diff options
author | dim <dim@FreeBSD.org> | 2015-05-27 20:26:41 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2015-05-27 20:26:41 +0000 |
commit | 5ef8fd3549d38e883a31881636be3dc2a275de20 (patch) | |
tree | bd13a22d9db57ccf3eddbc07b32c18109521d050 /contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp | |
parent | 77794ebe2d5718eb502c93ec32f8ccae4d8a0b7b (diff) | |
parent | 782067d0278612ee75d024b9b135c221c327e9e8 (diff) | |
download | FreeBSD-src-5ef8fd3549d38e883a31881636be3dc2a275de20.zip FreeBSD-src-5ef8fd3549d38e883a31881636be3dc2a275de20.tar.gz |
Merge llvm trunk r238337 from ^/vendor/llvm/dist, resolve conflicts, and
preserve our customizations, where necessary.
Diffstat (limited to 'contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp | 337 |
1 files changed, 337 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp b/contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp new file mode 100644 index 0000000..e5ee295 --- /dev/null +++ b/contrib/llvm/lib/Analysis/DivergenceAnalysis.cpp @@ -0,0 +1,337 @@ +//===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines divergence analysis which determines whether a branch in a +// GPU program is divergent. It can help branch optimizations such as jump +// threading and loop unswitching to make better decisions. +// +// GPU programs typically use the SIMD execution model, where multiple threads +// in the same execution group have to execute in lock-step. Therefore, if the +// code contains divergent branches (i.e., threads in a group do not agree on +// which path of the branch to take), the group of threads has to execute all +// the paths from that branch with different subsets of threads enabled until +// they converge at the immediately post-dominating BB of the paths. +// +// Due to this execution model, some optimizations such as jump +// threading and loop unswitching can be unfortunately harmful when performed on +// divergent branches. Therefore, an analysis that computes which branches in a +// GPU program are divergent can help the compiler to selectively run these +// optimizations. +// +// This file defines divergence analysis which computes a conservative but +// non-trivial approximation of all divergent branches in a GPU program. It +// partially implements the approach described in +// +// Divergence Analysis +// Sampaio, Souza, Collange, Pereira +// TOPLAS '13 +// +// The divergence analysis identifies the sources of divergence (e.g., special +// variables that hold the thread ID), and recursively marks variables that are +// data or sync dependent on a source of divergence as divergent. +// +// While data dependency is a well-known concept, the notion of sync dependency +// is worth more explanation. Sync dependence characterizes the control flow +// aspect of the propagation of branch divergence. For example, +// +// %cond = icmp slt i32 %tid, 10 +// br i1 %cond, label %then, label %else +// then: +// br label %merge +// else: +// br label %merge +// merge: +// %a = phi i32 [ 0, %then ], [ 1, %else ] +// +// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid +// because %tid is not on its use-def chains, %a is sync dependent on %tid +// because the branch "br i1 %cond" depends on %tid and affects which value %a +// is assigned to. +// +// The current implementation has the following limitations: +// 1. intra-procedural. It conservatively considers the arguments of a +// non-kernel-entry function and the return value of a function call as +// divergent. +// 2. memory as black box. It conservatively considers values loaded from +// generic or local address as divergent. This can be improved by leveraging +// pointer analysis. +//===----------------------------------------------------------------------===// + +#include <vector> +#include "llvm/IR/Dominators.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/Analysis/Passes.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +using namespace llvm; + +#define DEBUG_TYPE "divergence" + +namespace { +class DivergenceAnalysis : public FunctionPass { +public: + static char ID; + + DivergenceAnalysis() : FunctionPass(ID) { + initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<PostDominatorTree>(); + AU.setPreservesAll(); + } + + bool runOnFunction(Function &F) override; + + // Print all divergent branches in the function. + void print(raw_ostream &OS, const Module *) const override; + + // Returns true if V is divergent. + bool isDivergent(const Value *V) const { return DivergentValues.count(V); } + // Returns true if V is uniform/non-divergent. + bool isUniform(const Value *V) const { return !isDivergent(V); } + +private: + // Stores all divergent values. + DenseSet<const Value *> DivergentValues; +}; +} // End of anonymous namespace + +// Register this pass. +char DivergenceAnalysis::ID = 0; +INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", + false, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTree) +INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", + false, true) + +namespace { + +class DivergencePropagator { +public: + DivergencePropagator(Function &F, TargetTransformInfo &TTI, + DominatorTree &DT, PostDominatorTree &PDT, + DenseSet<const Value *> &DV) + : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} + void populateWithSourcesOfDivergence(); + void propagate(); + +private: + // A helper function that explores data dependents of V. + void exploreDataDependency(Value *V); + // A helper function that explores sync dependents of TI. + void exploreSyncDependency(TerminatorInst *TI); + // Computes the influence region from Start to End. This region includes all + // basic blocks on any path from Start to End. + void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, + DenseSet<BasicBlock *> &InfluenceRegion); + // Finds all users of I that are outside the influence region, and add these + // users to Worklist. + void findUsersOutsideInfluenceRegion( + Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); + + Function &F; + TargetTransformInfo &TTI; + DominatorTree &DT; + PostDominatorTree &PDT; + std::vector<Value *> Worklist; // Stack for DFS. + DenseSet<const Value *> &DV; // Stores all divergent values. +}; + +void DivergencePropagator::populateWithSourcesOfDivergence() { + Worklist.clear(); + DV.clear(); + for (auto &I : inst_range(F)) { + if (TTI.isSourceOfDivergence(&I)) { + Worklist.push_back(&I); + DV.insert(&I); + } + } + for (auto &Arg : F.args()) { + if (TTI.isSourceOfDivergence(&Arg)) { + Worklist.push_back(&Arg); + DV.insert(&Arg); + } + } +} + +void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { + // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's + // immediate post dominator are divergent. This rule handles if-then-else + // patterns. For example, + // + // if (tid < 5) + // a1 = 1; + // else + // a2 = 2; + // a = phi(a1, a2); // sync dependent on (tid < 5) + BasicBlock *ThisBB = TI->getParent(); + BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock(); + if (IPostDom == nullptr) + return; + + for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { + // A PHINode is uniform if it returns the same value no matter which path is + // taken. + if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second) + Worklist.push_back(I); + } + + // Propagation rule 2: if a value defined in a loop is used outside, the user + // is sync dependent on the condition of the loop exits that dominate the + // user. For example, + // + // int i = 0; + // do { + // i++; + // if (foo(i)) ... // uniform + // } while (i < tid); + // if (bar(i)) ... // divergent + // + // A program may contain unstructured loops. Therefore, we cannot leverage + // LoopInfo, which only recognizes natural loops. + // + // The algorithm used here handles both natural and unstructured loops. Given + // a branch TI, we first compute its influence region, the union of all simple + // paths from TI to its immediate post dominator (IPostDom). Then, we search + // for all the values defined in the influence region but used outside. All + // these users are sync dependent on TI. + DenseSet<BasicBlock *> InfluenceRegion; + computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); + // An insight that can speed up the search process is that all the in-region + // values that are used outside must dominate TI. Therefore, instead of + // searching every basic blocks in the influence region, we search all the + // dominators of TI until it is outside the influence region. + BasicBlock *InfluencedBB = ThisBB; + while (InfluenceRegion.count(InfluencedBB)) { + for (auto &I : *InfluencedBB) + findUsersOutsideInfluenceRegion(I, InfluenceRegion); + DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); + if (IDomNode == nullptr) + break; + InfluencedBB = IDomNode->getBlock(); + } +} + +void DivergencePropagator::findUsersOutsideInfluenceRegion( + Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { + for (User *U : I.users()) { + Instruction *UserInst = cast<Instruction>(U); + if (!InfluenceRegion.count(UserInst->getParent())) { + if (DV.insert(UserInst).second) + Worklist.push_back(UserInst); + } + } +} + +void DivergencePropagator::computeInfluenceRegion( + BasicBlock *Start, BasicBlock *End, + DenseSet<BasicBlock *> &InfluenceRegion) { + assert(PDT.properlyDominates(End, Start) && + "End does not properly dominate Start"); + std::vector<BasicBlock *> InfluenceStack; + InfluenceStack.push_back(Start); + InfluenceRegion.insert(Start); + while (!InfluenceStack.empty()) { + BasicBlock *BB = InfluenceStack.back(); + InfluenceStack.pop_back(); + for (BasicBlock *Succ : successors(BB)) { + if (End != Succ && InfluenceRegion.insert(Succ).second) + InfluenceStack.push_back(Succ); + } + } +} + +void DivergencePropagator::exploreDataDependency(Value *V) { + // Follow def-use chains of V. + for (User *U : V->users()) { + Instruction *UserInst = cast<Instruction>(U); + if (DV.insert(UserInst).second) + Worklist.push_back(UserInst); + } +} + +void DivergencePropagator::propagate() { + // Traverse the dependency graph using DFS. + while (!Worklist.empty()) { + Value *V = Worklist.back(); + Worklist.pop_back(); + if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { + // Terminators with less than two successors won't introduce sync + // dependency. Ignore them. + if (TI->getNumSuccessors() > 1) + exploreSyncDependency(TI); + } + exploreDataDependency(V); + } +} + +} /// end namespace anonymous + +FunctionPass *llvm::createDivergenceAnalysisPass() { + return new DivergenceAnalysis(); +} + +bool DivergenceAnalysis::runOnFunction(Function &F) { + auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); + if (TTIWP == nullptr) + return false; + + TargetTransformInfo &TTI = TTIWP->getTTI(F); + // Fast path: if the target does not have branch divergence, we do not mark + // any branch as divergent. + if (!TTI.hasBranchDivergence()) + return false; + + DivergentValues.clear(); + DivergencePropagator DP(F, TTI, + getAnalysis<DominatorTreeWrapperPass>().getDomTree(), + getAnalysis<PostDominatorTree>(), DivergentValues); + DP.populateWithSourcesOfDivergence(); + DP.propagate(); + return false; +} + +void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { + if (DivergentValues.empty()) + return; + const Value *FirstDivergentValue = *DivergentValues.begin(); + const Function *F; + if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { + F = Arg->getParent(); + } else if (const Instruction *I = + dyn_cast<Instruction>(FirstDivergentValue)) { + F = I->getParent()->getParent(); + } else { + llvm_unreachable("Only arguments and instructions can be divergent"); + } + + // Dumps all divergent values in F, arguments and then instructions. + for (auto &Arg : F->args()) { + if (DivergentValues.count(&Arg)) + OS << "DIVERGENT: " << Arg << "\n"; + } + // Iterate instructions using inst_range to ensure a deterministic order. + for (auto &I : inst_range(F)) { + if (DivergentValues.count(&I)) + OS << "DIVERGENT:" << I << "\n"; + } +} |