#include #include #include #include #include #include #include #include #include #include "xmrstak/jconf.hpp" #ifdef __CUDACC__ __constant__ #else const #endif uint64_t keccakf_rndc[24] ={ 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; typedef unsigned char BitSequence; typedef unsigned long long DataLength; #include "xmrstak/backend/cryptonight.hpp" #include "cryptonight.hpp" #include "cuda_extra.hpp" #include "cuda_keccak.hpp" #include "cuda_blake.hpp" #include "cuda_groestl.hpp" #include "cuda_jh.hpp" #include "cuda_skein.hpp" #include "cuda_device.hpp" #include "cuda_aes.hpp" __constant__ uint8_t d_sub_byte[16][16] ={ {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 }, {0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 }, {0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 }, {0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 }, {0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 }, {0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf }, {0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 }, {0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 }, {0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 }, {0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb }, {0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 }, {0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 }, {0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a }, {0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e }, {0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf }, {0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 } }; __device__ __forceinline__ void cryptonight_aes_set_key( uint32_t * __restrict__ key, const uint32_t * __restrict__ data ) { int i, j; uint8_t temp[4]; const uint32_t aes_gf[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; MEMSET4( key, 0, 40 ); MEMCPY4( key, data, 8 ); #pragma unroll for ( i = 8; i < 40; i++ ) { *(uint32_t *) temp = key[i - 1]; if ( i % 8 == 0 ) { *(uint32_t *) temp = ROTR32( *(uint32_t *) temp, 8 ); for ( j = 0; j < 4; j++ ) temp[j] = d_sub_byte[( temp[j] >> 4 ) & 0x0f][temp[j] & 0x0f]; *(uint32_t *) temp ^= aes_gf[i / 8 - 1]; } else { if ( i % 8 == 4 ) { #pragma unroll for ( j = 0; j < 4; j++ ) temp[j] = d_sub_byte[( temp[j] >> 4 ) & 0x0f][temp[j] & 0x0f]; } } key[i] = key[( i - 8 )] ^ *(uint32_t *) temp; } } __device__ __forceinline__ void mix_and_propagate( uint32_t* state ) { uint32_t tmp0[4]; for(size_t x = 0; x < 4; ++x) tmp0[x] = (state)[x]; // set destination [0,6] for(size_t t = 0; t < 7; ++t) for(size_t x = 0; x < 4; ++x) (state + 4 * t)[x] = (state + 4 * t)[x] ^ (state + 4 * (t + 1))[x]; // set destination 7 for(size_t x = 0; x < 4; ++x) (state + 4 * 7)[x] = (state + 4 * 7)[x] ^ tmp0[x]; } template __global__ void cryptonight_extra_gpu_prepare( int threads, uint32_t * __restrict__ d_input, uint32_t len, uint32_t startNonce, uint32_t * __restrict__ d_ctx_state, uint32_t * __restrict__ d_ctx_state2, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b, uint32_t * __restrict__ d_ctx_key1, uint32_t * __restrict__ d_ctx_key2 ) { int thread = ( blockDim.x * blockIdx.x + threadIdx.x ); __shared__ uint32_t sharedMemory[1024]; if(ALGO == cryptonight_heavy) { cn_aes_gpu_init( sharedMemory ); __syncthreads( ); } if ( thread >= threads ) return; uint32_t ctx_state[50]; uint32_t ctx_a[4]; uint32_t ctx_b[4]; uint32_t ctx_key1[40]; uint32_t ctx_key2[40]; uint32_t input[21]; memcpy( input, d_input, len ); //*((uint32_t *)(((char *)input) + 39)) = startNonce + thread; uint32_t nonce = startNonce + thread; for ( int i = 0; i < sizeof (uint32_t ); ++i ) ( ( (char *) input ) + 39 )[i] = ( (char*) ( &nonce ) )[i]; //take care of pointer alignment cn_keccak( (uint8_t *) input, len, (uint8_t *) ctx_state ); cryptonight_aes_set_key( ctx_key1, ctx_state ); cryptonight_aes_set_key( ctx_key2, ctx_state + 8 ); XOR_BLOCKS_DST( ctx_state, ctx_state + 8, ctx_a ); XOR_BLOCKS_DST( ctx_state + 4, ctx_state + 12, ctx_b ); memcpy( d_ctx_a + thread * 4, ctx_a, 4 * 4 ); memcpy( d_ctx_b + thread * 4, ctx_b, 4 * 4 ); memcpy( d_ctx_key1 + thread * 40, ctx_key1, 40 * 4 ); memcpy( d_ctx_key2 + thread * 40, ctx_key2, 40 * 4 ); memcpy( d_ctx_state + thread * 50, ctx_state, 50 * 4 ); if(ALGO == cryptonight_heavy) { for(int i=0; i < 16; i++) { for(size_t t = 4; t < 12; ++t) { cn_aes_pseudo_round_mut( sharedMemory, ctx_state + 4u * t, ctx_key1 ); } // scipt first 4 * 128bit blocks = 4 * 4 uint32_t values mix_and_propagate(ctx_state + 4 * 4); } // double buffer to move manipulated state into phase1 memcpy( d_ctx_state2 + thread * 50, ctx_state, 50 * 4 ); } } template __global__ void cryptonight_extra_gpu_final( int threads, uint64_t target, uint32_t* __restrict__ d_res_count, uint32_t * __restrict__ d_res_nonce, uint32_t * __restrict__ d_ctx_state,uint32_t * __restrict__ d_ctx_key2 ) { const int thread = blockDim.x * blockIdx.x + threadIdx.x; __shared__ uint32_t sharedMemory[1024]; if(ALGO == cryptonight_heavy) { cn_aes_gpu_init( sharedMemory ); __syncthreads( ); } if ( thread >= threads ) return; int i; uint32_t * __restrict__ ctx_state = d_ctx_state + thread * 50; uint64_t hash[4]; uint32_t state[50]; #pragma unroll for ( i = 0; i < 50; i++ ) state[i] = ctx_state[i]; if(ALGO == cryptonight_heavy) { uint32_t key[40]; // load keys MEMCPY8( key, d_ctx_key2 + thread * 40, 20 ); for(int i=0; i < 16; i++) { for(size_t t = 4; t < 12; ++t) { cn_aes_pseudo_round_mut( sharedMemory, state + 4u * t, key ); } // scipt first 4 * 128bit blocks = 4 * 4 uint32_t values mix_and_propagate(state + 4 * 4); } } cn_keccakf2( (uint64_t *) state ); switch ( ( (uint8_t *) state )[0] & 0x03 ) { case 0: cn_blake( (const uint8_t *) state, 200, (uint8_t *) hash ); break; case 1: cn_groestl( (const BitSequence *) state, 200, (BitSequence *) hash ); break; case 2: cn_jh( (const BitSequence *) state, 200, (BitSequence *) hash ); break; case 3: cn_skein( (const BitSequence *) state, 200, (BitSequence *) hash ); break; default: break; } // Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values // and expect an accurate result for target > 32-bit without implementing carries if ( hash[3] < target ) { uint32_t idx = atomicInc( d_res_count, 0xFFFFFFFF ); if(idx < 10) d_res_nonce[idx] = thread; } } extern "C" void cryptonight_extra_cpu_set_data( nvid_ctx* ctx, const void *data, uint32_t len ) { ctx->inputlen = len; CUDA_CHECK(ctx->device_id, cudaMemcpy( ctx->d_input, data, len, cudaMemcpyHostToDevice )); } extern "C" int cryptonight_extra_cpu_init(nvid_ctx* ctx) { cudaError_t err; err = cudaSetDevice(ctx->device_id); if(err != cudaSuccess) { printf("GPU %d: %s", ctx->device_id, cudaGetErrorString(err)); return 0; } CUDA_CHECK(ctx->device_id, cudaDeviceReset()); switch(ctx->syncMode) { case 0: CUDA_CHECK(ctx->device_id, cudaSetDeviceFlags(cudaDeviceScheduleAuto)); break; case 1: CUDA_CHECK(ctx->device_id, cudaSetDeviceFlags(cudaDeviceScheduleSpin)); break; case 2: CUDA_CHECK(ctx->device_id, cudaSetDeviceFlags(cudaDeviceScheduleYield)); break; case 3: CUDA_CHECK(ctx->device_id, cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); break; }; const int gpuArch = ctx->device_arch[0] * 10 + ctx->device_arch[1]; /* Disable L1 cache for GPUs before Volta. * L1 speed is increased and latency reduced with Volta. */ if(gpuArch < 70) CUDA_CHECK(ctx->device_id, cudaDeviceSetCacheConfig(cudaFuncCachePreferL1)); size_t hashMemSize = std::max( cn_select_memory(::jconf::inst()->GetMiningAlgo()), cn_select_memory(::jconf::inst()->GetMiningAlgoRoot()) ); size_t wsize = ctx->device_blocks * ctx->device_threads; CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_state, 50 * sizeof(uint32_t) * wsize)); size_t ctx_b_size = 4 * sizeof(uint32_t) * wsize; if(cryptonight_heavy == ::jconf::inst()->GetMiningAlgo()) { // extent ctx_b to hold the state of idx0 ctx_b_size += sizeof(uint32_t) * wsize; // create a double buffer for the state to exchange the mixed state to phase1 CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_state2, 50 * sizeof(uint32_t) * wsize)); } else ctx->d_ctx_state2 = ctx->d_ctx_state; CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_key1, 40 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_key2, 40 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_text, 32 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_a, 4 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_b, ctx_b_size)); // POW block format http://monero.wikia.com/wiki/PoW_Block_Header_Format CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_input, 21 * sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_result_count, sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_result_nonce, 10 * sizeof (uint32_t ) )); CUDA_CHECK_MSG( ctx->device_id, "\n**suggestion: Try to reduce the value of the attribute 'threads' in the NVIDIA config file.**", cudaMalloc(&ctx->d_long_state, hashMemSize * wsize)); return 1; } extern "C" void cryptonight_extra_cpu_prepare(nvid_ctx* ctx, uint32_t startNonce, xmrstak_algo miner_algo) { int threadsperblock = 128; uint32_t wsize = ctx->device_blocks * ctx->device_threads; dim3 grid( ( wsize + threadsperblock - 1 ) / threadsperblock ); dim3 block( threadsperblock ); if(miner_algo == cryptonight_heavy) { CUDA_CHECK_KERNEL(ctx->device_id, cryptonight_extra_gpu_prepare<<>>( wsize, ctx->d_input, ctx->inputlen, startNonce, ctx->d_ctx_state,ctx->d_ctx_state2, ctx->d_ctx_a, ctx->d_ctx_b, ctx->d_ctx_key1, ctx->d_ctx_key2 )); } else { /* pass two times d_ctx_state because the second state is used later in phase1, * the first is used than in phase3 */ CUDA_CHECK_KERNEL(ctx->device_id, cryptonight_extra_gpu_prepare<<>>( wsize, ctx->d_input, ctx->inputlen, startNonce, ctx->d_ctx_state, ctx->d_ctx_state, ctx->d_ctx_a, ctx->d_ctx_b, ctx->d_ctx_key1, ctx->d_ctx_key2 )); } } extern "C" void cryptonight_extra_cpu_final(nvid_ctx* ctx, uint32_t startNonce, uint64_t target, uint32_t* rescount, uint32_t *resnonce,xmrstak_algo miner_algo) { int threadsperblock = 128; uint32_t wsize = ctx->device_blocks * ctx->device_threads; dim3 grid( ( wsize + threadsperblock - 1 ) / threadsperblock ); dim3 block( threadsperblock ); CUDA_CHECK(ctx->device_id, cudaMemset( ctx->d_result_nonce, 0xFF, 10 * sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMemset( ctx->d_result_count, 0, sizeof (uint32_t ) )); if(miner_algo == cryptonight_heavy) { CUDA_CHECK_MSG_KERNEL( ctx->device_id, "\n**suggestion: Try to increase the value of the attribute 'bfactor' in the NVIDIA config file.**", cryptonight_extra_gpu_final<<>>( wsize, target, ctx->d_result_count, ctx->d_result_nonce, ctx->d_ctx_state,ctx->d_ctx_key2 ) ); } else { // fallback for all other algorithms CUDA_CHECK_MSG_KERNEL( ctx->device_id, "\n**suggestion: Try to increase the value of the attribute 'bfactor' in the NVIDIA config file.**", cryptonight_extra_gpu_final<<>>( wsize, target, ctx->d_result_count, ctx->d_result_nonce, ctx->d_ctx_state,ctx->d_ctx_key2 ) ); } CUDA_CHECK(ctx->device_id, cudaMemcpy( rescount, ctx->d_result_count, sizeof (uint32_t ), cudaMemcpyDeviceToHost )); CUDA_CHECK(ctx->device_id, cudaMemcpy( resnonce, ctx->d_result_nonce, 10 * sizeof (uint32_t ), cudaMemcpyDeviceToHost )); /* There is only a 32bit limit for the counter on the device side * therefore this value can be greater than 10, in that case limit rescount * to 10 entries. */ if(*rescount > 10) *rescount = 10; for(int i=0; i < *rescount; i++) resnonce[i] += startNonce; } extern "C" int cuda_get_devicecount( int* deviceCount) { cudaError_t err; *deviceCount = 0; err = cudaGetDeviceCount(deviceCount); if(err != cudaSuccess) { if(err == cudaErrorNoDevice) printf("ERROR: NVIDIA no CUDA device found!\n"); else if(err == cudaErrorInsufficientDriver) printf("WARNING: NVIDIA Insufficient driver!\n"); else printf("WARNING: NVIDIA Unable to query number of CUDA devices!\n"); return 0; } return 1; } /** get device information * * @return 0 = all OK, * 1 = something went wrong, * 2 = gpu cannot be selected, * 3 = context cannot be created * 4 = not enough memory * 5 = architecture not supported (not compiled for the gpu architecture) */ extern "C" int cuda_get_deviceinfo(nvid_ctx* ctx) { cudaError_t err; int version; err = cudaDriverGetVersion(&version); if(err != cudaSuccess) { printf("Unable to query CUDA driver version! Is an nVidia driver installed?\n"); return 1; } if(version < CUDART_VERSION) { printf("Driver does not support CUDA %d.%d API! Update your nVidia driver!\n", CUDART_VERSION / 1000, (CUDART_VERSION % 1000) / 10); return 1; } int GPU_N; if(cuda_get_devicecount(&GPU_N) == 0) { return 1; } if(ctx->device_id >= GPU_N) { printf("Invalid device ID!\n"); return 1; } cudaDeviceProp props; err = cudaGetDeviceProperties(&props, ctx->device_id); if(err != cudaSuccess) { printf("\nGPU %d: %s\n%s line %d\n", ctx->device_id, cudaGetErrorString(err), __FILE__, __LINE__); return 1; } ctx->device_name = strdup(props.name); ctx->device_mpcount = props.multiProcessorCount; ctx->device_arch[0] = props.major; ctx->device_arch[1] = props.minor; const int gpuArch = ctx->device_arch[0] * 10 + ctx->device_arch[1]; ctx->name = std::string(props.name); std::vector arch; #define XMRSTAK_PP_TOSTRING1(str) #str #define XMRSTAK_PP_TOSTRING(str) XMRSTAK_PP_TOSTRING1(str) char const * archStringList = XMRSTAK_PP_TOSTRING(XMRSTAK_CUDA_ARCH_LIST); #undef XMRSTAK_PP_TOSTRING #undef XMRSTAK_PP_TOSTRING1 std::stringstream ss(archStringList); //transform string list separated with `+` into a vector of integers int tmpArch; while ( ss >> tmpArch ) arch.push_back( tmpArch ); if(gpuArch >= 20 && gpuArch < 30) { // compiled binary must support sm_20 for fermi std::vector::iterator it = std::find(arch.begin(), arch.end(), 20); if(it == arch.end()) { printf("WARNING: NVIDIA GPU %d: miner not compiled for the gpu architecture %d.\n", ctx->device_id, gpuArch); return 5; } } if(gpuArch >= 30) { // search the minimum architecture greater than sm_20 int minSupportedArch = 0; /* - for newer architecture than fermi we need at least sm_30 * or a architecture >= gpuArch * - it is not possible to use a gpu with a architecture >= 30 * with a sm_20 only compiled binary */ for(int i = 0; i < arch.size(); ++i) if(arch[i] >= 30 && (minSupportedArch == 0 || arch[i] < minSupportedArch)) minSupportedArch = arch[i]; if(minSupportedArch < 30 || gpuArch < minSupportedArch) { printf("WARNING: NVIDIA GPU %d: miner not compiled for the gpu architecture %d.\n", ctx->device_id, gpuArch); return 5; } } // set all device option those marked as auto (-1) to a valid value if(ctx->device_blocks == -1) { /* good values based of my experience * - 3 * SMX count >=sm_30 * - 2 * SMX count for device_blocks = props.multiProcessorCount * ( props.major < 3 ? 2 : 3 ); // increase bfactor for low end devices to avoid that the miner is killed by the OS if(props.multiProcessorCount <= 6) ctx->device_bfactor += 2; } if(ctx->device_threads == -1) { /* sm_20 devices can only run 512 threads per cuda block * `cryptonight_core_gpu_phase1` and `cryptonight_core_gpu_phase3` starts * `8 * ctx->device_threads` threads per block */ ctx->device_threads = 64; constexpr size_t byteToMiB = 1024u * 1024u; // no limit by default 1TiB size_t maxMemUsage = byteToMiB * byteToMiB; if(props.major == 6) { if(props.multiProcessorCount < 15) { // limit memory usage for GPUs for pascal < GTX1070 maxMemUsage = size_t(2048u) * byteToMiB; } else if(props.multiProcessorCount <= 20) { // limit memory usage for GPUs for pascal GTX1070, GTX1080 maxMemUsage = size_t(4096u) * byteToMiB; } } if(props.major < 6) { // limit memory usage for GPUs before pascal maxMemUsage = size_t(2048u) * byteToMiB; } if(props.major == 2) { // limit memory usage for sm 20 GPUs maxMemUsage = size_t(1024u) * byteToMiB; } if(props.multiProcessorCount <= 6) { // limit memory usage for low end devices to reduce the number of threads maxMemUsage = size_t(1024u) * byteToMiB; } int* tmp; cudaError_t err; // a device must be selected to get the right memory usage later on err = cudaSetDevice(ctx->device_id); if(err != cudaSuccess) { printf("WARNING: NVIDIA GPU %d: cannot be selected.\n", ctx->device_id); return 2; } // trigger that a context on the gpu will be allocated err = cudaMalloc(&tmp, 256); if(err != cudaSuccess) { printf("WARNING: NVIDIA GPU %d: context cannot be created.\n", ctx->device_id); return 3; } size_t freeMemory = 0; size_t totalMemory = 0; CUDA_CHECK(ctx->device_id, cudaMemGetInfo(&freeMemory, &totalMemory)); CUDA_CHECK(ctx->device_id, cudaFree(tmp)); // delete created context on the gpu CUDA_CHECK(ctx->device_id, cudaDeviceReset()); ctx->total_device_memory = totalMemory; ctx->free_device_memory = freeMemory; size_t hashMemSize = std::max( cn_select_memory(::jconf::inst()->GetMiningAlgo()), cn_select_memory(::jconf::inst()->GetMiningAlgoRoot()) ); #ifdef WIN32 /* We use in windows bfactor (split slow kernel into smaller parts) to avoid * that windows is killing long running kernel. * In the case there is already memory used on the gpu than we * assume that other application are running between the split kernel, * this can result into TLB memory flushes and can strongly reduce the performance * and the result can be that windows is killing the miner. * Be reducing maxMemUsage we try to avoid this effect. */ size_t usedMem = totalMemory - freeMemory; if(usedMem >= maxMemUsage) { printf("WARNING: NVIDIA GPU %d: already %s MiB memory in use, skip GPU.\n", ctx->device_id, std::to_string(usedMem/byteToMiB).c_str()); return 4; } else maxMemUsage -= usedMem; #endif // keep 128MiB memory free (value is randomly chosen) // 200byte are meta data memory (result nonce, ...) size_t availableMem = freeMemory - (128u * byteToMiB) - 200u; size_t limitedMemory = std::min(availableMem, maxMemUsage); // up to 16kibyte extra memory is used per thread for some kernel (lmem/local memory) // 680bytes are extra meta data memory per hash size_t perThread = hashMemSize + 16192u + 680u; if(cryptonight_heavy == ::jconf::inst()->GetMiningAlgo()) perThread += 50 * 4; // state double buffer size_t max_intensity = limitedMemory / perThread; ctx->device_threads = max_intensity / ctx->device_blocks; // use only odd number of threads ctx->device_threads = ctx->device_threads & 0xFFFFFFFE; if(props.major == 2 && ctx->device_threads > 64) { // Fermi gpus only support 512 threads per block (we need start 4 * configured threads) ctx->device_threads = 64; } } return 0; }