/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "xmrstak/backend/cryptonight.hpp"
#include "xmrstak/jconf.hpp"
#include "xmrstak/picosha2/picosha2.hpp"
#include "xmrstak/params.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if defined _MSC_VER
#include
#elif defined __GNUC__
#include
#include
#endif
#ifdef _WIN32
#include
#include
static inline void create_directory(std::string dirname)
{
_mkdir(dirname.data());
}
static inline std::string get_home()
{
char path[MAX_PATH + 1];
// get folder "appdata\local"
if (SHGetSpecialFolderPathA(HWND_DESKTOP, path, CSIDL_LOCAL_APPDATA, FALSE))
{
return path;
}
else
return ".";
}
static inline void port_sleep(size_t sec)
{
Sleep(sec * 1000);
}
#else
#include
#include
static inline void create_directory(std::string dirname)
{
mkdir(dirname.data(), 0744);
}
static inline std::string get_home()
{
const char *home = ".";
if ((home = getenv("HOME")) == nullptr)
home = getpwuid(getuid())->pw_dir;
return home;
}
static inline void port_sleep(size_t sec)
{
sleep(sec);
}
#endif // _WIN32
#if 0
static inline long long unsigned int int_port(size_t i)
{
return i;
}
#endif
#include "gpu.hpp"
const char* err_to_str(cl_int ret)
{
switch(ret)
{
case CL_SUCCESS:
return "CL_SUCCESS";
case CL_DEVICE_NOT_FOUND:
return "CL_DEVICE_NOT_FOUND";
case CL_DEVICE_NOT_AVAILABLE:
return "CL_DEVICE_NOT_AVAILABLE";
case CL_COMPILER_NOT_AVAILABLE:
return "CL_COMPILER_NOT_AVAILABLE";
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
return "CL_MEM_OBJECT_ALLOCATION_FAILURE";
case CL_OUT_OF_RESOURCES:
return "CL_OUT_OF_RESOURCES";
case CL_OUT_OF_HOST_MEMORY:
return "CL_OUT_OF_HOST_MEMORY";
case CL_PROFILING_INFO_NOT_AVAILABLE:
return "CL_PROFILING_INFO_NOT_AVAILABLE";
case CL_MEM_COPY_OVERLAP:
return "CL_MEM_COPY_OVERLAP";
case CL_IMAGE_FORMAT_MISMATCH:
return "CL_IMAGE_FORMAT_MISMATCH";
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
return "CL_IMAGE_FORMAT_NOT_SUPPORTED";
case CL_BUILD_PROGRAM_FAILURE:
return "CL_BUILD_PROGRAM_FAILURE";
case CL_MAP_FAILURE:
return "CL_MAP_FAILURE";
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
return "CL_MISALIGNED_SUB_BUFFER_OFFSET";
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
return "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
#ifdef CL_VERSION_1_2
case CL_COMPILE_PROGRAM_FAILURE:
return "CL_COMPILE_PROGRAM_FAILURE";
case CL_LINKER_NOT_AVAILABLE:
return "CL_LINKER_NOT_AVAILABLE";
case CL_LINK_PROGRAM_FAILURE:
return "CL_LINK_PROGRAM_FAILURE";
case CL_DEVICE_PARTITION_FAILED:
return "CL_DEVICE_PARTITION_FAILED";
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
return "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
#endif
case CL_INVALID_VALUE:
return "CL_INVALID_VALUE";
case CL_INVALID_DEVICE_TYPE:
return "CL_INVALID_DEVICE_TYPE";
case CL_INVALID_PLATFORM:
return "CL_INVALID_PLATFORM";
case CL_INVALID_DEVICE:
return "CL_INVALID_DEVICE";
case CL_INVALID_CONTEXT:
return "CL_INVALID_CONTEXT";
case CL_INVALID_QUEUE_PROPERTIES:
return "CL_INVALID_QUEUE_PROPERTIES";
case CL_INVALID_COMMAND_QUEUE:
return "CL_INVALID_COMMAND_QUEUE";
case CL_INVALID_HOST_PTR:
return "CL_INVALID_HOST_PTR";
case CL_INVALID_MEM_OBJECT:
return "CL_INVALID_MEM_OBJECT";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
return "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
case CL_INVALID_IMAGE_SIZE:
return "CL_INVALID_IMAGE_SIZE";
case CL_INVALID_SAMPLER:
return "CL_INVALID_SAMPLER";
case CL_INVALID_BINARY:
return "CL_INVALID_BINARY";
case CL_INVALID_BUILD_OPTIONS:
return "CL_INVALID_BUILD_OPTIONS";
case CL_INVALID_PROGRAM:
return "CL_INVALID_PROGRAM";
case CL_INVALID_PROGRAM_EXECUTABLE:
return "CL_INVALID_PROGRAM_EXECUTABLE";
case CL_INVALID_KERNEL_NAME:
return "CL_INVALID_KERNEL_NAME";
case CL_INVALID_KERNEL_DEFINITION:
return "CL_INVALID_KERNEL_DEFINITION";
case CL_INVALID_KERNEL:
return "CL_INVALID_KERNEL";
case CL_INVALID_ARG_INDEX:
return "CL_INVALID_ARG_INDEX";
case CL_INVALID_ARG_VALUE:
return "CL_INVALID_ARG_VALUE";
case CL_INVALID_ARG_SIZE:
return "CL_INVALID_ARG_SIZE";
case CL_INVALID_KERNEL_ARGS:
return "CL_INVALID_KERNEL_ARGS";
case CL_INVALID_WORK_DIMENSION:
return "CL_INVALID_WORK_DIMENSION";
case CL_INVALID_WORK_GROUP_SIZE:
return "CL_INVALID_WORK_GROUP_SIZE";
case CL_INVALID_WORK_ITEM_SIZE:
return "CL_INVALID_WORK_ITEM_SIZE";
case CL_INVALID_GLOBAL_OFFSET:
return "CL_INVALID_GLOBAL_OFFSET";
case CL_INVALID_EVENT_WAIT_LIST:
return "CL_INVALID_EVENT_WAIT_LIST";
case CL_INVALID_EVENT:
return "CL_INVALID_EVENT";
case CL_INVALID_OPERATION:
return "CL_INVALID_OPERATION";
case CL_INVALID_GL_OBJECT:
return "CL_INVALID_GL_OBJECT";
case CL_INVALID_BUFFER_SIZE:
return "CL_INVALID_BUFFER_SIZE";
case CL_INVALID_MIP_LEVEL:
return "CL_INVALID_MIP_LEVEL";
case CL_INVALID_GLOBAL_WORK_SIZE:
return "CL_INVALID_GLOBAL_WORK_SIZE";
case CL_INVALID_PROPERTY:
return "CL_INVALID_PROPERTY";
#ifdef CL_VERSION_1_2
case CL_INVALID_IMAGE_DESCRIPTOR:
return "CL_INVALID_IMAGE_DESCRIPTOR";
case CL_INVALID_COMPILER_OPTIONS:
return "CL_INVALID_COMPILER_OPTIONS";
case CL_INVALID_LINKER_OPTIONS:
return "CL_INVALID_LINKER_OPTIONS";
case CL_INVALID_DEVICE_PARTITION_COUNT:
return "CL_INVALID_DEVICE_PARTITION_COUNT";
#endif
#if defined(CL_VERSION_2_0) && !defined(CONF_ENFORCE_OpenCL_1_2)
case CL_INVALID_PIPE_SIZE:
return "CL_INVALID_PIPE_SIZE";
case CL_INVALID_DEVICE_QUEUE:
return "CL_INVALID_DEVICE_QUEUE";
#endif
default:
return "UNKNOWN_ERROR";
}
}
#if 0
void printer::inst()->print_msg(L1,const char* fmt, ...);
void printer::inst()->print_str(const char* str);
#endif
char* LoadTextFile(const char* filename)
{
size_t flen;
char* out;
FILE* kernel = fopen(filename, "rb");
if(kernel == NULL)
return NULL;
fseek(kernel, 0, SEEK_END);
flen = ftell(kernel);
fseek(kernel, 0, SEEK_SET);
out = (char*)malloc(flen+1);
size_t r = fread(out, flen, 1, kernel);
fclose(kernel);
if(r != 1)
{
free(out);
return NULL;
}
out[flen] = '\0';
return out;
}
size_t InitOpenCLGpu(cl_context opencl_ctx, GpuContext* ctx, const char* source_code)
{
size_t MaximumWorkSize;
cl_int ret;
if((ret = clGetDeviceInfo(ctx->DeviceID, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &MaximumWorkSize, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when querying a device's max worksize using clGetDeviceInfo.", err_to_str(ret));
return ERR_OCL_API;
}
/* Some kernel spawn 8 times more threads than the user is configuring.
* To give the user the correct maximum work size we divide the hardware specific max by 8.
*/
MaximumWorkSize /= 8;
printer::inst()->print_msg(L1,"Device %lu work size %lu / %lu.", ctx->deviceIdx, ctx->workSize, MaximumWorkSize);
#if defined(CL_VERSION_2_0) && !defined(CONF_ENFORCE_OpenCL_1_2)
const cl_queue_properties CommandQueueProperties[] = { 0, 0, 0 };
ctx->CommandQueues = clCreateCommandQueueWithProperties(opencl_ctx, ctx->DeviceID, CommandQueueProperties, &ret);
#else
const cl_command_queue_properties CommandQueueProperties = { 0 };
ctx->CommandQueues = clCreateCommandQueue(opencl_ctx, ctx->DeviceID, CommandQueueProperties, &ret);
#endif
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateCommandQueueWithProperties.", err_to_str(ret));
return ERR_OCL_API;
}
ctx->InputBuffer = clCreateBuffer(opencl_ctx, CL_MEM_READ_ONLY, 88, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create input buffer.", err_to_str(ret));
return ERR_OCL_API;
}
size_t scratchPadSize = std::max(
cn_select_memory(::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgo()),
cn_select_memory(::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgoRoot())
);
size_t g_thd = ctx->rawIntensity;
ctx->ExtraBuffers[0] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, scratchPadSize * g_thd, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create hash scratchpads buffer.", err_to_str(ret));
return ERR_OCL_API;
}
ctx->ExtraBuffers[1] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, 200 * g_thd, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create hash states buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Blake-256 branches
ctx->ExtraBuffers[2] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 0 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Groestl-256 branches
ctx->ExtraBuffers[3] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 1 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// JH-256 branches
ctx->ExtraBuffers[4] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 2 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Skein-512 branches
ctx->ExtraBuffers[5] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 3 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Assume we may find up to 0xFF nonces in one run - it's reasonable
ctx->OutputBuffer = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * 0x100, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create output buffer.", err_to_str(ret));
return ERR_OCL_API;
}
std::vector devNameVec(1024);
if((ret = clGetDeviceInfo(ctx->DeviceID, CL_DEVICE_NAME, devNameVec.size(), devNameVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_NAME for device %u.", err_to_str(ret),ctx->deviceIdx );
return ERR_OCL_API;
}
xmrstak_algo miner_algo[2] = {
::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgo(),
::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgoRoot()
};
int num_algos = miner_algo[0] == miner_algo[1] ? 1 : 2;
for(int ii = 0; ii < num_algos; ++ii)
{
// scratchpad size for the selected mining algorithm
size_t hashMemSize = cn_select_memory(miner_algo[ii]);
int threadMemMask = cn_select_mask(miner_algo[ii]);
int hashIterations = cn_select_iter(miner_algo[ii]);
char options[512];
snprintf(options, sizeof(options),
"-DITERATIONS=%d -DMASK=%d -DWORKSIZE=%llu -DSTRIDED_INDEX=%d -DMEM_CHUNK_EXPONENT=%d -DCOMP_MODE=%d -DMEMORY=%llu -DALGO=%d",
hashIterations, threadMemMask, int_port(ctx->workSize), ctx->stridedIndex, int(1u<memChunk), ctx->compMode ? 1 : 0,
int_port(hashMemSize), int(miner_algo[ii]));
/* create a hash for the compile time cache
* used data:
* - source code
* - device name
* - compile paramater
*/
std::string src_str(source_code);
src_str += options;
src_str += devNameVec.data();
std::string hash_hex_str;
picosha2::hash256_hex_string(src_str, hash_hex_str);
std::string cache_file = get_home() + "/.openclcache/" + hash_hex_str + ".openclbin";
std::ifstream clBinFile(cache_file, std::ofstream::in | std::ofstream::binary);
if(xmrstak::params::inst().AMDCache == false || !clBinFile.good())
{
if(xmrstak::params::inst().AMDCache)
printer::inst()->print_msg(L1,"OpenCL device %u - Precompiled code %s not found. Compiling ...",ctx->deviceIdx, cache_file.c_str());
ctx->Program[ii] = clCreateProgramWithSource(opencl_ctx, 1, (const char**)&source_code, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateProgramWithSource on the OpenCL miner code", err_to_str(ret));
return ERR_OCL_API;
}
ret = clBuildProgram(ctx->Program[ii], 1, &ctx->DeviceID, options, NULL, NULL);
if(ret != CL_SUCCESS)
{
size_t len;
printer::inst()->print_msg(L1,"Error %s when calling clBuildProgram.", err_to_str(ret));
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_LOG, 0, NULL, &len)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for length of build log output.", err_to_str(ret));
return ERR_OCL_API;
}
char* BuildLog = (char*)malloc(len + 1);
BuildLog[0] = '\0';
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_LOG, len, BuildLog, NULL)) != CL_SUCCESS)
{
free(BuildLog);
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for build log.", err_to_str(ret));
return ERR_OCL_API;
}
printer::inst()->print_str("Build log:\n");
std::cerr<Program[ii], CL_PROGRAM_NUM_DEVICES, sizeof(cl_uint), &num_devices,NULL);
std::vector devices_ids(num_devices);
clGetProgramInfo(ctx->Program[ii], CL_PROGRAM_DEVICES, sizeof(cl_device_id)* devices_ids.size(), devices_ids.data(),NULL);
int dev_id = 0;
/* Search for the gpu within the program context.
* The id can be different to ctx->DeviceID.
*/
for(auto & ocl_device : devices_ids)
{
if(ocl_device == ctx->DeviceID)
break;
dev_id++;
}
cl_build_status status;
do
{
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &status, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for status of build.", err_to_str(ret));
return ERR_OCL_API;
}
port_sleep(1);
}
while(status == CL_BUILD_IN_PROGRESS);
std::vector binary_sizes(num_devices);
clGetProgramInfo (ctx->Program[ii], CL_PROGRAM_BINARY_SIZES, sizeof(size_t) * binary_sizes.size(), binary_sizes.data(), NULL);
std::vector all_programs(num_devices);
std::vector> program_storage;
if(xmrstak::params::inst().AMDCache)
{
int p_id = 0;
size_t mem_size = 0;
// create memory structure to query all OpenCL program binaries
for(auto & p : all_programs)
{
program_storage.emplace_back(std::vector(binary_sizes[p_id]));
all_programs[p_id] = program_storage[p_id].data();
mem_size += binary_sizes[p_id];
p_id++;
}
if((ret = clGetProgramInfo(ctx->Program[ii], CL_PROGRAM_BINARIES, num_devices * sizeof(char*), all_programs.data(),NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramInfo.", err_to_str(ret));
return ERR_OCL_API;
}
std::ofstream file_stream;
file_stream.open(cache_file, std::ofstream::out | std::ofstream::binary);
file_stream.write(all_programs[dev_id], binary_sizes[dev_id]);
file_stream.close();
printer::inst()->print_msg(L1, "OpenCL device %u - Precompiled code stored in file %s",ctx->deviceIdx, cache_file.c_str());
}
}
else
{
printer::inst()->print_msg(L1, "OpenCL device %u - Load precompiled code from file %s",ctx->deviceIdx, cache_file.c_str());
std::ostringstream ss;
ss << clBinFile.rdbuf();
std::string s = ss.str();
size_t bin_size = s.size();
auto data_ptr = s.data();
cl_int clStatus;
ctx->Program[ii] = clCreateProgramWithBinary(
opencl_ctx, 1, &ctx->DeviceID, &bin_size,
(const unsigned char **)&data_ptr, &clStatus, &ret
);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateProgramWithBinary. Try to delete file %s", err_to_str(ret), cache_file.c_str());
return ERR_OCL_API;
}
ret = clBuildProgram(ctx->Program[ii], 1, &ctx->DeviceID, NULL, NULL, NULL);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clBuildProgram. Try to delete file %s", err_to_str(ret), cache_file.c_str());
return ERR_OCL_API;
}
}
std::vector KernelNames = { "cn0", "cn1", "cn2", "Blake", "Groestl", "JH", "Skein" };
// append algorithm number to kernel name
for(int k = 0; k < 3; k++)
KernelNames[k] += std::to_string(miner_algo[ii]);
if(ii == 0)
{
for(int i = 0; i < 7; ++i)
{
ctx->Kernels[ii][i] = clCreateKernel(ctx->Program[ii], KernelNames[i].c_str(), &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateKernel for kernel_0 %s.", err_to_str(ret), KernelNames[i].c_str());
return ERR_OCL_API;
}
}
}
else
{
for(int i = 0; i < 3; ++i)
{
ctx->Kernels[ii][i] = clCreateKernel(ctx->Program[ii], KernelNames[i].c_str(), &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateKernel for kernel_1 %s.", err_to_str(ret), KernelNames[i].c_str());
return ERR_OCL_API;
}
}
// move kernel from the main algorithm into the root algorithm kernel space
for(int i = 3; i < 7; ++i)
{
ctx->Kernels[ii][i] = ctx->Kernels[0][i];
}
}
}
ctx->Nonce = 0;
return 0;
}
const cl_platform_info attributeTypes[5] = {
CL_PLATFORM_NAME,
CL_PLATFORM_VENDOR,
CL_PLATFORM_VERSION,
CL_PLATFORM_PROFILE,
CL_PLATFORM_EXTENSIONS
};
const char* const attributeNames[] = {
"CL_PLATFORM_NAME",
"CL_PLATFORM_VENDOR",
"CL_PLATFORM_VERSION",
"CL_PLATFORM_PROFILE",
"CL_PLATFORM_EXTENSIONS"
};
#define NELEMS(x) (sizeof(x) / sizeof((x)[0]))
void PrintDeviceInfo(cl_device_id device)
{
char queryBuffer[1024];
int queryInt;
cl_int clError;
clError = clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_NAME: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_VENDOR, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_VENDOR: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DRIVER_VERSION, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DRIVER_VERSION: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_VERSION, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_VERSION: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(int), &queryInt, NULL);
printf(" CL_DEVICE_MAX_COMPUTE_UNITS: %d\n", queryInt);
}
uint32_t getNumPlatforms()
{
cl_uint num_platforms = 0;
cl_platform_id * platforms = NULL;
cl_int clStatus;
// Get platform and device information
clStatus = clGetPlatformIDs(0, NULL, &num_platforms);
if(clStatus != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for number of platforms.", err_to_str(clStatus));
return 0u;
}
return num_platforms;
}
std::vector getAMDDevices(int index)
{
std::vector ctxVec;
std::vector platforms;
std::vector device_list;
cl_int clStatus;
cl_uint num_devices;
uint32_t numPlatforms = getNumPlatforms();
if(numPlatforms == 0)
return ctxVec;
platforms.resize(numPlatforms);
if((clStatus = clGetPlatformIDs(numPlatforms, platforms.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for platform information.", err_to_str(clStatus));
return ctxVec;
}
if((clStatus = clGetDeviceIDs( platforms[index], CL_DEVICE_TYPE_GPU, 0, NULL, &num_devices)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceIDs for of devices.", err_to_str(clStatus));
return ctxVec;
}
device_list.resize(num_devices);
if((clStatus = clGetDeviceIDs( platforms[index], CL_DEVICE_TYPE_GPU, num_devices, device_list.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceIDs for device information.", err_to_str(clStatus));
return ctxVec;
}
for (size_t k = 0; k < num_devices; k++)
{
std::vector devVendorVec(1024);
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_VENDOR, devVendorVec.size(), devVendorVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get the device vendor name for device %u.", err_to_str(clStatus), k);
continue;
}
std::string devVendor(devVendorVec.data());
bool isAMDDevice = devVendor.find("Advanced Micro Devices") != std::string::npos || devVendor.find("AMD") != std::string::npos;
bool isNVIDIADevice = devVendor.find("NVIDIA Corporation") != std::string::npos || devVendor.find("NVIDIA") != std::string::npos;
std::string selectedOpenCLVendor = xmrstak::params::inst().openCLVendor;
if((isAMDDevice && selectedOpenCLVendor == "AMD") || (isNVIDIADevice && selectedOpenCLVendor == "NVIDIA"))
{
GpuContext ctx;
std::vector devNameVec(1024);
size_t maxMem;
if( devVendor.find("NVIDIA Corporation") != std::string::npos)
ctx.isNVIDIA = true;
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(int), &(ctx.computeUnits), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_MAX_COMPUTE_UNITS for device %u.", err_to_str(clStatus), k);
continue;
}
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &(maxMem), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_MAX_MEM_ALLOC_SIZE for device %u.", err_to_str(clStatus), k);
continue;
}
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(size_t), &(ctx.freeMem), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_GLOBAL_MEM_SIZE for device %u.", err_to_str(clStatus), k);
continue;
}
// the allocation for NVIDIA OpenCL is not limited to 1/4 of the GPU memory per allocation
if(ctx.isNVIDIA)
maxMem = ctx.freeMem;
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_NAME, devNameVec.size(), devNameVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_NAME for device %u.", err_to_str(clStatus), k);
continue;
}
// if environment variable GPU_SINGLE_ALLOC_PERCENT is not set we can not allocate the full memory
ctx.deviceIdx = k;
ctx.freeMem = std::min(ctx.freeMem, maxMem);
ctx.name = std::string(devNameVec.data());
ctx.DeviceID = device_list[k];
printer::inst()->print_msg(L0,"Found OpenCL GPU %s.",ctx.name.c_str());
ctxVec.push_back(ctx);
}
}
return ctxVec;
}
int getAMDPlatformIdx()
{
uint32_t numPlatforms = getNumPlatforms();
if(numPlatforms == 0)
{
printer::inst()->print_msg(L0,"WARNING: No OpenCL platform found.");
return -1;
}
cl_platform_id * platforms = NULL;
cl_int clStatus;
platforms = (cl_platform_id *) malloc(sizeof(cl_platform_id) * numPlatforms);
clStatus = clGetPlatformIDs(numPlatforms, platforms, NULL);
int platformIndex = -1;
// Mesa OpenCL is the fallback if no AMD or Apple OpenCL is found
int mesaPlatform = -1;
if(clStatus == CL_SUCCESS)
{
for (int i = 0; i < numPlatforms; i++) {
size_t infoSize;
clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, 0, NULL, &infoSize);
std::vector platformNameVec(infoSize);
clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, infoSize, platformNameVec.data(), NULL);
std::string platformName(platformNameVec.data());
bool isAMDOpenCL = platformName.find("Advanced Micro Devices") != std::string::npos ||
platformName.find("Apple") != std::string::npos ||
platformName.find("Mesa") != std::string::npos;
bool isNVIDIADevice = platformName.find("NVIDIA Corporation") != std::string::npos || platformName.find("NVIDIA") != std::string::npos;
std::string selectedOpenCLVendor = xmrstak::params::inst().openCLVendor;
if((isAMDOpenCL && selectedOpenCLVendor == "AMD") || (isNVIDIADevice && selectedOpenCLVendor == "NVIDIA"))
{
printer::inst()->print_msg(L0,"Found %s platform index id = %i, name = %s", selectedOpenCLVendor.c_str(), i , platformName.c_str());
if(platformName.find("Mesa") != std::string::npos)
mesaPlatform = i;
else
{
// exit if AMD or Apple platform is found
platformIndex = i;
break;
}
}
}
// fall back to Mesa OpenCL
if(platformIndex == -1 && mesaPlatform != -1)
{
printer::inst()->print_msg(L0,"No AMD platform found select Mesa as OpenCL platform");
platformIndex = mesaPlatform;
}
}
else
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for platform information.", err_to_str(clStatus));
free(platforms);
return platformIndex;
}
// RequestedDeviceIdxs is a list of OpenCL device indexes
// NumDevicesRequested is number of devices in RequestedDeviceIdxs list
// Returns 0 on success, -1 on stupid params, -2 on OpenCL API error
size_t InitOpenCL(GpuContext* ctx, size_t num_gpus, size_t platform_idx)
{
cl_context opencl_ctx;
cl_int ret;
cl_uint entries;
if((ret = clGetPlatformIDs(0, NULL, &entries)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetPlatformIDs for number of platforms.", err_to_str(ret));
return ERR_OCL_API;
}
// The number of platforms naturally is the index of the last platform plus one.
if(entries <= platform_idx)
{
printer::inst()->print_msg(L1,"Selected OpenCL platform index %d doesn't exist.", platform_idx);
return ERR_STUPID_PARAMS;
}
/*MSVC skimping on devel costs by shoehorning C99 to be a subset of C++? Noooo... can't be.*/
#ifdef __GNUC__
cl_platform_id PlatformIDList[entries];
#else
cl_platform_id* PlatformIDList = (cl_platform_id*)_alloca(entries * sizeof(cl_platform_id));
#endif
if((ret = clGetPlatformIDs(entries, PlatformIDList, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetPlatformIDs for platform ID information.", err_to_str(ret));
return ERR_OCL_API;
}
size_t infoSize;
clGetPlatformInfo(PlatformIDList[platform_idx], CL_PLATFORM_VENDOR, 0, NULL, &infoSize);
std::vector platformNameVec(infoSize);
clGetPlatformInfo(PlatformIDList[platform_idx], CL_PLATFORM_VENDOR, infoSize, platformNameVec.data(), NULL);
std::string platformName(platformNameVec.data());
if(xmrstak::params::inst().openCLVendor == "AMD" && platformName.find("Advanced Micro Devices") == std::string::npos)
{
printer::inst()->print_msg(L1,"WARNING: using non AMD device: %s", platformName.c_str());
}
if((ret = clGetDeviceIDs(PlatformIDList[platform_idx], CL_DEVICE_TYPE_GPU, 0, NULL, &entries)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetDeviceIDs for number of devices.", err_to_str(ret));
return ERR_OCL_API;
}
// Same as the platform index sanity check, except we must check all requested device indexes
for(int i = 0; i < num_gpus; ++i)
{
if(entries <= ctx[i].deviceIdx)
{
printer::inst()->print_msg(L1,"Selected OpenCL device index %lu doesn't exist.\n", ctx[i].deviceIdx);
return ERR_STUPID_PARAMS;
}
}
#ifdef __GNUC__
cl_device_id DeviceIDList[entries];
#else
cl_device_id* DeviceIDList = (cl_device_id*)_alloca(entries * sizeof(cl_device_id));
#endif
if((ret = clGetDeviceIDs(PlatformIDList[platform_idx], CL_DEVICE_TYPE_GPU, entries, DeviceIDList, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetDeviceIDs for device ID information.", err_to_str(ret));
return ERR_OCL_API;
}
// Indexes sanity checked above
#ifdef __GNUC__
cl_device_id TempDeviceList[num_gpus];
#else
cl_device_id* TempDeviceList = (cl_device_id*)_alloca(entries * sizeof(cl_device_id));
#endif
for(int i = 0; i < num_gpus; ++i)
{
ctx[i].DeviceID = DeviceIDList[ctx[i].deviceIdx];
TempDeviceList[i] = DeviceIDList[ctx[i].deviceIdx];
}
opencl_ctx = clCreateContext(NULL, num_gpus, TempDeviceList, NULL, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateContext.", err_to_str(ret));
return ERR_OCL_API;
}
//char* source_code = LoadTextFile(sSourcePath);
const char *cryptonightCL =
#include "./opencl/cryptonight.cl"
;
const char *blake256CL =
#include "./opencl/blake256.cl"
;
const char *groestl256CL =
#include "./opencl/groestl256.cl"
;
const char *jhCL =
#include "./opencl/jh.cl"
;
const char *wolfAesCL =
#include "./opencl/wolf-aes.cl"
;
const char *wolfSkeinCL =
#include "./opencl/wolf-skein.cl"
;
std::string source_code(cryptonightCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_WOLF_AES"), wolfAesCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_WOLF_SKEIN"), wolfSkeinCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_JH"), jhCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_BLAKE256"), blake256CL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_GROESTL256"), groestl256CL);
// create a directory for the OpenCL compile cache
create_directory(get_home() + "/.openclcache");
for(int i = 0; i < num_gpus; ++i)
{
if(ctx[i].stridedIndex == 2 && (ctx[i].rawIntensity % ctx[i].workSize) != 0)
{
size_t reduced_intensity = (ctx[i].rawIntensity / ctx[i].workSize) * ctx[i].workSize;
ctx[i].rawIntensity = reduced_intensity;
const std::string backendName = xmrstak::params::inst().openCLVendor;
printer::inst()->print_msg(L0, "WARNING %s: gpu %d intensity is not a multiple of 'worksize', auto reduce intensity to %d", backendName.c_str(), ctx[i].deviceIdx, int(reduced_intensity));
}
if((ret = InitOpenCLGpu(opencl_ctx, &ctx[i], source_code.c_str())) != ERR_SUCCESS)
{
return ret;
}
}
return ERR_SUCCESS;
}
size_t XMRSetJob(GpuContext* ctx, uint8_t* input, size_t input_len, uint64_t target, xmrstak_algo miner_algo)
{
// switch to the kernel storage
int kernel_storage = miner_algo == ::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgo() ? 0 : 1;
cl_int ret;
if(input_len > 84)
return ERR_STUPID_PARAMS;
input[input_len] = 0x01;
memset(input + input_len + 1, 0, 88 - input_len - 1);
size_t numThreads = ctx->rawIntensity;
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->InputBuffer, CL_TRUE, 0, 88, input, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueWriteBuffer to fill input buffer.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 0, sizeof(cl_mem), &ctx->InputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 1, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 2, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 2.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 3, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 3.", err_to_str(ret));
return(ERR_OCL_API);
}
// CN1 Kernel
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 0, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 1, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 2, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 2.", err_to_str(ret));
return(ERR_OCL_API);
}
if(miner_algo == cryptonight_monero || miner_algo == cryptonight_aeon )
{
// Input
if ((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 3, sizeof(cl_mem), &ctx->InputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1, "Error %s when calling clSetKernelArg for kernel 1, arugment 4(input buffer).", err_to_str(ret));
return ERR_OCL_API;
}
}
// CN3 Kernel
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 0, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 1, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 0
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 2, sizeof(cl_mem), ctx->ExtraBuffers + 2)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 2.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 1
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 3, sizeof(cl_mem), ctx->ExtraBuffers + 3)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 3.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 2
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 4, sizeof(cl_mem), ctx->ExtraBuffers + 4)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 4.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 3
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 5, sizeof(cl_mem), ctx->ExtraBuffers + 5)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 5.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 6, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 6.", err_to_str(ret));
return(ERR_OCL_API);
}
for(int i = 0; i < 4; ++i)
{
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 0, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 0);
return ERR_OCL_API;
}
// Nonce buffer
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 1, sizeof(cl_mem), ctx->ExtraBuffers + (i + 2))) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 1);
return ERR_OCL_API;
}
// Output
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 2, sizeof(cl_mem), &ctx->OutputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 2);
return ERR_OCL_API;
}
// Target
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 3, sizeof(cl_ulong), &target)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 3);
return ERR_OCL_API;
}
}
return ERR_SUCCESS;
}
size_t XMRRunJob(GpuContext* ctx, cl_uint* HashOutput, xmrstak_algo miner_algo)
{
// switch to the kernel storage
int kernel_storage = miner_algo == ::jconf::inst()->GetCurrentCoinSelection().GetDescription(1).GetMiningAlgo() ? 0 : 1;
cl_int ret;
cl_uint zero = 0;
size_t BranchNonces[4];
memset(BranchNonces,0,sizeof(size_t)*4);
size_t g_intensity = ctx->rawIntensity;
size_t w_size = ctx->workSize;
size_t g_thd = g_intensity;
if(ctx->compMode)
{
// round up to next multiple of w_size
g_thd = ((g_intensity + w_size - 1u) / w_size) * w_size;
// number of global threads must be a multiple of the work group size (w_size)
assert(g_thd%w_size == 0);
}
for(int i = 2; i < 6; ++i)
{
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->ExtraBuffers[i], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), &zero, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueWriteBuffer to zero branch buffer counter %d.", err_to_str(ret), i - 2);
return ERR_OCL_API;
}
}
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->OutputBuffer, CL_FALSE, sizeof(cl_uint) * 0xFF, sizeof(cl_uint), &zero, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
size_t Nonce[2] = {ctx->Nonce, 1}, gthreads[2] = { g_thd, 8 }, lthreads[2] = { w_size, 8 };
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][0], 2, Nonce, gthreads, lthreads, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 0);
return ERR_OCL_API;
}
size_t tmpNonce = ctx->Nonce;
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][1], 1, &tmpNonce, &g_thd, &w_size, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 1);
return ERR_OCL_API;
}
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][2], 2, Nonce, gthreads, lthreads, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 2);
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[2], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[3], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 1, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[4], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 2, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[5], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 3, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
for(int i = 0; i < 4; ++i)
{
if(BranchNonces[i])
{
// Threads
if((clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 4, sizeof(cl_ulong), BranchNonces + i)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 4);
return(ERR_OCL_API);
}
// round up to next multiple of w_size
BranchNonces[i] = ((BranchNonces[i] + w_size - 1u) / w_size) * w_size;
// number of global threads must be a multiple of the work group size (w_size)
assert(BranchNonces[i]%w_size == 0);
size_t tmpNonce = ctx->Nonce;
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][i + 3], 1, &tmpNonce, BranchNonces + i, &w_size, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), i + 3);
return ERR_OCL_API;
}
}
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->OutputBuffer, CL_TRUE, 0, sizeof(cl_uint) * 0x100, HashOutput, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
auto & numHashValues = HashOutput[0xFF];
// avoid out of memory read, we have only storage for 0xFF results
if(numHashValues > 0xFF)
numHashValues = 0xFF;
ctx->Nonce += g_intensity;
return ERR_SUCCESS;
}