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
commit06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch)
treeab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
parent2dd166267f53df1c3748b4325d294b9b839de74b (diff)
downloadFreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip
FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0 release, and add lld 3.9.0. Also completely revamp the build system for clang, llvm, lldb and their related tools. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld are available here: <http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan Beich for their help. Relnotes: yes MFC r309147: Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek): [PPC] Set SP after loading data from stack frame, if no red zone is present Follow-up to r280705: Make sure that the SP is only restored after all data is loaded from the stack frame, if there is no red zone. This completes the fix for https://llvm.org/bugs/show_bug.cgi?id=26519. Differential Revision: https://reviews.llvm.org/D24466 Reported by: Mark Millard PR: 214433 MFC r309149: Pull in r283060 from upstream llvm trunk (by Hal Finkel): [PowerPC] Refactor soft-float support, and enable PPC64 soft float This change enables soft-float for PowerPC64, and also makes soft-float disable all vector instruction sets for both 32-bit and 64-bit modes. This latter part is necessary because the PPC backend canonicalizes many Altivec vector types to floating-point types, and so soft-float breaks scalarization support for many operations. Both for embedded targets and for operating-system kernels desiring soft-float support, it seems reasonable that disabling hardware floating-point also disables vector instructions (embedded targets without hardware floating point support are unlikely to have Altivec, etc. and operating system kernels desiring not to use floating-point registers to lower syscall cost are unlikely to want to use vector registers either). If someone needs this to work, we'll need to change the fact that we promote many Altivec operations to act on v4f32. To make it possible to disable Altivec when soft-float is enabled, hardware floating-point support needs to be expressed as a positive feature, like the others, and not a negative feature, because target features cannot have dependencies on the disabling of some other feature. So +soft-float has now become -hard-float. Fixes PR26970. Pull in r283061 from upstream clang trunk (by Hal Finkel): [PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float Enable soft-float support on PPC64, as the backend now supports it. Also, the backend now uses -hard-float instead of +soft-float, so set the target features accordingly. Fixes PR26970. Reported by: Mark Millard PR: 214433 MFC r309212: Add a few missed clang 3.9.0 files to OptionalObsoleteFiles. MFC r309262: Fix packaging for clang, lldb and lld 3.9.0 During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE directive in the usr.bin/clang/*.mk files got dropped accidentally. Restore it, with a few minor changes and additions: * Correct license in clang.ucl to NCSA * Add PACKAGE=clang for clang and most of the "ll" tools * Put lldb in its own package * Put lld in its own package Reviewed by: gjb, jmallett Differential Revision: https://reviews.freebsd.org/D8666 MFC r309656: During the bootstrap phase, when building the minimal llvm library on PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream llvm revision r271821 disabled the use of std::call_once, which causes some fallback functions from Atomic.cpp to be used instead. Reported by: Mark Millard PR: 214902 MFC r309835: Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR 70528 (bogus error: constructor required before non-static data member). This should fix buildworld with the external gcc package. Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/ MFC r310194: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 3.9.1 release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html> Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
-rw-r--r--contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp321
1 files changed, 267 insertions, 54 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
index e07563b..5d5bfab 100644
--- a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
+++ b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -86,6 +86,9 @@ static OrderMap orderModule(const Module &M) {
for (const GlobalAlias &A : M.aliases())
if (!isa<GlobalValue>(A.getAliasee()))
orderValue(A.getAliasee(), OM);
+ for (const GlobalIFunc &I : M.ifuncs())
+ if (!isa<GlobalValue>(I.getResolver()))
+ orderValue(I.getResolver(), OM);
for (const Function &F : M) {
for (const Use &U : F.operands())
if (!isa<GlobalValue>(U.get()))
@@ -105,6 +108,8 @@ static OrderMap orderModule(const Module &M) {
orderValue(&F, OM);
for (const GlobalAlias &A : M.aliases())
orderValue(&A, OM);
+ for (const GlobalIFunc &I : M.ifuncs())
+ orderValue(&I, OM);
for (const GlobalVariable &G : M.globals())
orderValue(&G, OM);
OM.LastGlobalValueID = OM.size();
@@ -261,11 +266,15 @@ static UseListOrderStack predictUseListOrder(const Module &M) {
predictValueUseListOrder(&F, nullptr, OM, Stack);
for (const GlobalAlias &A : M.aliases())
predictValueUseListOrder(&A, nullptr, OM, Stack);
+ for (const GlobalIFunc &I : M.ifuncs())
+ predictValueUseListOrder(&I, nullptr, OM, Stack);
for (const GlobalVariable &G : M.globals())
if (G.hasInitializer())
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
for (const GlobalAlias &A : M.aliases())
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+ for (const GlobalIFunc &I : M.ifuncs())
+ predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
for (const Function &F : M) {
for (const Use &U : F.operands())
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
@@ -280,8 +289,7 @@ static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
ValueEnumerator::ValueEnumerator(const Module &M,
bool ShouldPreserveUseListOrder)
- : HasMDString(false), HasDILocation(false), HasGenericDINode(false),
- ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
+ : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
if (ShouldPreserveUseListOrder)
UseListOrders = predictUseListOrder(M);
@@ -299,6 +307,10 @@ ValueEnumerator::ValueEnumerator(const Module &M,
for (const GlobalAlias &GA : M.aliases())
EnumerateValue(&GA);
+ // Enumerate the ifuncs.
+ for (const GlobalIFunc &GIF : M.ifuncs())
+ EnumerateValue(&GIF);
+
// Remember what is the cutoff between globalvalue's and other constants.
unsigned FirstConstant = Values.size();
@@ -311,6 +323,10 @@ ValueEnumerator::ValueEnumerator(const Module &M,
for (const GlobalAlias &GA : M.aliases())
EnumerateValue(GA.getAliasee());
+ // Enumerate the ifunc resolvers.
+ for (const GlobalIFunc &GIF : M.ifuncs())
+ EnumerateValue(GIF.getResolver());
+
// Enumerate any optional Function data.
for (const Function &F : M)
for (const Use &U : F.operands())
@@ -328,6 +344,15 @@ ValueEnumerator::ValueEnumerator(const Module &M,
EnumerateNamedMetadata(M);
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
+ for (const GlobalVariable &GV : M.globals()) {
+ MDs.clear();
+ GV.getAllMetadata(MDs);
+ for (const auto &I : MDs)
+ // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
+ // to write metadata to the global variable's own metadata block
+ // (PR28134).
+ EnumerateMetadata(nullptr, I.second);
+ }
// Enumerate types used by function bodies and argument lists.
for (const Function &F : M) {
@@ -335,9 +360,10 @@ ValueEnumerator::ValueEnumerator(const Module &M,
EnumerateType(A.getType());
// Enumerate metadata attached to this function.
+ MDs.clear();
F.getAllMetadata(MDs);
for (const auto &I : MDs)
- EnumerateMetadata(I.second);
+ EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
@@ -352,7 +378,7 @@ ValueEnumerator::ValueEnumerator(const Module &M,
if (isa<LocalAsMetadata>(MD->getMetadata()))
continue;
- EnumerateMetadata(MD->getMetadata());
+ EnumerateMetadata(&F, MD->getMetadata());
}
EnumerateType(I.getType());
if (const CallInst *CI = dyn_cast<CallInst>(&I))
@@ -364,17 +390,21 @@ ValueEnumerator::ValueEnumerator(const Module &M,
MDs.clear();
I.getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
- EnumerateMetadata(MDs[i].second);
+ EnumerateMetadata(&F, MDs[i].second);
// Don't enumerate the location directly -- it has a special record
// type -- but enumerate its operands.
if (DILocation *L = I.getDebugLoc())
- EnumerateMDNodeOperands(L);
+ for (const Metadata *Op : L->operands())
+ EnumerateMetadata(&F, Op);
}
}
// Optimize constant ordering.
OptimizeConstants(FirstConstant, Values.size());
+
+ // Organize metadata ordering.
+ organizeMetadata();
}
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
@@ -402,7 +432,7 @@ unsigned ValueEnumerator::getValueID(const Value *V) const {
return I->second-1;
}
-void ValueEnumerator::dump() const {
+LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
print(dbgs(), ValueMap, "Default");
dbgs() << '\n';
print(dbgs(), MetadataMap, "MetaData");
@@ -445,8 +475,10 @@ void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
OS << "Size: " << Map.size() << "\n";
for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
const Metadata *MD = I->first;
- OS << "Metadata: slot = " << I->second << "\n";
+ OS << "Metadata: slot = " << I->second.ID << "\n";
+ OS << "Metadata: function = " << I->second.F << "\n";
MD->print(OS);
+ OS << "\n";
}
}
@@ -472,8 +504,8 @@ void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
// Ensure that integer and vector of integer constants are at the start of the
// constant pool. This is important so that GEP structure indices come before
// gep constant exprs.
- std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
- isIntOrIntVectorValue);
+ std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
+ isIntOrIntVectorValue);
// Rebuild the modified portion of ValueMap.
for (; CstStart != CstEnd; ++CstStart)
@@ -498,65 +530,244 @@ void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
- EnumerateMetadata(MD->getOperand(i));
+ EnumerateMetadata(nullptr, MD->getOperand(i));
+}
+
+unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
+ return F ? getValueID(F) + 1 : 0;
+}
+
+void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
+ EnumerateMetadata(getMetadataFunctionID(F), MD);
+}
+
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+ const Function &F, const LocalAsMetadata *Local) {
+ EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
+}
+
+void ValueEnumerator::dropFunctionFromMetadata(
+ MetadataMapType::value_type &FirstMD) {
+ SmallVector<const MDNode *, 64> Worklist;
+ auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
+ auto &Entry = MD.second;
+
+ // Nothing to do if this metadata isn't tagged.
+ if (!Entry.F)
+ return;
+
+ // Drop the function tag.
+ Entry.F = 0;
+
+ // If this is has an ID and is an MDNode, then its operands have entries as
+ // well. We need to drop the function from them too.
+ if (Entry.ID)
+ if (auto *N = dyn_cast<MDNode>(MD.first))
+ Worklist.push_back(N);
+ };
+ push(FirstMD);
+ while (!Worklist.empty())
+ for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
+ if (!Op)
+ continue;
+ auto MD = MetadataMap.find(Op);
+ if (MD != MetadataMap.end())
+ push(*MD);
+ }
}
-/// EnumerateMDNodeOperands - Enumerate all non-function-local values
-/// and types referenced by the given MDNode.
-void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- Metadata *MD = N->getOperand(i);
- if (!MD)
+void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
+ // It's vital for reader efficiency that uniqued subgraphs are done in
+ // post-order; it's expensive when their operands have forward references.
+ // If a distinct node is referenced from a uniqued node, it'll be delayed
+ // until the uniqued subgraph has been completely traversed.
+ SmallVector<const MDNode *, 32> DelayedDistinctNodes;
+
+ // Start by enumerating MD, and then work through its transitive operands in
+ // post-order. This requires a depth-first search.
+ SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
+ if (const MDNode *N = enumerateMetadataImpl(F, MD))
+ Worklist.push_back(std::make_pair(N, N->op_begin()));
+
+ while (!Worklist.empty()) {
+ const MDNode *N = Worklist.back().first;
+
+ // Enumerate operands until we hit a new node. We need to traverse these
+ // nodes' operands before visiting the rest of N's operands.
+ MDNode::op_iterator I = std::find_if(
+ Worklist.back().second, N->op_end(),
+ [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
+ if (I != N->op_end()) {
+ auto *Op = cast<MDNode>(*I);
+ Worklist.back().second = ++I;
+
+ // Delay traversing Op if it's a distinct node and N is uniqued.
+ if (Op->isDistinct() && !N->isDistinct())
+ DelayedDistinctNodes.push_back(Op);
+ else
+ Worklist.push_back(std::make_pair(Op, Op->op_begin()));
continue;
- assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local");
- EnumerateMetadata(MD);
+ }
+
+ // All the operands have been visited. Now assign an ID.
+ Worklist.pop_back();
+ MDs.push_back(N);
+ MetadataMap[N].ID = MDs.size();
+
+ // Flush out any delayed distinct nodes; these are all the distinct nodes
+ // that are leaves in last uniqued subgraph.
+ if (Worklist.empty() || Worklist.back().first->isDistinct()) {
+ for (const MDNode *N : DelayedDistinctNodes)
+ Worklist.push_back(std::make_pair(N, N->op_begin()));
+ DelayedDistinctNodes.clear();
+ }
}
}
-void ValueEnumerator::EnumerateMetadata(const Metadata *MD) {
+const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
+ if (!MD)
+ return nullptr;
+
assert(
(isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
"Invalid metadata kind");
- // Insert a dummy ID to block the co-recursive call to
- // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph.
- //
- // Return early if there's already an ID.
- if (!MetadataMap.insert(std::make_pair(MD, 0)).second)
- return;
+ auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
+ MDIndex &Entry = Insertion.first->second;
+ if (!Insertion.second) {
+ // Already mapped. If F doesn't match the function tag, drop it.
+ if (Entry.hasDifferentFunction(F))
+ dropFunctionFromMetadata(*Insertion.first);
+ return nullptr;
+ }
- // Visit operands first to minimize RAUW.
+ // Don't assign IDs to metadata nodes.
if (auto *N = dyn_cast<MDNode>(MD))
- EnumerateMDNodeOperands(N);
- else if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
- EnumerateValue(C->getValue());
+ return N;
- HasMDString |= isa<MDString>(MD);
- HasDILocation |= isa<DILocation>(MD);
- HasGenericDINode |= isa<GenericDINode>(MD);
-
- // Replace the dummy ID inserted above with the correct one. MetadataMap may
- // have changed by inserting operands, so we need a fresh lookup here.
+ // Save the metadata.
MDs.push_back(MD);
- MetadataMap[MD] = MDs.size();
+ Entry.ID = MDs.size();
+
+ // Enumerate the constant, if any.
+ if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
+ EnumerateValue(C->getValue());
+
+ return nullptr;
}
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
/// information reachable from the metadata.
void ValueEnumerator::EnumerateFunctionLocalMetadata(
- const LocalAsMetadata *Local) {
+ unsigned F, const LocalAsMetadata *Local) {
+ assert(F && "Expected a function");
+
// Check to see if it's already in!
- unsigned &MetadataID = MetadataMap[Local];
- if (MetadataID)
+ MDIndex &Index = MetadataMap[Local];
+ if (Index.ID) {
+ assert(Index.F == F && "Expected the same function");
return;
+ }
MDs.push_back(Local);
- MetadataID = MDs.size();
+ Index.F = F;
+ Index.ID = MDs.size();
EnumerateValue(Local->getValue());
+}
+
+static unsigned getMetadataTypeOrder(const Metadata *MD) {
+ // Strings are emitted in bulk and must come first.
+ if (isa<MDString>(MD))
+ return 0;
+
+ // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
+ // to the front since we can detect it.
+ auto *N = dyn_cast<MDNode>(MD);
+ if (!N)
+ return 1;
+
+ // The reader is fast forward references for distinct node operands, but slow
+ // when uniqued operands are unresolved.
+ return N->isDistinct() ? 2 : 3;
+}
+
+void ValueEnumerator::organizeMetadata() {
+ assert(MetadataMap.size() == MDs.size() &&
+ "Metadata map and vector out of sync");
+
+ if (MDs.empty())
+ return;
+
+ // Copy out the index information from MetadataMap in order to choose a new
+ // order.
+ SmallVector<MDIndex, 64> Order;
+ Order.reserve(MetadataMap.size());
+ for (const Metadata *MD : MDs)
+ Order.push_back(MetadataMap.lookup(MD));
+
+ // Partition:
+ // - by function, then
+ // - by isa<MDString>
+ // and then sort by the original/current ID. Since the IDs are guaranteed to
+ // be unique, the result of std::sort will be deterministic. There's no need
+ // for std::stable_sort.
+ std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
+ return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
+ std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
+ });
+
+ // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
+ // and fix up MetadataMap.
+ std::vector<const Metadata *> OldMDs = std::move(MDs);
+ MDs.reserve(OldMDs.size());
+ for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
+ auto *MD = Order[I].get(OldMDs);
+ MDs.push_back(MD);
+ MetadataMap[MD].ID = I + 1;
+ if (isa<MDString>(MD))
+ ++NumMDStrings;
+ }
- // Also, collect all function-local metadata for easy access.
- FunctionLocalMDs.push_back(Local);
+ // Return early if there's nothing for the functions.
+ if (MDs.size() == Order.size())
+ return;
+
+ // Build the function metadata ranges.
+ MDRange R;
+ FunctionMDs.reserve(OldMDs.size());
+ unsigned PrevF = 0;
+ for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
+ ++I) {
+ unsigned F = Order[I].F;
+ if (!PrevF) {
+ PrevF = F;
+ } else if (PrevF != F) {
+ R.Last = FunctionMDs.size();
+ std::swap(R, FunctionMDInfo[PrevF]);
+ R.First = FunctionMDs.size();
+
+ ID = MDs.size();
+ PrevF = F;
+ }
+
+ auto *MD = Order[I].get(OldMDs);
+ FunctionMDs.push_back(MD);
+ MetadataMap[MD].ID = ++ID;
+ if (isa<MDString>(MD))
+ ++R.NumStrings;
+ }
+ R.Last = FunctionMDs.size();
+ FunctionMDInfo[PrevF] = R;
+}
+
+void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
+ NumModuleMDs = MDs.size();
+
+ auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
+ NumMDStrings = R.NumStrings;
+ MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
+ FunctionMDs.begin() + R.Last);
}
void ValueEnumerator::EnumerateValue(const Value *V) {
@@ -650,13 +861,7 @@ void ValueEnumerator::EnumerateType(Type *Ty) {
void ValueEnumerator::EnumerateOperandType(const Value *V) {
EnumerateType(V->getType());
- if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
- assert(!isa<LocalAsMetadata>(MD->getMetadata()) &&
- "Function-local metadata should be left for later");
-
- EnumerateMetadata(MD->getMetadata());
- return;
- }
+ assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
const Constant *C = dyn_cast<Constant>(V);
if (!C)
@@ -704,7 +909,10 @@ void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
void ValueEnumerator::incorporateFunction(const Function &F) {
InstructionCount = 0;
NumModuleValues = Values.size();
- NumModuleMDs = MDs.size();
+
+ // Add global metadata to the function block. This doesn't include
+ // LocalAsMetadata.
+ incorporateFunctionMetadata(F);
// Adding function arguments to the value table.
for (const auto &I : F.args())
@@ -749,8 +957,13 @@ void ValueEnumerator::incorporateFunction(const Function &F) {
}
// Add all of the function-local metadata.
- for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
- EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
+ for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
+ // At this point, every local values have been incorporated, we shouldn't
+ // have a metadata operand that references a value that hasn't been seen.
+ assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
+ "Missing value for metadata operand");
+ EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
+ }
}
void ValueEnumerator::purgeFunction() {
@@ -765,7 +978,7 @@ void ValueEnumerator::purgeFunction() {
Values.resize(NumModuleValues);
MDs.resize(NumModuleMDs);
BasicBlocks.clear();
- FunctionLocalMDs.clear();
+ NumMDStrings = 0;
}
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
OpenPOWER on IntegriCloud