diff options
author | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
---|---|---|
committer | Luiz Souza <luiz@netgate.com> | 2018-02-21 15:12:19 -0300 |
commit | 1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch) | |
tree | 4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/lib/Analysis/MemorySSA.cpp | |
parent | f45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff) | |
download | FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz |
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste):
Correct lld llvm-tblgen dependency file name
MFC r309169:
Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump
and llvm-lto. The mergeinfo confuses Subversion enormously, and these
directories will just use the mergeinfo for llvm itself.
MFC r312765:
Pull in r276136 from upstream llvm trunk (by Wei Mi):
Use ValueOffsetPair to enhance value reuse during SCEV expansion.
In D12090, the ExprValueMap was added to reuse existing value during
SCEV expansion. However, const folding and sext/zext distribution can
make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in
ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to
expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is
helpful when S2 is a complex SCEV expr and S2 has no entry in
ExprValueMap, which is usually caused by the fact that S3 is
generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV
to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a}
into the ExprValueMap when we create SCEV for V1. When S3 is
expanded, it will first expand S2 to V1 - C_a because of S2->{V1,
C_a} in the map, then expand S3 to V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
This should fix assertion failures when building OpenCV >= 3.1.
PR: 215649
MFC r312831:
Revert r312765 for now, since it causes assertions when building
lang/spidermonkey24.
Reported by: antoine
PR: 215649
MFC r316511 (by jhb):
Add an implementation of __ffssi2() derived from __ffsdi2().
Newer versions of GCC include an __ffssi2() symbol in libgcc and the
compiler can emit calls to it in generated code. This is true for at
least GCC 6.2 when compiling world for mips and mips64.
Reviewed by: jmallett, dim
Sponsored by: DARPA / AFRL
Differential Revision: https://reviews.freebsd.org/D10086
MFC r318601 (by adrian):
[libcompiler-rt] add bswapdi2/bswapsi2
This is required for mips gcc 6.3 userland to build/run.
Reviewed by: emaste, dim
Approved by: emaste
Differential Revision: https://reviews.freebsd.org/D10838
MFC r318884 (by emaste):
lldb: map TRAP_CAP to a trace trap
In the absense of a more specific handler for TRAP_CAP (generated by
ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace
trap.
Example usage (testing the bug in PR219173):
% proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls
...
(lldb) run
Process 12980 launching
Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64)
Process 12980 stopped
* thread #1, stop reason = trace
frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10
...
In the future we should have LLDB control the trapcap procctl itself
(as it does with ASLR), as well as report a specific stop reason.
This change eliminates an assertion failure from LLDB for now.
MFC r319796:
Remove a few unneeded files from libllvm, libclang and liblldb.
MFC r319885 (by emaste):
lld: ELF: Fix ICF crash on absolute symbol relocations.
If two sections contained relocations to absolute symbols with the same
value we would crash when trying to access their sections. Add a check that
both symbols point to sections before accessing their sections, and treat
absolute symbols as equal if their values are equal.
Obtained from: LLD commit r292578
MFC r319918:
Revert r319796 for now, it can cause undefined references when linking
in some circumstances.
Reported by: Shawn Webb <shawn.webb@hardenedbsd.org>
MFC r319957 (by emaste):
lld: Add armelf emulation mode
Obtained from: LLD r305375
MFC r321369:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release,
which should be in about a month. Please report bugs and regressions,
so we can get them into the release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
MFC r321420:
Add a few more object files to liblldb, which should solve errors when
linking the lldb executable in some cases. In particular, when the
-ffunction-sections -fdata-sections options are turned off, or
ineffective.
Reported by: Shawn Webb, Mark Millard
MFC r321433:
Cleanup stale Options.inc files from the previous libllvm build for
clang 4.0.0. Otherwise, these can get included before the two newly
generated ones (which are different) for clang 5.0.0.
Reported by: Mark Millard
MFC r321439 (by bdrewery):
Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm.
The files are only ever generated to .OBJDIR, not to WORLDTMP (as a
sysroot) and are only ever included from a compilation. So using
a beforebuild target here removes the file before the compilation
tries to include it.
MFC r321664:
Pull in r308891 from upstream llvm trunk (by Benjamin Kramer):
[CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses.
This avoids excessive compile time. The case I'm looking at is
Function.cpp from an old version of LLVM that still had the giant
memcmp string matcher in it. Before r308322 this compiled in about 2
minutes, after it, clang takes infinite* time to compile it. With
this patch we're at 5 min, which is still bad but this is a
pathological case.
The cut off at 20 uses was chosen by looking at other cut-offs in LLVM
for user scanning. It's probably too high, but does the job and is
very unlikely to regress anything.
Fixes PR33900.
* I'm impatient and aborted after 15 minutes, on the bug report it was
killed after 2h.
Pull in r308986 from upstream llvm trunk (by Simon Pilgrim):
[X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914)
D35067/rL308322 attempted to support up to 4 load pairs for memcmp
inlining which resulted in regressions for some optimized libc memcmp
implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the
memcmp expansion to a maximum of 2 load pairs (which matches what we
do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
These fix a hang (or extremely long compile time) when building older
LLVM ports.
Reported by: antoine
PR: 219139
MFC r321719:
Pull in r309503 from upstream clang trunk (by Richard Smith):
PR33902: Invalidate line number cache when adding more text to
existing buffer.
This led to crashes as the line number cache would report a bogus
line number for a line of code, and we'd try to find a nonexistent
column within the line when printing diagnostics.
This fixes an assertion when building the graphics/champlain port.
Reported by: antoine, kwm
PR: 219139
MFC r321723:
Upgrade our copies of clang, llvm, lld and lldb to r309439 from the
upstream release_50 branch. This is just after upstream's 5.0.0-rc1.
MFC r322320:
Upgrade our copies of clang, llvm and libc++ to r310316 from the
upstream release_50 branch.
MFC r322326 (by emaste):
lldb: Make i386-*-freebsd expression work on JIT path
* Enable i386 ABI creation for freebsd
* Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap
syscall
* Unlike linux, the last argument of mmap is actually 64-bit(off_t).
This requires us to push an additional word for the higher order bits.
* Prior to this change, ktrace dump will show mmap failures due to
invalid argument coming from the 6th mmap argument.
Submitted by: Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D34776
MFC r322360 (by emaste):
lldb: Report inferior signals as signals, not exceptions, on FreeBSD
This is the FreeBSD equivalent of LLVM r238549.
This serves 2 purposes:
* LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/
SIGFPE the way it is suppose to be handled. Prior to this fix these
signals will neither create a coredump, nor exit from the debugger
or work for signal handling scenario.
* eInvalidCrashReason need not report "unknown crash reason" if we have
a valid si_signo
llvm.org/pr23699
Patch by Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D35223
Submitted by: Karnajit Wangkhem
Obtained from: LLVM r310591
MFC r322474 (by emaste):
lld: Add `-z muldefs` option.
Obtained from: LLVM r310757
MFC r322740:
Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the
upstream release_50 branch.
MFC r322855:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from
the upstream release_50 branch.
As of this version, lib/msun's trig test should also work correctly
again (see bug 220989 for more information).
PR: 220989
MFC r323112:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from
the upstream release_50 branch. This corresponds to 5.0.0 rc4.
As of this version, the cad/stepcode port should now compile in a more
reasonable time on i386 (see bug 221836 for more information).
PR: 221836
MFC r323245:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 release (upstream r312559).
Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
(cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/lib/Analysis/MemorySSA.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/MemorySSA.cpp | 2074 |
1 files changed, 2074 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/MemorySSA.cpp b/contrib/llvm/lib/Analysis/MemorySSA.cpp new file mode 100644 index 0000000..86de474 --- /dev/null +++ b/contrib/llvm/lib/Analysis/MemorySSA.cpp @@ -0,0 +1,2074 @@ +//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the MemorySSA class. +// +//===----------------------------------------------------------------===// +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include <algorithm> + +#define DEBUG_TYPE "memoryssa" +using namespace llvm; +INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, + true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, + true) + +INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", + "Memory SSA Printer", false, false) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", + "Memory SSA Printer", false, false) + +static cl::opt<unsigned> MaxCheckLimit( + "memssa-check-limit", cl::Hidden, cl::init(100), + cl::desc("The maximum number of stores/phis MemorySSA" + "will consider trying to walk past (default = 100)")); + +static cl::opt<bool> + VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, + cl::desc("Verify MemorySSA in legacy printer pass.")); + +namespace llvm { +/// \brief An assembly annotator class to print Memory SSA information in +/// comments. +class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { + friend class MemorySSA; + const MemorySSA *MSSA; + +public: + MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} + + virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) + OS << "; " << *MA << "\n"; + } + + virtual void emitInstructionAnnot(const Instruction *I, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) + OS << "; " << *MA << "\n"; + } +}; +} + +namespace { +/// Our current alias analysis API differentiates heavily between calls and +/// non-calls, and functions called on one usually assert on the other. +/// This class encapsulates the distinction to simplify other code that wants +/// "Memory affecting instructions and related data" to use as a key. +/// For example, this class is used as a densemap key in the use optimizer. +class MemoryLocOrCall { +public: + MemoryLocOrCall() : IsCall(false) {} + MemoryLocOrCall(MemoryUseOrDef *MUD) + : MemoryLocOrCall(MUD->getMemoryInst()) {} + MemoryLocOrCall(const MemoryUseOrDef *MUD) + : MemoryLocOrCall(MUD->getMemoryInst()) {} + + MemoryLocOrCall(Instruction *Inst) { + if (ImmutableCallSite(Inst)) { + IsCall = true; + CS = ImmutableCallSite(Inst); + } else { + IsCall = false; + // There is no such thing as a memorylocation for a fence inst, and it is + // unique in that regard. + if (!isa<FenceInst>(Inst)) + Loc = MemoryLocation::get(Inst); + } + } + + explicit MemoryLocOrCall(const MemoryLocation &Loc) + : IsCall(false), Loc(Loc) {} + + bool IsCall; + ImmutableCallSite getCS() const { + assert(IsCall); + return CS; + } + MemoryLocation getLoc() const { + assert(!IsCall); + return Loc; + } + + bool operator==(const MemoryLocOrCall &Other) const { + if (IsCall != Other.IsCall) + return false; + + if (IsCall) + return CS.getCalledValue() == Other.CS.getCalledValue(); + return Loc == Other.Loc; + } + +private: + union { + ImmutableCallSite CS; + MemoryLocation Loc; + }; +}; +} + +namespace llvm { +template <> struct DenseMapInfo<MemoryLocOrCall> { + static inline MemoryLocOrCall getEmptyKey() { + return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); + } + static inline MemoryLocOrCall getTombstoneKey() { + return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); + } + static unsigned getHashValue(const MemoryLocOrCall &MLOC) { + if (MLOC.IsCall) + return hash_combine(MLOC.IsCall, + DenseMapInfo<const Value *>::getHashValue( + MLOC.getCS().getCalledValue())); + return hash_combine( + MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); + } + static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { + return LHS == RHS; + } +}; + +enum class Reorderability { Always, IfNoAlias, Never }; + +/// This does one-way checks to see if Use could theoretically be hoisted above +/// MayClobber. This will not check the other way around. +/// +/// This assumes that, for the purposes of MemorySSA, Use comes directly after +/// MayClobber, with no potentially clobbering operations in between them. +/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) +static Reorderability getLoadReorderability(const LoadInst *Use, + const LoadInst *MayClobber) { + bool VolatileUse = Use->isVolatile(); + bool VolatileClobber = MayClobber->isVolatile(); + // Volatile operations may never be reordered with other volatile operations. + if (VolatileUse && VolatileClobber) + return Reorderability::Never; + + // The lang ref allows reordering of volatile and non-volatile operations. + // Whether an aliasing nonvolatile load and volatile load can be reordered, + // though, is ambiguous. Because it may not be best to exploit this ambiguity, + // we only allow volatile/non-volatile reordering if the volatile and + // non-volatile operations don't alias. + Reorderability Result = VolatileUse || VolatileClobber + ? Reorderability::IfNoAlias + : Reorderability::Always; + + // If a load is seq_cst, it cannot be moved above other loads. If its ordering + // is weaker, it can be moved above other loads. We just need to be sure that + // MayClobber isn't an acquire load, because loads can't be moved above + // acquire loads. + // + // Note that this explicitly *does* allow the free reordering of monotonic (or + // weaker) loads of the same address. + bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; + bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), + AtomicOrdering::Acquire); + if (SeqCstUse || MayClobberIsAcquire) + return Reorderability::Never; + return Result; +} + +static bool instructionClobbersQuery(MemoryDef *MD, + const MemoryLocation &UseLoc, + const Instruction *UseInst, + AliasAnalysis &AA) { + Instruction *DefInst = MD->getMemoryInst(); + assert(DefInst && "Defining instruction not actually an instruction"); + ImmutableCallSite UseCS(UseInst); + + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { + // These intrinsics will show up as affecting memory, but they are just + // markers. + switch (II->getIntrinsicID()) { + case Intrinsic::lifetime_start: + if (UseCS) + return false; + return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc); + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::assume: + return false; + default: + break; + } + } + + if (UseCS) { + ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); + return I != MRI_NoModRef; + } + + if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { + if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { + switch (getLoadReorderability(UseLoad, DefLoad)) { + case Reorderability::Always: + return false; + case Reorderability::Never: + return true; + case Reorderability::IfNoAlias: + return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); + } + } + } + + return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; +} + +static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, + const MemoryLocOrCall &UseMLOC, + AliasAnalysis &AA) { + // FIXME: This is a temporary hack to allow a single instructionClobbersQuery + // to exist while MemoryLocOrCall is pushed through places. + if (UseMLOC.IsCall) + return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), + AA); + return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), + AA); +} + +// Return true when MD may alias MU, return false otherwise. +bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, + AliasAnalysis &AA) { + return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); +} +} + +namespace { +struct UpwardsMemoryQuery { + // True if our original query started off as a call + bool IsCall; + // The pointer location we started the query with. This will be empty if + // IsCall is true. + MemoryLocation StartingLoc; + // This is the instruction we were querying about. + const Instruction *Inst; + // The MemoryAccess we actually got called with, used to test local domination + const MemoryAccess *OriginalAccess; + + UpwardsMemoryQuery() + : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} + + UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) + : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { + if (!IsCall) + StartingLoc = MemoryLocation::get(Inst); + } +}; + +static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, + AliasAnalysis &AA) { + Instruction *Inst = MD->getMemoryInst(); + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { + switch (II->getIntrinsicID()) { + case Intrinsic::lifetime_end: + return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); + default: + return false; + } + } + return false; +} + +static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, + const Instruction *I) { + // If the memory can't be changed, then loads of the memory can't be + // clobbered. + // + // FIXME: We should handle invariant groups, as well. It's a bit harder, + // because we need to pay close attention to invariant group barriers. + return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || + AA.pointsToConstantMemory(cast<LoadInst>(I)-> + getPointerOperand())); +} + +/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing +/// inbetween `Start` and `ClobberAt` can clobbers `Start`. +/// +/// This is meant to be as simple and self-contained as possible. Because it +/// uses no cache, etc., it can be relatively expensive. +/// +/// \param Start The MemoryAccess that we want to walk from. +/// \param ClobberAt A clobber for Start. +/// \param StartLoc The MemoryLocation for Start. +/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. +/// \param Query The UpwardsMemoryQuery we used for our search. +/// \param AA The AliasAnalysis we used for our search. +static void LLVM_ATTRIBUTE_UNUSED +checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, + const MemoryLocation &StartLoc, const MemorySSA &MSSA, + const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { + assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); + + if (MSSA.isLiveOnEntryDef(Start)) { + assert(MSSA.isLiveOnEntryDef(ClobberAt) && + "liveOnEntry must clobber itself"); + return; + } + + bool FoundClobber = false; + DenseSet<MemoryAccessPair> VisitedPhis; + SmallVector<MemoryAccessPair, 8> Worklist; + Worklist.emplace_back(Start, StartLoc); + // Walk all paths from Start to ClobberAt, while looking for clobbers. If one + // is found, complain. + while (!Worklist.empty()) { + MemoryAccessPair MAP = Worklist.pop_back_val(); + // All we care about is that nothing from Start to ClobberAt clobbers Start. + // We learn nothing from revisiting nodes. + if (!VisitedPhis.insert(MAP).second) + continue; + + for (MemoryAccess *MA : def_chain(MAP.first)) { + if (MA == ClobberAt) { + if (auto *MD = dyn_cast<MemoryDef>(MA)) { + // instructionClobbersQuery isn't essentially free, so don't use `|=`, + // since it won't let us short-circuit. + // + // Also, note that this can't be hoisted out of the `Worklist` loop, + // since MD may only act as a clobber for 1 of N MemoryLocations. + FoundClobber = + FoundClobber || MSSA.isLiveOnEntryDef(MD) || + instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); + } + break; + } + + // We should never hit liveOnEntry, unless it's the clobber. + assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); + + if (auto *MD = dyn_cast<MemoryDef>(MA)) { + (void)MD; + assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && + "Found clobber before reaching ClobberAt!"); + continue; + } + + assert(isa<MemoryPhi>(MA)); + Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); + } + } + + // If ClobberAt is a MemoryPhi, we can assume something above it acted as a + // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. + assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && + "ClobberAt never acted as a clobber"); +} + +/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up +/// in one class. +class ClobberWalker { + /// Save a few bytes by using unsigned instead of size_t. + using ListIndex = unsigned; + + /// Represents a span of contiguous MemoryDefs, potentially ending in a + /// MemoryPhi. + struct DefPath { + MemoryLocation Loc; + // Note that, because we always walk in reverse, Last will always dominate + // First. Also note that First and Last are inclusive. + MemoryAccess *First; + MemoryAccess *Last; + Optional<ListIndex> Previous; + + DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, + Optional<ListIndex> Previous) + : Loc(Loc), First(First), Last(Last), Previous(Previous) {} + + DefPath(const MemoryLocation &Loc, MemoryAccess *Init, + Optional<ListIndex> Previous) + : DefPath(Loc, Init, Init, Previous) {} + }; + + const MemorySSA &MSSA; + AliasAnalysis &AA; + DominatorTree &DT; + UpwardsMemoryQuery *Query; + + // Phi optimization bookkeeping + SmallVector<DefPath, 32> Paths; + DenseSet<ConstMemoryAccessPair> VisitedPhis; + + /// Find the nearest def or phi that `From` can legally be optimized to. + const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { + assert(From->getNumOperands() && "Phi with no operands?"); + + BasicBlock *BB = From->getBlock(); + MemoryAccess *Result = MSSA.getLiveOnEntryDef(); + DomTreeNode *Node = DT.getNode(BB); + while ((Node = Node->getIDom())) { + auto *Defs = MSSA.getBlockDefs(Node->getBlock()); + if (Defs) + return &*Defs->rbegin(); + } + return Result; + } + + /// Result of calling walkToPhiOrClobber. + struct UpwardsWalkResult { + /// The "Result" of the walk. Either a clobber, the last thing we walked, or + /// both. + MemoryAccess *Result; + bool IsKnownClobber; + }; + + /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. + /// This will update Desc.Last as it walks. It will (optionally) also stop at + /// StopAt. + /// + /// This does not test for whether StopAt is a clobber + UpwardsWalkResult + walkToPhiOrClobber(DefPath &Desc, + const MemoryAccess *StopAt = nullptr) const { + assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); + + for (MemoryAccess *Current : def_chain(Desc.Last)) { + Desc.Last = Current; + if (Current == StopAt) + return {Current, false}; + + if (auto *MD = dyn_cast<MemoryDef>(Current)) + if (MSSA.isLiveOnEntryDef(MD) || + instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) + return {MD, true}; + } + + assert(isa<MemoryPhi>(Desc.Last) && + "Ended at a non-clobber that's not a phi?"); + return {Desc.Last, false}; + } + + void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, + ListIndex PriorNode) { + auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), + upward_defs_end()); + for (const MemoryAccessPair &P : UpwardDefs) { + PausedSearches.push_back(Paths.size()); + Paths.emplace_back(P.second, P.first, PriorNode); + } + } + + /// Represents a search that terminated after finding a clobber. This clobber + /// may or may not be present in the path of defs from LastNode..SearchStart, + /// since it may have been retrieved from cache. + struct TerminatedPath { + MemoryAccess *Clobber; + ListIndex LastNode; + }; + + /// Get an access that keeps us from optimizing to the given phi. + /// + /// PausedSearches is an array of indices into the Paths array. Its incoming + /// value is the indices of searches that stopped at the last phi optimization + /// target. It's left in an unspecified state. + /// + /// If this returns None, NewPaused is a vector of searches that terminated + /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. + Optional<TerminatedPath> + getBlockingAccess(const MemoryAccess *StopWhere, + SmallVectorImpl<ListIndex> &PausedSearches, + SmallVectorImpl<ListIndex> &NewPaused, + SmallVectorImpl<TerminatedPath> &Terminated) { + assert(!PausedSearches.empty() && "No searches to continue?"); + + // BFS vs DFS really doesn't make a difference here, so just do a DFS with + // PausedSearches as our stack. + while (!PausedSearches.empty()) { + ListIndex PathIndex = PausedSearches.pop_back_val(); + DefPath &Node = Paths[PathIndex]; + + // If we've already visited this path with this MemoryLocation, we don't + // need to do so again. + // + // NOTE: That we just drop these paths on the ground makes caching + // behavior sporadic. e.g. given a diamond: + // A + // B C + // D + // + // ...If we walk D, B, A, C, we'll only cache the result of phi + // optimization for A, B, and D; C will be skipped because it dies here. + // This arguably isn't the worst thing ever, since: + // - We generally query things in a top-down order, so if we got below D + // without needing cache entries for {C, MemLoc}, then chances are + // that those cache entries would end up ultimately unused. + // - We still cache things for A, so C only needs to walk up a bit. + // If this behavior becomes problematic, we can fix without a ton of extra + // work. + if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) + continue; + + UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); + if (Res.IsKnownClobber) { + assert(Res.Result != StopWhere); + // If this wasn't a cache hit, we hit a clobber when walking. That's a + // failure. + TerminatedPath Term{Res.Result, PathIndex}; + if (!MSSA.dominates(Res.Result, StopWhere)) + return Term; + + // Otherwise, it's a valid thing to potentially optimize to. + Terminated.push_back(Term); + continue; + } + + if (Res.Result == StopWhere) { + // We've hit our target. Save this path off for if we want to continue + // walking. + NewPaused.push_back(PathIndex); + continue; + } + + assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); + addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); + } + + return None; + } + + template <typename T, typename Walker> + struct generic_def_path_iterator + : public iterator_facade_base<generic_def_path_iterator<T, Walker>, + std::forward_iterator_tag, T *> { + generic_def_path_iterator() : W(nullptr), N(None) {} + generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} + + T &operator*() const { return curNode(); } + + generic_def_path_iterator &operator++() { + N = curNode().Previous; + return *this; + } + + bool operator==(const generic_def_path_iterator &O) const { + if (N.hasValue() != O.N.hasValue()) + return false; + return !N.hasValue() || *N == *O.N; + } + + private: + T &curNode() const { return W->Paths[*N]; } + + Walker *W; + Optional<ListIndex> N; + }; + + using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; + using const_def_path_iterator = + generic_def_path_iterator<const DefPath, const ClobberWalker>; + + iterator_range<def_path_iterator> def_path(ListIndex From) { + return make_range(def_path_iterator(this, From), def_path_iterator()); + } + + iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { + return make_range(const_def_path_iterator(this, From), + const_def_path_iterator()); + } + + struct OptznResult { + /// The path that contains our result. + TerminatedPath PrimaryClobber; + /// The paths that we can legally cache back from, but that aren't + /// necessarily the result of the Phi optimization. + SmallVector<TerminatedPath, 4> OtherClobbers; + }; + + ListIndex defPathIndex(const DefPath &N) const { + // The assert looks nicer if we don't need to do &N + const DefPath *NP = &N; + assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && + "Out of bounds DefPath!"); + return NP - &Paths.front(); + } + + /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths + /// that act as legal clobbers. Note that this won't return *all* clobbers. + /// + /// Phi optimization algorithm tl;dr: + /// - Find the earliest def/phi, A, we can optimize to + /// - Find if all paths from the starting memory access ultimately reach A + /// - If not, optimization isn't possible. + /// - Otherwise, walk from A to another clobber or phi, A'. + /// - If A' is a def, we're done. + /// - If A' is a phi, try to optimize it. + /// + /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path + /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. + OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, + const MemoryLocation &Loc) { + assert(Paths.empty() && VisitedPhis.empty() && + "Reset the optimization state."); + + Paths.emplace_back(Loc, Start, Phi, None); + // Stores how many "valid" optimization nodes we had prior to calling + // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. + auto PriorPathsSize = Paths.size(); + + SmallVector<ListIndex, 16> PausedSearches; + SmallVector<ListIndex, 8> NewPaused; + SmallVector<TerminatedPath, 4> TerminatedPaths; + + addSearches(Phi, PausedSearches, 0); + + // Moves the TerminatedPath with the "most dominated" Clobber to the end of + // Paths. + auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { + assert(!Paths.empty() && "Need a path to move"); + auto Dom = Paths.begin(); + for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) + if (!MSSA.dominates(I->Clobber, Dom->Clobber)) + Dom = I; + auto Last = Paths.end() - 1; + if (Last != Dom) + std::iter_swap(Last, Dom); + }; + + MemoryPhi *Current = Phi; + while (1) { + assert(!MSSA.isLiveOnEntryDef(Current) && + "liveOnEntry wasn't treated as a clobber?"); + + const auto *Target = getWalkTarget(Current); + // If a TerminatedPath doesn't dominate Target, then it wasn't a legal + // optimization for the prior phi. + assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { + return MSSA.dominates(P.Clobber, Target); + })); + + // FIXME: This is broken, because the Blocker may be reported to be + // liveOnEntry, and we'll happily wait for that to disappear (read: never) + // For the moment, this is fine, since we do nothing with blocker info. + if (Optional<TerminatedPath> Blocker = getBlockingAccess( + Target, PausedSearches, NewPaused, TerminatedPaths)) { + + // Find the node we started at. We can't search based on N->Last, since + // we may have gone around a loop with a different MemoryLocation. + auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { + return defPathIndex(N) < PriorPathsSize; + }); + assert(Iter != def_path_iterator()); + + DefPath &CurNode = *Iter; + assert(CurNode.Last == Current); + + // Two things: + // A. We can't reliably cache all of NewPaused back. Consider a case + // where we have two paths in NewPaused; one of which can't optimize + // above this phi, whereas the other can. If we cache the second path + // back, we'll end up with suboptimal cache entries. We can handle + // cases like this a bit better when we either try to find all + // clobbers that block phi optimization, or when our cache starts + // supporting unfinished searches. + // B. We can't reliably cache TerminatedPaths back here without doing + // extra checks; consider a case like: + // T + // / \ + // D C + // \ / + // S + // Where T is our target, C is a node with a clobber on it, D is a + // diamond (with a clobber *only* on the left or right node, N), and + // S is our start. Say we walk to D, through the node opposite N + // (read: ignoring the clobber), and see a cache entry in the top + // node of D. That cache entry gets put into TerminatedPaths. We then + // walk up to C (N is later in our worklist), find the clobber, and + // quit. If we append TerminatedPaths to OtherClobbers, we'll cache + // the bottom part of D to the cached clobber, ignoring the clobber + // in N. Again, this problem goes away if we start tracking all + // blockers for a given phi optimization. + TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; + return {Result, {}}; + } + + // If there's nothing left to search, then all paths led to valid clobbers + // that we got from our cache; pick the nearest to the start, and allow + // the rest to be cached back. + if (NewPaused.empty()) { + MoveDominatedPathToEnd(TerminatedPaths); + TerminatedPath Result = TerminatedPaths.pop_back_val(); + return {Result, std::move(TerminatedPaths)}; + } + + MemoryAccess *DefChainEnd = nullptr; + SmallVector<TerminatedPath, 4> Clobbers; + for (ListIndex Paused : NewPaused) { + UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); + if (WR.IsKnownClobber) + Clobbers.push_back({WR.Result, Paused}); + else + // Micro-opt: If we hit the end of the chain, save it. + DefChainEnd = WR.Result; + } + + if (!TerminatedPaths.empty()) { + // If we couldn't find the dominating phi/liveOnEntry in the above loop, + // do it now. + if (!DefChainEnd) + for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) + DefChainEnd = MA; + + // If any of the terminated paths don't dominate the phi we'll try to + // optimize, we need to figure out what they are and quit. + const BasicBlock *ChainBB = DefChainEnd->getBlock(); + for (const TerminatedPath &TP : TerminatedPaths) { + // Because we know that DefChainEnd is as "high" as we can go, we + // don't need local dominance checks; BB dominance is sufficient. + if (DT.dominates(ChainBB, TP.Clobber->getBlock())) + Clobbers.push_back(TP); + } + } + + // If we have clobbers in the def chain, find the one closest to Current + // and quit. + if (!Clobbers.empty()) { + MoveDominatedPathToEnd(Clobbers); + TerminatedPath Result = Clobbers.pop_back_val(); + return {Result, std::move(Clobbers)}; + } + + assert(all_of(NewPaused, + [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); + + // Because liveOnEntry is a clobber, this must be a phi. + auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); + + PriorPathsSize = Paths.size(); + PausedSearches.clear(); + for (ListIndex I : NewPaused) + addSearches(DefChainPhi, PausedSearches, I); + NewPaused.clear(); + + Current = DefChainPhi; + } + } + + void verifyOptResult(const OptznResult &R) const { + assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { + return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); + })); + } + + void resetPhiOptznState() { + Paths.clear(); + VisitedPhis.clear(); + } + +public: + ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) + : MSSA(MSSA), AA(AA), DT(DT) {} + + void reset() {} + + /// Finds the nearest clobber for the given query, optimizing phis if + /// possible. + MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { + Query = &Q; + + MemoryAccess *Current = Start; + // This walker pretends uses don't exist. If we're handed one, silently grab + // its def. (This has the nice side-effect of ensuring we never cache uses) + if (auto *MU = dyn_cast<MemoryUse>(Start)) + Current = MU->getDefiningAccess(); + + DefPath FirstDesc(Q.StartingLoc, Current, Current, None); + // Fast path for the overly-common case (no crazy phi optimization + // necessary) + UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); + MemoryAccess *Result; + if (WalkResult.IsKnownClobber) { + Result = WalkResult.Result; + } else { + OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), + Current, Q.StartingLoc); + verifyOptResult(OptRes); + resetPhiOptznState(); + Result = OptRes.PrimaryClobber.Clobber; + } + +#ifdef EXPENSIVE_CHECKS + checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); +#endif + return Result; + } + + void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } +}; + +struct RenamePassData { + DomTreeNode *DTN; + DomTreeNode::const_iterator ChildIt; + MemoryAccess *IncomingVal; + + RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, + MemoryAccess *M) + : DTN(D), ChildIt(It), IncomingVal(M) {} + void swap(RenamePassData &RHS) { + std::swap(DTN, RHS.DTN); + std::swap(ChildIt, RHS.ChildIt); + std::swap(IncomingVal, RHS.IncomingVal); + } +}; +} // anonymous namespace + +namespace llvm { +/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no +/// longer does caching on its own, +/// but the name has been retained for the moment. +class MemorySSA::CachingWalker final : public MemorySSAWalker { + ClobberWalker Walker; + bool AutoResetWalker; + + MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); + void verifyRemoved(MemoryAccess *); + +public: + CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); + ~CachingWalker() override; + + using MemorySSAWalker::getClobberingMemoryAccess; + MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; + MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, + const MemoryLocation &) override; + void invalidateInfo(MemoryAccess *) override; + + /// Whether we call resetClobberWalker() after each time we *actually* walk to + /// answer a clobber query. + void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } + + /// Drop the walker's persistent data structures. + void resetClobberWalker() { Walker.reset(); } + + void verify(const MemorySSA *MSSA) override { + MemorySSAWalker::verify(MSSA); + Walker.verify(MSSA); + } +}; + +void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, + bool RenameAllUses) { + // Pass through values to our successors + for (const BasicBlock *S : successors(BB)) { + auto It = PerBlockAccesses.find(S); + // Rename the phi nodes in our successor block + if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) + continue; + AccessList *Accesses = It->second.get(); + auto *Phi = cast<MemoryPhi>(&Accesses->front()); + if (RenameAllUses) { + int PhiIndex = Phi->getBasicBlockIndex(BB); + assert(PhiIndex != -1 && "Incomplete phi during partial rename"); + Phi->setIncomingValue(PhiIndex, IncomingVal); + } else + Phi->addIncoming(IncomingVal, BB); + } +} + +/// \brief Rename a single basic block into MemorySSA form. +/// Uses the standard SSA renaming algorithm. +/// \returns The new incoming value. +MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, + bool RenameAllUses) { + auto It = PerBlockAccesses.find(BB); + // Skip most processing if the list is empty. + if (It != PerBlockAccesses.end()) { + AccessList *Accesses = It->second.get(); + for (MemoryAccess &L : *Accesses) { + if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { + if (MUD->getDefiningAccess() == nullptr || RenameAllUses) + MUD->setDefiningAccess(IncomingVal); + if (isa<MemoryDef>(&L)) + IncomingVal = &L; + } else { + IncomingVal = &L; + } + } + } + return IncomingVal; +} + +/// \brief This is the standard SSA renaming algorithm. +/// +/// We walk the dominator tree in preorder, renaming accesses, and then filling +/// in phi nodes in our successors. +void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, + SmallPtrSetImpl<BasicBlock *> &Visited, + bool SkipVisited, bool RenameAllUses) { + SmallVector<RenamePassData, 32> WorkStack; + // Skip everything if we already renamed this block and we are skipping. + // Note: You can't sink this into the if, because we need it to occur + // regardless of whether we skip blocks or not. + bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; + if (SkipVisited && AlreadyVisited) + return; + + IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); + renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); + WorkStack.push_back({Root, Root->begin(), IncomingVal}); + + while (!WorkStack.empty()) { + DomTreeNode *Node = WorkStack.back().DTN; + DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; + IncomingVal = WorkStack.back().IncomingVal; + + if (ChildIt == Node->end()) { + WorkStack.pop_back(); + } else { + DomTreeNode *Child = *ChildIt; + ++WorkStack.back().ChildIt; + BasicBlock *BB = Child->getBlock(); + // Note: You can't sink this into the if, because we need it to occur + // regardless of whether we skip blocks or not. + AlreadyVisited = !Visited.insert(BB).second; + if (SkipVisited && AlreadyVisited) { + // We already visited this during our renaming, which can happen when + // being asked to rename multiple blocks. Figure out the incoming val, + // which is the last def. + // Incoming value can only change if there is a block def, and in that + // case, it's the last block def in the list. + if (auto *BlockDefs = getWritableBlockDefs(BB)) + IncomingVal = &*BlockDefs->rbegin(); + } else + IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); + renameSuccessorPhis(BB, IncomingVal, RenameAllUses); + WorkStack.push_back({Child, Child->begin(), IncomingVal}); + } + } +} + +/// \brief This handles unreachable block accesses by deleting phi nodes in +/// unreachable blocks, and marking all other unreachable MemoryAccess's as +/// being uses of the live on entry definition. +void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { + assert(!DT->isReachableFromEntry(BB) && + "Reachable block found while handling unreachable blocks"); + + // Make sure phi nodes in our reachable successors end up with a + // LiveOnEntryDef for our incoming edge, even though our block is forward + // unreachable. We could just disconnect these blocks from the CFG fully, + // but we do not right now. + for (const BasicBlock *S : successors(BB)) { + if (!DT->isReachableFromEntry(S)) + continue; + auto It = PerBlockAccesses.find(S); + // Rename the phi nodes in our successor block + if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) + continue; + AccessList *Accesses = It->second.get(); + auto *Phi = cast<MemoryPhi>(&Accesses->front()); + Phi->addIncoming(LiveOnEntryDef.get(), BB); + } + + auto It = PerBlockAccesses.find(BB); + if (It == PerBlockAccesses.end()) + return; + + auto &Accesses = It->second; + for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { + auto Next = std::next(AI); + // If we have a phi, just remove it. We are going to replace all + // users with live on entry. + if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) + UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); + else + Accesses->erase(AI); + AI = Next; + } +} + +MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) + : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), + NextID(INVALID_MEMORYACCESS_ID) { + buildMemorySSA(); +} + +MemorySSA::~MemorySSA() { + // Drop all our references + for (const auto &Pair : PerBlockAccesses) + for (MemoryAccess &MA : *Pair.second) + MA.dropAllReferences(); +} + +MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { + auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); + + if (Res.second) + Res.first->second = make_unique<AccessList>(); + return Res.first->second.get(); +} +MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { + auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); + + if (Res.second) + Res.first->second = make_unique<DefsList>(); + return Res.first->second.get(); +} + +/// This class is a batch walker of all MemoryUse's in the program, and points +/// their defining access at the thing that actually clobbers them. Because it +/// is a batch walker that touches everything, it does not operate like the +/// other walkers. This walker is basically performing a top-down SSA renaming +/// pass, where the version stack is used as the cache. This enables it to be +/// significantly more time and memory efficient than using the regular walker, +/// which is walking bottom-up. +class MemorySSA::OptimizeUses { +public: + OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, + DominatorTree *DT) + : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { + Walker = MSSA->getWalker(); + } + + void optimizeUses(); + +private: + /// This represents where a given memorylocation is in the stack. + struct MemlocStackInfo { + // This essentially is keeping track of versions of the stack. Whenever + // the stack changes due to pushes or pops, these versions increase. + unsigned long StackEpoch; + unsigned long PopEpoch; + // This is the lower bound of places on the stack to check. It is equal to + // the place the last stack walk ended. + // Note: Correctness depends on this being initialized to 0, which densemap + // does + unsigned long LowerBound; + const BasicBlock *LowerBoundBlock; + // This is where the last walk for this memory location ended. + unsigned long LastKill; + bool LastKillValid; + }; + void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, + SmallVectorImpl<MemoryAccess *> &, + DenseMap<MemoryLocOrCall, MemlocStackInfo> &); + MemorySSA *MSSA; + MemorySSAWalker *Walker; + AliasAnalysis *AA; + DominatorTree *DT; +}; + +/// Optimize the uses in a given block This is basically the SSA renaming +/// algorithm, with one caveat: We are able to use a single stack for all +/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is +/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just +/// going to be some position in that stack of possible ones. +/// +/// We track the stack positions that each MemoryLocation needs +/// to check, and last ended at. This is because we only want to check the +/// things that changed since last time. The same MemoryLocation should +/// get clobbered by the same store (getModRefInfo does not use invariantness or +/// things like this, and if they start, we can modify MemoryLocOrCall to +/// include relevant data) +void MemorySSA::OptimizeUses::optimizeUsesInBlock( + const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, + SmallVectorImpl<MemoryAccess *> &VersionStack, + DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { + + /// If no accesses, nothing to do. + MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); + if (Accesses == nullptr) + return; + + // Pop everything that doesn't dominate the current block off the stack, + // increment the PopEpoch to account for this. + while (true) { + assert( + !VersionStack.empty() && + "Version stack should have liveOnEntry sentinel dominating everything"); + BasicBlock *BackBlock = VersionStack.back()->getBlock(); + if (DT->dominates(BackBlock, BB)) + break; + while (VersionStack.back()->getBlock() == BackBlock) + VersionStack.pop_back(); + ++PopEpoch; + } + + for (MemoryAccess &MA : *Accesses) { + auto *MU = dyn_cast<MemoryUse>(&MA); + if (!MU) { + VersionStack.push_back(&MA); + ++StackEpoch; + continue; + } + + if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { + MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); + continue; + } + + MemoryLocOrCall UseMLOC(MU); + auto &LocInfo = LocStackInfo[UseMLOC]; + // If the pop epoch changed, it means we've removed stuff from top of + // stack due to changing blocks. We may have to reset the lower bound or + // last kill info. + if (LocInfo.PopEpoch != PopEpoch) { + LocInfo.PopEpoch = PopEpoch; + LocInfo.StackEpoch = StackEpoch; + // If the lower bound was in something that no longer dominates us, we + // have to reset it. + // We can't simply track stack size, because the stack may have had + // pushes/pops in the meantime. + // XXX: This is non-optimal, but only is slower cases with heavily + // branching dominator trees. To get the optimal number of queries would + // be to make lowerbound and lastkill a per-loc stack, and pop it until + // the top of that stack dominates us. This does not seem worth it ATM. + // A much cheaper optimization would be to always explore the deepest + // branch of the dominator tree first. This will guarantee this resets on + // the smallest set of blocks. + if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && + !DT->dominates(LocInfo.LowerBoundBlock, BB)) { + // Reset the lower bound of things to check. + // TODO: Some day we should be able to reset to last kill, rather than + // 0. + LocInfo.LowerBound = 0; + LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); + LocInfo.LastKillValid = false; + } + } else if (LocInfo.StackEpoch != StackEpoch) { + // If all that has changed is the StackEpoch, we only have to check the + // new things on the stack, because we've checked everything before. In + // this case, the lower bound of things to check remains the same. + LocInfo.PopEpoch = PopEpoch; + LocInfo.StackEpoch = StackEpoch; + } + if (!LocInfo.LastKillValid) { + LocInfo.LastKill = VersionStack.size() - 1; + LocInfo.LastKillValid = true; + } + + // At this point, we should have corrected last kill and LowerBound to be + // in bounds. + assert(LocInfo.LowerBound < VersionStack.size() && + "Lower bound out of range"); + assert(LocInfo.LastKill < VersionStack.size() && + "Last kill info out of range"); + // In any case, the new upper bound is the top of the stack. + unsigned long UpperBound = VersionStack.size() - 1; + + if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { + DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" + << *(MU->getMemoryInst()) << ")" + << " because there are " << UpperBound - LocInfo.LowerBound + << " stores to disambiguate\n"); + // Because we did not walk, LastKill is no longer valid, as this may + // have been a kill. + LocInfo.LastKillValid = false; + continue; + } + bool FoundClobberResult = false; + while (UpperBound > LocInfo.LowerBound) { + if (isa<MemoryPhi>(VersionStack[UpperBound])) { + // For phis, use the walker, see where we ended up, go there + Instruction *UseInst = MU->getMemoryInst(); + MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); + // We are guaranteed to find it or something is wrong + while (VersionStack[UpperBound] != Result) { + assert(UpperBound != 0); + --UpperBound; + } + FoundClobberResult = true; + break; + } + + MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); + // If the lifetime of the pointer ends at this instruction, it's live on + // entry. + if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { + // Reset UpperBound to liveOnEntryDef's place in the stack + UpperBound = 0; + FoundClobberResult = true; + break; + } + if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { + FoundClobberResult = true; + break; + } + --UpperBound; + } + // At the end of this loop, UpperBound is either a clobber, or lower bound + // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. + if (FoundClobberResult || UpperBound < LocInfo.LastKill) { + MU->setDefiningAccess(VersionStack[UpperBound], true); + // We were last killed now by where we got to + LocInfo.LastKill = UpperBound; + } else { + // Otherwise, we checked all the new ones, and now we know we can get to + // LastKill. + MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); + } + LocInfo.LowerBound = VersionStack.size() - 1; + LocInfo.LowerBoundBlock = BB; + } +} + +/// Optimize uses to point to their actual clobbering definitions. +void MemorySSA::OptimizeUses::optimizeUses() { + SmallVector<MemoryAccess *, 16> VersionStack; + DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; + VersionStack.push_back(MSSA->getLiveOnEntryDef()); + + unsigned long StackEpoch = 1; + unsigned long PopEpoch = 1; + // We perform a non-recursive top-down dominator tree walk. + for (const auto *DomNode : depth_first(DT->getRootNode())) + optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, + LocStackInfo); +} + +void MemorySSA::placePHINodes( + const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, + const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { + // Determine where our MemoryPhi's should go + ForwardIDFCalculator IDFs(*DT); + IDFs.setDefiningBlocks(DefiningBlocks); + SmallVector<BasicBlock *, 32> IDFBlocks; + IDFs.calculate(IDFBlocks); + + std::sort(IDFBlocks.begin(), IDFBlocks.end(), + [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { + return BBNumbers.lookup(A) < BBNumbers.lookup(B); + }); + + // Now place MemoryPhi nodes. + for (auto &BB : IDFBlocks) + createMemoryPhi(BB); +} + +void MemorySSA::buildMemorySSA() { + // We create an access to represent "live on entry", for things like + // arguments or users of globals, where the memory they use is defined before + // the beginning of the function. We do not actually insert it into the IR. + // We do not define a live on exit for the immediate uses, and thus our + // semantics do *not* imply that something with no immediate uses can simply + // be removed. + BasicBlock &StartingPoint = F.getEntryBlock(); + LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, + &StartingPoint, NextID++); + DenseMap<const BasicBlock *, unsigned int> BBNumbers; + unsigned NextBBNum = 0; + + // We maintain lists of memory accesses per-block, trading memory for time. We + // could just look up the memory access for every possible instruction in the + // stream. + SmallPtrSet<BasicBlock *, 32> DefiningBlocks; + // Go through each block, figure out where defs occur, and chain together all + // the accesses. + for (BasicBlock &B : F) { + BBNumbers[&B] = NextBBNum++; + bool InsertIntoDef = false; + AccessList *Accesses = nullptr; + DefsList *Defs = nullptr; + for (Instruction &I : B) { + MemoryUseOrDef *MUD = createNewAccess(&I); + if (!MUD) + continue; + + if (!Accesses) + Accesses = getOrCreateAccessList(&B); + Accesses->push_back(MUD); + if (isa<MemoryDef>(MUD)) { + InsertIntoDef = true; + if (!Defs) + Defs = getOrCreateDefsList(&B); + Defs->push_back(*MUD); + } + } + if (InsertIntoDef) + DefiningBlocks.insert(&B); + } + placePHINodes(DefiningBlocks, BBNumbers); + + // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get + // filled in with all blocks. + SmallPtrSet<BasicBlock *, 16> Visited; + renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); + + CachingWalker *Walker = getWalkerImpl(); + + // We're doing a batch of updates; don't drop useful caches between them. + Walker->setAutoResetWalker(false); + OptimizeUses(this, Walker, AA, DT).optimizeUses(); + Walker->setAutoResetWalker(true); + Walker->resetClobberWalker(); + + // Mark the uses in unreachable blocks as live on entry, so that they go + // somewhere. + for (auto &BB : F) + if (!Visited.count(&BB)) + markUnreachableAsLiveOnEntry(&BB); +} + +MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } + +MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { + if (Walker) + return Walker.get(); + + Walker = make_unique<CachingWalker>(this, AA, DT); + return Walker.get(); +} + +// This is a helper function used by the creation routines. It places NewAccess +// into the access and defs lists for a given basic block, at the given +// insertion point. +void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, + const BasicBlock *BB, + InsertionPlace Point) { + auto *Accesses = getOrCreateAccessList(BB); + if (Point == Beginning) { + // If it's a phi node, it goes first, otherwise, it goes after any phi + // nodes. + if (isa<MemoryPhi>(NewAccess)) { + Accesses->push_front(NewAccess); + auto *Defs = getOrCreateDefsList(BB); + Defs->push_front(*NewAccess); + } else { + auto AI = find_if_not( + *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); + Accesses->insert(AI, NewAccess); + if (!isa<MemoryUse>(NewAccess)) { + auto *Defs = getOrCreateDefsList(BB); + auto DI = find_if_not( + *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); + Defs->insert(DI, *NewAccess); + } + } + } else { + Accesses->push_back(NewAccess); + if (!isa<MemoryUse>(NewAccess)) { + auto *Defs = getOrCreateDefsList(BB); + Defs->push_back(*NewAccess); + } + } + BlockNumberingValid.erase(BB); +} + +void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, + AccessList::iterator InsertPt) { + auto *Accesses = getWritableBlockAccesses(BB); + bool WasEnd = InsertPt == Accesses->end(); + Accesses->insert(AccessList::iterator(InsertPt), What); + if (!isa<MemoryUse>(What)) { + auto *Defs = getOrCreateDefsList(BB); + // If we got asked to insert at the end, we have an easy job, just shove it + // at the end. If we got asked to insert before an existing def, we also get + // an terator. If we got asked to insert before a use, we have to hunt for + // the next def. + if (WasEnd) { + Defs->push_back(*What); + } else if (isa<MemoryDef>(InsertPt)) { + Defs->insert(InsertPt->getDefsIterator(), *What); + } else { + while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) + ++InsertPt; + // Either we found a def, or we are inserting at the end + if (InsertPt == Accesses->end()) + Defs->push_back(*What); + else + Defs->insert(InsertPt->getDefsIterator(), *What); + } + } + BlockNumberingValid.erase(BB); +} + +// Move What before Where in the IR. The end result is taht What will belong to +// the right lists and have the right Block set, but will not otherwise be +// correct. It will not have the right defining access, and if it is a def, +// things below it will not properly be updated. +void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, + AccessList::iterator Where) { + // Keep it in the lookup tables, remove from the lists + removeFromLists(What, false); + What->setBlock(BB); + insertIntoListsBefore(What, BB, Where); +} + +void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, + InsertionPlace Point) { + removeFromLists(What, false); + What->setBlock(BB); + insertIntoListsForBlock(What, BB, Point); +} + +MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { + assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); + MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); + // Phi's always are placed at the front of the block. + insertIntoListsForBlock(Phi, BB, Beginning); + ValueToMemoryAccess[BB] = Phi; + return Phi; +} + +MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, + MemoryAccess *Definition) { + assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); + MemoryUseOrDef *NewAccess = createNewAccess(I); + assert( + NewAccess != nullptr && + "Tried to create a memory access for a non-memory touching instruction"); + NewAccess->setDefiningAccess(Definition); + return NewAccess; +} + +// Return true if the instruction has ordering constraints. +// Note specifically that this only considers stores and loads +// because others are still considered ModRef by getModRefInfo. +static inline bool isOrdered(const Instruction *I) { + if (auto *SI = dyn_cast<StoreInst>(I)) { + if (!SI->isUnordered()) + return true; + } else if (auto *LI = dyn_cast<LoadInst>(I)) { + if (!LI->isUnordered()) + return true; + } + return false; +} +/// \brief Helper function to create new memory accesses +MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { + // The assume intrinsic has a control dependency which we model by claiming + // that it writes arbitrarily. Ignore that fake memory dependency here. + // FIXME: Replace this special casing with a more accurate modelling of + // assume's control dependency. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) + if (II->getIntrinsicID() == Intrinsic::assume) + return nullptr; + + // Find out what affect this instruction has on memory. + ModRefInfo ModRef = AA->getModRefInfo(I); + // The isOrdered check is used to ensure that volatiles end up as defs + // (atomics end up as ModRef right now anyway). Until we separate the + // ordering chain from the memory chain, this enables people to see at least + // some relative ordering to volatiles. Note that getClobberingMemoryAccess + // will still give an answer that bypasses other volatile loads. TODO: + // Separate memory aliasing and ordering into two different chains so that we + // can precisely represent both "what memory will this read/write/is clobbered + // by" and "what instructions can I move this past". + bool Def = bool(ModRef & MRI_Mod) || isOrdered(I); + bool Use = bool(ModRef & MRI_Ref); + + // It's possible for an instruction to not modify memory at all. During + // construction, we ignore them. + if (!Def && !Use) + return nullptr; + + assert((Def || Use) && + "Trying to create a memory access with a non-memory instruction"); + + MemoryUseOrDef *MUD; + if (Def) + MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); + else + MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); + ValueToMemoryAccess[I] = MUD; + return MUD; +} + +/// \brief Returns true if \p Replacer dominates \p Replacee . +bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, + const MemoryAccess *Replacee) const { + if (isa<MemoryUseOrDef>(Replacee)) + return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); + const auto *MP = cast<MemoryPhi>(Replacee); + // For a phi node, the use occurs in the predecessor block of the phi node. + // Since we may occur multiple times in the phi node, we have to check each + // operand to ensure Replacer dominates each operand where Replacee occurs. + for (const Use &Arg : MP->operands()) { + if (Arg.get() != Replacee && + !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) + return false; + } + return true; +} + +/// \brief Properly remove \p MA from all of MemorySSA's lookup tables. +void MemorySSA::removeFromLookups(MemoryAccess *MA) { + assert(MA->use_empty() && + "Trying to remove memory access that still has uses"); + BlockNumbering.erase(MA); + if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) + MUD->setDefiningAccess(nullptr); + // Invalidate our walker's cache if necessary + if (!isa<MemoryUse>(MA)) + Walker->invalidateInfo(MA); + // The call below to erase will destroy MA, so we can't change the order we + // are doing things here + Value *MemoryInst; + if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { + MemoryInst = MUD->getMemoryInst(); + } else { + MemoryInst = MA->getBlock(); + } + auto VMA = ValueToMemoryAccess.find(MemoryInst); + if (VMA->second == MA) + ValueToMemoryAccess.erase(VMA); +} + +/// \brief Properly remove \p MA from all of MemorySSA's lists. +/// +/// Because of the way the intrusive list and use lists work, it is important to +/// do removal in the right order. +/// ShouldDelete defaults to true, and will cause the memory access to also be +/// deleted, not just removed. +void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { + // The access list owns the reference, so we erase it from the non-owning list + // first. + if (!isa<MemoryUse>(MA)) { + auto DefsIt = PerBlockDefs.find(MA->getBlock()); + std::unique_ptr<DefsList> &Defs = DefsIt->second; + Defs->remove(*MA); + if (Defs->empty()) + PerBlockDefs.erase(DefsIt); + } + + // The erase call here will delete it. If we don't want it deleted, we call + // remove instead. + auto AccessIt = PerBlockAccesses.find(MA->getBlock()); + std::unique_ptr<AccessList> &Accesses = AccessIt->second; + if (ShouldDelete) + Accesses->erase(MA); + else + Accesses->remove(MA); + + if (Accesses->empty()) + PerBlockAccesses.erase(AccessIt); +} + +void MemorySSA::print(raw_ostream &OS) const { + MemorySSAAnnotatedWriter Writer(this); + F.print(OS, &Writer); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } +#endif + +void MemorySSA::verifyMemorySSA() const { + verifyDefUses(F); + verifyDomination(F); + verifyOrdering(F); + Walker->verify(this); +} + +/// \brief Verify that the order and existence of MemoryAccesses matches the +/// order and existence of memory affecting instructions. +void MemorySSA::verifyOrdering(Function &F) const { + // Walk all the blocks, comparing what the lookups think and what the access + // lists think, as well as the order in the blocks vs the order in the access + // lists. + SmallVector<MemoryAccess *, 32> ActualAccesses; + SmallVector<MemoryAccess *, 32> ActualDefs; + for (BasicBlock &B : F) { + const AccessList *AL = getBlockAccesses(&B); + const auto *DL = getBlockDefs(&B); + MemoryAccess *Phi = getMemoryAccess(&B); + if (Phi) { + ActualAccesses.push_back(Phi); + ActualDefs.push_back(Phi); + } + + for (Instruction &I : B) { + MemoryAccess *MA = getMemoryAccess(&I); + assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && + "We have memory affecting instructions " + "in this block but they are not in the " + "access list or defs list"); + if (MA) { + ActualAccesses.push_back(MA); + if (isa<MemoryDef>(MA)) + ActualDefs.push_back(MA); + } + } + // Either we hit the assert, really have no accesses, or we have both + // accesses and an access list. + // Same with defs. + if (!AL && !DL) + continue; + assert(AL->size() == ActualAccesses.size() && + "We don't have the same number of accesses in the block as on the " + "access list"); + assert((DL || ActualDefs.size() == 0) && + "Either we should have a defs list, or we should have no defs"); + assert((!DL || DL->size() == ActualDefs.size()) && + "We don't have the same number of defs in the block as on the " + "def list"); + auto ALI = AL->begin(); + auto AAI = ActualAccesses.begin(); + while (ALI != AL->end() && AAI != ActualAccesses.end()) { + assert(&*ALI == *AAI && "Not the same accesses in the same order"); + ++ALI; + ++AAI; + } + ActualAccesses.clear(); + if (DL) { + auto DLI = DL->begin(); + auto ADI = ActualDefs.begin(); + while (DLI != DL->end() && ADI != ActualDefs.end()) { + assert(&*DLI == *ADI && "Not the same defs in the same order"); + ++DLI; + ++ADI; + } + } + ActualDefs.clear(); + } +} + +/// \brief Verify the domination properties of MemorySSA by checking that each +/// definition dominates all of its uses. +void MemorySSA::verifyDomination(Function &F) const { +#ifndef NDEBUG + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *MP = getMemoryAccess(&B)) + for (const Use &U : MP->uses()) + assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); + + for (Instruction &I : B) { + MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); + if (!MD) + continue; + + for (const Use &U : MD->uses()) + assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); + } + } +#endif +} + +/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use +/// appears in the use list of \p Def. + +void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { +#ifndef NDEBUG + // The live on entry use may cause us to get a NULL def here + if (!Def) + assert(isLiveOnEntryDef(Use) && + "Null def but use not point to live on entry def"); + else + assert(is_contained(Def->users(), Use) && + "Did not find use in def's use list"); +#endif +} + +/// \brief Verify the immediate use information, by walking all the memory +/// accesses and verifying that, for each use, it appears in the +/// appropriate def's use list +void MemorySSA::verifyDefUses(Function &F) const { + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *Phi = getMemoryAccess(&B)) { + assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( + pred_begin(&B), pred_end(&B))) && + "Incomplete MemoryPhi Node"); + for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) + verifyUseInDefs(Phi->getIncomingValue(I), Phi); + } + + for (Instruction &I : B) { + if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { + verifyUseInDefs(MA->getDefiningAccess(), MA); + } + } + } +} + +MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { + return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); +} + +MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { + return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); +} + +/// Perform a local numbering on blocks so that instruction ordering can be +/// determined in constant time. +/// TODO: We currently just number in order. If we numbered by N, we could +/// allow at least N-1 sequences of insertBefore or insertAfter (and at least +/// log2(N) sequences of mixed before and after) without needing to invalidate +/// the numbering. +void MemorySSA::renumberBlock(const BasicBlock *B) const { + // The pre-increment ensures the numbers really start at 1. + unsigned long CurrentNumber = 0; + const AccessList *AL = getBlockAccesses(B); + assert(AL != nullptr && "Asking to renumber an empty block"); + for (const auto &I : *AL) + BlockNumbering[&I] = ++CurrentNumber; + BlockNumberingValid.insert(B); +} + +/// \brief Determine, for two memory accesses in the same block, +/// whether \p Dominator dominates \p Dominatee. +/// \returns True if \p Dominator dominates \p Dominatee. +bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, + const MemoryAccess *Dominatee) const { + + const BasicBlock *DominatorBlock = Dominator->getBlock(); + + assert((DominatorBlock == Dominatee->getBlock()) && + "Asking for local domination when accesses are in different blocks!"); + // A node dominates itself. + if (Dominatee == Dominator) + return true; + + // When Dominatee is defined on function entry, it is not dominated by another + // memory access. + if (isLiveOnEntryDef(Dominatee)) + return false; + + // When Dominator is defined on function entry, it dominates the other memory + // access. + if (isLiveOnEntryDef(Dominator)) + return true; + + if (!BlockNumberingValid.count(DominatorBlock)) + renumberBlock(DominatorBlock); + + unsigned long DominatorNum = BlockNumbering.lookup(Dominator); + // All numbers start with 1 + assert(DominatorNum != 0 && "Block was not numbered properly"); + unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); + assert(DominateeNum != 0 && "Block was not numbered properly"); + return DominatorNum < DominateeNum; +} + +bool MemorySSA::dominates(const MemoryAccess *Dominator, + const MemoryAccess *Dominatee) const { + if (Dominator == Dominatee) + return true; + + if (isLiveOnEntryDef(Dominatee)) + return false; + + if (Dominator->getBlock() != Dominatee->getBlock()) + return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); + return locallyDominates(Dominator, Dominatee); +} + +bool MemorySSA::dominates(const MemoryAccess *Dominator, + const Use &Dominatee) const { + if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { + BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); + // The def must dominate the incoming block of the phi. + if (UseBB != Dominator->getBlock()) + return DT->dominates(Dominator->getBlock(), UseBB); + // If the UseBB and the DefBB are the same, compare locally. + return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); + } + // If it's not a PHI node use, the normal dominates can already handle it. + return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); +} + +const static char LiveOnEntryStr[] = "liveOnEntry"; + +void MemoryAccess::print(raw_ostream &OS) const { + switch (getValueID()) { + case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); + case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); + case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); + } + llvm_unreachable("invalid value id"); +} + +void MemoryDef::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + + OS << getID() << " = MemoryDef("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryPhi::print(raw_ostream &OS) const { + bool First = true; + OS << getID() << " = MemoryPhi("; + for (const auto &Op : operands()) { + BasicBlock *BB = getIncomingBlock(Op); + MemoryAccess *MA = cast<MemoryAccess>(Op); + if (!First) + OS << ','; + else + First = false; + + OS << '{'; + if (BB->hasName()) + OS << BB->getName(); + else + BB->printAsOperand(OS, false); + OS << ','; + if (unsigned ID = MA->getID()) + OS << ID; + else + OS << LiveOnEntryStr; + OS << '}'; + } + OS << ')'; +} + +void MemoryUse::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + OS << "MemoryUse("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryAccess::dump() const { +// Cannot completely remove virtual function even in release mode. +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + print(dbgs()); + dbgs() << "\n"; +#endif +} + +char MemorySSAPrinterLegacyPass::ID = 0; + +MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { + initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<MemorySSAWrapperPass>(); +} + +bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { + auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); + MSSA.print(dbgs()); + if (VerifyMemorySSA) + MSSA.verifyMemorySSA(); + return false; +} + +AnalysisKey MemorySSAAnalysis::Key; + +MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, + FunctionAnalysisManager &AM) { + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &AA = AM.getResult<AAManager>(F); + return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT)); +} + +PreservedAnalyses MemorySSAPrinterPass::run(Function &F, + FunctionAnalysisManager &AM) { + OS << "MemorySSA for function: " << F.getName() << "\n"; + AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); + + return PreservedAnalyses::all(); +} + +PreservedAnalyses MemorySSAVerifierPass::run(Function &F, + FunctionAnalysisManager &AM) { + AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); + + return PreservedAnalyses::all(); +} + +char MemorySSAWrapperPass::ID = 0; + +MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { + initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } + +void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<DominatorTreeWrapperPass>(); + AU.addRequiredTransitive<AAResultsWrapperPass>(); +} + +bool MemorySSAWrapperPass::runOnFunction(Function &F) { + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + MSSA.reset(new MemorySSA(F, &AA, &DT)); + return false; +} + +void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } + +void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { + MSSA->print(OS); +} + +MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} + +MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, + DominatorTree *D) + : MemorySSAWalker(M), Walker(*M, *A, *D), AutoResetWalker(true) {} + +MemorySSA::CachingWalker::~CachingWalker() {} + +void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { + if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) + MUD->resetOptimized(); +} + +/// \brief Walk the use-def chains starting at \p MA and find +/// the MemoryAccess that actually clobbers Loc. +/// +/// \returns our clobbering memory access +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { + MemoryAccess *New = Walker.findClobber(StartingAccess, Q); +#ifdef EXPENSIVE_CHECKS + MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q); + assert(NewNoCache == New && "Cache made us hand back a different result?"); + (void)NewNoCache; +#endif + if (AutoResetWalker) + resetClobberWalker(); + return New; +} + +MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, const MemoryLocation &Loc) { + if (isa<MemoryPhi>(StartingAccess)) + return StartingAccess; + + auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); + if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) + return StartingUseOrDef; + + Instruction *I = StartingUseOrDef->getMemoryInst(); + + // Conservatively, fences are always clobbers, so don't perform the walk if we + // hit a fence. + if (!ImmutableCallSite(I) && I->isFenceLike()) + return StartingUseOrDef; + + UpwardsMemoryQuery Q; + Q.OriginalAccess = StartingUseOrDef; + Q.StartingLoc = Loc; + Q.Inst = I; + Q.IsCall = false; + + // Unlike the other function, do not walk to the def of a def, because we are + // handed something we already believe is the clobbering access. + MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) + ? StartingUseOrDef->getDefiningAccess() + : StartingUseOrDef; + + MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *StartingUseOrDef << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Clobber << "\n"); + return Clobber; +} + +MemoryAccess * +MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { + auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); + // If this is a MemoryPhi, we can't do anything. + if (!StartingAccess) + return MA; + + // If this is an already optimized use or def, return the optimized result. + // Note: Currently, we do not store the optimized def result because we'd need + // a separate field, since we can't use it as the defining access. + if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) + if (MUD->isOptimized()) + return MUD->getOptimized(); + + const Instruction *I = StartingAccess->getMemoryInst(); + UpwardsMemoryQuery Q(I, StartingAccess); + // We can't sanely do anything with a fences, they conservatively + // clobber all memory, and have no locations to get pointers from to + // try to disambiguate. + if (!Q.IsCall && I->isFenceLike()) + return StartingAccess; + + if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { + MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); + if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) + MUD->setOptimized(LiveOnEntry); + return LiveOnEntry; + } + + // Start with the thing we already think clobbers this location + MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); + + // At this point, DefiningAccess may be the live on entry def. + // If it is, we will not get a better result. + if (MSSA->isLiveOnEntryDef(DefiningAccess)) + return DefiningAccess; + + MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *DefiningAccess << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Result << "\n"); + if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess)) + MUD->setOptimized(Result); + + return Result; +} + +MemoryAccess * +DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { + if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) + return Use->getDefiningAccess(); + return MA; +} + +MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, const MemoryLocation &) { + if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) + return Use->getDefiningAccess(); + return StartingAccess; +} +} // namespace llvm + +void MemoryPhi::deleteMe(DerivedUser *Self) { + delete static_cast<MemoryPhi *>(Self); +} + +void MemoryDef::deleteMe(DerivedUser *Self) { + delete static_cast<MemoryDef *>(Self); +} + +void MemoryUse::deleteMe(DerivedUser *Self) { + delete static_cast<MemoryUse *>(Self); +} |