summaryrefslogtreecommitdiffstats
path: root/xmrstak/net/msgstruct.hpp
blob: a5affc81d1d36612da9545deaeddd80c3d73358b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#pragma once

#include <string>
#include <string.h>
#include <assert.h>

// Structures that we use to pass info between threads constructors are here just to make
// the stack allocation take up less space, heap is a shared resouce that needs locks too of course

struct pool_job
{
	char		sJobID[64];
	uint8_t		bWorkBlob[112];
	uint64_t	iTarget;
	uint32_t	iWorkLen;
	uint32_t	iSavedNonce;

	pool_job() : iWorkLen(0), iSavedNonce(0) {}
	pool_job(const char* sJobID, uint64_t iTarget, const uint8_t* bWorkBlob, uint32_t iWorkLen) :
		iTarget(iTarget), iWorkLen(iWorkLen), iSavedNonce(0)
	{
		assert(iWorkLen <= sizeof(pool_job::bWorkBlob));
		memcpy(this->sJobID, sJobID, sizeof(pool_job::sJobID));
		memcpy(this->bWorkBlob, bWorkBlob, iWorkLen);
	}
};

struct job_result
{
	uint8_t		bResult[32];
	char		sJobID[64];
	uint32_t	iNonce;
	uint32_t	iThreadId;

	job_result() {}
	job_result(const char* sJobID, uint32_t iNonce, const uint8_t* bResult, uint32_t iThreadId) : iNonce(iNonce), iThreadId(iThreadId)
	{
		memcpy(this->sJobID, sJobID, sizeof(job_result::sJobID));
		memcpy(this->bResult, bResult, sizeof(job_result::bResult));
	}
};

struct sock_err
{
	std::string sSocketError;
	bool silent;

	sock_err() {}
	sock_err(std::string&& err, bool silent) : sSocketError(std::move(err)), silent(silent) { }
	sock_err(sock_err&& from) : sSocketError(std::move(from.sSocketError)), silent(from.silent) {}

	sock_err& operator=(sock_err&& from)
	{
		assert(this != &from);
		sSocketError = std::move(from.sSocketError);
		silent = from.silent;
		return *this;
	}

	~sock_err() { }

	sock_err(sock_err const&) = delete;
	sock_err& operator=(sock_err const&) = delete;
};

// Unlike socket errors, GPU errors are read-only strings
struct gpu_res_err
{
	const char* error_str;
	gpu_res_err(const char* error_str) : error_str(error_str) {}
};

enum ex_event_name { EV_INVALID_VAL, EV_SOCK_READY, EV_SOCK_ERROR, EV_GPU_RES_ERROR,
	EV_POOL_HAVE_JOB, EV_MINER_HAVE_RESULT, EV_PERF_TICK, EV_EVAL_POOL_CHOICE, 
	EV_USR_HASHRATE, EV_USR_RESULTS, EV_USR_CONNSTAT, EV_HASHRATE_LOOP, 
	EV_HTML_HASHRATE, EV_HTML_RESULTS, EV_HTML_CONNSTAT, EV_HTML_JSON };

/*
   This is how I learned to stop worrying and love c++11 =).
   Ghosts of endless heap allocations have finally been exorcised. Thanks
   to the nifty magic of move semantics, string will only be allocated
   once on the heap. Considering that it makes a jorney across stack,
   heap alloced queue, to another stack before being finally processed
   I think it is kind of nifty, don't you?
   Also note that for non-arg events we only copy two qwords
*/

struct ex_event
{
	ex_event_name iName;
	size_t iPoolId;

	union
	{
		pool_job oPoolJob;
		job_result oJobResult;
		sock_err oSocketError;
		gpu_res_err oGpuError;
	};

	ex_event() { iName = EV_INVALID_VAL; iPoolId = 0;}
	ex_event(const char* gpu_err, size_t id) : iName(EV_GPU_RES_ERROR), iPoolId(id), oGpuError(gpu_err) {}
	ex_event(std::string&& err, bool silent, size_t id) : iName(EV_SOCK_ERROR), iPoolId(id), oSocketError(std::move(err), silent) { }
	ex_event(job_result dat, size_t id) : iName(EV_MINER_HAVE_RESULT), iPoolId(id), oJobResult(dat) {}
	ex_event(pool_job dat, size_t id) : iName(EV_POOL_HAVE_JOB), iPoolId(id), oPoolJob(dat) {}
	ex_event(ex_event_name ev, size_t id = 0) : iName(ev), iPoolId(id) {}

	// Delete the copy operators to make sure we are moving only what is needed
	ex_event(ex_event const&) = delete;
	ex_event& operator=(ex_event const&) = delete;

	ex_event(ex_event&& from)
	{
		iName = from.iName;
		iPoolId = from.iPoolId;

		switch(iName)
		{
		case EV_SOCK_ERROR:
			new (&oSocketError) sock_err(std::move(from.oSocketError));
			break;
		case EV_MINER_HAVE_RESULT:
			oJobResult = from.oJobResult;
			break;
		case EV_POOL_HAVE_JOB:
			oPoolJob = from.oPoolJob;
			break;
		case EV_GPU_RES_ERROR:
			oGpuError = from.oGpuError;
		default:
			break;
		}
	}

	ex_event& operator=(ex_event&& from)
	{
		assert(this != &from);

		if(iName == EV_SOCK_ERROR)
			oSocketError.~sock_err();

		iName = from.iName;
		iPoolId = from.iPoolId;

		switch(iName)
		{
		case EV_SOCK_ERROR:
			new (&oSocketError) sock_err();
			oSocketError = std::move(from.oSocketError);
			break;
		case EV_MINER_HAVE_RESULT:
			oJobResult = from.oJobResult;
			break;
		case EV_POOL_HAVE_JOB:
			oPoolJob = from.oPoolJob;
			break;
		case EV_GPU_RES_ERROR:
			oGpuError = from.oGpuError;
		default:
			break;
		}

		return *this;
	}

	~ex_event()
	{
		if(iName == EV_SOCK_ERROR)
			oSocketError.~sock_err();
	}
};

#include <chrono>
//Get steady_clock timestamp - misc helper function
inline size_t get_timestamp()
{
	using namespace std::chrono;
	return time_point_cast<seconds>(steady_clock::now()).time_since_epoch().count();
};

//Get milisecond timestamp
inline size_t get_timestamp_ms()
{
	using namespace std::chrono;
	if(high_resolution_clock::is_steady)
		return time_point_cast<milliseconds>(high_resolution_clock::now()).time_since_epoch().count();
	else
		return time_point_cast<milliseconds>(steady_clock::now()).time_since_epoch().count();
}
OpenPOWER on IntegriCloud