summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/include/std/std_complex.h
diff options
context:
space:
mode:
authorkan <kan@FreeBSD.org>2004-07-28 03:12:05 +0000
committerkan <kan@FreeBSD.org>2004-07-28 03:12:05 +0000
commit96bad46eee8bf907dceb152bbb9d128bed5a4956 (patch)
tree75ef0e6da73746d6849e25a0996ae34e1aeff51d /contrib/libstdc++/include/std/std_complex.h
parent5e00ec74d8ce58f99801200d4d3d0412c7cc1b28 (diff)
downloadFreeBSD-src-96bad46eee8bf907dceb152bbb9d128bed5a4956.zip
FreeBSD-src-96bad46eee8bf907dceb152bbb9d128bed5a4956.tar.gz
Gcc 3.4.2 20040728 C++ support bits.
Diffstat (limited to 'contrib/libstdc++/include/std/std_complex.h')
-rw-r--r--contrib/libstdc++/include/std/std_complex.h291
1 files changed, 229 insertions, 62 deletions
diff --git a/contrib/libstdc++/include/std/std_complex.h b/contrib/libstdc++/include/std/std_complex.h
index 252070b..e1027f6 100644
--- a/contrib/libstdc++/include/std/std_complex.h
+++ b/contrib/libstdc++/include/std/std_complex.h
@@ -1,6 +1,6 @@
// The template and inlines for the -*- C++ -*- complex number classes.
-// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
+// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
@@ -40,8 +40,8 @@
* in your programs, rather than any of the "st[dl]_*.h" implementation files.
*/
-#ifndef _CPP_COMPLEX
-#define _CPP_COMPLEX 1
+#ifndef _GLIBCXX_COMPLEX
+#define _GLIBCXX_COMPLEX 1
#pragma GCC system_header
@@ -58,78 +58,135 @@ namespace std
template<> class complex<double>;
template<> class complex<long double>;
+ /// Return magnitude of @a z.
template<typename _Tp> _Tp abs(const complex<_Tp>&);
+ /// Return phase angle of @a z.
template<typename _Tp> _Tp arg(const complex<_Tp>&);
+ /// Return @a z magnitude squared.
template<typename _Tp> _Tp norm(const complex<_Tp>&);
+ /// Return complex conjugate of @a z.
template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
+ /// Return complex with magnitude @a rho and angle @a theta.
template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
// Transcendentals:
+ /// Return complex cosine of @a z.
template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
+ /// Return complex hyperbolic cosine of @a z.
template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
+ /// Return complex base e exponential of @a z.
template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
+ /// Return complex natural logarithm of @a z.
template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
+ /// Return complex base 10 logarithm of @a z.
template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
+ /// Return complex cosine of @a z.
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
+ /// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
+ /// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
const complex<_Tp>&);
+ /// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
+ /// Return complex sine of @a z.
template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
+ /// Return complex hyperbolic sine of @a z.
template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
+ /// Return complex square root of @a z.
template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
+ /// Return complex tangent of @a z.
template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
+ /// Return complex hyperbolic tangent of @a z.
template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
+ //@}
// 26.2.2 Primary template class complex
+ /**
+ * Template to represent complex numbers.
+ *
+ * Specializations for float, double, and long double are part of the
+ * library. Results with any other type are not guaranteed.
+ *
+ * @param Tp Type of real and imaginary values.
+ */
template<typename _Tp>
class complex
{
public:
+ /// Value typedef.
typedef _Tp value_type;
+ /// Default constructor. First parameter is x, second parameter is y.
+ /// Unspecified parameters default to 0.
complex(const _Tp& = _Tp(), const _Tp & = _Tp());
- // Let's the compiler synthetize the copy constructor
+ // Lets the compiler synthesize the copy constructor
// complex (const complex<_Tp>&);
+ /// Copy constructor.
template<typename _Up>
complex(const complex<_Up>&);
-
- _Tp real() const;
- _Tp imag() const;
+ /// Return real part of complex number.
+ _Tp& real();
+ /// Return real part of complex number.
+ const _Tp& real() const;
+ /// Return imaginary part of complex number.
+ _Tp& imag();
+ /// Return imaginary part of complex number.
+ const _Tp& imag() const;
+
+ /// Assign this complex number to scalar @a t.
complex<_Tp>& operator=(const _Tp&);
+ /// Add @a t to this complex number.
complex<_Tp>& operator+=(const _Tp&);
+ /// Subtract @a t from this complex number.
complex<_Tp>& operator-=(const _Tp&);
+ /// Multiply this complex number by @a t.
complex<_Tp>& operator*=(const _Tp&);
+ /// Divide this complex number by @a t.
complex<_Tp>& operator/=(const _Tp&);
- // Let's the compiler synthetize the
+ // Lets the compiler synthesize the
// copy and assignment operator
// complex<_Tp>& operator= (const complex<_Tp>&);
+ /// Assign this complex number to complex @a z.
template<typename _Up>
complex<_Tp>& operator=(const complex<_Up>&);
+ /// Add @a z to this complex number.
template<typename _Up>
complex<_Tp>& operator+=(const complex<_Up>&);
+ /// Subtract @a z from this complex number.
template<typename _Up>
complex<_Tp>& operator-=(const complex<_Up>&);
+ /// Multiply this complex number by @a z.
template<typename _Up>
complex<_Tp>& operator*=(const complex<_Up>&);
+ /// Divide this complex number by @a z.
template<typename _Up>
complex<_Tp>& operator/=(const complex<_Up>&);
private:
- _Tp _M_real, _M_imag;
+ _Tp _M_real;
+ _Tp _M_imag;
};
template<typename _Tp>
- inline _Tp
+ inline _Tp&
+ complex<_Tp>::real() { return _M_real; }
+
+ template<typename _Tp>
+ inline const _Tp&
complex<_Tp>::real() const { return _M_real; }
template<typename _Tp>
- inline _Tp
+ inline _Tp&
+ complex<_Tp>::imag() { return _M_imag; }
+
+ template<typename _Tp>
+ inline const _Tp&
complex<_Tp>::imag() const { return _M_imag; }
template<typename _Tp>
@@ -243,83 +300,147 @@ namespace std
complex<_Tp>::operator/=(const complex<_Up>& __z)
{
const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag();
- const _Tp __n = norm(__z);
+ const _Tp __n = std::norm(__z);
_M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
_M_real = __r / __n;
return *this;
}
// Operators:
+ //@{
+ /// Return new complex value @a x plus @a y.
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) += __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r += __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) += __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r.real() += __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator+(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__y) += __x; }
+ {
+ complex<_Tp> __r = __y;
+ __r.real() += __x;
+ return __r;
+ }
+ //@}
+ //@{
+ /// Return new complex value @a x minus @a y.
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) -= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r -= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) -= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r.real() -= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator-(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) -= __y; }
+ {
+ complex<_Tp> __r(__x, -__y.imag());
+ __r.real() -= __y.real();
+ return __r;
+ }
+ //@}
+ //@{
+ /// Return new complex value @a x times @a y.
template<typename _Tp>
inline complex<_Tp>
operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) *= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r *= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator*(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) *= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r *= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator*(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__y) *= __x; }
+ {
+ complex<_Tp> __r = __y;
+ __r *= __x;
+ return __r;
+ }
+ //@}
+ //@{
+ /// Return new complex value @a x divided by @a y.
template<typename _Tp>
inline complex<_Tp>
operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) /= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r /= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator/(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) /= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r /= __y;
+ return __r;
+ }
template<typename _Tp>
inline complex<_Tp>
operator/(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) /= __y; }
+ {
+ complex<_Tp> __r = __x;
+ __r /= __y;
+ return __r;
+ }
+ //@}
+ /// Return @a x.
template<typename _Tp>
inline complex<_Tp>
operator+(const complex<_Tp>& __x)
{ return __x; }
+ /// Return complex negation of @a x.
template<typename _Tp>
inline complex<_Tp>
operator-(const complex<_Tp>& __x)
{ return complex<_Tp>(-__x.real(), -__x.imag()); }
+ //@{
+ /// Return true if @a x is equal to @a y.
template<typename _Tp>
inline bool
operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
@@ -334,7 +455,10 @@ namespace std
inline bool
operator==(const _Tp& __x, const complex<_Tp>& __y)
{ return __x == __y.real() && _Tp() == __y.imag(); }
+ //@}
+ //@{
+ /// Return false if @a x is equal to @a y.
template<typename _Tp>
inline bool
operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
@@ -349,7 +473,9 @@ namespace std
inline bool
operator!=(const _Tp& __x, const complex<_Tp>& __y)
{ return __x != __y.real() || _Tp() != __y.imag(); }
+ //@}
+ /// Extraction operator for complex values.
template<typename _Tp, typename _CharT, class _Traits>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
@@ -369,7 +495,7 @@ namespace std
__is.setstate(ios_base::failbit);
}
else if (__ch == ')')
- __x = complex<_Tp>(__re_x, _Tp(0));
+ __x = __re_x;
else
__is.setstate(ios_base::failbit);
}
@@ -377,11 +503,12 @@ namespace std
{
__is.putback(__ch);
__is >> __re_x;
- __x = complex<_Tp>(__re_x, _Tp(0));
+ __x = __re_x;
}
return __is;
}
+ /// Insertion operator for complex values.
template<typename _Tp, typename _CharT, class _Traits>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
@@ -396,12 +523,22 @@ namespace std
// Values
template<typename _Tp>
- inline _Tp
+ inline _Tp&
+ real(complex<_Tp>& __z)
+ { return __z.real(); }
+
+ template<typename _Tp>
+ inline const _Tp&
real(const complex<_Tp>& __z)
{ return __z.real(); }
template<typename _Tp>
- inline _Tp
+ inline _Tp&
+ imag(complex<_Tp>& __z)
+ { return __z.imag(); }
+
+ template<typename _Tp>
+ inline const _Tp&
imag(const complex<_Tp>& __z)
{ return __z.imag(); }
@@ -411,7 +548,7 @@ namespace std
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
- const _Tp __s = max(abs(__x), abs(__y));
+ const _Tp __s = std::max(abs(__x), abs(__y));
if (__s == _Tp()) // well ...
return __s;
__x /= __s;
@@ -447,7 +584,7 @@ namespace std
template<typename _Tp>
static inline _Tp _S_do_it(const complex<_Tp>& __z)
{
- _Tp __res = abs(__z);
+ _Tp __res = std::abs(__z);
return __res * __res;
}
};
@@ -456,7 +593,7 @@ namespace std
inline _Tp
norm(const complex<_Tp>& __z)
{
- return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCPP_FAST_MATH>::_S_do_it(__z);
+ return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
}
template<typename _Tp>
@@ -491,17 +628,17 @@ namespace std
template<typename _Tp>
inline complex<_Tp>
exp(const complex<_Tp>& __z)
- { return polar(exp(__z.real()), __z.imag()); }
+ { return std::polar(exp(__z.real()), __z.imag()); }
template<typename _Tp>
inline complex<_Tp>
log(const complex<_Tp>& __z)
- { return complex<_Tp>(log(abs(__z)), arg(__z)); }
+ { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
template<typename _Tp>
inline complex<_Tp>
log10(const complex<_Tp>& __z)
- { return log(__z) / log(_Tp(10.0)); }
+ { return std::log(__z) / log(_Tp(10.0)); }
template<typename _Tp>
inline complex<_Tp>
@@ -535,7 +672,7 @@ namespace std
}
else
{
- _Tp __t = sqrt(2 * (abs(__z) + abs(__x)));
+ _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
_Tp __u = __t / 2;
return __x > _Tp()
? complex<_Tp>(__u, __y / __t)
@@ -547,48 +684,48 @@ namespace std
inline complex<_Tp>
tan(const complex<_Tp>& __z)
{
- return sin(__z) / cos(__z);
+ return std::sin(__z) / std::cos(__z);
}
template<typename _Tp>
inline complex<_Tp>
tanh(const complex<_Tp>& __z)
{
- return sinh(__z) / cosh(__z);
+ return std::sinh(__z) / std::cosh(__z);
}
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __z, int __n)
{
- return __pow_helper(__z, __n);
+ return std::__pow_helper(__z, __n);
}
template<typename _Tp>
complex<_Tp>
pow(const complex<_Tp>& __x, const _Tp& __y)
{
- if (__x.imag() == _Tp())
+ if (__x.imag() == _Tp() && __x.real() > _Tp())
return pow(__x.real(), __y);
- complex<_Tp> __t = log(__x);
- return polar(exp(__y * __t.real()), __y * __t.imag());
+ complex<_Tp> __t = std::log(__x);
+ return std::polar(exp(__y * __t.real()), __y * __t.imag());
}
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
{
- return __x == _Tp() ? _Tp() : exp(__y * log(__x));
+ return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));
}
template<typename _Tp>
inline complex<_Tp>
pow(const _Tp& __x, const complex<_Tp>& __y)
{
- return __x == _Tp()
- ? _Tp()
- : polar(pow(__x, __y.real()), __y.imag() * log(__x));
+ return __x > _Tp() ? std::polar(pow(__x, __y.real()),
+ __y.imag() * log(__x))
+ : std::pow(complex<_Tp>(__x, _Tp()), __y);
}
// 26.2.3 complex specializations
@@ -599,14 +736,16 @@ namespace std
typedef float value_type;
complex(float = 0.0f, float = 0.0f);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
+#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);
- float real() const;
- float imag() const;
+ float& real();
+ const float& real() const;
+ float& imag();
+ const float& imag() const;
complex<float>& operator=(float);
complex<float>& operator+=(float);
@@ -638,11 +777,19 @@ namespace std
friend class complex<long double>;
};
- inline float
+ inline float&
+ complex<float>::real()
+ { return __real__ _M_value; }
+
+ inline const float&
complex<float>::real() const
{ return __real__ _M_value; }
- inline float
+ inline float&
+ complex<float>::imag()
+ { return __imag__ _M_value; }
+
+ inline const float&
complex<float>::imag() const
{ return __imag__ _M_value; }
@@ -746,14 +893,16 @@ namespace std
typedef double value_type;
complex(double =0.0, double =0.0);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
+#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
explicit complex(const complex<long double>&);
-
- double real() const;
- double imag() const;
+
+ double& real();
+ const double& real() const;
+ double& imag();
+ const double& imag() const;
complex<double>& operator=(double);
complex<double>& operator+=(double);
@@ -784,11 +933,19 @@ namespace std
friend class complex<long double>;
};
- inline double
+ inline double&
+ complex<double>::real()
+ { return __real__ _M_value; }
+
+ inline const double&
complex<double>::real() const
{ return __real__ _M_value; }
- inline double
+ inline double&
+ complex<double>::imag()
+ { return __imag__ _M_value; }
+
+ inline const double&
complex<double>::imag() const
{ return __imag__ _M_value; }
@@ -892,14 +1049,16 @@ namespace std
typedef long double value_type;
complex(long double = 0.0L, long double = 0.0L);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
+#ifdef _GLIBCXX_BUGGY_COMPLEX
complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
complex(const complex<float>&);
complex(const complex<double>&);
- long double real() const;
- long double imag() const;
+ long double& real();
+ const long double& real() const;
+ long double& imag();
+ const long double& imag() const;
complex<long double>& operator= (long double);
complex<long double>& operator+= (long double);
@@ -937,11 +1096,19 @@ namespace std
__imag__ _M_value = __i;
}
- inline long double
+ inline long double&
+ complex<long double>::real()
+ { return __real__ _M_value; }
+
+ inline const long double&
complex<long double>::real() const
{ return __real__ _M_value; }
- inline long double
+ inline long double&
+ complex<long double>::imag()
+ { return __imag__ _M_value; }
+
+ inline const long double&
complex<long double>::imag() const
{ return __imag__ _M_value; }
@@ -1062,4 +1229,4 @@ namespace std
: _M_value(_ComplexT(__z._M_value)) { }
} // namespace std
-#endif /* _CPP_COMPLEX */
+#endif /* _GLIBCXX_COMPLEX */
OpenPOWER on IntegriCloud