summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/InlineCost.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-09-26 19:56:36 +0000
committerLuiz Souza <luiz@netgate.com>2018-02-21 15:12:19 -0300
commit1dcd2e8d24b295bc73e513acec2ed1514bb66be4 (patch)
tree4bd13a34c251e980e1a6b13584ca1f63b0dfe670 /contrib/llvm/lib/Analysis/InlineCost.cpp
parentf45541ca2a56a1ba1202f94c080b04e96c1fa239 (diff)
downloadFreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.zip
FreeBSD-src-1dcd2e8d24b295bc73e513acec2ed1514bb66be4.tar.gz
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste): Correct lld llvm-tblgen dependency file name MFC r309169: Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump and llvm-lto. The mergeinfo confuses Subversion enormously, and these directories will just use the mergeinfo for llvm itself. MFC r312765: Pull in r276136 from upstream llvm trunk (by Wei Mi): Use ValueOffsetPair to enhance value reuse during SCEV expansion. In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion. However, const folding and sext/zext distribution can make the reuse still difficult. A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and S1 = S2 + C_a S3 = S2 + C_b where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused by the fact that S3 is generated from S1 after const folding. In order to do that, we represent ExprValueMap as a mapping from SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b. Differential Revision: https://reviews.llvm.org/D21313 This should fix assertion failures when building OpenCV >= 3.1. PR: 215649 MFC r312831: Revert r312765 for now, since it causes assertions when building lang/spidermonkey24. Reported by: antoine PR: 215649 MFC r316511 (by jhb): Add an implementation of __ffssi2() derived from __ffsdi2(). Newer versions of GCC include an __ffssi2() symbol in libgcc and the compiler can emit calls to it in generated code. This is true for at least GCC 6.2 when compiling world for mips and mips64. Reviewed by: jmallett, dim Sponsored by: DARPA / AFRL Differential Revision: https://reviews.freebsd.org/D10086 MFC r318601 (by adrian): [libcompiler-rt] add bswapdi2/bswapsi2 This is required for mips gcc 6.3 userland to build/run. Reviewed by: emaste, dim Approved by: emaste Differential Revision: https://reviews.freebsd.org/D10838 MFC r318884 (by emaste): lldb: map TRAP_CAP to a trace trap In the absense of a more specific handler for TRAP_CAP (generated by ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace trap. Example usage (testing the bug in PR219173): % proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls ... (lldb) run Process 12980 launching Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64) Process 12980 stopped * thread #1, stop reason = trace frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10 ... In the future we should have LLDB control the trapcap procctl itself (as it does with ASLR), as well as report a specific stop reason. This change eliminates an assertion failure from LLDB for now. MFC r319796: Remove a few unneeded files from libllvm, libclang and liblldb. MFC r319885 (by emaste): lld: ELF: Fix ICF crash on absolute symbol relocations. If two sections contained relocations to absolute symbols with the same value we would crash when trying to access their sections. Add a check that both symbols point to sections before accessing their sections, and treat absolute symbols as equal if their values are equal. Obtained from: LLD commit r292578 MFC r319918: Revert r319796 for now, it can cause undefined references when linking in some circumstances. Reported by: Shawn Webb <shawn.webb@hardenedbsd.org> MFC r319957 (by emaste): lld: Add armelf emulation mode Obtained from: LLD r305375 MFC r321369: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release, which should be in about a month. Please report bugs and regressions, so we can get them into the release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. MFC r321420: Add a few more object files to liblldb, which should solve errors when linking the lldb executable in some cases. In particular, when the -ffunction-sections -fdata-sections options are turned off, or ineffective. Reported by: Shawn Webb, Mark Millard MFC r321433: Cleanup stale Options.inc files from the previous libllvm build for clang 4.0.0. Otherwise, these can get included before the two newly generated ones (which are different) for clang 5.0.0. Reported by: Mark Millard MFC r321439 (by bdrewery): Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm. The files are only ever generated to .OBJDIR, not to WORLDTMP (as a sysroot) and are only ever included from a compilation. So using a beforebuild target here removes the file before the compilation tries to include it. MFC r321664: Pull in r308891 from upstream llvm trunk (by Benjamin Kramer): [CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses. This avoids excessive compile time. The case I'm looking at is Function.cpp from an old version of LLVM that still had the giant memcmp string matcher in it. Before r308322 this compiled in about 2 minutes, after it, clang takes infinite* time to compile it. With this patch we're at 5 min, which is still bad but this is a pathological case. The cut off at 20 uses was chosen by looking at other cut-offs in LLVM for user scanning. It's probably too high, but does the job and is very unlikely to regress anything. Fixes PR33900. * I'm impatient and aborted after 15 minutes, on the bug report it was killed after 2h. Pull in r308986 from upstream llvm trunk (by Simon Pilgrim): [X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914) D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914). Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os). This patch should be considered for the 5.0.0 release branch as well Differential Revision: https://reviews.llvm.org/D35830 These fix a hang (or extremely long compile time) when building older LLVM ports. Reported by: antoine PR: 219139 MFC r321719: Pull in r309503 from upstream clang trunk (by Richard Smith): PR33902: Invalidate line number cache when adding more text to existing buffer. This led to crashes as the line number cache would report a bogus line number for a line of code, and we'd try to find a nonexistent column within the line when printing diagnostics. This fixes an assertion when building the graphics/champlain port. Reported by: antoine, kwm PR: 219139 MFC r321723: Upgrade our copies of clang, llvm, lld and lldb to r309439 from the upstream release_50 branch. This is just after upstream's 5.0.0-rc1. MFC r322320: Upgrade our copies of clang, llvm and libc++ to r310316 from the upstream release_50 branch. MFC r322326 (by emaste): lldb: Make i386-*-freebsd expression work on JIT path * Enable i386 ABI creation for freebsd * Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap syscall * Unlike linux, the last argument of mmap is actually 64-bit(off_t). This requires us to push an additional word for the higher order bits. * Prior to this change, ktrace dump will show mmap failures due to invalid argument coming from the 6th mmap argument. Submitted by: Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D34776 MFC r322360 (by emaste): lldb: Report inferior signals as signals, not exceptions, on FreeBSD This is the FreeBSD equivalent of LLVM r238549. This serves 2 purposes: * LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/ SIGFPE the way it is suppose to be handled. Prior to this fix these signals will neither create a coredump, nor exit from the debugger or work for signal handling scenario. * eInvalidCrashReason need not report "unknown crash reason" if we have a valid si_signo llvm.org/pr23699 Patch by Karnajit Wangkhem Differential Revision: https://reviews.llvm.org/D35223 Submitted by: Karnajit Wangkhem Obtained from: LLVM r310591 MFC r322474 (by emaste): lld: Add `-z muldefs` option. Obtained from: LLVM r310757 MFC r322740: Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the upstream release_50 branch. MFC r322855: Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from the upstream release_50 branch. As of this version, lib/msun's trig test should also work correctly again (see bug 220989 for more information). PR: 220989 MFC r323112: Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from the upstream release_50 branch. This corresponds to 5.0.0 rc4. As of this version, the cad/stepcode port should now compile in a more reasonable time on i386 (see bug 221836 for more information). PR: 221836 MFC r323245: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 5.0.0 release (upstream r312559). Release notes for llvm, clang and lld will be available here soon: <http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html> Relnotes: yes (cherry picked from commit 12cd91cf4c6b96a24427c0de5374916f2808d263)
Diffstat (limited to 'contrib/llvm/lib/Analysis/InlineCost.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/InlineCost.cpp467
1 files changed, 278 insertions, 189 deletions
diff --git a/contrib/llvm/lib/Analysis/InlineCost.cpp b/contrib/llvm/lib/Analysis/InlineCost.cpp
index 4109049..3569366 100644
--- a/contrib/llvm/lib/Analysis/InlineCost.cpp
+++ b/contrib/llvm/lib/Analysis/InlineCost.cpp
@@ -18,6 +18,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
@@ -48,11 +49,16 @@ static cl::opt<int> HintThreshold(
"inlinehint-threshold", cl::Hidden, cl::init(325),
cl::desc("Threshold for inlining functions with inline hint"));
+static cl::opt<int>
+ ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
+ cl::init(45),
+ cl::desc("Threshold for inlining cold callsites"));
+
// We introduce this threshold to help performance of instrumentation based
// PGO before we actually hook up inliner with analysis passes such as BPI and
// BFI.
static cl::opt<int> ColdThreshold(
- "inlinecold-threshold", cl::Hidden, cl::init(225),
+ "inlinecold-threshold", cl::Hidden, cl::init(45),
cl::desc("Threshold for inlining functions with cold attribute"));
static cl::opt<int>
@@ -60,6 +66,12 @@ static cl::opt<int>
cl::ZeroOrMore,
cl::desc("Threshold for hot callsites "));
+static cl::opt<int> ColdCallSiteRelFreq(
+ "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
+ cl::desc("Maxmimum block frequency, expressed as a percentage of caller's "
+ "entry frequency, for a callsite to be cold in the absence of "
+ "profile information."));
+
namespace {
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
@@ -72,12 +84,18 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
/// Getter for the cache of @llvm.assume intrinsics.
std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
+ /// Getter for BlockFrequencyInfo
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
+
/// Profile summary information.
ProfileSummaryInfo *PSI;
/// The called function.
Function &F;
+ // Cache the DataLayout since we use it a lot.
+ const DataLayout &DL;
+
/// The candidate callsite being analyzed. Please do not use this to do
/// analysis in the caller function; we want the inline cost query to be
/// easily cacheable. Instead, use the cover function paramHasAttr.
@@ -133,9 +151,11 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
void disableSROA(Value *V);
void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
int InstructionCost);
- bool isGEPOffsetConstant(GetElementPtrInst &GEP);
+ bool isGEPFree(GetElementPtrInst &GEP);
bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
bool simplifyCallSite(Function *F, CallSite CS);
+ template <typename Callable>
+ bool simplifyInstruction(Instruction &I, Callable Evaluate);
ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
/// Return true if the given argument to the function being considered for
@@ -158,6 +178,9 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
/// Return true if size growth is allowed when inlining the callee at CS.
bool allowSizeGrowth(CallSite CS);
+ /// Return true if \p CS is a cold callsite.
+ bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI);
+
// Custom analysis routines.
bool analyzeBlock(BasicBlock *BB, SmallPtrSetImpl<const Value *> &EphValues);
@@ -202,9 +225,11 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
public:
CallAnalyzer(const TargetTransformInfo &TTI,
std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
ProfileSummaryInfo *PSI, Function &Callee, CallSite CSArg,
const InlineParams &Params)
- : TTI(TTI), GetAssumptionCache(GetAssumptionCache), PSI(PSI), F(Callee),
+ : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
+ PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()),
CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold),
Cost(0), IsCallerRecursive(false), IsRecursiveCall(false),
ExposesReturnsTwice(false), HasDynamicAlloca(false),
@@ -286,23 +311,11 @@ void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
SROACostSavings += InstructionCost;
}
-/// \brief Check whether a GEP's indices are all constant.
-///
-/// Respects any simplified values known during the analysis of this callsite.
-bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
- for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
- if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
- return false;
-
- return true;
-}
-
/// \brief Accumulate a constant GEP offset into an APInt if possible.
///
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
- const DataLayout &DL = F.getParent()->getDataLayout();
unsigned IntPtrWidth = DL.getPointerSizeInBits();
assert(IntPtrWidth == Offset.getBitWidth());
@@ -331,13 +344,27 @@ bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
return true;
}
+/// \brief Use TTI to check whether a GEP is free.
+///
+/// Respects any simplified values known during the analysis of this callsite.
+bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
+ SmallVector<Value *, 4> Indices;
+ for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
+ if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
+ Indices.push_back(SimpleOp);
+ else
+ Indices.push_back(*I);
+ return TargetTransformInfo::TCC_Free ==
+ TTI.getGEPCost(GEP.getSourceElementType(), GEP.getPointerOperand(),
+ Indices);
+}
+
bool CallAnalyzer::visitAlloca(AllocaInst &I) {
// Check whether inlining will turn a dynamic alloca into a static
// alloca and handle that case.
if (I.isArrayAllocation()) {
Constant *Size = SimplifiedValues.lookup(I.getArraySize());
if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
- const DataLayout &DL = F.getParent()->getDataLayout();
Type *Ty = I.getAllocatedType();
AllocatedSize = SaturatingMultiplyAdd(
AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
@@ -347,7 +374,6 @@ bool CallAnalyzer::visitAlloca(AllocaInst &I) {
// Accumulate the allocated size.
if (I.isStaticAlloca()) {
- const DataLayout &DL = F.getParent()->getDataLayout();
Type *Ty = I.getAllocatedType();
AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
}
@@ -396,7 +422,7 @@ bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
// Non-constant GEPs aren't folded, and disable SROA.
if (SROACandidate)
disableSROA(CostIt);
- return false;
+ return isGEPFree(I);
}
// Add the result as a new mapping to Base + Offset.
@@ -411,7 +437,15 @@ bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
}
}
- if (isGEPOffsetConstant(I)) {
+ // Lambda to check whether a GEP's indices are all constant.
+ auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
+ for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
+ if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
+ return false;
+ return true;
+ };
+
+ if (IsGEPOffsetConstant(I)) {
if (SROACandidate)
SROAArgValues[&I] = SROAArg;
@@ -422,19 +456,36 @@ bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
// Variable GEPs will require math and will disable SROA.
if (SROACandidate)
disableSROA(CostIt);
- return false;
+ return isGEPFree(I);
+}
+
+/// Simplify \p I if its operands are constants and update SimplifiedValues.
+/// \p Evaluate is a callable specific to instruction type that evaluates the
+/// instruction when all the operands are constants.
+template <typename Callable>
+bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
+ SmallVector<Constant *, 2> COps;
+ for (Value *Op : I.operands()) {
+ Constant *COp = dyn_cast<Constant>(Op);
+ if (!COp)
+ COp = SimplifiedValues.lookup(Op);
+ if (!COp)
+ return false;
+ COps.push_back(COp);
+ }
+ auto *C = Evaluate(COps);
+ if (!C)
+ return false;
+ SimplifiedValues[&I] = C;
+ return true;
}
bool CallAnalyzer::visitBitCast(BitCastInst &I) {
// Propagate constants through bitcasts.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getBitCast(COps[0], I.getType());
+ }))
+ return true;
// Track base/offsets through casts
std::pair<Value *, APInt> BaseAndOffset =
@@ -455,19 +506,14 @@ bool CallAnalyzer::visitBitCast(BitCastInst &I) {
bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
// Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getPtrToInt(COps[0], I.getType());
+ }))
+ return true;
// Track base/offset pairs when converted to a plain integer provided the
// integer is large enough to represent the pointer.
unsigned IntegerSize = I.getType()->getScalarSizeInBits();
- const DataLayout &DL = F.getParent()->getDataLayout();
if (IntegerSize >= DL.getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset =
ConstantOffsetPtrs.lookup(I.getOperand(0));
@@ -492,20 +538,15 @@ bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
// Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getIntToPtr(COps[0], I.getType());
+ }))
+ return true;
// Track base/offset pairs when round-tripped through a pointer without
// modifications provided the integer is not too large.
Value *Op = I.getOperand(0);
unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
- const DataLayout &DL = F.getParent()->getDataLayout();
if (IntegerSize <= DL.getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
if (BaseAndOffset.first)
@@ -523,14 +564,10 @@ bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
bool CallAnalyzer::visitCastInst(CastInst &I) {
// Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
+ }))
+ return true;
// Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
disableSROA(I.getOperand(0));
@@ -540,16 +577,10 @@ bool CallAnalyzer::visitCastInst(CastInst &I) {
bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
Value *Operand = I.getOperand(0);
- Constant *COp = dyn_cast<Constant>(Operand);
- if (!COp)
- COp = SimplifiedValues.lookup(Operand);
- if (COp) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (Constant *C = ConstantFoldInstOperands(&I, COp, DL)) {
- SimplifiedValues[&I] = C;
- return true;
- }
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantFoldInstOperands(&I, COps[0], DL);
+ }))
+ return true;
// Disable any SROA on the argument to arbitrary unary operators.
disableSROA(Operand);
@@ -558,8 +589,7 @@ bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
}
bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
- unsigned ArgNo = A->getArgNo();
- return CandidateCS.paramHasAttr(ArgNo + 1, Attr);
+ return CandidateCS.paramHasAttr(A->getArgNo(), Attr);
}
bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
@@ -610,6 +640,26 @@ bool CallAnalyzer::allowSizeGrowth(CallSite CS) {
return true;
}
+bool CallAnalyzer::isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI) {
+ // If global profile summary is available, then callsite's coldness is
+ // determined based on that.
+ if (PSI->hasProfileSummary())
+ return PSI->isColdCallSite(CS, CallerBFI);
+ if (!CallerBFI)
+ return false;
+
+ // In the absence of global profile summary, determine if the callsite is cold
+ // relative to caller's entry. We could potentially cache the computation of
+ // scaled entry frequency, but the added complexity is not worth it unless
+ // this scaling shows up high in the profiles.
+ const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
+ auto CallSiteBB = CS.getInstruction()->getParent();
+ auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
+ auto CallerEntryFreq =
+ CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock()));
+ return CallSiteFreq < CallerEntryFreq * ColdProb;
+}
+
void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
// If no size growth is allowed for this inlining, set Threshold to 0.
if (!allowSizeGrowth(CS)) {
@@ -642,17 +692,34 @@ void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
if (Callee.hasFnAttribute(Attribute::InlineHint))
Threshold = MaxIfValid(Threshold, Params.HintThreshold);
if (PSI) {
- uint64_t TotalWeight;
- if (CS.getInstruction()->extractProfTotalWeight(TotalWeight) &&
- PSI->isHotCount(TotalWeight)) {
- Threshold = MaxIfValid(Threshold, Params.HotCallSiteThreshold);
- } else if (PSI->isFunctionEntryHot(&Callee)) {
- // If callsite hotness can not be determined, we may still know
- // that the callee is hot and treat it as a weaker hint for threshold
- // increase.
- Threshold = MaxIfValid(Threshold, Params.HintThreshold);
- } else if (PSI->isFunctionEntryCold(&Callee)) {
- Threshold = MinIfValid(Threshold, Params.ColdThreshold);
+ BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
+ // FIXME: After switching to the new passmanager, simplify the logic below
+ // by checking only the callsite hotness/coldness. The check for CallerBFI
+ // exists only because we do not have BFI available with the old PM.
+ //
+ // Use callee's hotness information only if we have no way of determining
+ // callsite's hotness information. Callsite hotness can be determined if
+ // sample profile is used (which adds hotness metadata to calls) or if
+ // caller's BlockFrequencyInfo is available.
+ if (CallerBFI || PSI->hasSampleProfile()) {
+ if (PSI->isHotCallSite(CS, CallerBFI)) {
+ DEBUG(dbgs() << "Hot callsite.\n");
+ Threshold = Params.HotCallSiteThreshold.getValue();
+ } else if (isColdCallSite(CS, CallerBFI)) {
+ DEBUG(dbgs() << "Cold callsite.\n");
+ Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
+ }
+ } else {
+ if (PSI->isFunctionEntryHot(&Callee)) {
+ DEBUG(dbgs() << "Hot callee.\n");
+ // If callsite hotness can not be determined, we may still know
+ // that the callee is hot and treat it as a weaker hint for threshold
+ // increase.
+ Threshold = MaxIfValid(Threshold, Params.HintThreshold);
+ } else if (PSI->isFunctionEntryCold(&Callee)) {
+ DEBUG(dbgs() << "Cold callee.\n");
+ Threshold = MinIfValid(Threshold, Params.ColdThreshold);
+ }
}
}
}
@@ -665,20 +732,10 @@ void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
bool CallAnalyzer::visitCmpInst(CmpInst &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// First try to handle simplified comparisons.
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- if (Constant *C =
- ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
- SimplifiedValues[&I] = C;
- return true;
- }
- }
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
+ }))
+ return true;
if (I.getOpcode() == Instruction::FCmp)
return false;
@@ -756,24 +813,18 @@ bool CallAnalyzer::visitSub(BinaryOperator &I) {
bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- Value *SimpleV = nullptr;
- if (auto FI = dyn_cast<FPMathOperator>(&I))
- SimpleV =
- SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
- else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+ auto Evaluate = [&](SmallVectorImpl<Constant *> &COps) {
+ Value *SimpleV = nullptr;
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV = SimplifyFPBinOp(I.getOpcode(), COps[0], COps[1],
+ FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), COps[0], COps[1], DL);
+ return dyn_cast_or_null<Constant>(SimpleV);
+ };
- if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
- SimplifiedValues[&I] = C;
+ if (simplifyInstruction(I, Evaluate))
return true;
- }
// Disable any SROA on arguments to arbitrary, unsimplified binary operators.
disableSROA(LHS);
@@ -814,13 +865,10 @@ bool CallAnalyzer::visitStore(StoreInst &I) {
bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
// Constant folding for extract value is trivial.
- Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
- if (!C)
- C = SimplifiedValues.lookup(I.getAggregateOperand());
- if (C) {
- SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getExtractValue(COps[0], I.getIndices());
+ }))
return true;
- }
// SROA can look through these but give them a cost.
return false;
@@ -828,17 +876,12 @@ bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
// Constant folding for insert value is trivial.
- Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
- if (!AggC)
- AggC = SimplifiedValues.lookup(I.getAggregateOperand());
- Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
- if (!InsertedC)
- InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
- if (AggC && InsertedC) {
- SimplifiedValues[&I] =
- ConstantExpr::getInsertValue(AggC, InsertedC, I.getIndices());
+ if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
+ return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
+ /*InsertedValueOperand*/ COps[1],
+ I.getIndices());
+ }))
return true;
- }
// SROA can look through these but give them a cost.
return false;
@@ -855,7 +898,7 @@ bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
// because we have to continually rebuild the argument list even when no
// simplifications can be performed. Until that is fixed with remapping
// inside of instsimplify, directly constant fold calls here.
- if (!canConstantFoldCallTo(F))
+ if (!canConstantFoldCallTo(CS, F))
return false;
// Try to re-map the arguments to constants.
@@ -871,7 +914,7 @@ bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
ConstantArgs.push_back(C);
}
- if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
+ if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) {
SimplifiedValues[CS.getInstruction()] = C;
return true;
}
@@ -959,7 +1002,8 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
// out. Pretend to inline the function, with a custom threshold.
auto IndirectCallParams = Params;
IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
- CallAnalyzer CA(TTI, GetAssumptionCache, PSI, *F, CS, IndirectCallParams);
+ CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, *F, CS,
+ IndirectCallParams);
if (CA.analyzeCall(CS)) {
// We were able to inline the indirect call! Subtract the cost from the
// threshold to get the bonus we want to apply, but don't go below zero.
@@ -995,22 +1039,74 @@ bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
if (isa<ConstantInt>(V))
return true;
- // Otherwise, we need to accumulate a cost proportional to the number of
- // distinct successor blocks. This fan-out in the CFG cannot be represented
- // for free even if we can represent the core switch as a jumptable that
- // takes a single instruction.
+ // Assume the most general case where the switch is lowered into
+ // either a jump table, bit test, or a balanced binary tree consisting of
+ // case clusters without merging adjacent clusters with the same
+ // destination. We do not consider the switches that are lowered with a mix
+ // of jump table/bit test/binary search tree. The cost of the switch is
+ // proportional to the size of the tree or the size of jump table range.
//
// NB: We convert large switches which are just used to initialize large phi
// nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
// inlining those. It will prevent inlining in cases where the optimization
// does not (yet) fire.
- SmallPtrSet<BasicBlock *, 8> SuccessorBlocks;
- SuccessorBlocks.insert(SI.getDefaultDest());
- for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I)
- SuccessorBlocks.insert(I.getCaseSuccessor());
- // Add cost corresponding to the number of distinct destinations. The first
- // we model as free because of fallthrough.
- Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost;
+
+ // Maximum valid cost increased in this function.
+ int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
+
+ // Exit early for a large switch, assuming one case needs at least one
+ // instruction.
+ // FIXME: This is not true for a bit test, but ignore such case for now to
+ // save compile-time.
+ int64_t CostLowerBound =
+ std::min((int64_t)CostUpperBound,
+ (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost);
+
+ if (CostLowerBound > Threshold) {
+ Cost = CostLowerBound;
+ return false;
+ }
+
+ unsigned JumpTableSize = 0;
+ unsigned NumCaseCluster =
+ TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
+
+ // If suitable for a jump table, consider the cost for the table size and
+ // branch to destination.
+ if (JumpTableSize) {
+ int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
+ 4 * InlineConstants::InstrCost;
+
+ Cost = std::min((int64_t)CostUpperBound, JTCost + Cost);
+ return false;
+ }
+
+ // Considering forming a binary search, we should find the number of nodes
+ // which is same as the number of comparisons when lowered. For a given
+ // number of clusters, n, we can define a recursive function, f(n), to find
+ // the number of nodes in the tree. The recursion is :
+ // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
+ // and f(n) = n, when n <= 3.
+ // This will lead a binary tree where the leaf should be either f(2) or f(3)
+ // when n > 3. So, the number of comparisons from leaves should be n, while
+ // the number of non-leaf should be :
+ // 2^(log2(n) - 1) - 1
+ // = 2^log2(n) * 2^-1 - 1
+ // = n / 2 - 1.
+ // Considering comparisons from leaf and non-leaf nodes, we can estimate the
+ // number of comparisons in a simple closed form :
+ // n + n / 2 - 1 = n * 3 / 2 - 1
+ if (NumCaseCluster <= 3) {
+ // Suppose a comparison includes one compare and one conditional branch.
+ Cost += NumCaseCluster * 2 * InlineConstants::InstrCost;
+ return false;
+ }
+
+ int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
+ int64_t SwitchCost =
+ ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
+
+ Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost);
return false;
}
@@ -1098,19 +1194,10 @@ bool CallAnalyzer::analyzeBlock(BasicBlock *BB,
// is expensive or the function has the "use-soft-float" attribute, this may
// eventually become a library call. Treat the cost as such.
if (I->getType()->isFloatingPointTy()) {
- bool hasSoftFloatAttr = false;
-
// If the function has the "use-soft-float" attribute, mark it as
// expensive.
- if (F.hasFnAttribute("use-soft-float")) {
- Attribute Attr = F.getFnAttribute("use-soft-float");
- StringRef Val = Attr.getValueAsString();
- if (Val == "true")
- hasSoftFloatAttr = true;
- }
-
if (TTI.getFPOpCost(I->getType()) == TargetTransformInfo::TCC_Expensive ||
- hasSoftFloatAttr)
+ (F.getFnAttribute("use-soft-float").getValueAsString() == "true"))
Cost += InlineConstants::CallPenalty;
}
@@ -1155,7 +1242,6 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
if (!V->getType()->isPointerTy())
return nullptr;
- const DataLayout &DL = F.getParent()->getDataLayout();
unsigned IntPtrWidth = DL.getPointerSizeInBits();
APInt Offset = APInt::getNullValue(IntPtrWidth);
@@ -1212,7 +1298,6 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
FiftyPercentVectorBonus = 3 * Threshold / 2;
TenPercentVectorBonus = 3 * Threshold / 4;
- const DataLayout &DL = F.getParent()->getDataLayout();
// Track whether the post-inlining function would have more than one basic
// block. A single basic block is often intended for inlining. Balloon the
@@ -1225,36 +1310,10 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
// the rest of the function body.
Threshold += (SingleBBBonus + FiftyPercentVectorBonus);
- // Give out bonuses per argument, as the instructions setting them up will
- // be gone after inlining.
- for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
- if (CS.isByValArgument(I)) {
- // We approximate the number of loads and stores needed by dividing the
- // size of the byval type by the target's pointer size.
- PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
- unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
- unsigned PointerSize = DL.getPointerSizeInBits();
- // Ceiling division.
- unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
+ // Give out bonuses for the callsite, as the instructions setting them up
+ // will be gone after inlining.
+ Cost -= getCallsiteCost(CS, DL);
- // If it generates more than 8 stores it is likely to be expanded as an
- // inline memcpy so we take that as an upper bound. Otherwise we assume
- // one load and one store per word copied.
- // FIXME: The maxStoresPerMemcpy setting from the target should be used
- // here instead of a magic number of 8, but it's not available via
- // DataLayout.
- NumStores = std::min(NumStores, 8U);
-
- Cost -= 2 * NumStores * InlineConstants::InstrCost;
- } else {
- // For non-byval arguments subtract off one instruction per call
- // argument.
- Cost -= InlineConstants::InstrCost;
- }
- }
- // The call instruction also disappears after inlining.
- Cost -= InlineConstants::InstrCost + InlineConstants::CallPenalty;
-
// If there is only one call of the function, and it has internal linkage,
// the cost of inlining it drops dramatically.
bool OnlyOneCallAndLocalLinkage =
@@ -1371,7 +1430,7 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
Value *Cond = SI->getCondition();
if (ConstantInt *SimpleCond =
dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
- BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
+ BBWorklist.insert(SI->findCaseValue(SimpleCond)->getCaseSuccessor());
continue;
}
}
@@ -1430,13 +1489,6 @@ LLVM_DUMP_METHOD void CallAnalyzer::dump() {
}
#endif
-/// \brief Test that two functions either have or have not the given attribute
-/// at the same time.
-template <typename AttrKind>
-static bool attributeMatches(Function *F1, Function *F2, AttrKind Attr) {
- return F1->getFnAttribute(Attr) == F2->getFnAttribute(Attr);
-}
-
/// \brief Test that there are no attribute conflicts between Caller and Callee
/// that prevent inlining.
static bool functionsHaveCompatibleAttributes(Function *Caller,
@@ -1446,18 +1498,52 @@ static bool functionsHaveCompatibleAttributes(Function *Caller,
AttributeFuncs::areInlineCompatible(*Caller, *Callee);
}
+int llvm::getCallsiteCost(CallSite CS, const DataLayout &DL) {
+ int Cost = 0;
+ for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
+ if (CS.isByValArgument(I)) {
+ // We approximate the number of loads and stores needed by dividing the
+ // size of the byval type by the target's pointer size.
+ PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
+ unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
+ unsigned PointerSize = DL.getPointerSizeInBits();
+ // Ceiling division.
+ unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
+
+ // If it generates more than 8 stores it is likely to be expanded as an
+ // inline memcpy so we take that as an upper bound. Otherwise we assume
+ // one load and one store per word copied.
+ // FIXME: The maxStoresPerMemcpy setting from the target should be used
+ // here instead of a magic number of 8, but it's not available via
+ // DataLayout.
+ NumStores = std::min(NumStores, 8U);
+
+ Cost += 2 * NumStores * InlineConstants::InstrCost;
+ } else {
+ // For non-byval arguments subtract off one instruction per call
+ // argument.
+ Cost += InlineConstants::InstrCost;
+ }
+ }
+ // The call instruction also disappears after inlining.
+ Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
+ return Cost;
+}
+
InlineCost llvm::getInlineCost(
CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
ProfileSummaryInfo *PSI) {
return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI,
- GetAssumptionCache, PSI);
+ GetAssumptionCache, GetBFI, PSI);
}
InlineCost llvm::getInlineCost(
CallSite CS, Function *Callee, const InlineParams &Params,
TargetTransformInfo &CalleeTTI,
std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
+ Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
ProfileSummaryInfo *PSI) {
// Cannot inline indirect calls.
@@ -1492,7 +1578,8 @@ InlineCost llvm::getInlineCost(
DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
<< "...\n");
- CallAnalyzer CA(CalleeTTI, GetAssumptionCache, PSI, *Callee, CS, Params);
+ CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, *Callee, CS,
+ Params);
bool ShouldInline = CA.analyzeCall(CS);
DEBUG(CA.dump());
@@ -1565,7 +1652,9 @@ InlineParams llvm::getInlineParams(int Threshold) {
// Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
Params.HotCallSiteThreshold = HotCallSiteThreshold;
- // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
+ // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
+ Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
+
// Set the OptMinSizeThreshold and OptSizeThreshold params only if the
// -inlinehint-threshold commandline option is not explicitly given. If that
// option is present, then its value applies even for callees with size and
OpenPOWER on IntegriCloud