diff options
author | dim <dim@FreeBSD.org> | 2015-01-08 19:47:10 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2015-01-08 19:47:10 +0000 |
commit | ab328f15cea04a45750ef56019d2b3d971e033f3 (patch) | |
tree | f47eabbd2a48be6d6fec3ddeeefae5b4aeb87dbc /contrib/compiler-rt/lib/builtins/divsf3.c | |
parent | 8189659be8e499f37c87fdd05ef5ec9f88619d56 (diff) | |
parent | 2f1c5cc1039d86db0037cb086bd58f4b90dc6f66 (diff) | |
download | FreeBSD-src-ab328f15cea04a45750ef56019d2b3d971e033f3.zip FreeBSD-src-ab328f15cea04a45750ef56019d2b3d971e033f3.tar.gz |
Update compiler-rt to trunk r224034. This brings a number of new
builtins, and also the various sanitizers. Support for these will be
added in a later commit.
Diffstat (limited to 'contrib/compiler-rt/lib/builtins/divsf3.c')
-rw-r--r-- | contrib/compiler-rt/lib/builtins/divsf3.c | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/contrib/compiler-rt/lib/builtins/divsf3.c b/contrib/compiler-rt/lib/builtins/divsf3.c new file mode 100644 index 0000000..de2e376 --- /dev/null +++ b/contrib/compiler-rt/lib/builtins/divsf3.c @@ -0,0 +1,169 @@ +//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements single-precision soft-float division +// with the IEEE-754 default rounding (to nearest, ties to even). +// +// For simplicity, this implementation currently flushes denormals to zero. +// It should be a fairly straightforward exercise to implement gradual +// underflow with correct rounding. +// +//===----------------------------------------------------------------------===// + +#define SINGLE_PRECISION +#include "fp_lib.h" + +ARM_EABI_FNALIAS(fdiv, divsf3) + +COMPILER_RT_ABI fp_t +__divsf3(fp_t a, fp_t b) { + + const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; + const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; + const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; + + rep_t aSignificand = toRep(a) & significandMask; + rep_t bSignificand = toRep(b) & significandMask; + int scale = 0; + + // Detect if a or b is zero, denormal, infinity, or NaN. + if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { + + const rep_t aAbs = toRep(a) & absMask; + const rep_t bAbs = toRep(b) & absMask; + + // NaN / anything = qNaN + if (aAbs > infRep) return fromRep(toRep(a) | quietBit); + // anything / NaN = qNaN + if (bAbs > infRep) return fromRep(toRep(b) | quietBit); + + if (aAbs == infRep) { + // infinity / infinity = NaN + if (bAbs == infRep) return fromRep(qnanRep); + // infinity / anything else = +/- infinity + else return fromRep(aAbs | quotientSign); + } + + // anything else / infinity = +/- 0 + if (bAbs == infRep) return fromRep(quotientSign); + + if (!aAbs) { + // zero / zero = NaN + if (!bAbs) return fromRep(qnanRep); + // zero / anything else = +/- zero + else return fromRep(quotientSign); + } + // anything else / zero = +/- infinity + if (!bAbs) return fromRep(infRep | quotientSign); + + // one or both of a or b is denormal, the other (if applicable) is a + // normal number. Renormalize one or both of a and b, and set scale to + // include the necessary exponent adjustment. + if (aAbs < implicitBit) scale += normalize(&aSignificand); + if (bAbs < implicitBit) scale -= normalize(&bSignificand); + } + + // Or in the implicit significand bit. (If we fell through from the + // denormal path it was already set by normalize( ), but setting it twice + // won't hurt anything.) + aSignificand |= implicitBit; + bSignificand |= implicitBit; + int quotientExponent = aExponent - bExponent + scale; + + // Align the significand of b as a Q31 fixed-point number in the range + // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax + // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This + // is accurate to about 3.5 binary digits. + uint32_t q31b = bSignificand << 8; + uint32_t reciprocal = UINT32_C(0x7504f333) - q31b; + + // Now refine the reciprocal estimate using a Newton-Raphson iteration: + // + // x1 = x0 * (2 - x0 * b) + // + // This doubles the number of correct binary digits in the approximation + // with each iteration, so after three iterations, we have about 28 binary + // digits of accuracy. + uint32_t correction; + correction = -((uint64_t)reciprocal * q31b >> 32); + reciprocal = (uint64_t)reciprocal * correction >> 31; + correction = -((uint64_t)reciprocal * q31b >> 32); + reciprocal = (uint64_t)reciprocal * correction >> 31; + correction = -((uint64_t)reciprocal * q31b >> 32); + reciprocal = (uint64_t)reciprocal * correction >> 31; + + // Exhaustive testing shows that the error in reciprocal after three steps + // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our + // expectations. We bump the reciprocal by a tiny value to force the error + // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to + // be specific). This also causes 1/1 to give a sensible approximation + // instead of zero (due to overflow). + reciprocal -= 2; + + // The numerical reciprocal is accurate to within 2^-28, lies in the + // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller + // than the true reciprocal of b. Multiplying a by this reciprocal thus + // gives a numerical q = a/b in Q24 with the following properties: + // + // 1. q < a/b + // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0) + // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes + // from the fact that we truncate the product, and the 2^27 term + // is the error in the reciprocal of b scaled by the maximum + // possible value of a. As a consequence of this error bound, + // either q or nextafter(q) is the correctly rounded + rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32; + + // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). + // In either case, we are going to compute a residual of the form + // + // r = a - q*b + // + // We know from the construction of q that r satisfies: + // + // 0 <= r < ulp(q)*b + // + // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we + // already have the correct result. The exact halfway case cannot occur. + // We also take this time to right shift quotient if it falls in the [1,2) + // range and adjust the exponent accordingly. + rep_t residual; + if (quotient < (implicitBit << 1)) { + residual = (aSignificand << 24) - quotient * bSignificand; + quotientExponent--; + } else { + quotient >>= 1; + residual = (aSignificand << 23) - quotient * bSignificand; + } + + const int writtenExponent = quotientExponent + exponentBias; + + if (writtenExponent >= maxExponent) { + // If we have overflowed the exponent, return infinity. + return fromRep(infRep | quotientSign); + } + + else if (writtenExponent < 1) { + // Flush denormals to zero. In the future, it would be nice to add + // code to round them correctly. + return fromRep(quotientSign); + } + + else { + const bool round = (residual << 1) > bSignificand; + // Clear the implicit bit + rep_t absResult = quotient & significandMask; + // Insert the exponent + absResult |= (rep_t)writtenExponent << significandBits; + // Round + absResult += round; + // Insert the sign and return + return fromRep(absResult | quotientSign); + } +} |