summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
committerdim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
commit9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch)
treec978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/Analysis/ConstantFolding.cpp
parent03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff)
downloadFreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip
FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports all of the features in the current working draft of the upcoming C++ standard, provisionally named C++1y. The code generator's performance is greatly increased, and the loop auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The PowerPC backend has made several major improvements to code generation quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ backends have all seen major feature work. Release notes for llvm and clang can be found here: <http://llvm.org/releases/3.4/docs/ReleaseNotes.html> <http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html> MFC 262121 (by emaste): Update lldb for clang/llvm 3.4 import This commit largely restores the lldb source to the upstream r196259 snapshot with the addition of threaded inferior support and a few bug fixes. Specific upstream lldb revisions restored include: SVN git 181387 779e6ac 181703 7bef4e2 182099 b31044e 182650 f2dcf35 182683 0d91b80 183862 15c1774 183929 99447a6 184177 0b2934b 184948 4dc3761 184954 007e7bc 186990 eebd175 Sponsored by: DARPA, AFRL MFC 262186 (by emaste): Fix mismerge in r262121 A break statement was lost in the merge. The error had no functional impact, but restore it to reduce the diff against upstream. MFC 262303: Pull in r197521 from upstream clang trunk (by rdivacky): Use the integrated assembler by default on FreeBSD/ppc and ppc64. Requested by: jhibbits MFC 262611: Pull in r196874 from upstream llvm trunk: Fix a crash that occurs when PWD is invalid. MCJIT needs to be able to run in hostile environments, even when PWD is invalid. There's no need to crash MCJIT in this case. The obvious fix is to simply leave MCContext's CompilationDir empty when PWD can't be determined. This way, MCJIT clients, and other clients that link with LLVM don't need a valid working directory. If we do want to guarantee valid CompilationDir, that should be done only for clients of getCompilationDir(). This is as simple as checking for an empty string. The only current use of getCompilationDir is EmitGenDwarfInfo, which won't conceivably run with an invalid working dir. However, in the purely hypothetically and untestable case that this happens, the AT_comp_dir will be omitted from the compilation_unit DIE. This should help fix assertions occurring with ports-mgmt/tinderbox, when it is using jails, and sometimes invalidates clang's current working directory. Reported by: decke MFC 262809: Pull in r203007 from upstream clang trunk: Don't produce an alias between destructors with different calling conventions. Fixes pr19007. (Please note that is an LLVM PR identifier, not a FreeBSD one.) This should fix Firefox and/or libxul crashes (due to problems with regparm/stdcall calling conventions) on i386. Reported by: multiple users on freebsd-current PR: bin/187103 MFC 263048: Repair recognition of "CC" as an alias for the C++ compiler, since it was silently broken by upstream for a Windows-specific use-case. Apparently some versions of CMake still rely on this archaic feature... Reported by: rakuco MFC 263049: Garbage collect the old way of adding the libstdc++ include directories in clang's InitHeaderSearch.cpp. This has been superseded by David Chisnall's commit in r255321. Moreover, if libc++ is used, the libstdc++ include directories should not be in the search path at all. These directories are now only used if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ConstantFolding.cpp228
1 files changed, 139 insertions, 89 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
index bc0dffc..3d32232 100644
--- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp
+++ b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
@@ -224,7 +224,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
- Offset.clearAllBits();
+ unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
+ Offset = APInt(BitWidth, 0);
return true;
}
@@ -238,16 +239,23 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
- return false;
+ GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
+ if (!GEP)
+ return false;
- // Otherwise, add any offset that our operands provide.
- return GEP->accumulateConstantOffset(TD, Offset);
- }
+ unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
+ APInt TmpOffset(BitWidth, 0);
- return false;
+ // If the base isn't a global+constant, we aren't either.
+ if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
+ return false;
+
+ // Otherwise, add any offset that our operands provide.
+ if (!GEP->accumulateConstantOffset(TD, TmpOffset))
+ return false;
+
+ Offset = TmpOffset;
+ return true;
}
/// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
@@ -324,12 +332,12 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
- if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
+ if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
// Move to the next element of the struct.
- CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
- BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
+ CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
+ BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
@@ -338,7 +346,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
- Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
+ Type *EltTy = C->getType()->getSequentialElementType();
uint64_t EltSize = TD.getTypeAllocSize(EltTy);
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
@@ -346,7 +354,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
NumElts = AT->getNumElements();
else
- NumElts = cast<VectorType>(C->getType())->getNumElements();
+ NumElts = C->getType()->getVectorNumElements();
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
@@ -367,9 +375,10 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
+ CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, TD);
+ }
}
// Otherwise, unknown initializer type.
@@ -378,26 +387,29 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const DataLayout &TD) {
- Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
+ PointerType *PTy = cast<PointerType>(C->getType());
+ Type *LoadTy = PTy->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
+ unsigned AS = PTy->getAddressSpace();
+
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isHalfTy())
- MapTy = Type::getInt16PtrTy(C->getContext());
+ MapTy = Type::getInt16PtrTy(C->getContext(), AS);
else if (LoadTy->isFloatTy())
- MapTy = Type::getInt32PtrTy(C->getContext());
+ MapTy = Type::getInt32PtrTy(C->getContext(), AS);
else if (LoadTy->isDoubleTy())
- MapTy = Type::getInt64PtrTy(C->getContext());
+ MapTy = Type::getInt64PtrTy(C->getContext(), AS);
else if (LoadTy->isVectorTy()) {
- MapTy = IntegerType::get(C->getContext(),
- TD.getTypeAllocSizeInBits(LoadTy));
- MapTy = PointerType::getUnqual(MapTy);
+ MapTy = PointerType::getIntNPtrTy(C->getContext(),
+ TD.getTypeAllocSizeInBits(LoadTy),
+ AS);
} else
return 0;
@@ -408,10 +420,11 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
- if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
+ if (BytesLoaded > 32 || BytesLoaded == 0)
+ return 0;
GlobalValue *GVal;
- APInt Offset(TD.getPointerSizeInBits(), 0);
+ APInt Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
@@ -422,7 +435,8 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
- if (Offset.isNegative()) return 0;
+ if (Offset.isNegative())
+ return 0;
// If we're not accessing anything in this constant, the result is undefined.
if (Offset.getZExtValue() >=
@@ -439,7 +453,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
- ResultVal |= RawBytes[BytesLoaded-1-i];
+ ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
@@ -464,14 +478,17 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return 0;
+ if (!CE)
+ return 0;
if (CE->getOpcode() == Instruction::GetElementPtr) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
+ }
+ }
}
// Instead of loading constant c string, use corresponding integer value
@@ -576,13 +593,13 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && DL) {
GlobalValue *GV1, *GV2;
- unsigned PtrSize = DL->getPointerSizeInBits();
- unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
- APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
+ APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
GV1 == GV2) {
+ unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
+
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
// PtrToInt may change the bitwidth so we have convert to the right size
// first.
@@ -600,15 +617,18 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
- if (!TD) return 0;
- Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
+ if (!TD)
+ return 0;
+
+ Type *IntPtrTy = TD->getIntPtrType(ResultTy);
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
- !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
- Ops.slice(1, i-1)))) &&
+ !isa<StructType>(GetElementPtrInst::getIndexedType(
+ Ops[0]->getType(),
+ Ops.slice(1, i - 1)))) &&
Ops[i]->getType() != IntPtrTy) {
Any = true;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
@@ -619,13 +639,16 @@ static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
} else
NewIdxs.push_back(Ops[i]);
}
- if (!Any) return 0;
- Constant *C =
- ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ if (!Any)
+ return 0;
+
+ Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
+ }
+
return C;
}
@@ -640,7 +663,7 @@ static Constant* StripPtrCastKeepAS(Constant* Ptr) {
if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
OldPtrTy->getAddressSpace());
- Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
+ Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
}
return Ptr;
}
@@ -651,11 +674,12 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
Constant *Ptr = Ops[0];
- if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
+ if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
return 0;
- Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
+ Type *ResultElementTy = ResultTy->getPointerElementType();
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
@@ -664,8 +688,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
- if (Ops.size() == 2 &&
- cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
+ if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((CE == 0 || CE->getType() == IntPtrTy) &&
"CastGEPIndices didn't canonicalize index types!");
@@ -692,7 +715,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// If this is a GEP of a GEP, fold it all into a single GEP.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
+ SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
@@ -713,12 +736,15 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- if (CE->getOpcode() == Instruction::IntToPtr)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
+ if (CE->getOpcode() == Instruction::IntToPtr) {
if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
+ }
+ }
+
if (Ptr->isNullValue() || BasePtr != 0) {
- Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
+ Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
}
@@ -728,7 +754,8 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
- SmallVector<Constant*, 32> NewIdxs;
+ SmallVector<Constant *, 32> NewIdxs;
+
do {
if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
if (ATy->isPointerTy()) {
@@ -743,7 +770,6 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
- IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
if (ElemSize == 0)
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
@@ -778,7 +804,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// We've reached some non-indexable type.
break;
}
- } while (Ty != cast<PointerType>(ResultTy)->getElementType());
+ } while (Ty != ResultElementTy);
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
@@ -787,14 +813,13 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
return 0;
// Create a GEP.
- Constant *C =
- ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
- assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
+ Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
+ assert(C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
- if (Ty != cast<PointerType>(ResultTy)->getElementType())
+ if (Ty != ResultElementTy)
C = FoldBitCast(C, ResultTy, *TD);
return C;
@@ -867,16 +892,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
- if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
+ if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
return ConstantExpr::getInsertValue(
cast<Constant>(IVI->getAggregateOperand()),
cast<Constant>(IVI->getInsertedValueOperand()),
IVI->getIndices());
+ }
- if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
return ConstantExpr::getExtractValue(
cast<Constant>(EVI->getAggregateOperand()),
EVI->getIndices());
+ }
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
}
@@ -930,9 +957,10 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
- if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
+ if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
+ }
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
@@ -953,10 +981,11 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
if (TD && CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
- if (TD->getPointerSizeInBits() < InWidth) {
+ unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
+ if (PtrWidth < InWidth) {
Constant *Mask =
- ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
- TD->getPointerSizeInBits()));
+ ConstantInt::get(CE->getContext(),
+ APInt::getLowBitsSet(InWidth, PtrWidth));
Input = ConstantExpr::getAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
@@ -966,13 +995,22 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size. This requires knowing the width of a
- // pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
- if (TD &&
- TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
- CE->getOpcode() == Instruction::PtrToInt)
- return FoldBitCast(CE->getOperand(0), DestTy, *TD);
+ // the int size is >= the ptr size and the address spaces are the same.
+ // This requires knowing the width of a pointer, so it can't be done in
+ // ConstantExpr::getCast.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
+ if (TD && CE->getOpcode() == Instruction::PtrToInt) {
+ Constant *SrcPtr = CE->getOperand(0);
+ unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
+ unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
+
+ if (MidIntSize >= SrcPtrSize) {
+ unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
+ if (SrcAS == DestTy->getPointerAddressSpace())
+ return FoldBitCast(CE->getOperand(0), DestTy, *TD);
+ }
+ }
+ }
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
@@ -984,6 +1022,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
+ case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
@@ -1024,8 +1063,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (TD && Ops1->isNullValue()) {
- Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@@ -1036,19 +1075,21 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy) {
+ Constant *C = CE0->getOperand(0);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ }
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
- Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
-
if (CE0->getOpcode() == Instruction::IntToPtr) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
+
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@@ -1060,11 +1101,17 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
- if ((CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
- return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
- CE1->getOperand(0), TD, TLI);
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy &&
+ CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
+ return ConstantFoldCompareInstOperands(Predicate,
+ CE0->getOperand(0),
+ CE1->getOperand(0),
+ TD,
+ TLI);
+ }
+ }
}
}
@@ -1101,7 +1148,8 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
// addressing.
for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
C = C->getAggregateElement(CE->getOperand(i));
- if (C == 0) return 0;
+ if (C == 0)
+ return 0;
}
return C;
}
@@ -1116,7 +1164,8 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
// addressing.
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
C = C->getAggregateElement(Indices[i]);
- if (C == 0) return 0;
+ if (C == 0)
+ return 0;
}
return C;
}
@@ -1128,8 +1177,7 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
-bool
-llvm::canConstantFoldCallTo(const Function *F) {
+bool llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::fabs:
case Intrinsic::log:
@@ -1167,7 +1215,8 @@ llvm::canConstantFoldCallTo(const Function *F) {
case 0: break;
}
- if (!F->hasName()) return false;
+ if (!F->hasName())
+ return false;
StringRef Name = F->getName();
// In these cases, the check of the length is required. We don't want to
@@ -1250,7 +1299,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
static Constant *ConstantFoldConvertToInt(const APFloat &Val,
bool roundTowardZero, Type *Ty) {
// All of these conversion intrinsics form an integer of at most 64bits.
- unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
+ unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
@@ -1271,7 +1320,8 @@ static Constant *ConstantFoldConvertToInt(const APFloat &Val,
Constant *
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
- if (!F->hasName()) return 0;
+ if (!F->hasName())
+ return 0;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
OpenPOWER on IntegriCloud