diff options
-rw-r--r-- | zpu/hdl/zpu4/core/zpu_config.vhd | 32 | ||||
-rw-r--r-- | zpu/hdl/zpu4/core/zpu_core.vhd | 1820 | ||||
-rw-r--r-- | zpu/hdl/zpu4/core/zpu_core_small.vhd | 1065 | ||||
-rw-r--r-- | zpu/hdl/zpu4/core/zpupkg.vhd | 338 |
4 files changed, 1679 insertions, 1576 deletions
diff --git a/zpu/hdl/zpu4/core/zpu_config.vhd b/zpu/hdl/zpu4/core/zpu_config.vhd index 4fecf01..112dd01 100644 --- a/zpu/hdl/zpu4/core/zpu_config.vhd +++ b/zpu/hdl/zpu4/core/zpu_config.vhd @@ -39,19 +39,21 @@ use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all;
package zpu_config is
- -- generate trace output or not.
- constant Generate_Trace : boolean := false;
- constant wordPower : integer := 5;
- -- during simulation, set this to '0' to get matching trace.txt
- constant DontCareValue : std_logic := 'X';
- -- Clock frequency in MHz.
- constant ZPU_Frequency : std_logic_vector(7 downto 0) := x"64";
- -- This is the msb address bit. bytes=2^(maxAddrBitIncIO+1)
- constant maxAddrBitIncIO : integer := 15;
- constant maxAddrBitBRAM : integer := 14;
-
- -- start byte address of stack.
- -- point to top of RAM - 2*words
- constant spStart : std_logic_vector(maxAddrBitIncIO downto 0) :=
- conv_std_logic_vector((2**(maxAddrBitBRAM+1))-8, maxAddrBitIncIO+1);
+ + -- generate trace output or not. + constant Generate_Trace : boolean := false; + constant wordPower : integer := 5; + -- during simulation, set this to '0' to get matching trace.txt + constant DontCareValue : std_logic := 'X'; + -- Clock frequency in MHz. + constant ZPU_Frequency : std_logic_vector(7 downto 0) := x"64"; + -- This is the msb address bit. bytes=2^(maxAddrBitIncIO+1) + constant maxAddrBitIncIO : integer := 15; + constant maxAddrBitBRAM : integer := 14; + + -- start byte address of stack. + -- point to top of RAM - 2*words + constant spStart : std_logic_vector(maxAddrBitIncIO downto 0) := + conv_std_logic_vector((2**(maxAddrBitBRAM+1))-8, maxAddrBitIncIO+1); + end zpu_config;
diff --git a/zpu/hdl/zpu4/core/zpu_core.vhd b/zpu/hdl/zpu4/core/zpu_core.vhd index 69da686..ff9449f 100644 --- a/zpu/hdl/zpu4/core/zpu_core.vhd +++ b/zpu/hdl/zpu4/core/zpu_core.vhd @@ -33,8 +33,8 @@ -- are those of the authors and should not be interpreted as representing
-- official policies, either expressed or implied, of the ZPU Project.
-library IEEE;
-use IEEE.STD_LOGIC_1164.ALL;
+library ieee; +use ieee.std_logic_1164.all; use ieee.numeric_std.all;
library work;
@@ -58,899 +58,957 @@ use work.zpupkg.all; -- write request
-- break - set to '1' when CPU hits break instruction
-- interrupt - set to '1' until interrupts are cleared by CPU.
-
+ entity zpu_core is
- Port ( clk : in std_logic;
- areset : in std_logic;
- enable : in std_logic;
- in_mem_busy : in std_logic;
- mem_read : in std_logic_vector(wordSize-1 downto 0);
- mem_write : out std_logic_vector(wordSize-1 downto 0);
- out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0);
- out_mem_writeEnable : out std_logic;
- out_mem_readEnable : out std_logic;
- mem_writeMask: out std_logic_vector(wordBytes-1 downto 0);
- interrupt : in std_logic;
- break : out std_logic);
+ port ( + clk : in std_logic; + areset : in std_logic; + enable : in std_logic; + in_mem_busy : in std_logic; + mem_read : in std_logic_vector(wordSize-1 downto 0); + mem_write : out std_logic_vector(wordSize-1 downto 0); + out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0); + out_mem_writeEnable : out std_logic; + out_mem_readEnable : out std_logic; + mem_writeMask : out std_logic_vector(wordBytes-1 downto 0); + interrupt : in std_logic; + break : out std_logic + ); end zpu_core;
architecture behave of zpu_core is
-type InsnType is
-(
-State_AddTop,
-State_Dup,
-State_DupStackB,
-State_Pop,
-State_Popdown,
-State_Add,
-State_Or,
-State_And,
-State_Store,
-State_AddSP,
-State_Shift,
-State_Nop,
-State_Im,
-State_LoadSP,
-State_StoreSP,
-State_Emulate,
-State_Load,
-State_PushPC,
-State_PushSP,
-State_PopPC,
-State_PopPCRel,
-State_Not,
-State_Flip,
-State_PopSP,
-State_Neqbranch,
-State_Eq,
-State_Loadb,
-State_Mult,
-State_Lessthan,
-State_Lessthanorequal,
-State_Ulessthanorequal,
-State_Ulessthan,
-State_Pushspadd,
-State_Call,
-State_Callpcrel,
-State_Sub,
-State_Break,
-State_Storeb,
-State_InsnFetch
-);
-
-type StateType is
-(
-State_Load2,
-State_Popped,
-State_LoadSP2,
-State_LoadSP3,
-State_AddSP2,
-State_Fetch,
-State_Execute,
-State_Decode,
-State_Decode2,
-State_Resync,
-
-State_StoreSP2,
-State_Resync2,
-State_Resync3,
-State_Loadb2,
-State_Storeb2,
-State_Mult2,
-State_Mult3,
-State_Mult5,
-State_Mult4,
-State_BinaryOpResult2,
-State_BinaryOpResult,
-State_Idle,
-State_Interrupt
-);
-
-
-signal pc : unsigned(maxAddrBitIncIO downto 0);
-signal sp : unsigned(maxAddrBitIncIO downto minAddrBit);
-signal incSp : unsigned(maxAddrBitIncIO downto minAddrBit);
-signal incIncSp : unsigned(maxAddrBitIncIO downto minAddrBit);
-signal decSp : unsigned(maxAddrBitIncIO downto minAddrBit);
-signal stackA : unsigned(wordSize-1 downto 0);
-signal binaryOpResult : unsigned(wordSize-1 downto 0);
-signal binaryOpResult2 : unsigned(wordSize-1 downto 0);
-signal multResult2 : unsigned(wordSize-1 downto 0);
-signal multResult3 : unsigned(wordSize-1 downto 0);
-signal multResult : unsigned(wordSize-1 downto 0);
-signal multA : unsigned(wordSize-1 downto 0);
-signal multB : unsigned(wordSize-1 downto 0);
-signal stackB : unsigned(wordSize-1 downto 0);
-signal idim_flag : std_logic;
-signal busy : std_logic;
-signal mem_writeEnable : std_logic;
-signal mem_readEnable : std_logic;
-signal mem_addr : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
-signal mem_delayAddr : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
-signal mem_delayReadEnable : std_logic;
-
-signal inInterrupt: std_logic;
-
-signal decodeWord : std_logic_vector(wordSize-1 downto 0);
-
-
-signal state : StateType;
-signal insn : InsnType;
-type InsnArray is array(0 to wordBytes-1) of InsnType;
-signal decodedOpcode : InsnArray;
-
-type OpcodeArray is array(0 to wordBytes-1) of std_logic_vector(7 downto 0);
-
-signal opcode : OpcodeArray;
-
-
-
-
-signal begin_inst : std_logic;
-signal trace_opcode : std_logic_vector(7 downto 0);
-signal trace_pc : std_logic_vector(maxAddrBitIncIO downto 0);
-signal trace_sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
-signal trace_topOfStack : std_logic_vector(wordSize-1 downto 0);
-signal trace_topOfStackB : std_logic_vector(wordSize-1 downto 0);
+ type InsnType is ( + State_AddTop, + State_Dup, + State_DupStackB, + State_Pop, + State_Popdown, + State_Add, + State_Or, + State_And, + State_Store, + State_AddSP, + State_Shift, + State_Nop, + State_Im, + State_LoadSP, + State_StoreSP, + State_Emulate, + State_Load, + State_PushPC, + State_PushSP, + State_PopPC, + State_PopPCRel, + State_Not, + State_Flip, + State_PopSP, + State_Neqbranch, + State_Eq, + State_Loadb, + State_Mult, + State_Lessthan, + State_Lessthanorequal, + State_Ulessthanorequal, + State_Ulessthan, + State_Pushspadd, + State_Call, + State_Callpcrel, + State_Sub, + State_Break, + State_Storeb, + State_InsnFetch + ); + + type StateType is ( + State_Load2, + State_Popped, + State_LoadSP2, + State_LoadSP3, + State_AddSP2, + State_Fetch, + State_Execute, + State_Decode, + State_Decode2, + State_Resync, + + State_StoreSP2, + State_Resync2, + State_Resync3, + State_Loadb2, + State_Storeb2, + State_Mult2, + State_Mult3, + State_Mult5, + State_Mult4, + State_BinaryOpResult2, + State_BinaryOpResult, + State_Idle, + State_Interrupt + ); + + + signal pc : unsigned(maxAddrBitIncIO downto 0); + signal sp : unsigned(maxAddrBitIncIO downto minAddrBit); + signal incSp : unsigned(maxAddrBitIncIO downto minAddrBit); + signal incIncSp : unsigned(maxAddrBitIncIO downto minAddrBit); + signal decSp : unsigned(maxAddrBitIncIO downto minAddrBit); + signal stackA : unsigned(wordSize-1 downto 0); + signal binaryOpResult : unsigned(wordSize-1 downto 0); + signal binaryOpResult2 : unsigned(wordSize-1 downto 0); + signal multResult2 : unsigned(wordSize-1 downto 0); + signal multResult3 : unsigned(wordSize-1 downto 0); + signal multResult : unsigned(wordSize-1 downto 0); + signal multA : unsigned(wordSize-1 downto 0); + signal multB : unsigned(wordSize-1 downto 0); + signal stackB : unsigned(wordSize-1 downto 0); + signal idim_flag : std_logic; + signal busy : std_logic; + signal mem_writeEnable : std_logic; + signal mem_readEnable : std_logic; + signal mem_addr : std_logic_vector(maxAddrBitIncIO downto minAddrBit); + signal mem_delayAddr : std_logic_vector(maxAddrBitIncIO downto minAddrBit); + signal mem_delayReadEnable : std_logic; + -- + signal inInterrupt : std_logic; + -- + signal decodeWord : std_logic_vector(wordSize-1 downto 0); + -- + -- + signal state : StateType; + signal insn : InsnType; + type InsnArray is array(0 to wordBytes-1) of InsnType; + signal decodedOpcode : InsnArray; + -- + type OpcodeArray is array(0 to wordBytes-1) of std_logic_vector(7 downto 0); + -- + signal opcode : OpcodeArray; + + + + + signal begin_inst : std_logic; + signal trace_opcode : std_logic_vector(7 downto 0); + signal trace_pc : std_logic_vector(maxAddrBitIncIO downto 0); + signal trace_sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit); + signal trace_topOfStack : std_logic_vector(wordSize-1 downto 0); + signal trace_topOfStackB : std_logic_vector(wordSize-1 downto 0); -- state machine.
begin
- traceFileGenerate:
- if Generate_Trace generate
- trace_file: trace port map (
- clk => clk,
- begin_inst => begin_inst,
- pc => trace_pc,
- opcode => trace_opcode,
- sp => trace_sp,
- memA => trace_topOfStack,
- memB => trace_topOfStackB,
- busy => busy,
- intsp => (others => 'U')
- );
- end generate;
-
-
- -- the memory subsystem will tell us one cycle later whether or
- -- not it is busy
- out_mem_writeEnable <= mem_writeEnable;
- out_mem_readEnable <= mem_readEnable;
- out_mem_addr(maxAddrBitIncIO downto minAddrBit) <= mem_addr;
- out_mem_addr(minAddrBit-1 downto 0) <= (others => '0');
-
- incSp <= sp + 1;
- incIncSp <= sp + 2;
- decSp <= sp - 1;
-
-
- opcodeControl:
- process(clk, areset)
- variable tOpcode : std_logic_vector(OpCode_Size-1 downto 0);
- variable spOffset : unsigned(4 downto 0);
- variable tSpOffset : unsigned(4 downto 0);
- variable nextPC : unsigned(maxAddrBitIncIO downto 0);
- variable tNextState : InsnType;
- variable tDecodedOpcode : InsnArray;
- variable tMultResult : unsigned(wordSize*2-1 downto 0);
- begin
- if areset = '1' then
- state <= State_Idle;
- break <= '0';
- sp <= unsigned(spStart(maxAddrBitIncIO downto minAddrBit));
-
- pc <= (others => '0');
- idim_flag <= '0';
- begin_inst <= '0';
- inInterrupt <= '0';
- mem_writeEnable <= '0';
- mem_readEnable <= '0';
- multA <= (others => '0');
- multB <= (others => '0');
- mem_writeMask <= (others => '1');
- elsif (clk'event and clk = '1') then
- -- we must multiply unconditionally to get pipelined multiplication
- tMultResult := multA * multB;
- multResult3 <= multResult2;
- multResult2 <= multResult;
- multResult <= tMultResult(wordSize-1 downto 0);
-
-
- binaryOpResult2 <= binaryOpResult; -- pipeline a bit.
-
-
- multA <= (others => DontCareValue);
- multB <= (others => DontCareValue);
-
-
- mem_addr <= (others => DontCareValue);
- mem_readEnable <='0';
- mem_writeEnable <='0';
- mem_write <= (others => DontCareValue);
-
- if (mem_writeEnable = '1') and (mem_readEnable = '1') then
- report "read/write collision" severity failure;
- end if;
-
-
-
-
- spOffset(4):=not opcode(to_integer(pc(byteBits-1 downto 0)))(4);
- spOffset(3 downto 0):=unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(3 downto 0));
- nextPC := pc + 1;
-
- -- prepare trace snapshot
- trace_opcode <= opcode(to_integer(pc(byteBits-1 downto 0)));
- trace_pc <= std_logic_vector(pc);
- trace_sp <= std_logic_vector(sp);
- trace_topOfStack <= std_logic_vector(stackA);
- trace_topOfStackB <= std_logic_vector(stackB);
- begin_inst <= '0';
-
- if (interrupt='0') then
- -- Interrupt ended, we can serve ISR again
- inInterrupt <= '0';
- end if;
-
- case state is
- when State_Idle =>
- if enable='1' then
- state <= State_Resync;
- end if;
- -- Initial state of ZPU, fetch top of stack + first instruction
- when State_Resync =>
- if in_mem_busy='0' then
- mem_addr <= std_logic_vector(sp);
- mem_readEnable <= '1';
- state <= State_Resync2;
- end if;
- when State_Resync2 =>
- if in_mem_busy='0' then
- stackA <= unsigned(mem_read);
- mem_addr <= std_logic_vector(incSp);
- mem_readEnable <= '1';
- state <= State_Resync3;
- end if;
- when State_Resync3 =>
- if in_mem_busy='0' then
- stackB <= unsigned(mem_read);
- mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- state <= State_Decode;
- end if;
- when State_Decode =>
- if in_mem_busy='0' then
- decodeWord <= mem_read;
- state <= State_Decode2;
- -- Do not recurse into ISR while interrupt line is active
- if interrupt='1' and inInterrupt='0' and idim_flag='0' then
- -- We got an interrupt, execute interrupt instead of next instruction
- inInterrupt <= '1';
- sp <= decSp;
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- stackA <= (others => DontCareValue);
- stackA(maxAddrBitIncIO downto 0) <= pc;
- stackB <= stackA;
- pc <= to_unsigned(32, maxAddrBitIncIO+1);
- state <= State_Interrupt;
- end if;
- end if;
- when State_Interrupt =>
- if in_mem_busy='0' then
- mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- state <= State_Decode;
- report "ZPU jumped to interrupt!" severity note;
- end if;
- when State_Decode2 =>
- -- decode 4 instructions in parallel
- for i in 0 to wordBytes-1 loop
- tOpcode := decodeWord((wordBytes-1-i+1)*8-1 downto (wordBytes-1-i)*8);
-
- tSpOffset(4):=not tOpcode(4);
- tSpOffset(3 downto 0):=unsigned(tOpcode(3 downto 0));
-
- opcode(i) <= tOpcode;
- if (tOpcode(7 downto 7)=OpCode_Im) then
- tNextState:=State_Im;
- elsif (tOpcode(7 downto 5)=OpCode_StoreSP) then
- if tSpOffset = 0 then
- tNextState := State_Pop;
- elsif tSpOffset=1 then
- tNextState := State_PopDown;
- else
- tNextState :=State_StoreSP;
- end if;
- elsif (tOpcode(7 downto 5)=OpCode_LoadSP) then
- if tSpOffset = 0 then
- tNextState :=State_Dup;
- elsif tSpOffset = 1 then
- tNextState :=State_DupStackB;
- else
- tNextState :=State_LoadSP;
- end if;
- elsif (tOpcode(7 downto 5)=OpCode_Emulate) then
- tNextState :=State_Emulate;
- if tOpcode(5 downto 0)=OpCode_Neqbranch then
- tNextState :=State_Neqbranch;
- elsif tOpcode(5 downto 0)=OpCode_Eq then
- tNextState :=State_Eq;
- elsif tOpcode(5 downto 0)=OpCode_Lessthan then
- tNextState :=State_Lessthan;
- elsif tOpcode(5 downto 0)=OpCode_Lessthanorequal then
- --tNextState :=State_Lessthanorequal;
- elsif tOpcode(5 downto 0)=OpCode_Ulessthan then
- tNextState :=State_Ulessthan;
- elsif tOpcode(5 downto 0)=OpCode_Ulessthanorequal then
- --tNextState :=State_Ulessthanorequal;
- elsif tOpcode(5 downto 0)=OpCode_Loadb then
- tNextState :=State_Loadb;
- elsif tOpcode(5 downto 0)=OpCode_Mult then
- tNextState :=State_Mult;
- elsif tOpcode(5 downto 0)=OpCode_Storeb then
- tNextState :=State_Storeb;
- elsif tOpcode(5 downto 0)=OpCode_Pushspadd then
- tNextState :=State_Pushspadd;
- elsif tOpcode(5 downto 0)=OpCode_Callpcrel then
- tNextState :=State_Callpcrel;
- elsif tOpcode(5 downto 0)=OpCode_Call then
- --tNextState :=State_Call;
- elsif tOpcode(5 downto 0)=OpCode_Sub then
- tNextState :=State_Sub;
- elsif tOpcode(5 downto 0)=OpCode_PopPCRel then
- --tNextState :=State_PopPCRel;
- end if;
- elsif (tOpcode(7 downto 4)=OpCode_AddSP) then
- if tSpOffset = 0 then
- tNextState := State_Shift;
- elsif tSpOffset = 1 then
- tNextState := State_AddTop;
- else
- tNextState :=State_AddSP;
- end if;
- else
- case tOpcode(3 downto 0) is
- when OpCode_Nop =>
- tNextState :=State_Nop;
- when OpCode_PushSP =>
- tNextState :=State_PushSP;
- when OpCode_PopPC =>
- tNextState :=State_PopPC;
- when OpCode_Add =>
- tNextState :=State_Add;
- when OpCode_Or =>
- tNextState :=State_Or;
- when OpCode_And =>
- tNextState :=State_And;
- when OpCode_Load =>
- tNextState :=State_Load;
- when OpCode_Not =>
- tNextState :=State_Not;
- when OpCode_Flip =>
- tNextState :=State_Flip;
- when OpCode_Store =>
- tNextState :=State_Store;
- when OpCode_PopSP =>
- tNextState :=State_PopSP;
- when others =>
- tNextState := State_Break;
-
- end case;
- end if;
- tDecodedOpcode(i) := tNextState;
-
- end loop;
-
- insn <= tDecodedOpcode(to_integer(pc(byteBits-1 downto 0)));
-
- -- once we wrap, we need to fetch
- tDecodedOpcode(0) := State_InsnFetch;
-
- decodedOpcode <= tDecodedOpcode;
- state <= State_Execute;
-
-
-
- -- Each instruction must:
- --
- -- 1. set idim_flag
- -- 2. increase pc if applicable
- -- 3. set next state if appliable
- -- 4. do it's operation
-
- when State_Execute =>
- insn <= decodedOpcode(to_integer(nextPC(byteBits-1 downto 0)));
-
- case insn is
- when State_InsnFetch =>
- state <= State_Fetch;
- when State_Im =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '1';
- pc <= pc + 1;
-
- if idim_flag='1' then
- stackA(wordSize-1 downto 7) <= stackA(wordSize-8 downto 0);
- stackA(6 downto 0) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(6 downto 0));
- else
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- stackB <= stackA;
- sp <= decSp;
- for i in wordSize-1 downto 7 loop
- stackA(i) <= opcode(to_integer(pc(byteBits-1 downto 0)))(6);
- end loop;
- stackA(6 downto 0) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(6 downto 0));
- end if;
- end if;
- when State_StoreSP =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_StoreSP2;
-
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(sp+spOffset);
- mem_write <= std_logic_vector(stackA);
- stackA <= stackB;
- sp <= incSp;
- end if;
-
-
- when State_LoadSP =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_LoadSP2;
-
- sp <= decSp;
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- end if;
- when State_Emulate =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- sp <= decSp;
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- stackA <= (others => DontCareValue);
- stackA(maxAddrBitIncIO downto 0) <= pc + 1;
- stackB <= stackA;
-
- -- The emulate address is:
- -- 98 7654 3210
- -- 0000 00aa aaa0 0000
- pc <= (others => '0');
- pc(9 downto 5) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(4 downto 0));
- state <= State_Fetch;
- end if;
- when State_Callpcrel =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- stackA <= (others => DontCareValue);
- stackA(maxAddrBitIncIO downto 0) <= pc + 1;
-
- pc <= pc + stackA(maxAddrBitIncIO downto 0);
- state <= State_Fetch;
- end if;
- when State_Call =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- stackA <= (others => DontCareValue);
- stackA(maxAddrBitIncIO downto 0) <= pc + 1;
- pc <= stackA(maxAddrBitIncIO downto 0);
- state <= State_Fetch;
- end if;
- when State_AddSP =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_AddSP2;
-
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(sp+spOffset);
- end if;
- when State_PushSP =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- sp <= decSp;
- stackA <= (others => '0');
- stackA(maxAddrBitIncIO downto minAddrBit) <= sp;
- stackB <= stackA;
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- end if;
- when State_PopPC =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= stackA(maxAddrBitIncIO downto 0);
- sp <= incSp;
-
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- state <= State_Resync;
- end if;
- when State_PopPCRel =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= stackA(maxAddrBitIncIO downto 0) + pc;
- sp <= incSp;
-
- mem_writeEnable <= '1';
- mem_addr <= std_logic_vector(incSp);
- mem_write <= std_logic_vector(stackB);
- state <= State_Resync;
- end if;
- when State_Add =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- stackA <= stackA + stackB;
-
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(incIncSp);
- sp <= incSp;
- state <= State_Popped;
- end if;
- when State_Sub =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- binaryOpResult <= stackB - stackA;
- state <= State_BinaryOpResult;
- end if;
- when State_Pop =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- mem_addr <= std_logic_vector(incIncSp);
- mem_readEnable <= '1';
- sp <= incSp;
- stackA <= stackB;
- state <= State_Popped;
- end if;
- when State_PopDown =>
- if in_mem_busy='0' then
- -- PopDown leaves top of stack unchanged
- begin_inst <= '1';
- idim_flag <= '0';
- mem_addr <= std_logic_vector(incIncSp);
- mem_readEnable <= '1';
- sp <= incSp;
- state <= State_Popped;
- end if;
- when State_Or =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- stackA <= stackA or stackB;
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(incIncSp);
- sp <= incSp;
- state <= State_Popped;
- end if;
- when State_And =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- stackA <= stackA and stackB;
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(incIncSp);
- sp <= incSp;
- state <= State_Popped;
- end if;
- when State_Eq =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- binaryOpResult <= (others => '0');
- if (stackA=stackB) then
- binaryOpResult(0) <= '1';
- end if;
- state <= State_BinaryOpResult;
- end if;
- when State_Ulessthan =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- binaryOpResult <= (others => '0');
- if (stackA<stackB) then
- binaryOpResult(0) <= '1';
- end if;
- state <= State_BinaryOpResult;
- end if;
- when State_Ulessthanorequal =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- binaryOpResult <= (others => '0');
- if (stackA<=stackB) then
- binaryOpResult(0) <= '1';
- end if;
- state <= State_BinaryOpResult;
- end if;
- when State_Lessthan =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- binaryOpResult <= (others => '0');
- if (signed(stackA)<signed(stackB)) then
- binaryOpResult(0) <= '1';
- end if;
- state <= State_BinaryOpResult;
- end if;
- when State_Lessthanorequal =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
-
- binaryOpResult <= (others => '0');
- if (signed(stackA)<=signed(stackB)) then
- binaryOpResult(0) <= '1';
- end if;
- state <= State_BinaryOpResult;
- end if;
- when State_Load =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_Load2;
-
- mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- end if;
-
- when State_Dup =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- sp <= decSp;
- stackB <= stackA;
- mem_write <= std_logic_vector(stackB);
- mem_addr <= std_logic_vector(incSp);
- mem_writeEnable <= '1';
- end if;
- when State_DupStackB =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- sp <= decSp;
- stackA <= stackB;
- stackB <= stackA;
- mem_write <= std_logic_vector(stackB);
- mem_addr <= std_logic_vector(incSp);
- mem_writeEnable <= '1';
- end if;
- when State_Store =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
- mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit));
- mem_write <= std_logic_vector(stackB);
- mem_writeEnable <= '1';
- sp <= incIncSp;
- state <= State_Resync;
- end if;
- when State_PopSP =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- mem_write <= std_logic_vector(stackB);
- mem_addr <= std_logic_vector(incSp);
- mem_writeEnable <= '1';
- sp <= stackA(maxAddrBitIncIO downto minAddrBit);
- state <= State_Resync;
- end if;
- when State_Nop =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
- when State_Not =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- stackA <= not stackA;
- when State_Flip =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- for i in 0 to wordSize-1 loop
- stackA(i) <= stackA(wordSize-1-i);
- end loop;
- when State_AddTop =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- stackA <= stackA + stackB;
- when State_Shift =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- stackA(wordSize-1 downto 1) <= stackA(wordSize-2 downto 0);
- stackA(0) <= '0';
- when State_Pushspadd =>
- begin_inst <= '1';
- idim_flag <= '0';
- pc <= pc + 1;
-
- stackA <= (others => '0');
- stackA(maxAddrBitIncIO downto minAddrBit) <= stackA(maxAddrBitIncIO-minAddrBit downto 0)+sp;
- when State_Neqbranch =>
- -- branches are almost always taken as they form loops
- begin_inst <= '1';
- idim_flag <= '0';
- sp <= incIncSp;
- if (stackB/=0) then
- pc <= stackA(maxAddrBitIncIO downto 0) + pc;
- else
- pc <= pc + 1;
- end if;
- -- need to fetch stack again.
- state <= State_Resync;
- when State_Mult =>
- begin_inst <= '1';
- idim_flag <= '0';
-
- multA <= stackA;
- multB <= stackB;
- state <= State_Mult2;
- when State_Break =>
- report "Break instruction encountered" severity failure;
- break <= '1';
-
- when State_Loadb =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_Loadb2;
-
- mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- end if;
- when State_Storeb =>
- if in_mem_busy='0' then
- begin_inst <= '1';
- idim_flag <= '0';
- state <= State_Storeb2;
-
- mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- end if;
-
- when others =>
- sp <= (others => DontCareValue);
- report "Illegal instruction" severity failure;
- break <= '1';
- end case;
-
-
- when State_StoreSP2 =>
- if in_mem_busy='0' then
- mem_addr <= std_logic_vector(incSp);
- mem_readEnable <= '1';
- state <= State_Popped;
- end if;
- when State_LoadSP2 =>
- if in_mem_busy='0' then
- state <= State_LoadSP3;
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(sp+spOffset+1);
- end if;
- when State_LoadSP3 =>
- if in_mem_busy='0' then
- pc <= pc + 1;
- state <= State_Execute;
- stackB <= stackA;
- stackA <= unsigned(mem_read);
- end if;
- when State_AddSP2 =>
- if in_mem_busy='0' then
- pc <= pc + 1;
- state <= State_Execute;
- stackA <= stackA + unsigned(mem_read);
- end if;
- when State_Load2 =>
- if in_mem_busy='0' then
- stackA <= unsigned(mem_read);
- pc <= pc + 1;
- state <= State_Execute;
- end if;
- when State_Loadb2 =>
- if in_mem_busy='0' then
- stackA <= (others => '0');
- stackA(7 downto 0) <= unsigned(mem_read(((wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8));
- pc <= pc + 1;
- state <= State_Execute;
- end if;
- when State_Storeb2 =>
- if in_mem_busy='0' then
- mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit));
- mem_write <= mem_read;
- mem_write(((wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8) <= std_logic_vector(stackB(7 downto 0));
- mem_writeEnable <= '1';
- pc <= pc + 1;
- sp <= incIncSp;
- state <= State_Resync;
- end if;
- when State_Fetch =>
- if in_mem_busy='0' then
- mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit));
- mem_readEnable <= '1';
- state <= State_Decode;
- end if;
- when State_Mult2 =>
- state <= State_Mult3;
- when State_Mult3 =>
- state <= State_Mult4;
- when State_Mult4 =>
- state <= State_Mult5;
- when State_Mult5 =>
- if in_mem_busy='0' then
- stackA <= multResult3;
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(incIncSp);
- sp <= incSp;
- state <= State_Popped;
- end if;
- when State_BinaryOpResult =>
- state <= State_BinaryOpResult2;
- when State_BinaryOpResult2 =>
- mem_readEnable <= '1';
- mem_addr <= std_logic_vector(incIncSp);
- sp <= incSp;
- stackA <= binaryOpResult2;
- state <= State_Popped;
- when State_Popped =>
- if in_mem_busy='0' then
- pc <= pc + 1;
- stackB <= unsigned(mem_read);
- state <= State_Execute;
- end if;
- when others =>
- sp <= (others => DontCareValue);
- report "Illegal state" severity failure;
- break <= '1';
- end case;
- end if;
- end process;
+ traceFileGenerate : + if Generate_Trace generate + trace_file : trace port map ( + clk => clk, + begin_inst => begin_inst, + pc => trace_pc, + opcode => trace_opcode, + sp => trace_sp, + memA => trace_topOfStack, + memB => trace_topOfStackB, + busy => busy, + intsp => (others => 'U') + ); + end generate; + + + -- the memory subsystem will tell us one cycle later whether or + -- not it is busy + out_mem_writeEnable <= mem_writeEnable; + out_mem_readEnable <= mem_readEnable; + out_mem_addr(maxAddrBitIncIO downto minAddrBit) <= mem_addr; + out_mem_addr(minAddrBit-1 downto 0) <= (others => '0'); + + incSp <= sp + 1; + incIncSp <= sp + 2; + decSp <= sp - 1; + + + opcodeControl : process(clk, areset) + variable tOpcode : std_logic_vector(OpCode_Size-1 downto 0); + variable spOffset : unsigned(4 downto 0); + variable tSpOffset : unsigned(4 downto 0); + variable nextPC : unsigned(maxAddrBitIncIO downto 0); + variable tNextState : InsnType; + variable tDecodedOpcode : InsnArray; + variable tMultResult : unsigned(wordSize*2-1 downto 0); + begin + if areset = '1' then + state <= State_Idle; + break <= '0'; + sp <= unsigned(spStart(maxAddrBitIncIO downto minAddrBit)); + + pc <= (others => '0'); + idim_flag <= '0'; + begin_inst <= '0'; + inInterrupt <= '0'; + mem_writeEnable <= '0'; + mem_readEnable <= '0'; + multA <= (others => '0'); + multB <= (others => '0'); + mem_writeMask <= (others => '1'); + elsif (clk'event and clk = '1') then + -- we must multiply unconditionally to get pipelined multiplication + tMultResult := multA * multB; + multResult3 <= multResult2; + multResult2 <= multResult; + multResult <= tMultResult(wordSize-1 downto 0); + + + binaryOpResult2 <= binaryOpResult; -- pipeline a bit. + + + multA <= (others => DontCareValue); + multB <= (others => DontCareValue); + + + mem_addr <= (others => DontCareValue); + mem_readEnable <= '0'; + mem_writeEnable <= '0'; + mem_write <= (others => DontCareValue); + + if (mem_writeEnable = '1') and (mem_readEnable = '1') then + report "read/write collision" severity failure; + end if; + + + + + spOffset(4) := not opcode(to_integer(pc(byteBits-1 downto 0)))(4); + spOffset(3 downto 0) := unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(3 downto 0)); + nextPC := pc + 1; + + -- prepare trace snapshot + trace_opcode <= opcode(to_integer(pc(byteBits-1 downto 0))); + trace_pc <= std_logic_vector(pc); + trace_sp <= std_logic_vector(sp); + trace_topOfStack <= std_logic_vector(stackA); + trace_topOfStackB <= std_logic_vector(stackB); + begin_inst <= '0'; + + if (interrupt = '0') then + -- Interrupt ended, we can serve ISR again + inInterrupt <= '0'; + end if; + + case state is + + when State_Idle => + if enable = '1' then + state <= State_Resync; + end if; + -- Initial state of ZPU, fetch top of stack + first instruction + + when State_Resync => + if in_mem_busy = '0' then + mem_addr <= std_logic_vector(sp); + mem_readEnable <= '1'; + state <= State_Resync2; + end if; + + when State_Resync2 => + if in_mem_busy = '0' then + stackA <= unsigned(mem_read); + mem_addr <= std_logic_vector(incSp); + mem_readEnable <= '1'; + state <= State_Resync3; + end if; + + when State_Resync3 => + if in_mem_busy = '0' then + stackB <= unsigned(mem_read); + mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + state <= State_Decode; + end if; + + when State_Decode => + if in_mem_busy = '0' then + decodeWord <= mem_read; + state <= State_Decode2; + -- Do not recurse into ISR while interrupt line is active + if interrupt = '1' and inInterrupt = '0' and idim_flag = '0' then + -- We got an interrupt, execute interrupt instead of next instruction + inInterrupt <= '1'; + sp <= decSp; + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + stackA <= (others => DontCareValue); + stackA(maxAddrBitIncIO downto 0) <= pc; + stackB <= stackA; + pc <= to_unsigned(32, maxAddrBitIncIO+1); + state <= State_Interrupt; + end if; -- interrupt + end if; -- in_mem_busy + + when State_Interrupt => + if in_mem_busy = '0' then + mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + state <= State_Decode; + report "ZPU jumped to interrupt!" severity note; + end if; + + when State_Decode2 => + -- decode 4 instructions in parallel + for i in 0 to wordBytes-1 loop + tOpcode := decodeWord((wordBytes-1-i+1)*8-1 downto (wordBytes-1-i)*8); + + tSpOffset(4) := not tOpcode(4); + tSpOffset(3 downto 0) := unsigned(tOpcode(3 downto 0)); + + opcode(i) <= tOpcode; + if (tOpcode(7 downto 7) = OpCode_Im) then + tNextState := State_Im; + elsif (tOpcode(7 downto 5) = OpCode_StoreSP) then + if tSpOffset = 0 then + tNextState := State_Pop; + elsif tSpOffset = 1 then + tNextState := State_PopDown; + else + tNextState := State_StoreSP; + end if; + elsif (tOpcode(7 downto 5) = OpCode_LoadSP) then + if tSpOffset = 0 then + tNextState := State_Dup; + elsif tSpOffset = 1 then + tNextState := State_DupStackB; + else + tNextState := State_LoadSP; + end if; + elsif (tOpcode(7 downto 5) = OpCode_Emulate) then + tNextState := State_Emulate; + if tOpcode(5 downto 0) = OpCode_Neqbranch then + tNextState := State_Neqbranch; + elsif tOpcode(5 downto 0) = OpCode_Eq then + tNextState := State_Eq; + elsif tOpcode(5 downto 0) = OpCode_Lessthan then + tNextState := State_Lessthan; + elsif tOpcode(5 downto 0) = OpCode_Lessthanorequal then + --tNextState :=State_Lessthanorequal; + elsif tOpcode(5 downto 0) = OpCode_Ulessthan then + tNextState := State_Ulessthan; + elsif tOpcode(5 downto 0) = OpCode_Ulessthanorequal then + --tNextState :=State_Ulessthanorequal; + elsif tOpcode(5 downto 0) = OpCode_Loadb then + tNextState := State_Loadb; + elsif tOpcode(5 downto 0) = OpCode_Mult then + tNextState := State_Mult; + elsif tOpcode(5 downto 0) = OpCode_Storeb then + tNextState := State_Storeb; + elsif tOpcode(5 downto 0) = OpCode_Pushspadd then + tNextState := State_Pushspadd; + elsif tOpcode(5 downto 0) = OpCode_Callpcrel then + tNextState := State_Callpcrel; + elsif tOpcode(5 downto 0) = OpCode_Call then + --tNextState :=State_Call; + elsif tOpcode(5 downto 0) = OpCode_Sub then + tNextState := State_Sub; + elsif tOpcode(5 downto 0) = OpCode_PopPCRel then + --tNextState :=State_PopPCRel; + end if; + elsif (tOpcode(7 downto 4) = OpCode_AddSP) then + if tSpOffset = 0 then + tNextState := State_Shift; + elsif tSpOffset = 1 then + tNextState := State_AddTop; + else + tNextState := State_AddSP; + end if; + else + case tOpcode(3 downto 0) is + when OpCode_Nop => + tNextState := State_Nop; + when OpCode_PushSP => + tNextState := State_PushSP; + when OpCode_PopPC => + tNextState := State_PopPC; + when OpCode_Add => + tNextState := State_Add; + when OpCode_Or => + tNextState := State_Or; + when OpCode_And => + tNextState := State_And; + when OpCode_Load => + tNextState := State_Load; + when OpCode_Not => + tNextState := State_Not; + when OpCode_Flip => + tNextState := State_Flip; + when OpCode_Store => + tNextState := State_Store; + when OpCode_PopSP => + tNextState := State_PopSP; + when others => + tNextState := State_Break; + + end case; -- tOpcode(3 downto 0) + end if; -- tOpcode + tDecodedOpcode(i) := tNextState; + + end loop; -- 0 to wordBytes-1 + + insn <= tDecodedOpcode(to_integer(pc(byteBits-1 downto 0))); + + -- once we wrap, we need to fetch + tDecodedOpcode(0) := State_InsnFetch; + + decodedOpcode <= tDecodedOpcode; + state <= State_Execute; + + + + -- Each instruction must: + -- + -- 1. set idim_flag + -- 2. increase pc if applicable + -- 3. set next state if appliable + -- 4. do it's operation + + when State_Execute => + insn <= decodedOpcode(to_integer(nextPC(byteBits-1 downto 0))); + + case insn is + + when State_InsnFetch => + state <= State_Fetch; + + when State_Im => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '1'; + pc <= pc + 1; + + if idim_flag = '1' then + stackA(wordSize-1 downto 7) <= stackA(wordSize-8 downto 0); + stackA(6 downto 0) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(6 downto 0)); + else + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + stackB <= stackA; + sp <= decSp; + for i in wordSize-1 downto 7 loop + stackA(i) <= opcode(to_integer(pc(byteBits-1 downto 0)))(6); + end loop; + stackA(6 downto 0) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(6 downto 0)); + end if; -- idim_flag + end if; -- in_mem_busy + + when State_StoreSP => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_StoreSP2; + + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(sp+spOffset); + mem_write <= std_logic_vector(stackA); + stackA <= stackB; + sp <= incSp; + end if; + + + when State_LoadSP => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_LoadSP2; + + sp <= decSp; + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + end if; + + when State_Emulate => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + sp <= decSp; + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + stackA <= (others => DontCareValue); + stackA(maxAddrBitIncIO downto 0) <= pc + 1; + stackB <= stackA; + + -- The emulate address is: + -- 98 7654 3210 + -- 0000 00aa aaa0 0000 + pc <= (others => '0'); + pc(9 downto 5) <= unsigned(opcode(to_integer(pc(byteBits-1 downto 0)))(4 downto 0)); + state <= State_Fetch; + end if; -- in_mem_busy + + when State_Callpcrel => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + stackA <= (others => DontCareValue); + stackA(maxAddrBitIncIO downto 0) <= pc + 1; + + pc <= pc + stackA(maxAddrBitIncIO downto 0); + state <= State_Fetch; + end if; + + when State_Call => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + stackA <= (others => DontCareValue); + stackA(maxAddrBitIncIO downto 0) <= pc + 1; + pc <= stackA(maxAddrBitIncIO downto 0); + state <= State_Fetch; + end if; + + when State_AddSP => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_AddSP2; + + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(sp+spOffset); + end if; + + when State_PushSP => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + sp <= decSp; + stackA <= (others => '0'); + stackA(maxAddrBitIncIO downto minAddrBit) <= sp; + stackB <= stackA; + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + end if; + + when State_PopPC => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= stackA(maxAddrBitIncIO downto 0); + sp <= incSp; + + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + state <= State_Resync; + end if; + + when State_PopPCRel => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= stackA(maxAddrBitIncIO downto 0) + pc; + sp <= incSp; + + mem_writeEnable <= '1'; + mem_addr <= std_logic_vector(incSp); + mem_write <= std_logic_vector(stackB); + state <= State_Resync; + end if; + + when State_Add => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + stackA <= stackA + stackB; + + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(incIncSp); + sp <= incSp; + state <= State_Popped; + end if; + + when State_Sub => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + binaryOpResult <= stackB - stackA; + state <= State_BinaryOpResult; + end if; + + when State_Pop => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + mem_addr <= std_logic_vector(incIncSp); + mem_readEnable <= '1'; + sp <= incSp; + stackA <= stackB; + state <= State_Popped; + end if; + + when State_PopDown => + if in_mem_busy = '0' then + -- PopDown leaves top of stack unchanged + begin_inst <= '1'; + idim_flag <= '0'; + mem_addr <= std_logic_vector(incIncSp); + mem_readEnable <= '1'; + sp <= incSp; + state <= State_Popped; + end if; + + when State_Or => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + stackA <= stackA or stackB; + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(incIncSp); + sp <= incSp; + state <= State_Popped; + end if; + + when State_And => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + stackA <= stackA and stackB; + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(incIncSp); + sp <= incSp; + state <= State_Popped; + end if; + + when State_Eq => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + binaryOpResult <= (others => '0'); + if (stackA = stackB) then + binaryOpResult(0) <= '1'; + end if; + state <= State_BinaryOpResult; + end if; + + when State_Ulessthan => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + binaryOpResult <= (others => '0'); + if (stackA < stackB) then + binaryOpResult(0) <= '1'; + end if; + state <= State_BinaryOpResult; + end if; + + when State_Ulessthanorequal => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + binaryOpResult <= (others => '0'); + if (stackA <= stackB) then + binaryOpResult(0) <= '1'; + end if; + state <= State_BinaryOpResult; + end if; + + when State_Lessthan => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + binaryOpResult <= (others => '0'); + if (signed(stackA) < signed(stackB)) then + binaryOpResult(0) <= '1'; + end if; + state <= State_BinaryOpResult; + end if; + + when State_Lessthanorequal => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + + binaryOpResult <= (others => '0'); + if (signed(stackA) <= signed(stackB)) then + binaryOpResult(0) <= '1'; + end if; + state <= State_BinaryOpResult; + end if; + + when State_Load => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_Load2; + + mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + end if; + + when State_Dup => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + sp <= decSp; + stackB <= stackA; + mem_write <= std_logic_vector(stackB); + mem_addr <= std_logic_vector(incSp); + mem_writeEnable <= '1'; + end if; + + when State_DupStackB => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + sp <= decSp; + stackA <= stackB; + stackB <= stackA; + mem_write <= std_logic_vector(stackB); + mem_addr <= std_logic_vector(incSp); + mem_writeEnable <= '1'; + end if; + + when State_Store => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit)); + mem_write <= std_logic_vector(stackB); + mem_writeEnable <= '1'; + sp <= incIncSp; + state <= State_Resync; + end if; + + when State_PopSP => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + mem_write <= std_logic_vector(stackB); + mem_addr <= std_logic_vector(incSp); + mem_writeEnable <= '1'; + sp <= stackA(maxAddrBitIncIO downto minAddrBit); + state <= State_Resync; + end if; + + when State_Nop => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + when State_Not => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + stackA <= not stackA; + + when State_Flip => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + for i in 0 to wordSize-1 loop + stackA(i) <= stackA(wordSize-1-i); + end loop; + + when State_AddTop => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + stackA <= stackA + stackB; + + when State_Shift => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + stackA(wordSize-1 downto 1) <= stackA(wordSize-2 downto 0); + stackA(0) <= '0'; + + when State_Pushspadd => + begin_inst <= '1'; + idim_flag <= '0'; + pc <= pc + 1; + + stackA <= (others => '0'); + stackA(maxAddrBitIncIO downto minAddrBit) <= stackA(maxAddrBitIncIO-minAddrBit downto 0)+sp; + + when State_Neqbranch => + -- branches are almost always taken as they form loops + begin_inst <= '1'; + idim_flag <= '0'; + sp <= incIncSp; + if (stackB /= 0) then + pc <= stackA(maxAddrBitIncIO downto 0) + pc; + else + pc <= pc + 1; + end if; + -- need to fetch stack again. + state <= State_Resync; + + when State_Mult => + begin_inst <= '1'; + idim_flag <= '0'; + + multA <= stackA; + multB <= stackB; + state <= State_Mult2; + + when State_Break => + report "Break instruction encountered" severity failure; + break <= '1'; + + when State_Loadb => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_Loadb2; + + mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + end if; + + when State_Storeb => + if in_mem_busy = '0' then + begin_inst <= '1'; + idim_flag <= '0'; + state <= State_Storeb2; + + mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + end if; + + when others => + sp <= (others => DontCareValue); + report "Illegal instruction" severity failure; + break <= '1'; + + end case; -- insn/State_Execute + + + when State_StoreSP2 => + if in_mem_busy = '0' then + mem_addr <= std_logic_vector(incSp); + mem_readEnable <= '1'; + state <= State_Popped; + end if; + + when State_LoadSP2 => + if in_mem_busy = '0' then + state <= State_LoadSP3; + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(sp+spOffset+1); + end if; + + when State_LoadSP3 => + if in_mem_busy = '0' then + pc <= pc + 1; + state <= State_Execute; + stackB <= stackA; + stackA <= unsigned(mem_read); + end if; + + when State_AddSP2 => + if in_mem_busy = '0' then + pc <= pc + 1; + state <= State_Execute; + stackA <= stackA + unsigned(mem_read); + end if; + + when State_Load2 => + if in_mem_busy = '0' then + stackA <= unsigned(mem_read); + pc <= pc + 1; + state <= State_Execute; + end if; + + when State_Loadb2 => + if in_mem_busy = '0' then + stackA <= (others => '0'); + stackA(7 downto 0) <= unsigned(mem_read(((wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8)); + pc <= pc + 1; + state <= State_Execute; + end if; + + when State_Storeb2 => + if in_mem_busy = '0' then + mem_addr <= std_logic_vector(stackA(maxAddrBitIncIO downto minAddrBit)); + mem_write <= mem_read; + mem_write(((wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8+7) downto (wordBytes-1-to_integer(stackA(byteBits-1 downto 0)))*8) <= std_logic_vector(stackB(7 downto 0)); + mem_writeEnable <= '1'; + pc <= pc + 1; + sp <= incIncSp; + state <= State_Resync; + end if; + + when State_Fetch => + if in_mem_busy = '0' then + mem_addr <= std_logic_vector(pc(maxAddrBitIncIO downto minAddrBit)); + mem_readEnable <= '1'; + state <= State_Decode; + end if; + + when State_Mult2 => + state <= State_Mult3; + + when State_Mult3 => + state <= State_Mult4; + + when State_Mult4 => + state <= State_Mult5; + + when State_Mult5 => + if in_mem_busy = '0' then + stackA <= multResult3; + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(incIncSp); + sp <= incSp; + state <= State_Popped; + end if; + + when State_BinaryOpResult => + state <= State_BinaryOpResult2; + + when State_BinaryOpResult2 => + mem_readEnable <= '1'; + mem_addr <= std_logic_vector(incIncSp); + sp <= incSp; + stackA <= binaryOpResult2; + state <= State_Popped; + + when State_Popped => + if in_mem_busy = '0' then + pc <= pc + 1; + stackB <= unsigned(mem_read); + state <= State_Execute; + end if; + + when others => + sp <= (others => DontCareValue); + report "Illegal state" severity failure; + break <= '1'; + + end case; -- state + end if; -- clk'event + end process; diff --git a/zpu/hdl/zpu4/core/zpu_core_small.vhd b/zpu/hdl/zpu4/core/zpu_core_small.vhd index 681fb09..1df9546 100644 --- a/zpu/hdl/zpu4/core/zpu_core_small.vhd +++ b/zpu/hdl/zpu4/core/zpu_core_small.vhd @@ -32,8 +32,8 @@ -- are those of the authors and should not be interpreted as representing
-- official policies, either expressed or implied, of the ZPU Project.
-library IEEE;
-use IEEE.STD_LOGIC_1164.ALL;
+library ieee; +use ieee.std_logic_1164.all; use ieee.numeric_std.all;
library work;
@@ -42,531 +42,560 @@ use work.zpupkg.all; entity zpu_core is
- Port ( clk : in std_logic;
- -- asynchronous reset signal
- areset : in std_logic;
- -- this particular implementation of the ZPU does not
- -- have a clocked enable signal
- enable : in std_logic;
- in_mem_busy : in std_logic;
- mem_read : in std_logic_vector(wordSize-1 downto 0);
- mem_write : out std_logic_vector(wordSize-1 downto 0);
- out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0);
- out_mem_writeEnable : out std_logic;
- out_mem_readEnable : out std_logic;
- -- this implementation of the ZPU *always* reads and writes entire
- -- 32 bit words, so mem_writeMask is tied to (others => '1').
- mem_writeMask: out std_logic_vector(wordBytes-1 downto 0);
- -- Set to one to jump to interrupt vector
- -- The ZPU will communicate with the hardware that caused the
- -- interrupt via memory mapped IO or the interrupt flag can
- -- be cleared automatically
- interrupt : in std_logic;
- -- Signal that the break instruction is executed, normally only used
- -- in simulation to stop simulation
- break : out std_logic);
+ port ( + clk : in std_logic; + -- asynchronous reset signal + areset : in std_logic; + -- this particular implementation of the ZPU does not + -- have a clocked enable signal + enable : in std_logic; + in_mem_busy : in std_logic; + mem_read : in std_logic_vector(wordSize-1 downto 0); + mem_write : out std_logic_vector(wordSize-1 downto 0); + out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0); + out_mem_writeEnable : out std_logic; + out_mem_readEnable : out std_logic; + -- this implementation of the ZPU *always* reads and writes entire + -- 32 bit words, so mem_writeMask is tied to (others => '1'). + mem_writeMask : out std_logic_vector(wordBytes-1 downto 0); + -- Set to one to jump to interrupt vector + -- The ZPU will communicate with the hardware that caused the + -- interrupt via memory mapped IO or the interrupt flag can + -- be cleared automatically + interrupt : in std_logic; + -- Signal that the break instruction is executed, normally only used + -- in simulation to stop simulation + break : out std_logic + ); end zpu_core;
-architecture behave of zpu_core is
-signal readIO : std_logic;
-
-
-signal memAWriteEnable : std_logic;
-signal memAAddr : unsigned(maxAddrBit downto minAddrBit);
-signal memAWrite : unsigned(wordSize-1 downto 0);
-signal memARead : unsigned(wordSize-1 downto 0);
-signal memBWriteEnable : std_logic;
-signal memBAddr : unsigned(maxAddrBit downto minAddrBit);
-signal memBWrite : unsigned(wordSize-1 downto 0);
-signal memBRead : unsigned(wordSize-1 downto 0);
-
-
-
-signal pc : unsigned(maxAddrBit downto 0);
-signal sp : unsigned(maxAddrBit downto minAddrBit);
-
--- this signal is set upon executing an IM instruction
--- the subsequence IM instruction will then behave differently.
--- all other instructions will clear the idim_flag.
--- this yields highly compact immediate instructions.
-signal idim_flag : std_logic;
-
-signal busy : std_logic;
-
-signal begin_inst : std_logic;
-
-
-
-signal trace_opcode : std_logic_vector(7 downto 0);
-signal trace_pc : std_logic_vector(maxAddrBitIncIO downto 0);
-signal trace_sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit);
-signal trace_topOfStack : std_logic_vector(wordSize-1 downto 0);
-signal trace_topOfStackB : std_logic_vector(wordSize-1 downto 0);
-
--- state machine.
-type State_Type is
-(
-State_Fetch,
-State_WriteIODone,
-State_Execute,
-State_StoreToStack,
-State_Add,
-State_Or,
-State_And,
-State_Store,
-State_ReadIO,
-State_WriteIO,
-State_Load,
-State_FetchNext,
-State_AddSP,
-State_ReadIODone,
-State_Decode,
-State_Resync,
-State_Interrupt
-
-);
-
-type DecodedOpcodeType is
-(
-Decoded_Nop,
-Decoded_Im,
-Decoded_ImShift,
-Decoded_LoadSP,
-Decoded_StoreSP ,
-Decoded_AddSP,
-Decoded_Emulate,
-Decoded_Break,
-Decoded_PushSP,
-Decoded_PopPC,
-Decoded_Add,
-Decoded_Or,
-Decoded_And,
-Decoded_Load,
-Decoded_Not,
-Decoded_Flip,
-Decoded_Store,
-Decoded_PopSP,
-Decoded_Interrupt
-);
-
-
-
-signal sampledOpcode : std_logic_vector(OpCode_Size-1 downto 0);
-signal opcode : std_logic_vector(OpCode_Size-1 downto 0);
-
-signal decodedOpcode : DecodedOpcodeType;
-signal sampledDecodedOpcode : DecodedOpcodeType;
-
-
-signal state : State_Type;
-
-subtype AddrBitBRAM_range is natural range maxAddrBitBRAM downto minAddrBit;
-signal memAAddr_stdlogic : std_logic_vector(AddrBitBRAM_range);
-signal memAWrite_stdlogic : std_logic_vector(memAWrite'range);
-signal memARead_stdlogic : std_logic_vector(memARead'range);
-signal memBAddr_stdlogic : std_logic_vector(AddrBitBRAM_range);
-signal memBWrite_stdlogic : std_logic_vector(memBWrite'range);
-signal memBRead_stdlogic : std_logic_vector(memBRead'range);
-
-subtype index is integer range 0 to 3;
-
-signal tOpcode_sel : index;
-
-
-signal inInterrupt : std_logic;
+architecture behave of zpu_core is +
+ signal memAWriteEnable : std_logic; + signal memAAddr : unsigned(maxAddrBit downto minAddrBit); + signal memAWrite : unsigned(wordSize-1 downto 0); + signal memARead : unsigned(wordSize-1 downto 0); + signal memBWriteEnable : std_logic; + signal memBAddr : unsigned(maxAddrBit downto minAddrBit); + signal memBWrite : unsigned(wordSize-1 downto 0); + signal memBRead : unsigned(wordSize-1 downto 0); + + + + signal pc : unsigned(maxAddrBit downto 0); + signal sp : unsigned(maxAddrBit downto minAddrBit); + + -- this signal is set upon executing an IM instruction + -- the subsequence IM instruction will then behave differently. + -- all other instructions will clear the idim_flag. + -- this yields highly compact immediate instructions. + signal idim_flag : std_logic; + -- + signal busy : std_logic; + -- + signal begin_inst : std_logic; + + + signal trace_opcode : std_logic_vector(7 downto 0); + signal trace_pc : std_logic_vector(maxAddrBitIncIO downto 0); + signal trace_sp : std_logic_vector(maxAddrBitIncIO downto minAddrBit); + signal trace_topOfStack : std_logic_vector(wordSize-1 downto 0); + signal trace_topOfStackB : std_logic_vector(wordSize-1 downto 0); + + -- state machine. + type State_Type is ( + State_Fetch, + State_WriteIODone, + State_Execute, + State_StoreToStack, + State_Add, + State_Or, + State_And, + State_Store, + State_ReadIO, + State_WriteIO, + State_Load, + State_FetchNext, + State_AddSP, + State_ReadIODone, + State_Decode, + State_Resync, + State_Interrupt + ); + + type DecodedOpcodeType is ( + Decoded_Nop, + Decoded_Im, + Decoded_ImShift, + Decoded_LoadSP, + Decoded_StoreSP , + Decoded_AddSP, + Decoded_Emulate, + Decoded_Break, + Decoded_PushSP, + Decoded_PopPC, + Decoded_Add, + Decoded_Or, + Decoded_And, + Decoded_Load, + Decoded_Not, + Decoded_Flip, + Decoded_Store, + Decoded_PopSP, + Decoded_Interrupt + ); + + + + signal sampledOpcode : std_logic_vector(OpCode_Size-1 downto 0); + signal opcode : std_logic_vector(OpCode_Size-1 downto 0); + -- + signal decodedOpcode : DecodedOpcodeType; + signal sampledDecodedOpcode : DecodedOpcodeType; + + + signal state : State_Type; + -- + subtype AddrBitBRAM_range is natural range maxAddrBitBRAM downto minAddrBit; + signal memAAddr_stdlogic : std_logic_vector(AddrBitBRAM_range); + signal memAWrite_stdlogic : std_logic_vector(memAWrite'range); + signal memARead_stdlogic : std_logic_vector(memARead'range); + signal memBAddr_stdlogic : std_logic_vector(AddrBitBRAM_range); + signal memBWrite_stdlogic : std_logic_vector(memBWrite'range); + signal memBRead_stdlogic : std_logic_vector(memBRead'range); + -- + subtype index is integer range 0 to 3; + -- + signal tOpcode_sel : index; + -- + signal inInterrupt : std_logic; begin
- -- generate a trace file.
- --
- -- This is only used in simulation to see what instructions are
- -- executed.
- --
- -- a quick & dirty regression test is then to commit trace files
- -- to CVS and compare the latest trace file against the last known
- -- good trace file
- traceFileGenerate:
- if Generate_Trace generate
- trace_file: trace port map (
- clk => clk,
- begin_inst => begin_inst,
- pc => trace_pc,
- opcode => trace_opcode,
- sp => trace_sp,
- memA => trace_topOfStack,
- memB => trace_topOfStackB,
- busy => busy,
- intsp => (others => 'U')
- );
- end generate;
-
-
-
- -- mem_writeMask is not used in this design, tie it to 1
- mem_writeMask <= (others => '1');
-
-
-
- memAAddr_stdlogic <= std_logic_vector(memAAddr(AddrBitBRAM_range));
- memAWrite_stdlogic <= std_logic_vector(memAWrite);
- memBAddr_stdlogic <= std_logic_vector(memBAddr(AddrBitBRAM_range));
- memBWrite_stdlogic <= std_logic_vector(memBWrite);
-
-
- -- dualport_ram must be defined by the application.
- --
- -- How this can be implemented is highly dependent on the FPGA
- -- and synthesis technology used.
- --
- -- sometimes it can be instantiated as in the
- -- zpu/example/helloworld.vhd, using inference,
- -- but oftentimes it must be instantiated directly
- -- portmapping to part specific FPGA resources
- --
- --
- -- DANGER!!!!!! If inference fails, then synthesis will try
- -- to implement the memory using basic logic resources. This
- -- will almost certainly cause the compiler to get "stuck"
- -- since synthesising such a huge number of basic logic resources
- -- will take more or less forever.
- --
- -- So: if your compiler gets "stuck" then inference is not
- -- the way to go.
- memory: dualport_ram port map (
- clk => clk,
- memAWriteEnable => memAWriteEnable,
- memAAddr => memAAddr_stdlogic,
- memAWrite => memAWrite_stdlogic,
- memARead => memARead_stdlogic,
- memBWriteEnable => memBWriteEnable,
- memBAddr => memBAddr_stdlogic,
- memBWrite => memBWrite_stdlogic,
- memBRead => memBRead_stdlogic
- );
- memARead <= unsigned(memARead_stdlogic);
- memBRead <= unsigned(memBRead_stdlogic);
-
-
-
- tOpcode_sel <= to_integer(pc(minAddrBit-1 downto 0));
-
-
-
- -- move out calculation of the opcode to a seperate process
- -- to make things a bit easier to read
- decodeControl:
- process(memBRead, pc,tOpcode_sel)
- variable tOpcode : std_logic_vector(OpCode_Size-1 downto 0);
- begin
-
- -- simplify opcode selection a bit so it passes more synthesizers
- case (tOpcode_sel) is
-
- when 0 => tOpcode := std_logic_vector(memBRead(31 downto 24));
-
- when 1 => tOpcode := std_logic_vector(memBRead(23 downto 16));
-
- when 2 => tOpcode := std_logic_vector(memBRead(15 downto 8));
-
- when 3 => tOpcode := std_logic_vector(memBRead(7 downto 0));
-
- when others => tOpcode := std_logic_vector(memBRead(7 downto 0));
- end case;
-
- sampledOpcode <= tOpcode;
-
- if (tOpcode(7 downto 7)=OpCode_Im) then
- sampledDecodedOpcode<=Decoded_Im;
- elsif (tOpcode(7 downto 5)=OpCode_StoreSP) then
- sampledDecodedOpcode<=Decoded_StoreSP;
- elsif (tOpcode(7 downto 5)=OpCode_LoadSP) then
- sampledDecodedOpcode<=Decoded_LoadSP;
- elsif (tOpcode(7 downto 5)=OpCode_Emulate) then
- sampledDecodedOpcode<=Decoded_Emulate;
- elsif (tOpcode(7 downto 4)=OpCode_AddSP) then
- sampledDecodedOpcode<=Decoded_AddSP;
- else
- case tOpcode(3 downto 0) is
- when OpCode_Break =>
- sampledDecodedOpcode<=Decoded_Break;
- when OpCode_PushSP =>
- sampledDecodedOpcode<=Decoded_PushSP;
- when OpCode_PopPC =>
- sampledDecodedOpcode<=Decoded_PopPC;
- when OpCode_Add =>
- sampledDecodedOpcode<=Decoded_Add;
- when OpCode_Or =>
- sampledDecodedOpcode<=Decoded_Or;
- when OpCode_And =>
- sampledDecodedOpcode<=Decoded_And;
- when OpCode_Load =>
- sampledDecodedOpcode<=Decoded_Load;
- when OpCode_Not =>
- sampledDecodedOpcode<=Decoded_Not;
- when OpCode_Flip =>
- sampledDecodedOpcode<=Decoded_Flip;
- when OpCode_Store =>
- sampledDecodedOpcode<=Decoded_Store;
- when OpCode_PopSP =>
- sampledDecodedOpcode<=Decoded_PopSP;
- when others =>
- sampledDecodedOpcode<=Decoded_Nop;
- end case;
- end if;
- end process;
-
-
- opcodeControl:
- process(clk, areset)
- variable spOffset : unsigned(4 downto 0);
- begin
- if areset = '1' then
- state <= State_Resync;
- break <= '0';
- sp <= unsigned(spStart(maxAddrBit downto minAddrBit));
- pc <= (others => '0');
- idim_flag <= '0';
- begin_inst <= '0';
- memAAddr <= (others => '0');
- memBAddr <= (others => '0');
- memAWriteEnable <= '0';
- memBWriteEnable <= '0';
- out_mem_writeEnable <= '0';
- out_mem_readEnable <= '0';
- memAWrite <= (others => '0');
- memBWrite <= (others => '0');
- inInterrupt <= '0';
- elsif (clk'event and clk = '1') then
- memAWriteEnable <= '0';
- memBWriteEnable <= '0';
- -- This saves ca. 100 LUT's, by explicitly declaring that the
- -- memAWrite can be left at whatever value if memAWriteEnable is
- -- not set.
- memAWrite <= (others => DontCareValue);
- memBWrite <= (others => DontCareValue);
--- out_mem_addr <= (others => DontCareValue);
--- mem_write <= (others => DontCareValue);
- spOffset := (others => DontCareValue);
- memAAddr <= (others => DontCareValue);
- memBAddr <= (others => DontCareValue);
-
- out_mem_writeEnable <= '0';
- out_mem_readEnable <= '0';
- begin_inst <= '0';
- out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0));
- mem_write <= std_logic_vector(memBRead);
-
- decodedOpcode <= sampledDecodedOpcode;
- opcode <= sampledOpcode;
- if interrupt='0' then
- inInterrupt <= '0'; -- no longer in an interrupt
- end if;
-
- case state is
- when State_Execute =>
- state <= State_Fetch;
- -- at this point:
- -- memBRead contains opcode word
- -- memARead contains top of stack
- pc <= pc + 1;
-
- -- trace
- begin_inst <= '1';
- trace_pc <= (others => '0');
- trace_pc(maxAddrBit downto 0) <= std_logic_vector(pc);
- trace_opcode <= opcode;
- trace_sp <= (others => '0');
- trace_sp(maxAddrBit downto minAddrBit) <= std_logic_vector(sp);
- trace_topOfStack <= std_logic_vector(memARead);
- trace_topOfStackB <= std_logic_vector(memBRead);
-
- -- during the next cycle we'll be reading the next opcode
- spOffset(4):=not opcode(4);
- spOffset(3 downto 0) := unsigned(opcode(3 downto 0));
-
- idim_flag <= '0';
- case decodedOpcode is
- when Decoded_Interrupt =>
- sp <= sp - 1;
- memAAddr <= sp - 1;
- memAWriteEnable <= '1';
- memAWrite <= (others => DontCareValue);
- memAWrite(maxAddrBit downto 0) <= pc;
- pc <= to_unsigned(32, maxAddrBit+1); -- interrupt address
- report "ZPU jumped to interrupt!" severity note;
- when Decoded_Im =>
- idim_flag <= '1';
- memAWriteEnable <= '1';
- if (idim_flag='0') then
- sp <= sp - 1;
- memAAddr <= sp-1;
- for i in wordSize-1 downto 7 loop
- memAWrite(i) <= opcode(6);
- end loop;
- memAWrite(6 downto 0) <= unsigned(opcode(6 downto 0));
- else
- memAAddr <= sp;
- memAWrite(wordSize-1 downto 7) <= memARead(wordSize-8 downto 0);
- memAWrite(6 downto 0) <= unsigned(opcode(6 downto 0));
- end if;
- when Decoded_StoreSP =>
- memBWriteEnable <= '1';
- memBAddr <= sp+spOffset;
- memBWrite <= memARead;
- sp <= sp + 1;
- state <= State_Resync;
- when Decoded_LoadSP =>
- sp <= sp - 1;
- memAAddr <= sp+spOffset;
- when Decoded_Emulate =>
- sp <= sp - 1;
- memAWriteEnable <= '1';
- memAAddr <= sp - 1;
- memAWrite <= (others => DontCareValue);
- memAWrite(maxAddrBit downto 0) <= pc + 1;
- -- The emulate address is:
- -- 98 7654 3210
- -- 0000 00aa aaa0 0000
- pc <= (others => '0');
- pc(9 downto 5) <= unsigned(opcode(4 downto 0));
- when Decoded_AddSP =>
- memAAddr <= sp;
- memBAddr <= sp+spOffset;
- state <= State_AddSP;
- when Decoded_Break =>
- report "Break instruction encountered" severity failure;
- break <= '1';
- when Decoded_PushSP =>
- memAWriteEnable <= '1';
- memAAddr <= sp - 1;
- sp <= sp - 1;
- memAWrite <= (others => DontCareValue);
- memAWrite(maxAddrBit downto minAddrBit) <= sp;
- when Decoded_PopPC =>
- pc <= memARead(maxAddrBit downto 0);
- sp <= sp + 1;
- state <= State_Resync;
- when Decoded_Add =>
- sp <= sp + 1;
- state <= State_Add;
- when Decoded_Or =>
- sp <= sp + 1;
- state <= State_Or;
- when Decoded_And =>
- sp <= sp + 1;
- state <= State_And;
- when Decoded_Load =>
- if (memARead(ioBit)='1') then
- out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0));
- out_mem_readEnable <= '1';
- state <= State_ReadIO;
- else
- memAAddr <= memARead(maxAddrBit downto minAddrBit);
- end if;
- when Decoded_Not =>
- memAAddr <= sp(maxAddrBit downto minAddrBit);
- memAWriteEnable <= '1';
- memAWrite <= not memARead;
- when Decoded_Flip =>
- memAAddr <= sp(maxAddrBit downto minAddrBit);
- memAWriteEnable <= '1';
- for i in 0 to wordSize-1 loop
- memAWrite(i) <= memARead(wordSize-1-i);
- end loop;
- when Decoded_Store =>
- memBAddr <= sp + 1;
- sp <= sp + 1;
- if (memARead(ioBit)='1') then
- state <= State_WriteIO;
- else
- state <= State_Store;
- end if;
- when Decoded_PopSP =>
- sp <= memARead(maxAddrBit downto minAddrBit);
- state <= State_Resync;
- when Decoded_Nop =>
- memAAddr <= sp;
- when others =>
- null;
- end case;
- when State_ReadIO =>
- memAAddr <= sp;
- if (in_mem_busy = '0') then
- state <= State_Fetch;
- memAWriteEnable <= '1';
- memAWrite <= unsigned(mem_read);
- end if;
- when State_WriteIO =>
- sp <= sp + 1;
- out_mem_writeEnable <= '1';
- out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0));
- mem_write <= std_logic_vector(memBRead);
- state <= State_WriteIODone;
- when State_WriteIODone =>
- if (in_mem_busy = '0') then
- state <= State_Resync;
- end if;
- when State_Fetch =>
- -- We need to resync. During the *next* cycle
- -- we'll fetch the opcode @ pc and thus it will
- -- be available for State_Execute the cycle after
- -- next
- memBAddr <= pc(maxAddrBit downto minAddrBit);
- state <= State_FetchNext;
- when State_FetchNext =>
- -- at this point memARead contains the value that is either
- -- from the top of stack or should be copied to the top of the stack
- memAWriteEnable <= '1';
- memAWrite <= memARead;
- memAAddr <= sp;
- memBAddr <= sp + 1;
- state <= State_Decode;
- when State_Decode =>
- if interrupt='1' and inInterrupt='0' and idim_flag='0' then
- -- We got an interrupt, execute interrupt instead of next instruction
- inInterrupt <= '1';
- decodedOpcode <= Decoded_Interrupt;
- end if;
- -- during the State_Execute cycle we'll be fetching SP+1
- memAAddr <= sp;
- memBAddr <= sp + 1;
- state <= State_Execute;
- when State_Store =>
- sp <= sp + 1;
- memAWriteEnable <= '1';
- memAAddr <= memARead(maxAddrBit downto minAddrBit);
- memAWrite <= memBRead;
- state <= State_Resync;
- when State_AddSP =>
- state <= State_Add;
- when State_Add =>
- memAAddr <= sp;
- memAWriteEnable <= '1';
- memAWrite <= memARead + memBRead;
- state <= State_Fetch;
- when State_Or =>
- memAAddr <= sp;
- memAWriteEnable <= '1';
- memAWrite <= memARead or memBRead;
- state <= State_Fetch;
- when State_Resync =>
- memAAddr <= sp;
- state <= State_Fetch;
- when State_And =>
- memAAddr <= sp;
- memAWriteEnable <= '1';
- memAWrite <= memARead and memBRead;
- state <= State_Fetch;
- when others =>
- null;
- end case;
-
- end if;
- end process;
+ -- generate a trace file. + -- + -- This is only used in simulation to see what instructions are + -- executed. + -- + -- a quick & dirty regression test is then to commit trace files + -- to CVS and compare the latest trace file against the last known + -- good trace file + traceFileGenerate : if Generate_Trace generate + trace_file : trace port map ( + clk => clk, + begin_inst => begin_inst, + pc => trace_pc, + opcode => trace_opcode, + sp => trace_sp, + memA => trace_topOfStack, + memB => trace_topOfStackB, + busy => busy, + intsp => (others => 'U') + ); + end generate; + + + -- mem_writeMask is not used in this design, tie it to 1 + mem_writeMask <= (others => '1'); + + + + memAAddr_stdlogic <= std_logic_vector(memAAddr(AddrBitBRAM_range)); + memAWrite_stdlogic <= std_logic_vector(memAWrite); + memBAddr_stdlogic <= std_logic_vector(memBAddr(AddrBitBRAM_range)); + memBWrite_stdlogic <= std_logic_vector(memBWrite); + + + -- dualport_ram must be defined by the application. + -- + -- How this can be implemented is highly dependent on the FPGA + -- and synthesis technology used. + -- + -- sometimes it can be instantiated as in the + -- zpu/example/helloworld.vhd, using inference, + -- but oftentimes it must be instantiated directly + -- portmapping to part specific FPGA resources + -- + -- + -- DANGER!!!!!! If inference fails, then synthesis will try + -- to implement the memory using basic logic resources. This + -- will almost certainly cause the compiler to get "stuck" + -- since synthesising such a huge number of basic logic resources + -- will take more or less forever. + -- + -- So: if your compiler gets "stuck" then inference is not + -- the way to go. + memory : dualport_ram port map ( + clk => clk, + memAWriteEnable => memAWriteEnable, + memAAddr => memAAddr_stdlogic, + memAWrite => memAWrite_stdlogic, + memARead => memARead_stdlogic, + memBWriteEnable => memBWriteEnable, + memBAddr => memBAddr_stdlogic, + memBWrite => memBWrite_stdlogic, + memBRead => memBRead_stdlogic + ); + memARead <= unsigned(memARead_stdlogic); + memBRead <= unsigned(memBRead_stdlogic); + + + + tOpcode_sel <= to_integer(pc(minAddrBit-1 downto 0)); + + + + -- move out calculation of the opcode to a seperate process + -- to make things a bit easier to read + decodeControl : process(memBRead, pc, tOpcode_sel) + variable tOpcode : std_logic_vector(OpCode_Size-1 downto 0); + begin + + -- simplify opcode selection a bit so it passes more synthesizers + case (tOpcode_sel) is + + when 0 => tOpcode := std_logic_vector(memBRead(31 downto 24)); + + when 1 => tOpcode := std_logic_vector(memBRead(23 downto 16)); + + when 2 => tOpcode := std_logic_vector(memBRead(15 downto 8)); + + when 3 => tOpcode := std_logic_vector(memBRead(7 downto 0)); + + when others => tOpcode := std_logic_vector(memBRead(7 downto 0)); + end case; + + sampledOpcode <= tOpcode; + + if (tOpcode(7 downto 7) = OpCode_Im) then + sampledDecodedOpcode <= Decoded_Im; + elsif (tOpcode(7 downto 5) = OpCode_StoreSP) then + sampledDecodedOpcode <= Decoded_StoreSP; + elsif (tOpcode(7 downto 5) = OpCode_LoadSP) then + sampledDecodedOpcode <= Decoded_LoadSP; + elsif (tOpcode(7 downto 5) = OpCode_Emulate) then + sampledDecodedOpcode <= Decoded_Emulate; + elsif (tOpcode(7 downto 4) = OpCode_AddSP) then + sampledDecodedOpcode <= Decoded_AddSP; + else + case tOpcode(3 downto 0) is + when OpCode_Break => + sampledDecodedOpcode <= Decoded_Break; + when OpCode_PushSP => + sampledDecodedOpcode <= Decoded_PushSP; + when OpCode_PopPC => + sampledDecodedOpcode <= Decoded_PopPC; + when OpCode_Add => + sampledDecodedOpcode <= Decoded_Add; + when OpCode_Or => + sampledDecodedOpcode <= Decoded_Or; + when OpCode_And => + sampledDecodedOpcode <= Decoded_And; + when OpCode_Load => + sampledDecodedOpcode <= Decoded_Load; + when OpCode_Not => + sampledDecodedOpcode <= Decoded_Not; + when OpCode_Flip => + sampledDecodedOpcode <= Decoded_Flip; + when OpCode_Store => + sampledDecodedOpcode <= Decoded_Store; + when OpCode_PopSP => + sampledDecodedOpcode <= Decoded_PopSP; + when others => + sampledDecodedOpcode <= Decoded_Nop; + end case; -- tOpcode(3 downto 0) + end if; tOpcode + end process; + + + opcodeControl: process(clk, areset) + variable spOffset : unsigned(4 downto 0); + begin + + if areset = '1' then + state <= State_Resync; + break <= '0'; + sp <= unsigned(spStart(maxAddrBit downto minAddrBit)); + pc <= (others => '0'); + idim_flag <= '0'; + begin_inst <= '0'; + memAAddr <= (others => '0'); + memBAddr <= (others => '0'); + memAWriteEnable <= '0'; + memBWriteEnable <= '0'; + out_mem_writeEnable <= '0'; + out_mem_readEnable <= '0'; + memAWrite <= (others => '0'); + memBWrite <= (others => '0'); + inInterrupt <= '0'; + + elsif (clk'event and clk = '1') then + memAWriteEnable <= '0'; + memBWriteEnable <= '0'; + -- This saves ca. 100 LUT's, by explicitly declaring that the + -- memAWrite can be left at whatever value if memAWriteEnable is + -- not set. + memAWrite <= (others => DontCareValue); + memBWrite <= (others => DontCareValue); +-- out_mem_addr <= (others => DontCareValue); +-- mem_write <= (others => DontCareValue); + spOffset := (others => DontCareValue); + memAAddr <= (others => DontCareValue); + memBAddr <= (others => DontCareValue); + + out_mem_writeEnable <= '0'; + out_mem_readEnable <= '0'; + begin_inst <= '0'; + out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0)); + mem_write <= std_logic_vector(memBRead); + + decodedOpcode <= sampledDecodedOpcode; + opcode <= sampledOpcode; + if interrupt = '0' then + inInterrupt <= '0'; -- no longer in an interrupt + end if; + + case state is + + when State_Execute => + state <= State_Fetch; + -- at this point: + -- memBRead contains opcode word + -- memARead contains top of stack + pc <= pc + 1; + + -- trace + begin_inst <= '1'; + trace_pc <= (others => '0'); + trace_pc(maxAddrBit downto 0) <= std_logic_vector(pc); + trace_opcode <= opcode; + trace_sp <= (others => '0'); + trace_sp(maxAddrBit downto minAddrBit) <= std_logic_vector(sp); + trace_topOfStack <= std_logic_vector(memARead); + trace_topOfStackB <= std_logic_vector(memBRead); + + -- during the next cycle we'll be reading the next opcode + spOffset(4) := not opcode(4); + spOffset(3 downto 0) := unsigned(opcode(3 downto 0)); + + idim_flag <= '0'; + + case decodedOpcode is + + when Decoded_Interrupt => + sp <= sp - 1; + memAAddr <= sp - 1; + memAWriteEnable <= '1'; + memAWrite <= (others => DontCareValue); + memAWrite(maxAddrBit downto 0) <= pc; + pc <= to_unsigned(32, maxAddrBit+1); -- interrupt address + report "ZPU jumped to interrupt!" severity note; + + when Decoded_Im => + idim_flag <= '1'; + memAWriteEnable <= '1'; + if (idim_flag = '0') then + sp <= sp - 1; + memAAddr <= sp-1; + for i in wordSize-1 downto 7 loop + memAWrite(i) <= opcode(6); + end loop; + memAWrite(6 downto 0) <= unsigned(opcode(6 downto 0)); + else + memAAddr <= sp; + memAWrite(wordSize-1 downto 7) <= memARead(wordSize-8 downto 0); + memAWrite(6 downto 0) <= unsigned(opcode(6 downto 0)); + end if; -- idim_flag + + when Decoded_StoreSP => + memBWriteEnable <= '1'; + memBAddr <= sp+spOffset; + memBWrite <= memARead; + sp <= sp + 1; + state <= State_Resync; + + when Decoded_LoadSP => + sp <= sp - 1; + memAAddr <= sp+spOffset; + + when Decoded_Emulate => + sp <= sp - 1; + memAWriteEnable <= '1'; + memAAddr <= sp - 1; + memAWrite <= (others => DontCareValue); + memAWrite(maxAddrBit downto 0) <= pc + 1; + -- The emulate address is: + -- 98 7654 3210 + -- 0000 00aa aaa0 0000 + pc <= (others => '0'); + pc(9 downto 5) <= unsigned(opcode(4 downto 0)); + + when Decoded_AddSP => + memAAddr <= sp; + memBAddr <= sp+spOffset; + state <= State_AddSP; + + when Decoded_Break => + report "Break instruction encountered" severity failure; + break <= '1'; + + when Decoded_PushSP => + memAWriteEnable <= '1'; + memAAddr <= sp - 1; + sp <= sp - 1; + memAWrite <= (others => DontCareValue); + memAWrite(maxAddrBit downto minAddrBit) <= sp; + + when Decoded_PopPC => + pc <= memARead(maxAddrBit downto 0); + sp <= sp + 1; + state <= State_Resync; + + when Decoded_Add => + sp <= sp + 1; + state <= State_Add; + + when Decoded_Or => + sp <= sp + 1; + state <= State_Or; + + when Decoded_And => + sp <= sp + 1; + state <= State_And; + + when Decoded_Load => + if (memARead(ioBit) = '1') then + out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0)); + out_mem_readEnable <= '1'; + state <= State_ReadIO; + else + memAAddr <= memARead(maxAddrBit downto minAddrBit); + end if; + + when Decoded_Not => + memAAddr <= sp(maxAddrBit downto minAddrBit); + memAWriteEnable <= '1'; + memAWrite <= not memARead; + + when Decoded_Flip => + memAAddr <= sp(maxAddrBit downto minAddrBit); + memAWriteEnable <= '1'; + for i in 0 to wordSize-1 loop + memAWrite(i) <= memARead(wordSize-1-i); + end loop; + + when Decoded_Store => + memBAddr <= sp + 1; + sp <= sp + 1; + if (memARead(ioBit) = '1') then + state <= State_WriteIO; + else + state <= State_Store; + end if; + + when Decoded_PopSP => + sp <= memARead(maxAddrBit downto minAddrBit); + state <= State_Resync; + + when Decoded_Nop => + memAAddr <= sp; + + when others => + null; + + end case; -- decodedOpcode + + when State_ReadIO => + memAAddr <= sp; + if (in_mem_busy = '0') then + state <= State_Fetch; + memAWriteEnable <= '1'; + memAWrite <= unsigned(mem_read); + end if; + + when State_WriteIO => + sp <= sp + 1; + out_mem_writeEnable <= '1'; + out_mem_addr <= std_logic_vector(memARead(maxAddrBitIncIO downto 0)); + mem_write <= std_logic_vector(memBRead); + state <= State_WriteIODone; + + when State_WriteIODone => + if (in_mem_busy = '0') then + state <= State_Resync; + end if; + + when State_Fetch => + -- We need to resync. During the *next* cycle + -- we'll fetch the opcode @ pc and thus it will + -- be available for State_Execute the cycle after + -- next + memBAddr <= pc(maxAddrBit downto minAddrBit); + state <= State_FetchNext; + + when State_FetchNext => + -- at this point memARead contains the value that is either + -- from the top of stack or should be copied to the top of the stack + memAWriteEnable <= '1'; + memAWrite <= memARead; + memAAddr <= sp; + memBAddr <= sp + 1; + state <= State_Decode; + + when State_Decode => + if interrupt = '1' and inInterrupt = '0' and idim_flag = '0' then + -- We got an interrupt, execute interrupt instead of next instruction + inInterrupt <= '1'; + decodedOpcode <= Decoded_Interrupt; + end if; + -- during the State_Execute cycle we'll be fetching SP+1 + memAAddr <= sp; + memBAddr <= sp + 1; + state <= State_Execute; + + when State_Store => + sp <= sp + 1; + memAWriteEnable <= '1'; + memAAddr <= memARead(maxAddrBit downto minAddrBit); + memAWrite <= memBRead; + state <= State_Resync; + + when State_AddSP => + state <= State_Add; + + when State_Add => + memAAddr <= sp; + memAWriteEnable <= '1'; + memAWrite <= memARead + memBRead; + state <= State_Fetch; + + when State_Or => + memAAddr <= sp; + memAWriteEnable <= '1'; + memAWrite <= memARead or memBRead; + state <= State_Fetch; + + when State_Resync => + memAAddr <= sp; + state <= State_Fetch; + + when State_And => + memAAddr <= sp; + memAWriteEnable <= '1'; + memAWrite <= memARead and memBRead; + state <= State_Fetch; + + when others => + null; + + end case; -- state + + end if; -- reset, enable + end process; diff --git a/zpu/hdl/zpu4/core/zpupkg.vhd b/zpu/hdl/zpu4/core/zpupkg.vhd index 59d26e5..f6823f5 100644 --- a/zpu/hdl/zpu4/core/zpupkg.vhd +++ b/zpu/hdl/zpu4/core/zpupkg.vhd @@ -32,173 +32,187 @@ -- are those of the authors and should not be interpreted as representing
-- official policies, either expressed or implied, of the ZPU Project.
-library IEEE;
-use IEEE.STD_LOGIC_1164.all;
+library ieee; +use ieee.std_logic_1164.all; use ieee.numeric_std.all;
library work;
use work.zpu_config.all;
+ package zpupkg is
- -- This bit is set for read/writes to IO
- -- FIX!!! eventually this should be set to wordSize-1 so as to
- -- to make the address of IO independent of amount of memory
- -- reserved for CPU. Requires trivial tweaks in toolchain/runtime
- -- libraries.
-
- constant byteBits : integer := wordPower-3; -- # of bits in a word that addresses bytes
- constant maxAddrBit : integer := maxAddrBitIncIO-1;
- constant ioBit : integer := maxAddrBit+1;
- constant wordSize : integer := 2**wordPower;
- constant wordBytes : integer := wordSize/8;
- constant minAddrBit : integer := byteBits;
- -- configurable internal stack size. Probably going to be 16 after toolchain is done
- constant stack_bits : integer := 5;
- constant stack_size : integer := 2**stack_bits;
-
-
- component dualport_ram is
- port (clk : in std_logic;
- memAWriteEnable : in std_logic;
- memAAddr : in std_logic_vector(maxAddrBitBRAM downto minAddrBit);
- memAWrite : in std_logic_vector(wordSize-1 downto 0);
- memARead : out std_logic_vector(wordSize-1 downto 0);
- memBWriteEnable : in std_logic;
- memBAddr : in std_logic_vector(maxAddrBitBRAM downto minAddrBit);
- memBWrite : in std_logic_vector(wordSize-1 downto 0);
- memBRead : out std_logic_vector(wordSize-1 downto 0));
- end component;
-
-
- component dram is
- port (clk : in std_logic;
- areset : in std_logic;
- mem_writeEnable : in std_logic;
- mem_readEnable : in std_logic;
- mem_addr : in std_logic_vector(maxAddrBit downto 0);
- mem_write : in std_logic_vector(wordSize-1 downto 0);
- mem_read : out std_logic_vector(wordSize-1 downto 0);
- mem_busy : out std_logic;
- mem_writeMask : in std_logic_vector(wordBytes-1 downto 0));
- end component;
-
-
- component trace is
- port(
- clk : in std_logic;
- begin_inst : in std_logic;
- pc : in std_logic_vector(maxAddrBitIncIO downto 0);
- opcode : in std_logic_vector(7 downto 0);
- sp : in std_logic_vector(maxAddrBitIncIO downto minAddrBit);
- memA : in std_logic_vector(wordSize-1 downto 0);
- memB : in std_logic_vector(wordSize-1 downto 0);
- busy : in std_logic;
- intSp : in std_logic_vector(stack_bits-1 downto 0)
- );
- end component;
-
- component zpu_core is
- port ( clk : in std_logic;
- areset : in std_logic;
- enable : in std_logic;
- in_mem_busy : in std_logic;
- mem_read : in std_logic_vector(wordSize-1 downto 0);
- mem_write : out std_logic_vector(wordSize-1 downto 0);
- out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0);
- out_mem_writeEnable : out std_logic;
- out_mem_readEnable : out std_logic;
- mem_writeMask: out std_logic_vector(wordBytes-1 downto 0);
- interrupt : in std_logic;
- break : out std_logic);
- end component;
-
-
-
- component timer is
- port(
- clk : in std_logic;
- areset : in std_logic;
- we : in std_logic;
- din : in std_logic_vector(7 downto 0);
- adr : in std_logic_vector(2 downto 0);
- dout : out std_logic_vector(7 downto 0));
- end component;
-
- component zpuio is
- port ( areset : in std_logic;
- cpu_clk : in std_logic;
- clk_status : in std_logic_vector(2 downto 0);
- cpu_din : in std_logic_vector(15 downto 0);
- cpu_a : in std_logic_vector(20 downto 0);
- cpu_we : in std_logic_vector(1 downto 0);
- cpu_re : in std_logic;
- cpu_dout : inout std_logic_vector(15 downto 0));
- end component;
-
-
-
-
- -- opcode decode constants
- constant OpCode_Im : std_logic_vector(7 downto 7) := "1";
- constant OpCode_StoreSP : std_logic_vector(7 downto 5) := "010";
- constant OpCode_LoadSP : std_logic_vector(7 downto 5) := "011";
- constant OpCode_Emulate : std_logic_vector(7 downto 5) := "001";
- constant OpCode_AddSP : std_logic_vector(7 downto 4) := "0001";
- constant OpCode_Short : std_logic_vector(7 downto 4) := "0000";
-
- constant OpCode_Break : std_logic_vector(3 downto 0) := "0000";
- constant OpCode_NA4 : std_logic_vector(3 downto 0) := "0001";
- constant OpCode_PushSP : std_logic_vector(3 downto 0) := "0010";
- constant OpCode_NA3 : std_logic_vector(3 downto 0) := "0011";
-
- constant OpCode_PopPC : std_logic_vector(3 downto 0) := "0100";
- constant OpCode_Add : std_logic_vector(3 downto 0) := "0101";
- constant OpCode_And : std_logic_vector(3 downto 0) := "0110";
- constant OpCode_Or : std_logic_vector(3 downto 0) := "0111";
-
- constant OpCode_Load : std_logic_vector(3 downto 0) := "1000";
- constant OpCode_Not : std_logic_vector(3 downto 0) := "1001";
- constant OpCode_Flip : std_logic_vector(3 downto 0) := "1010";
- constant OpCode_Nop : std_logic_vector(3 downto 0) := "1011";
-
- constant OpCode_Store : std_logic_vector(3 downto 0) := "1100";
- constant OpCode_PopSP : std_logic_vector(3 downto 0) := "1101";
- constant OpCode_NA2 : std_logic_vector(3 downto 0) := "1110";
- constant OpCode_NA : std_logic_vector(3 downto 0) := "1111";
-
- constant OpCode_Lessthan : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(36, 6));
- constant OpCode_Lessthanorequal : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(37, 6));
- constant OpCode_Ulessthan : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(38, 6));
- constant OpCode_Ulessthanorequal : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(39, 6));
-
- constant OpCode_Swap : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(40, 6));
- constant OpCode_Mult : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(41, 6));
-
- constant OpCode_Lshiftright : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(42, 6));
- constant OpCode_Ashiftleft : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(43, 6));
- constant OpCode_Ashiftright : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(44, 6));
- constant OpCode_Call : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(45, 6));
-
- constant OpCode_Eq : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(46, 6));
- constant OpCode_Neq : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(47, 6));
-
- constant OpCode_Sub : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(49, 6));
- constant OpCode_Loadb : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(51, 6));
- constant OpCode_Storeb : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(52, 6));
-
- constant OpCode_Eqbranch : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(55, 6));
- constant OpCode_Neqbranch : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(56, 6));
- constant OpCode_Poppcrel : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(57, 6));
-
- constant OpCode_Pushspadd : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(61, 6));
- constant OpCode_Mult16x16 : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(62, 6));
- constant OpCode_Callpcrel : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(63, 6));
-
-
-
- constant OpCode_Size : integer := 8;
-
-
-
+ -- This bit is set for read/writes to IO + -- FIX!!! eventually this should be set to wordSize-1 so as to + -- to make the address of IO independent of amount of memory + -- reserved for CPU. Requires trivial tweaks in toolchain/runtime + -- libraries. + + constant byteBits : integer := wordPower-3; -- # of bits in a word that addresses bytes + constant maxAddrBit : integer := maxAddrBitIncIO-1; + constant ioBit : integer := maxAddrBit+1; + constant wordSize : integer := 2**wordPower; + constant wordBytes : integer := wordSize/8; + constant minAddrBit : integer := byteBits; + -- configurable internal stack size. Probably going to be 16 after toolchain is done + constant stack_bits : integer := 5; + constant stack_size : integer := 2**stack_bits; + + + ------------------------------------------------------------ + -- components + + component dualport_ram is + port ( + clk : in std_logic; + memAWriteEnable : in std_logic; + memAAddr : in std_logic_vector(maxAddrBitBRAM downto minAddrBit); + memAWrite : in std_logic_vector(wordSize-1 downto 0); + memARead : out std_logic_vector(wordSize-1 downto 0); + memBWriteEnable : in std_logic; + memBAddr : in std_logic_vector(maxAddrBitBRAM downto minAddrBit); + memBWrite : in std_logic_vector(wordSize-1 downto 0); + memBRead : out std_logic_vector(wordSize-1 downto 0) + ); + end component dualport_ram; + + + component dram is + port ( + clk : in std_logic; + areset : in std_logic; + mem_writeEnable : in std_logic; + mem_readEnable : in std_logic; + mem_addr : in std_logic_vector(maxAddrBit downto 0); + mem_write : in std_logic_vector(wordSize-1 downto 0); + mem_read : out std_logic_vector(wordSize-1 downto 0); + mem_busy : out std_logic; + mem_writeMask : in std_logic_vector(wordBytes-1 downto 0) + ); + end component dram; + + + component trace is + port ( + clk : in std_logic; + begin_inst : in std_logic; + pc : in std_logic_vector(maxAddrBitIncIO downto 0); + opcode : in std_logic_vector(7 downto 0); + sp : in std_logic_vector(maxAddrBitIncIO downto minAddrBit); + memA : in std_logic_vector(wordSize-1 downto 0); + memB : in std_logic_vector(wordSize-1 downto 0); + busy : in std_logic; + intSp : in std_logic_vector(stack_bits-1 downto 0) + ); + end component trace; + + + component zpu_core is + port ( + clk : in std_logic; + areset : in std_logic; + enable : in std_logic; + in_mem_busy : in std_logic; + mem_read : in std_logic_vector(wordSize-1 downto 0); + mem_write : out std_logic_vector(wordSize-1 downto 0); + out_mem_addr : out std_logic_vector(maxAddrBitIncIO downto 0); + out_mem_writeEnable : out std_logic; + out_mem_readEnable : out std_logic; + mem_writeMask : out std_logic_vector(wordBytes-1 downto 0); + interrupt : in std_logic; + break : out std_logic + ); + end component zpu_core; + + + component timer is + port ( + clk : in std_logic; + areset : in std_logic; + we : in std_logic; + din : in std_logic_vector(7 downto 0); + adr : in std_logic_vector(2 downto 0); + dout : out std_logic_vector(7 downto 0) + ); + end component timer; + + + component zpuio is + port ( + areset : in std_logic; + cpu_clk : in std_logic; + clk_status : in std_logic_vector(2 downto 0); + cpu_din : in std_logic_vector(15 downto 0); + cpu_a : in std_logic_vector(20 downto 0); + cpu_we : in std_logic_vector(1 downto 0); + cpu_re : in std_logic; + cpu_dout : inout std_logic_vector(15 downto 0) + ); + end component zpuio; + + + ------------------------------------------------------------ + -- constants + + -- opcode decode constants + constant OpCode_Im : std_logic_vector(7 downto 7) := "1"; + constant OpCode_StoreSP : std_logic_vector(7 downto 5) := "010"; + constant OpCode_LoadSP : std_logic_vector(7 downto 5) := "011"; + constant OpCode_Emulate : std_logic_vector(7 downto 5) := "001"; + constant OpCode_AddSP : std_logic_vector(7 downto 4) := "0001"; + constant OpCode_Short : std_logic_vector(7 downto 4) := "0000"; + -- + constant OpCode_Break : std_logic_vector(3 downto 0) := "0000"; + constant OpCode_NA4 : std_logic_vector(3 downto 0) := "0001"; + constant OpCode_PushSP : std_logic_vector(3 downto 0) := "0010"; + constant OpCode_NA3 : std_logic_vector(3 downto 0) := "0011"; + -- + constant OpCode_PopPC : std_logic_vector(3 downto 0) := "0100"; + constant OpCode_Add : std_logic_vector(3 downto 0) := "0101"; + constant OpCode_And : std_logic_vector(3 downto 0) := "0110"; + constant OpCode_Or : std_logic_vector(3 downto 0) := "0111"; + -- + constant OpCode_Load : std_logic_vector(3 downto 0) := "1000"; + constant OpCode_Not : std_logic_vector(3 downto 0) := "1001"; + constant OpCode_Flip : std_logic_vector(3 downto 0) := "1010"; + constant OpCode_Nop : std_logic_vector(3 downto 0) := "1011"; + -- + constant OpCode_Store : std_logic_vector(3 downto 0) := "1100"; + constant OpCode_PopSP : std_logic_vector(3 downto 0) := "1101"; + constant OpCode_NA2 : std_logic_vector(3 downto 0) := "1110"; + constant OpCode_NA : std_logic_vector(3 downto 0) := "1111"; + -- + constant OpCode_Lessthan : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(36, 6)); + constant OpCode_Lessthanorequal : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(37, 6)); + constant OpCode_Ulessthan : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(38, 6)); + constant OpCode_Ulessthanorequal : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(39, 6)); + -- + constant OpCode_Swap : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(40, 6)); + constant OpCode_Mult : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(41, 6)); + -- + constant OpCode_Lshiftright : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(42, 6)); + constant OpCode_Ashiftleft : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(43, 6)); + constant OpCode_Ashiftright : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(44, 6)); + constant OpCode_Call : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(45, 6)); + -- + constant OpCode_Eq : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(46, 6)); + constant OpCode_Neq : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(47, 6)); + -- + constant OpCode_Sub : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(49, 6)); + constant OpCode_Loadb : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(51, 6)); + constant OpCode_Storeb : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(52, 6)); + -- + constant OpCode_Eqbranch : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(55, 6)); + constant OpCode_Neqbranch : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(56, 6)); + constant OpCode_Poppcrel : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(57, 6)); + -- + constant OpCode_Pushspadd : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(61, 6)); + constant OpCode_Mult16x16 : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(62, 6)); + constant OpCode_Callpcrel : std_logic_vector(5 downto 0) := std_logic_vector(to_unsigned(63, 6)); + -- + -- + constant OpCode_Size : integer := 8; + + + end zpupkg;
|