1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/* MODULE: zpu_core_defines
DESCRIPTION: Contains ZPU parameters and other cpu related definitions
AUTHOR: Antonio J. Anton (aj <at> anro-ingenieros.com)
REVISION HISTORY:
Revision 1.0, 14/09/2009
Initial public release
COPYRIGHT:
Copyright (c) 2009 Antonio J. Anton
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.*/
/* --------------- ISA DOCUMENTATION ------------------
stack: top of stack = sp, mem[sp]=valid data
push: sp=sp-1, then mem[sp]=data
pop: data=mem[sp], then sp=sp+1
immediates: any opcode instead of im sets idim=0
MNEMONIC OPCODE HEX OPERATION
- im x 1_xxxxxxx if(~idim) { idim=1; sp=sp-1; mem[sp]={{25{b[6]}},b[6:0]} }
else { idim=1; mem[sp]={mem[sp][24:0], b[6:0]} }
- emulate x 001_xxxxx sp=sp-1; mem[sp]=pc+1; pc=mem[@VECTOR_EMULATE + <b>]; fetch (used only by microcode)
- storesp x 010_xxxxx mem[sp+x<<2] = mem[sp]; sp=sp+1
- loadsp x 011_xxxxx mem[sp-1] = mem [sp+x<<2]; sp=sp-1
- addsp x 0001_xxxx (1x) mem[sp] = mem[sp]+mem[sp+x<<2]
- breakpoint 0000_0000 (00) call exception vector
shiftleft 0000_0001 (01)
- pushsp 0000_0010 (02) mem[sp-1] = sp; sp = sp - 1
- popint 0000_0011 (03) pc=mem[sp]; sp = sp + 1 ; fetch ; decode ; clear_interrupt_flag
- poppc 0000_0100 (04) pc=mem[sp]; sp = sp + 1
- add 0000_0101 (05) mem[sp+1] = mem[sp+1] + mem[sp]; sp = sp + 1
- and 0000_0110 (06) mem[sp+1] = mem[sp+1] & mem[sp]; sp = sp + 1
- or 0000_0111 (07) mem[sp+1] = mem[sp+1] | mem[sp]; sp = sp + 1
- load 0000_1000 (08) mem[sp] = mem[ mem[sp] ]
- not 0000_1001 (09) mem[sp] = ~mem[sp]
- flip 0000_1010 (0a) mem[sp] = flip(mem[sp])
- nop 0000_1011 (0b) -
- store 0000_1100 (0c) mem[mem[sp]] = mem[sp+1]; sp = sp + 2
- popsp 0000_1101 (0d) sp = mem[sp]
compare 0000_1110 (0e) ???? --> opcode recycled (see below)
popint 0000_1111 (0f) duplicated of 0x03 ????? --> opcode recycled (see below)
- ipsum 0000_1110 (0e) c=mem[sp],s=mem[sp+1]; sum=0; while(c-->0) {sum+=halfword(mem[s],s);s+=2}; sp=sp+1; mem[sp]=sum (overwrites mem[0] & mem[4] words)
- sncpy 0000_1111 (0f) c=mem[sp],d=mem[sp+1],s=mem[sp+2]; while( *(char*)s != 0 && c>0 ) {*((char*)d++)=*((char*)s++));c--}; sp=sp+3 (overwrites mem[0] & mem[4] words)
- wcpy 001_00000 (20) c=mem[sp],d=mem[sp+1],s=mem[sp+2]; while(c-->0) mem[d++]=mem[s++]; sp=sp+3 (overwrites mem[0] & mem[4] words)
- wset 001_00001 (21) v=mem[sp],c=mem[sp+1],d=mem[sp+2]; while(c-->0) mem[d++]=v; sp=sp+3 (overwrites mem[0] & mem[4] words)
- loadh 001_00010 (22) mem[sp] = halfword[ mem[sp] ]
- storeh 001_00011 (23) halfword[mem[sp]] = (mem[sp+1] & 0xFFFF); sp = sp + 2
- lessthan 001_00100 (24) (mem[sp]-mem[sp+1]) < 0 ? mem[sp+1]=1 : mem[sp+1]=0; sp = sp + 1
- lessthanorequal 001_00101 (25) (mem[sp]-mem[sp+1]) <= 0 ? mem[sp+1]=1 : mem[sp+1]=0; sp = sp + 1
- ulessthan 001_00110 (26) (unsigned(mem[sp])-unsigned(mem[sp+1])) < 0 ? mem[sp+1]=1 : mem[sp+1]=0; sp = sp + 1
- ulessthanorequal 001_00111 (27) (unsigned(mem[sp])-unsigned(mem[sp+1])) <= 0 || == 0 ? mem[sp+1]=1 : mem[sp+1]=0; sp = sp + 1
swap 001_01000 (28)
- mult 001_01001 (29) mem[sp+1] = mem[sp+1] * mem[sp]; sp = sp + 1
- lshiftright 001_01010 (2a) mem[sp+1] = mem[sp+1] >> (mem[sp] & 0x1f); sp = sp + 1
- ashiftleft 001_01011 (2b) mem[sp+1] = mem[sp+1] << (mem[sp] & 0x1f); sp = sp + 1
- ashiftright 001_01100 (2c) mem[sp+1] = mem[sp+1] signed>> (mem[sp] & 0x1f); sp = sp + 1
- call 001_01101 (2d) a = mem[sp]; mem[sp]=pc + 1; pc = a
- eq 001_01110 (2e) mem[sp+1] = (mem[sp] == mem[sp+1]) ? 1 : 0; sp = sp + 1
- neq 001_01111 (2f) mem[sp+1] = (mem[sp] != mem[sp+1]) ? 1 : 0; sp = sp + 1
- neg 001_10000 (30) mem[sp] = NOT(mem[sp])+1
- sub 001_10001 (31) mem[sp+1]=mem[sp+1]-mem[sp]; sp=sp+1
- xor 001_10010 (32) mem[sp+1]=mem[sp] ^ mem[sp+1]; sp=sp+1
- loadb 001_10011 (33) mem[sp] = byte[ mem[sp] ]
- storeb 001_10100 (34) byte[mem[sp]] = (mem[sp+1] & 0xFF); sp = sp + 2
div 001_10101 (35)
mod 001_10110 (36)
- eqbranch 001_10111 (37) mem[sp+1] == 0 ? pc = pc + mem[sp]; sp = sp + 2
- neqbranch 001_11000 (38) mem[sp+1] != 0 ? pc = pc + mem[sp]; sp = sp + 2
- poppcrel 001_11001 (39) pc = pc + mem[sp]; sp = sp + 1
config 001_11010 (3a)
- pushpc 001_11011 (3b) sp=sp-1; mem[sp]=pc
syscall 001_11100 (3c)
- pushspadd 001_11101 (3d) mem[sp] = sp + (mem[sp] << 2)
- halfmult 001_11110 (3e) mem[sp+1] = 16bits(mem[sp]) * 16bits(mem[sp+1]); sp = sp + 1
- callpcrel 001_11111 (3f) a = mem[sp]; mem[sp]=pc+1; pc = pc + a;
gcc seems to be using only:
add, addsp, and, ashiftleft, ashiftright, call, callpcrel, div, eq, flip, im, lessthan,
lessthanorequal, loadb, loadh, load, loadsp, lshiftright, mod, mult, neg, neqbranch,
not, or, poppc, poppcrel, popsp, pushpc, pushspadd, pushsp, storeb, storeh, store, storesp,
sub, ulessthan, ulessthanorequal, xor
--------- memory access ----------------------------
data is stored in big-endian format into memory:
00 MSB .. .. LSB
05 .. .. .. ..
---------------------------------------------------- */
`define SP_START 32'h10 // after reset change in startup code
`define EMULATION_VECTOR 32'h10 // table of emulated opcodes (interrupt & exception vectors plus up to 5 emulated opcodes)
`define RESET_VECTOR 32'h20 // reset entry point (can be moved up to 0x3c as per emulation table needs)
// ---- zpu core optimizations/features ----
`define ZPU_CORE_DEBUG
//`define ZPU_CORE_DEBUG_MICROCODE
`define ASSERT_NON_ALIGNMENT /* abort cpu in case of non-aligned memory access (only simulation) */
`define ENABLE_BYTE_SELECT /* allow byte / halfword memory accesses */
`define ENABLE_CPU_INTERRUPTS /* enable interrupts to cpu */
//`define ENABLE_PC_INCREMENT /* gain 1 clk per opcode but requires microcode changes ** not done at the moment ** */
//`define ENABLE_A_SHIFT /* 1 bit arithmetic shift (right) mutual exclusive with barrel shift */
//`define ENABLE_XOR /* 1 cycle x-or */
//`define ENABLE_MULT /* 32 bit pipelined (3 stages) multiplier */
//`define ENABLE_DIV /* 32 bit, up to 32 cycles serial divider */
`define ENABLE_BARREL /* n bit logical & arithmetic shift mutual exclusive with 1 bit shift */
`define ENABLE_CMP /* enable ALU_CMP_SIGNED and ALU_CMP_UNSIGNED */
// ------- microcode zpu core datapath selectors --------
`define SEL_READ_DATA 0
`define SEL_READ_ADDR 1
`define SEL_ALU_A 0
`define SEL_ALU_OPCODE 1
`define SEL_ALU_MC_CONST 2
`define SEL_ALU_B 3
`define SEL_ADDR_PC 0
`define SEL_ADDR_SP 1
`define SEL_ADDR_A 2
`define SEL_ADDR_B 3
`define ALU_OP_WIDTH 4 // alu operation is 4 bits
`define ALU_NOP 0 // r = a
`define ALU_NOP_B 1 // r = b
`define ALU_PLUS 2 // r = a + b
`define ALU_PLUS_OFFSET 3 // r = a + { 27'b0, ~b[4], b[3:0] }
`define ALU_AND 4 // r = a AND b
`define ALU_OR 5 // r = a OR b
`define ALU_NOT 6 // r = NOT a
`define ALU_FLIP 7 // r = FLIP a
`define ALU_IM 8 // r = IDIM ? { a[24:0], b[6:0] } : { 25{b[6]}, b[6:0] }
`ifdef ENABLE_CMP
`define ALU_CMP_UNSIGNED 9 // r = (unsigned)a - (unsigned)b (r[31] is overflow/underflow adjusted)
`define ALU_CMP_SIGNED 10 // r = (signed)a - (signed)b (r[31] is overflow/underflow adjusted)
`endif
`ifdef ENABLE_BARREL
`define ALU_BARREL 11 // r = a <<|>> b (logical, arithmetical)
`endif
`ifdef ENABLE_A_SHIFT
`define ALU_A_SHIFT_RIGHT 11 // r = { a[31], a[31], a[30:29] } = (signed)a >> 1
`endif
`ifdef ENABLE_XOR
`define ALU_XOR 12 // r = a XOR b
`endif
`ifdef ENABLE_MULT
`define ALU_MULT 13 // r = a * b
`endif
`ifdef ENABLE_DIV
`define ALU_DIV 14 // r = a / b
`define ALU_MOD 15 // r = a mod b
`endif
// ------- special zpu opcodes ------
`define OP_NOP 8'b0000_1011 // default value for opcode cache on reset
`define OP_IM 1'b1
`define OP_EMULATE 3'b001
`define OP_STORESP 3'b010
`define OP_LOADSP 3'b011
`define OP_ADDSP 4'b0001
// ------- microcode memory settings ------
`define MC_MEM_BITS 9 // 512 microcode operations
`define MC_BITS 36 // microcode opcode width
// ------- microcode labels for opcode execution -------
// based on microcode program
`define MC_ADDR_IM_NOIDIM 488
`define MC_ADDR_IM_IDIM 491
`define MC_ADDR_STORESP 493
`define MC_ADDR_LOADSP 496
`define MC_ADDR_ADDSP 500
`define MC_ADDR_EMULATE 504
`define MC_ADDR_INTERRUPT 484
`define MC_ADDR_FETCH_NEXT 480
`define MC_ADDR_FETCH 476
`define MC_ADDR_RESET 474
// ---------- microcode settings --------------------
`define P_SEL_READ 0 // alu-A multiplexor between data-in and addr-out (1 bit)
`define P_SEL_ALU 1 // alu-B multiplexor between a, b, mc_const or opcode (2 bits)
`define P_SEL_ADDR 3 // addr-out multiplexor between sp, pc, a, b (2 bits)
`define P_ALU 5 // alu operation (4 bits)
`define P_W_SP 9 // write sp (from alu-out)
`define P_W_PC 10 // write pc (from alu-out)
`define P_W_A 11 // write a (from alu-out)
`define P_W_B 12 // write b (from alu-out)
`define P_SET_IDIM 13 // set idim flag
`define P_CLEAR_IDIM 14 // clear idim flag
`define P_W_OPCODE 15 // write opcode (from alu-out) : check if can be written directly from data-in
`define P_DECODE 16 // jump to microcode entry point based on current opcode
`define P_MEM_R 17 // request memory read
`define P_MEM_W 18 // request memory write
`define P_ADDR 19 // microcode address (7 bits (granularity is 4 words)) or constant to be used at microcode level
`define P_BRANCH 26 // microcode inconditional branch to address
`define P_OP_NOT_CACHED 27 // microcode branch if byte[pc] is not cached at opcode
`define P_A_ZERO 28 // microcode branch if a is zero
`define P_A_NEG 29 // microcode branch if a is negative a[31]=1
`define P_W_A_MEM 30 // write a directly from data-in (alu datapath is free to perform any other operation in parallel)
`ifdef ENABLE_BYTE_SELECT
`define P_BYTE 31 // byte memory operation
`define P_HALFWORD 32 // half word memory operation
`endif
`ifdef ENABLE_PC_INCREMENT
`define P_PC_INCREMENT 33 // autoincrement PC bypassing ALU (1 clock gain per opcode) : not implemented at microcode level
`endif
`ifdef ENABLE_CPU_INTERRUPTS
`define P_EXIT_INT 34 // clear interrupt flag (exit from interrupt)
`define P_ENTER_INT 35 // set interrupt flag (enter interrupt)
`endif
`define MC_SEL_READ_DATA (`SEL_READ_DATA << `P_SEL_READ) // 1 bit
`define MC_SEL_READ_ADDR (`SEL_READ_ADDR << `P_SEL_READ)
`define MC_SEL_ALU_A (`SEL_ALU_A << `P_SEL_ALU) // 2 bit
`define MC_SEL_ALU_OPCODE (`SEL_ALU_OPCODE << `P_SEL_ALU)
`define MC_SEL_ALU_MC_CONST (`SEL_ALU_MC_CONST << `P_SEL_ALU)
`define MC_SEL_ALU_B (`SEL_ALU_B << `P_SEL_ALU)
`define MC_SEL_ADDR_PC (`SEL_ADDR_PC << `P_SEL_ADDR) // 2 bits
`define MC_SEL_ADDR_SP (`SEL_ADDR_SP << `P_SEL_ADDR)
`define MC_SEL_ADDR_A (`SEL_ADDR_A << `P_SEL_ADDR)
`define MC_SEL_ADDR_B (`SEL_ADDR_B << `P_SEL_ADDR)
`define MC_ALU_NOP (`ALU_NOP << `P_ALU) // 4 bits
`define MC_ALU_NOP_B (`ALU_NOP_B << `P_ALU)
`define MC_ALU_PLUS (`ALU_PLUS << `P_ALU)
`define MC_ALU_AND (`ALU_AND << `P_ALU)
`define MC_ALU_OR (`ALU_OR << `P_ALU)
`define MC_ALU_NOT (`ALU_NOT << `P_ALU)
`define MC_ALU_FLIP (`ALU_FLIP << `P_ALU)
`define MC_ALU_IM (`ALU_IM << `P_ALU)
`define MC_ALU_PLUS_OFFSET (`ALU_PLUS_OFFSET << `P_ALU)
`ifdef ENABLE_CMP
`define MC_ALU_CMP_SIGNED (`ALU_CMP_SIGNED << `P_ALU)
`define MC_ALU_CMP_UNSIGNED (`ALU_CMP_UNSIGNED << `P_ALU)
`endif
`ifdef ENABLE_XOR
`define MC_ALU_XOR (`ALU_XOR << `P_ALU)
`endif
`ifdef ENABLE_A_SHIFT
`define MC_ALU_A_SHIFT_RIGHT (`ALU_A_SHIFT_RIGHT << `P_ALU)
`endif
`ifdef ENABLE_MULT
`define MC_ALU_MULT (`ALU_MULT << `P_ALU)
`endif
`ifdef ENABLE_DIV
`define MC_ALU_DIV (`ALU_DIV << `P_ALU)
`define MC_ALU_MOD (`ALU_MOD << `P_ALU)
`endif
`ifdef ENABLE_BARREL
`define MC_ALU_BARREL (`ALU_BARREL << `P_ALU)
`endif
`define MC_W_SP (1 << `P_W_SP)
`define MC_W_PC (1 << `P_W_PC)
`define MC_W_A (1 << `P_W_A)
`define MC_W_A_MEM (1 << `P_W_A_MEM)
`define MC_W_B (1 << `P_W_B)
`define MC_W_OPCODE (1 << `P_W_OPCODE)
`define MC_SET_IDIM (1 << `P_SET_IDIM)
`define MC_CLEAR_IDIM (1 << `P_CLEAR_IDIM)
`ifdef ENABLE_BYTE_SELECT
`define MC_BYTE (1 << `P_BYTE)
`define MC_HALFWORD (1 << `P_HALFWORD)
`endif
`ifdef ENABLE_PC_INCREMENT
`define MC_PC_INCREMENT (1 << `P_PC_INCREMENT)
`endif
`ifdef ENABLE_CPU_INTERRUPTS
`define MC_EXIT_INTERRUPT (1 << `P_EXIT_INT)
`define MC_ENTER_INTERRUPT (1 << `P_ENTER_INT)
`endif
`define MC_MEM_R (1 << `P_MEM_R)
`define MC_MEM_W (1 << `P_MEM_W)
`define MC_DECODE (1 << `P_DECODE)
`define MC_BRANCH (1 << `P_BRANCH)
`define MC_BRANCHIF_OP_NOT_CACHED (1 << `P_OP_NOT_CACHED)
`define MC_BRANCHIF_A_ZERO (1 << `P_A_ZERO)
`define MC_BRANCHIF_A_NEG (1 << `P_A_NEG)
// microcode common operations
`define MC_ADDR_FETCH_OP ( (`MC_ADDR_FETCH >> 2) << `P_ADDR) // fetch opcode from memory then decode
`define MC_ADDR_NEXT_OP ( (`MC_ADDR_FETCH_NEXT >> 2) << `P_ADDR) // go to next opcode
`define MC_ADDR_EMULATE_OP ( (`MC_ADDR_EMULATE >> 2) << `P_ADDR) // EMULATE opcode
`define MC_PC_PLUS_1 (`MC_SEL_ADDR_PC | `MC_SEL_READ_ADDR | `MC_SEL_ALU_MC_CONST | `MC_ALU_PLUS | (1 << `P_ADDR) | `MC_W_PC)
`define MC_SP_MINUS_4 (`MC_SEL_ADDR_SP | `MC_SEL_READ_ADDR | `MC_SEL_ALU_MC_CONST | `MC_ALU_PLUS | ((-4 & 127) << `P_ADDR) | `MC_W_SP)
`define MC_SP_PLUS_4 (`MC_SEL_ADDR_SP | `MC_SEL_READ_ADDR | `MC_SEL_ALU_MC_CONST | `MC_ALU_PLUS | (4 << `P_ADDR) | `MC_W_SP)
`define MC_EMULATE (`MC_BRANCH | `MC_ADDR_EMULATE_OP)
`define MC_FETCH (`MC_BRANCHIF_OP_NOT_CACHED | `MC_ADDR_FETCH_OP | `MC_DECODE) // fetch and decode current PC opcode
`define MC_GO_NEXT (`MC_BRANCH | `MC_ADDR_NEXT_OP) // go to next opcode (PC=PC+1, fetch, decode)
`define MC_GO_FETCH (`MC_BRANCH | `MC_ADDR_FETCH_OP) // go to fetch opcode at PC, then decode
`define MC_GO_BREAKPOINT (`MC_BRANCH | ((0 >> 2) << `P_ADDR)) // go to breakpoint opcode
|