/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
#include "cryptonight.h"
#include "xmrstak/backend/cryptonight.hpp"
#include
#include
#ifdef __GNUC__
#include
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128)a * (unsigned __int128)b;
*hi = r >> 64;
return (uint64_t)r;
}
#define _mm256_set_m128i(v0, v1) _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1)
#else
#include
#endif // __GNUC__
#if !defined(_LP64) && !defined(_WIN64)
#error You are trying to do a 32-bit build. This will all end in tears. I know it.
#endif
#include "soft_aes.hpp"
extern "C"
{
void keccak(const uint8_t *in, int inlen, uint8_t *md, int mdlen);
void keccakf(uint64_t st[25], int rounds);
extern void(*const extra_hashes[4])(const void *, size_t, char *);
}
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
template
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2, uint8_t rcon)
{
__m128i xout1 = soft_aeskeygenassist(*xout2, rcon);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = soft_aeskeygenassist(*xout0, 0x00);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
template
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3,
__m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0, xout2;
xout0 = _mm_load_si128(memory);
xout2 = _mm_load_si128(memory+1);
*k0 = xout0;
*k1 = xout2;
if(SOFT_AES)
soft_aes_genkey_sub(&xout0, &xout2, 0x01);
else
aes_genkey_sub<0x01>(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
if(SOFT_AES)
soft_aes_genkey_sub(&xout0, &xout2, 0x02);
else
aes_genkey_sub<0x02>(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
if(SOFT_AES)
soft_aes_genkey_sub(&xout0, &xout2, 0x04);
else
aes_genkey_sub<0x04>(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
if(SOFT_AES)
soft_aes_genkey_sub(&xout0, &xout2, 0x08);
else
aes_genkey_sub<0x08>(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void soft_aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = soft_aesenc(*x0, key);
*x1 = soft_aesenc(*x1, key);
*x2 = soft_aesenc(*x2, key);
*x3 = soft_aesenc(*x3, key);
*x4 = soft_aesenc(*x4, key);
*x5 = soft_aesenc(*x5, key);
*x6 = soft_aesenc(*x6, key);
*x7 = soft_aesenc(*x7, key);
}
inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7)
{
__m128i tmp0 = x0;
x0 = _mm_xor_si128(x0, x1);
x1 = _mm_xor_si128(x1, x2);
x2 = _mm_xor_si128(x2, x3);
x3 = _mm_xor_si128(x3, x4);
x4 = _mm_xor_si128(x4, x5);
x5 = _mm_xor_si128(x5, x6);
x6 = _mm_xor_si128(x6, x7);
x7 = _mm_xor_si128(x7, tmp0);
}
template
void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
if(ALGO == cryptonight_heavy)
{
for(size_t i=0; i < 16; i++)
{
if(SOFT_AES)
{
soft_aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
}
else
{
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
}
mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7);
}
}
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
{
if(SOFT_AES)
{
soft_aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
soft_aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
}
else
{
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
}
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
if(PREFETCH)
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
if(PREFETCH)
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
template
void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
{
if(PREFETCH)
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
if(PREFETCH)
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
if(SOFT_AES)
{
soft_aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
else
{
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
if(ALGO == cryptonight_heavy)
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
if(ALGO == cryptonight_heavy)
{
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
{
if(PREFETCH)
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
if(PREFETCH)
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
if(SOFT_AES)
{
soft_aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
else
{
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
if(ALGO == cryptonight_heavy)
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
for(size_t i=0; i < 16; i++)
{
if(SOFT_AES)
{
soft_aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
soft_aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
else
{
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
inline void cryptonight_monero_tweak(uint64_t* mem_out, __m128i tmp)
{
mem_out[0] = _mm_cvtsi128_si64(tmp);
tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp)));
uint64_t vh = _mm_cvtsi128_si64(tmp);
uint8_t x = vh >> 24;
static const uint16_t table = 0x7531;
const uint8_t index = (((x >> 3) & 6) | (x & 1)) << 1;
vh ^= ((table >> index) & 0x3) << 28;
mem_out[1] = vh;
}
template
void cryptonight_hash(const void* input, size_t len, void* output, cryptonight_ctx* ctx0)
{
constexpr size_t MASK = cn_select_mask();
constexpr size_t ITERATIONS = cn_select_iter();
constexpr size_t MEM = cn_select_memory();
if((ALGO == cryptonight_monero || ALGO == cryptonight_aeon) && len < 43)
{
memset(output, 0, 32);
return;
}
keccak((const uint8_t *)input, len, ctx0->hash_state, 200);
uint64_t monero_const;
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
{
monero_const = *reinterpret_cast(reinterpret_cast(input) + 35);
monero_const ^= *(reinterpret_cast(ctx0->hash_state) + 24);
}
// Optim - 99% time boundary
cn_explode_scratchpad((__m128i*)ctx0->hash_state, (__m128i*)ctx0->long_state);
uint8_t* l0 = ctx0->long_state;
uint64_t* h0 = (uint64_t*)ctx0->hash_state;
uint64_t al0 = h0[0] ^ h0[4];
uint64_t ah0 = h0[1] ^ h0[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
uint64_t idx0 = h0[0] ^ h0[4];
// Optim - 90% time boundary
for(size_t i = 0; i < ITERATIONS; i++)
{
__m128i cx;
cx = _mm_load_si128((__m128i *)&l0[idx0 & MASK]);
if(SOFT_AES)
cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0));
else
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
cryptonight_monero_tweak((uint64_t*)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
else
_mm_store_si128((__m128i *)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
idx0 = _mm_cvtsi128_si64(cx);
if(PREFETCH)
_mm_prefetch((const char*)&l0[idx0 & MASK], _MM_HINT_T0);
bx0 = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & MASK])[0];
ch = ((uint64_t*)&l0[idx0 & MASK])[1];
lo = _umul128(idx0, cl, &hi);
al0 += hi;
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
al0 ^= cl;
if(PREFETCH)
_mm_prefetch((const char*)&l0[al0 & MASK], _MM_HINT_T0);
ah0 += lo;
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ monero_const;
else
((uint64_t*)&l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
idx0 = al0;
if(ALGO == cryptonight_heavy)
{
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
}
}
// Optim - 90% time boundary
cn_implode_scratchpad((__m128i*)ctx0->long_state, (__m128i*)ctx0->hash_state);
// Optim - 99% time boundary
keccakf((uint64_t*)ctx0->hash_state, 24);
extra_hashes[ctx0->hash_state[0] & 3](ctx0->hash_state, 200, (char*)output);
}
// This lovely creation will do 2 cn hashes at a time. We have plenty of space on silicon
// to fit temporary vars for two contexts. Function will read len*2 from input and write 64 bytes to output
// We are still limited by L3 cache, so doubling will only work with CPUs where we have more than 2MB to core (Xeons)
template
void cryptonight_double_hash(const void* input, size_t len, void* output, cryptonight_ctx** ctx)
{
constexpr size_t MASK = cn_select_mask();
constexpr size_t ITERATIONS = cn_select_iter();
constexpr size_t MEM = cn_select_memory();
if((ALGO == cryptonight_monero || ALGO == cryptonight_aeon) && len < 43)
{
memset(output, 0, 64);
return;
}
keccak((const uint8_t *)input, len, ctx[0]->hash_state, 200);
keccak((const uint8_t *)input+len, len, ctx[1]->hash_state, 200);
uint64_t monero_const_0, monero_const_1;
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
{
monero_const_0 = *reinterpret_cast(reinterpret_cast(input) + 35);
monero_const_0 ^= *(reinterpret_cast(ctx[0]->hash_state) + 24);
monero_const_1 = *reinterpret_cast(reinterpret_cast(input) + len + 35);
monero_const_1 ^= *(reinterpret_cast(ctx[1]->hash_state) + 24);
}
// Optim - 99% time boundary
cn_explode_scratchpad((__m128i*)ctx[0]->hash_state, (__m128i*)ctx[0]->long_state);
cn_explode_scratchpad((__m128i*)ctx[1]->hash_state, (__m128i*)ctx[1]->long_state);
uint8_t* l0 = ctx[0]->long_state;
uint64_t* h0 = (uint64_t*)ctx[0]->hash_state;
uint8_t* l1 = ctx[1]->long_state;
uint64_t* h1 = (uint64_t*)ctx[1]->hash_state;
uint64_t axl0 = h0[0] ^ h0[4];
uint64_t axh0 = h0[1] ^ h0[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
uint64_t axl1 = h1[0] ^ h1[4];
uint64_t axh1 = h1[1] ^ h1[5];
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^ h0[4];
uint64_t idx1 = h1[0] ^ h1[4];
// Optim - 90% time boundary
for (size_t i = 0; i < ITERATIONS; i++)
{
__m128i cx;
cx = _mm_load_si128((__m128i *)&l0[idx0 & MASK]);
if(SOFT_AES)
cx = soft_aesenc(cx, _mm_set_epi64x(axh0, axl0));
else
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(axh0, axl0));
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
cryptonight_monero_tweak((uint64_t*)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
else
_mm_store_si128((__m128i *)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
idx0 = _mm_cvtsi128_si64(cx);
bx0 = cx;
if(PREFETCH)
_mm_prefetch((const char*)&l0[idx0 & MASK], _MM_HINT_T0);
cx = _mm_load_si128((__m128i *)&l1[idx1 & MASK]);
if(SOFT_AES)
cx = soft_aesenc(cx, _mm_set_epi64x(axh1, axl1));
else
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(axh1, axl1));
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
cryptonight_monero_tweak((uint64_t*)&l1[idx1 & MASK], _mm_xor_si128(bx1, cx));
else
_mm_store_si128((__m128i *)&l1[idx1 & MASK], _mm_xor_si128(bx1, cx));
idx1 = _mm_cvtsi128_si64(cx);
bx1 = cx;
if(PREFETCH)
_mm_prefetch((const char*)&l1[idx1 & MASK], _MM_HINT_T0);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & MASK])[0];
ch = ((uint64_t*)&l0[idx0 & MASK])[1];
lo = _umul128(idx0, cl, &hi);
axl0 += hi;
axh0 += lo;
((uint64_t*)&l0[idx0 & MASK])[0] = axl0;
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
((uint64_t*)&l0[idx0 & MASK])[1] = axh0 ^ monero_const_0;
else
((uint64_t*)&l0[idx0 & MASK])[1] = axh0;
axh0 ^= ch;
axl0 ^= cl;
idx0 = axl0;
if(ALGO == cryptonight_heavy)
{
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
}
if(PREFETCH)
_mm_prefetch((const char*)&l0[idx0 & MASK], _MM_HINT_T0);
cl = ((uint64_t*)&l1[idx1 & MASK])[0];
ch = ((uint64_t*)&l1[idx1 & MASK])[1];
lo = _umul128(idx1, cl, &hi);
axl1 += hi;
axh1 += lo;
((uint64_t*)&l1[idx1 & MASK])[0] = axl1;
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon)
((uint64_t*)&l1[idx1 & MASK])[1] = axh1 ^ monero_const_1;
else
((uint64_t*)&l1[idx1 & MASK])[1] = axh1;
axh1 ^= ch;
axl1 ^= cl;
idx1 = axl1;
if(ALGO == cryptonight_heavy)
{
int64_t n = ((int64_t*)&l1[idx1 & MASK])[0];
int32_t d = ((int32_t*)&l1[idx1 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
}
if(PREFETCH)
_mm_prefetch((const char*)&l1[idx1 & MASK], _MM_HINT_T0);
}
// Optim - 90% time boundary
cn_implode_scratchpad((__m128i*)ctx[0]->long_state, (__m128i*)ctx[0]->hash_state);
cn_implode_scratchpad((__m128i*)ctx[1]->long_state, (__m128i*)ctx[1]->hash_state);
// Optim - 99% time boundary
keccakf((uint64_t*)ctx[0]->hash_state, 24);
extra_hashes[ctx[0]->hash_state[0] & 3](ctx[0]->hash_state, 200, (char*)output);
keccakf((uint64_t*)ctx[1]->hash_state, 24);
extra_hashes[ctx[1]->hash_state[0] & 3](ctx[1]->hash_state, 200, (char*)output + 32);
}
#define CN_STEP1(a, b, c, l, ptr, idx) \
ptr = (__m128i *)&l[idx & MASK]; \
if(PREFETCH) \
_mm_prefetch((const char*)ptr, _MM_HINT_T0); \
c = _mm_load_si128(ptr);
#define CN_STEP2(a, b, c, l, ptr, idx) \
if(SOFT_AES) \
c = soft_aesenc(c, a); \
else \
c = _mm_aesenc_si128(c, a); \
b = _mm_xor_si128(b, c); \
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon) \
cryptonight_monero_tweak((uint64_t*)ptr, b); \
else \
_mm_store_si128(ptr, b);\
#define CN_STEP3(a, b, c, l, ptr, idx) \
idx = _mm_cvtsi128_si64(c); \
ptr = (__m128i *)&l[idx & MASK]; \
if(PREFETCH) \
_mm_prefetch((const char*)ptr, _MM_HINT_T0); \
b = _mm_load_si128(ptr);
#define CN_STEP4(a, b, c, l, mc, ptr, idx) \
lo = _umul128(idx, _mm_cvtsi128_si64(b), &hi); \
a = _mm_add_epi64(a, _mm_set_epi64x(lo, hi)); \
if(ALGO == cryptonight_monero || ALGO == cryptonight_aeon) \
_mm_store_si128(ptr, _mm_xor_si128(a, mc)); \
else \
_mm_store_si128(ptr, a);\
a = _mm_xor_si128(a, b); \
idx = _mm_cvtsi128_si64(a); \
if(ALGO == cryptonight_heavy) \
{ \
int64_t n = ((int64_t*)&l[idx & MASK])[0]; \
int32_t d = ((int32_t*)&l[idx & MASK])[2]; \
int64_t q = n / (d | 0x5); \
((int64_t*)&l[idx & MASK])[0] = n ^ q; \
idx = d ^ q; \
}
#define CONST_INIT(ctx, n) \
__m128i mc##n = _mm_set_epi64x(*reinterpret_cast(reinterpret_cast(input) + n * len + 35) ^ \
*(reinterpret_cast((ctx)->hash_state) + 24), 0);
// This lovelier creation will do 3 cn hashes at a time.
template
void cryptonight_triple_hash(const void* input, size_t len, void* output, cryptonight_ctx** ctx)
{
constexpr size_t MASK = cn_select_mask();
constexpr size_t ITERATIONS = cn_select_iter();
constexpr size_t MEM = cn_select_memory();
if((ALGO == cryptonight_monero || ALGO == cryptonight_aeon) && len < 43)
{
memset(output, 0, 32 * 3);
return;
}
for (size_t i = 0; i < 3; i++)
{
keccak((const uint8_t *)input + len * i, len, ctx[i]->hash_state, 200);
cn_explode_scratchpad((__m128i*)ctx[i]->hash_state, (__m128i*)ctx[i]->long_state);
}
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
uint8_t* l0 = ctx[0]->long_state;
uint64_t* h0 = (uint64_t*)ctx[0]->hash_state;
uint8_t* l1 = ctx[1]->long_state;
uint64_t* h1 = (uint64_t*)ctx[1]->hash_state;
uint8_t* l2 = ctx[2]->long_state;
uint64_t* h2 = (uint64_t*)ctx[2]->hash_state;
__m128i ax0 = _mm_set_epi64x(h0[1] ^ h0[5], h0[0] ^ h0[4]);
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i ax1 = _mm_set_epi64x(h1[1] ^ h1[5], h1[0] ^ h1[4]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i ax2 = _mm_set_epi64x(h2[1] ^ h2[5], h2[0] ^ h2[4]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i cx0 = _mm_set_epi64x(0, 0);
__m128i cx1 = _mm_set_epi64x(0, 0);
__m128i cx2 = _mm_set_epi64x(0, 0);
uint64_t idx0, idx1, idx2;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
for (size_t i = 0; i < ITERATIONS/2; i++)
{
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2;
// EVEN ROUND
CN_STEP1(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP1(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP1(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP2(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP3(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP3(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP3(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP4(ax0, bx0, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, bx1, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, bx2, cx2, l2, mc2, ptr2, idx2);
// ODD ROUND
CN_STEP1(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP1(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP1(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP2(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP2(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP2(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP3(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP3(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP3(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP4(ax0, cx0, bx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, cx1, bx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, cx2, bx2, l2, mc2, ptr2, idx2);
}
for (size_t i = 0; i < 3; i++)
{
cn_implode_scratchpad((__m128i*)ctx[i]->long_state, (__m128i*)ctx[i]->hash_state);
keccakf((uint64_t*)ctx[i]->hash_state, 24);
extra_hashes[ctx[i]->hash_state[0] & 3](ctx[i]->hash_state, 200, (char*)output + 32 * i);
}
}
// This even lovelier creation will do 4 cn hashes at a time.
template
void cryptonight_quad_hash(const void* input, size_t len, void* output, cryptonight_ctx** ctx)
{
constexpr size_t MASK = cn_select_mask();
constexpr size_t ITERATIONS = cn_select_iter();
constexpr size_t MEM = cn_select_memory();
if((ALGO == cryptonight_monero || ALGO == cryptonight_aeon) && len < 43)
{
memset(output, 0, 32 * 4);
return;
}
for (size_t i = 0; i < 4; i++)
{
keccak((const uint8_t *)input + len * i, len, ctx[i]->hash_state, 200);
cn_explode_scratchpad((__m128i*)ctx[i]->hash_state, (__m128i*)ctx[i]->long_state);
}
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
CONST_INIT(ctx[3], 3);
uint8_t* l0 = ctx[0]->long_state;
uint64_t* h0 = (uint64_t*)ctx[0]->hash_state;
uint8_t* l1 = ctx[1]->long_state;
uint64_t* h1 = (uint64_t*)ctx[1]->hash_state;
uint8_t* l2 = ctx[2]->long_state;
uint64_t* h2 = (uint64_t*)ctx[2]->hash_state;
uint8_t* l3 = ctx[3]->long_state;
uint64_t* h3 = (uint64_t*)ctx[3]->hash_state;
__m128i ax0 = _mm_set_epi64x(h0[1] ^ h0[5], h0[0] ^ h0[4]);
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i ax1 = _mm_set_epi64x(h1[1] ^ h1[5], h1[0] ^ h1[4]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i ax2 = _mm_set_epi64x(h2[1] ^ h2[5], h2[0] ^ h2[4]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i ax3 = _mm_set_epi64x(h3[1] ^ h3[5], h3[0] ^ h3[4]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i cx0 = _mm_set_epi64x(0, 0);
__m128i cx1 = _mm_set_epi64x(0, 0);
__m128i cx2 = _mm_set_epi64x(0, 0);
__m128i cx3 = _mm_set_epi64x(0, 0);
uint64_t idx0, idx1, idx2, idx3;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
idx3 = _mm_cvtsi128_si64(ax3);
for (size_t i = 0; i < ITERATIONS/2; i++)
{
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2, *ptr3;
// EVEN ROUND
CN_STEP1(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP1(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP1(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP1(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP2(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP2(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP3(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP3(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP3(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP3(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP4(ax0, bx0, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, bx1, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, bx2, cx2, l2, mc2, ptr2, idx2);
CN_STEP4(ax3, bx3, cx3, l3, mc3, ptr3, idx3);
// ODD ROUND
CN_STEP1(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP1(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP1(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP1(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP2(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP2(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP2(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP2(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP3(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP3(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP3(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP3(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP4(ax0, cx0, bx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, cx1, bx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, cx2, bx2, l2, mc2, ptr2, idx2);
CN_STEP4(ax3, cx3, bx3, l3, mc3, ptr3, idx3);
}
for (size_t i = 0; i < 4; i++)
{
cn_implode_scratchpad((__m128i*)ctx[i]->long_state, (__m128i*)ctx[i]->hash_state);
keccakf((uint64_t*)ctx[i]->hash_state, 24);
extra_hashes[ctx[i]->hash_state[0] & 3](ctx[i]->hash_state, 200, (char*)output + 32 * i);
}
}
// This most lovely creation will do 5 cn hashes at a time.
template
void cryptonight_penta_hash(const void* input, size_t len, void* output, cryptonight_ctx** ctx)
{
constexpr size_t MASK = cn_select_mask();
constexpr size_t ITERATIONS = cn_select_iter();
constexpr size_t MEM = cn_select_memory();
if((ALGO == cryptonight_monero || ALGO == cryptonight_aeon) && len < 43)
{
memset(output, 0, 32 * 5);
return;
}
for (size_t i = 0; i < 5; i++)
{
keccak((const uint8_t *)input + len * i, len, ctx[i]->hash_state, 200);
cn_explode_scratchpad((__m128i*)ctx[i]->hash_state, (__m128i*)ctx[i]->long_state);
}
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
CONST_INIT(ctx[3], 3);
CONST_INIT(ctx[4], 4);
uint8_t* l0 = ctx[0]->long_state;
uint64_t* h0 = (uint64_t*)ctx[0]->hash_state;
uint8_t* l1 = ctx[1]->long_state;
uint64_t* h1 = (uint64_t*)ctx[1]->hash_state;
uint8_t* l2 = ctx[2]->long_state;
uint64_t* h2 = (uint64_t*)ctx[2]->hash_state;
uint8_t* l3 = ctx[3]->long_state;
uint64_t* h3 = (uint64_t*)ctx[3]->hash_state;
uint8_t* l4 = ctx[4]->long_state;
uint64_t* h4 = (uint64_t*)ctx[4]->hash_state;
__m128i ax0 = _mm_set_epi64x(h0[1] ^ h0[5], h0[0] ^ h0[4]);
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i ax1 = _mm_set_epi64x(h1[1] ^ h1[5], h1[0] ^ h1[4]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i ax2 = _mm_set_epi64x(h2[1] ^ h2[5], h2[0] ^ h2[4]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i ax3 = _mm_set_epi64x(h3[1] ^ h3[5], h3[0] ^ h3[4]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i ax4 = _mm_set_epi64x(h4[1] ^ h4[5], h4[0] ^ h4[4]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
__m128i cx0 = _mm_set_epi64x(0, 0);
__m128i cx1 = _mm_set_epi64x(0, 0);
__m128i cx2 = _mm_set_epi64x(0, 0);
__m128i cx3 = _mm_set_epi64x(0, 0);
__m128i cx4 = _mm_set_epi64x(0, 0);
uint64_t idx0, idx1, idx2, idx3, idx4;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
idx3 = _mm_cvtsi128_si64(ax3);
idx4 = _mm_cvtsi128_si64(ax4);
for (size_t i = 0; i < ITERATIONS/2; i++)
{
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2, *ptr3, *ptr4;
// EVEN ROUND
CN_STEP1(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP1(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP1(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP1(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP1(ax4, bx4, cx4, l4, ptr4, idx4);
CN_STEP2(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP2(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP2(ax4, bx4, cx4, l4, ptr4, idx4);
CN_STEP3(ax0, bx0, cx0, l0, ptr0, idx0);
CN_STEP3(ax1, bx1, cx1, l1, ptr1, idx1);
CN_STEP3(ax2, bx2, cx2, l2, ptr2, idx2);
CN_STEP3(ax3, bx3, cx3, l3, ptr3, idx3);
CN_STEP3(ax4, bx4, cx4, l4, ptr4, idx4);
CN_STEP4(ax0, bx0, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, bx1, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, bx2, cx2, l2, mc2, ptr2, idx2);
CN_STEP4(ax3, bx3, cx3, l3, mc3, ptr3, idx3);
CN_STEP4(ax4, bx4, cx4, l4, mc4, ptr4, idx4);
// ODD ROUND
CN_STEP1(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP1(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP1(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP1(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP1(ax4, cx4, bx4, l4, ptr4, idx4);
CN_STEP2(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP2(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP2(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP2(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP2(ax4, cx4, bx4, l4, ptr4, idx4);
CN_STEP3(ax0, cx0, bx0, l0, ptr0, idx0);
CN_STEP3(ax1, cx1, bx1, l1, ptr1, idx1);
CN_STEP3(ax2, cx2, bx2, l2, ptr2, idx2);
CN_STEP3(ax3, cx3, bx3, l3, ptr3, idx3);
CN_STEP3(ax4, cx4, bx4, l4, ptr4, idx4);
CN_STEP4(ax0, cx0, bx0, l0, mc0, ptr0, idx0);
CN_STEP4(ax1, cx1, bx1, l1, mc1, ptr1, idx1);
CN_STEP4(ax2, cx2, bx2, l2, mc2, ptr2, idx2);
CN_STEP4(ax3, cx3, bx3, l3, mc3, ptr3, idx3);
CN_STEP4(ax4, cx4, bx4, l4, mc4, ptr4, idx4);
}
for (size_t i = 0; i < 5; i++)
{
cn_implode_scratchpad((__m128i*)ctx[i]->long_state, (__m128i*)ctx[i]->hash_state);
keccakf((uint64_t*)ctx[i]->hash_state, 24);
extra_hashes[ctx[i]->hash_state[0] & 3](ctx[i]->hash_state, 200, (char*)output + 32 * i);
}
}