summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
committerdim <dim@FreeBSD.org>2017-04-02 17:24:58 +0000
commit60b571e49a90d38697b3aca23020d9da42fc7d7f (patch)
tree99351324c24d6cb146b6285b6caffa4d26fce188 /contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h
parentbea1b22c7a9bce1dfdd73e6e5b65bc4752215180 (diff)
downloadFreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.zip
FreeBSD-src-60b571e49a90d38697b3aca23020d9da42fc7d7f.tar.gz
Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release:
MFC r309142 (by emaste): Add WITH_LLD_AS_LD build knob If set it installs LLD as /usr/bin/ld. LLD (as of version 3.9) is not capable of linking the world and kernel, but can self-host and link many substantial applications. GNU ld continues to be used for the world and kernel build, regardless of how this knob is set. It is on by default for arm64, and off for all other CPU architectures. Sponsored by: The FreeBSD Foundation MFC r310840: Reapply 310775, now it also builds correctly if lldb is disabled: Move llvm-objdump from CLANG_EXTRAS to installed by default We currently install three tools from binutils 2.17.50: as, ld, and objdump. Work is underway to migrate to a permissively-licensed tool-chain, with one goal being the retirement of binutils 2.17.50. LLVM's llvm-objdump is intended to be compatible with GNU objdump although it is currently missing some options and may have formatting differences. Enable it by default for testing and further investigation. It may later be changed to install as /usr/bin/objdump, it becomes a fully viable replacement. Reviewed by: emaste Differential Revision: https://reviews.freebsd.org/D8879 MFC r312855 (by emaste): Rename LLD_AS_LD to LLD_IS_LD, for consistency with CLANG_IS_CC Reported by: Dan McGregor <dan.mcgregor usask.ca> MFC r313559 | glebius | 2017-02-10 18:34:48 +0100 (Fri, 10 Feb 2017) | 5 lines Don't check struct rtentry on FreeBSD, it is an internal kernel structure. On other systems it may be API structure for SIOCADDRT/SIOCDELRT. Reviewed by: emaste, dim MFC r314152 (by jkim): Remove an assembler flag, which is redundant since r309124. The upstream took care of it by introducing a macro NO_EXEC_STACK_DIRECTIVE. http://llvm.org/viewvc/llvm-project?rev=273500&view=rev Reviewed by: dim MFC r314564: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 (branches/release_40 296509). The release will follow soon. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Also note that as of 4.0.0, lld should be able to link the base system on amd64 and aarch64. See the WITH_LLD_IS_LLD setting in src.conf(5). Though please be aware that this is work in progress. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/4.0.0/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/4.0.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Jan Beich, Antoine Brodin and Eric Fiselier for their help. Relnotes: yes Exp-run: antoine PR: 215969, 216008 MFC r314708: For now, revert r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 This commit is the cause of excessive compile times on skein_block.c (and possibly other files) during kernel builds on amd64. We never saw the problematic behavior described in this upstream commit, so for now it is better to revert it. An upstream bug has been filed here: https://bugs.llvm.org/show_bug.cgi?id=32142 Reported by: mjg MFC r314795: Reapply r287232 from upstream llvm trunk (by Daniil Fukalov): [SCEV] limit recursion depth of CompareSCEVComplexity Summary: CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time. Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter. Reviewers: sanjoy Subscribers: mzolotukhin, tstellarAMD, llvm-commits Differential Revision: https://reviews.llvm.org/D26389 Pull in r296992 from upstream llvm trunk (by Sanjoy Das): [SCEV] Decrease the recursion threshold for CompareValueComplexity Fixes PR32142. r287232 accidentally increased the recursion threshold for CompareValueComplexity from 2 to 32. This change reverses that change by introducing a separate flag for CompareValueComplexity's threshold. The latter revision fixes the excessive compile times for skein_block.c. MFC r314907 | mmel | 2017-03-08 12:40:27 +0100 (Wed, 08 Mar 2017) | 7 lines Unbreak ARMv6 world. The new compiler_rt library imported with clang 4.0.0 have several fatal issues (non-functional __udivsi3 for example) with ARM specific instrict functions. As temporary workaround, until upstream solve these problems, disable all thumb[1][2] related feature. MFC r315016: Update clang, llvm, lld, lldb, compiler-rt and libc++ to 4.0.0 release. We were already very close to the last release candidate, so this is a pretty minor update. Relnotes: yes MFC r316005: Revert r314907, and pull in r298713 from upstream compiler-rt trunk (by Weiming Zhao): builtins: Select correct code fragments when compiling for Thumb1/Thum2/ARM ISA. Summary: Value of __ARM_ARCH_ISA_THUMB isn't based on the actual compilation mode (-mthumb, -marm), it reflect's capability of given CPU. Due to this: - use __tbumb__ and __thumb2__ insteand of __ARM_ARCH_ISA_THUMB - use '.thumb' directive consistently in all affected files - decorate all thumb functions using DEFINE_COMPILERRT_THUMB_FUNCTION() --------- Note: This patch doesn't fix broken Thumb1 variant of __udivsi3 ! Reviewers: weimingz, rengolin, compnerd Subscribers: aemerson, dim Differential Revision: https://reviews.llvm.org/D30938 Discussed with: mmel
Diffstat (limited to 'contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h')
-rw-r--r--contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h155
1 files changed, 155 insertions, 0 deletions
diff --git a/contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h b/contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h
new file mode 100644
index 0000000..17da516
--- /dev/null
+++ b/contrib/llvm/include/llvm/Analysis/LoopAnalysisManager.h
@@ -0,0 +1,155 @@
+//===- LoopAnalysisManager.h - Loop analysis management ---------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This header provides classes for managing per-loop analyses. These are
+/// typically used as part of a loop pass pipeline over the loop nests of
+/// a function.
+///
+/// Loop analyses are allowed to make some simplifying assumptions:
+/// 1) Loops are, where possible, in simplified form.
+/// 2) Loops are *always* in LCSSA form.
+/// 3) A collection of analysis results are available:
+/// - LoopInfo
+/// - DominatorTree
+/// - ScalarEvolution
+/// - AAManager
+///
+/// The primary mechanism to provide these invariants is the loop pass manager,
+/// but they can also be manually provided in order to reason about a loop from
+/// outside of a dedicated pass manager.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_LOOPANALYSISMANAGER_H
+#define LLVM_ANALYSIS_LOOPANALYSISMANAGER_H
+
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/PriorityWorklist.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+
+/// The adaptor from a function pass to a loop pass computes these analyses and
+/// makes them available to the loop passes "for free". Each loop pass is
+/// expected expected to update these analyses if necessary to ensure they're
+/// valid after it runs.
+struct LoopStandardAnalysisResults {
+ AAResults &AA;
+ AssumptionCache &AC;
+ DominatorTree &DT;
+ LoopInfo &LI;
+ ScalarEvolution &SE;
+ TargetLibraryInfo &TLI;
+ TargetTransformInfo &TTI;
+};
+
+/// Extern template declaration for the analysis set for this IR unit.
+extern template class AllAnalysesOn<Loop>;
+
+extern template class AnalysisManager<Loop, LoopStandardAnalysisResults &>;
+/// \brief The loop analysis manager.
+///
+/// See the documentation for the AnalysisManager template for detail
+/// documentation. This typedef serves as a convenient way to refer to this
+/// construct in the adaptors and proxies used to integrate this into the larger
+/// pass manager infrastructure.
+typedef AnalysisManager<Loop, LoopStandardAnalysisResults &>
+ LoopAnalysisManager;
+
+/// A proxy from a \c LoopAnalysisManager to a \c Function.
+typedef InnerAnalysisManagerProxy<LoopAnalysisManager, Function>
+ LoopAnalysisManagerFunctionProxy;
+
+/// A specialized result for the \c LoopAnalysisManagerFunctionProxy which
+/// retains a \c LoopInfo reference.
+///
+/// This allows it to collect loop objects for which analysis results may be
+/// cached in the \c LoopAnalysisManager.
+template <> class LoopAnalysisManagerFunctionProxy::Result {
+public:
+ explicit Result(LoopAnalysisManager &InnerAM, LoopInfo &LI)
+ : InnerAM(&InnerAM), LI(&LI) {}
+ Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)), LI(Arg.LI) {
+ // We have to null out the analysis manager in the moved-from state
+ // because we are taking ownership of the responsibilty to clear the
+ // analysis state.
+ Arg.InnerAM = nullptr;
+ }
+ Result &operator=(Result &&RHS) {
+ InnerAM = RHS.InnerAM;
+ LI = RHS.LI;
+ // We have to null out the analysis manager in the moved-from state
+ // because we are taking ownership of the responsibilty to clear the
+ // analysis state.
+ RHS.InnerAM = nullptr;
+ return *this;
+ }
+ ~Result() {
+ // InnerAM is cleared in a moved from state where there is nothing to do.
+ if (!InnerAM)
+ return;
+
+ // Clear out the analysis manager if we're being destroyed -- it means we
+ // didn't even see an invalidate call when we got invalidated.
+ InnerAM->clear();
+ }
+
+ /// Accessor for the analysis manager.
+ LoopAnalysisManager &getManager() { return *InnerAM; }
+
+ /// Handler for invalidation of the proxy for a particular function.
+ ///
+ /// If the proxy, \c LoopInfo, and associated analyses are preserved, this
+ /// will merely forward the invalidation event to any cached loop analysis
+ /// results for loops within this function.
+ ///
+ /// If the necessary loop infrastructure is not preserved, this will forcibly
+ /// clear all of the cached analysis results that are keyed on the \c
+ /// LoopInfo for this function.
+ bool invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv);
+
+private:
+ LoopAnalysisManager *InnerAM;
+ LoopInfo *LI;
+};
+
+/// Provide a specialized run method for the \c LoopAnalysisManagerFunctionProxy
+/// so it can pass the \c LoopInfo to the result.
+template <>
+LoopAnalysisManagerFunctionProxy::Result
+LoopAnalysisManagerFunctionProxy::run(Function &F, FunctionAnalysisManager &AM);
+
+// Ensure the \c LoopAnalysisManagerFunctionProxy is provided as an extern
+// template.
+extern template class InnerAnalysisManagerProxy<LoopAnalysisManager, Function>;
+
+extern template class OuterAnalysisManagerProxy<FunctionAnalysisManager, Loop,
+ LoopStandardAnalysisResults &>;
+/// A proxy from a \c FunctionAnalysisManager to a \c Loop.
+typedef OuterAnalysisManagerProxy<FunctionAnalysisManager, Loop,
+ LoopStandardAnalysisResults &>
+ FunctionAnalysisManagerLoopProxy;
+
+/// Returns the minimum set of Analyses that all loop passes must preserve.
+PreservedAnalyses getLoopPassPreservedAnalyses();
+}
+
+#endif // LLVM_ANALYSIS_LOOPANALYSISMANAGER_H
OpenPOWER on IntegriCloud