/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Additional permission under GNU GPL version 3 section 7 * * If you modify this Program, or any covered work, by linking or combining * it with OpenSSL (or a modified version of that library), containing parts * covered by the terms of OpenSSL License and SSLeay License, the licensors * of this Program grant you additional permission to convey the resulting work. * */ #include #include #include #include #include #include "console.h" #ifdef _WIN32 #include void thd_setaffinity(std::thread::native_handle_type h, uint64_t cpu_id) { SetThreadAffinityMask(h, 1ULL << cpu_id); } #else #include #if defined(__APPLE__) #include #include #define SYSCTL_CORE_COUNT "machdep.cpu.core_count" #endif void thd_setaffinity(std::thread::native_handle_type h, uint64_t cpu_id) { #if defined(__APPLE__) thread_port_t mach_thread; thread_affinity_policy_data_t policy = { cpu_id }; mach_thread = pthread_mach_thread_np(h); thread_policy_set(mach_thread, THREAD_AFFINITY_POLICY, (thread_policy_t)&policy, 1); #else cpu_set_t mn; CPU_ZERO(&mn); CPU_SET(cpu_id, &mn); pthread_setaffinity_np(h, sizeof(cpu_set_t), &mn); #endif } #endif // _WIN32 #include "executor.h" #include "minethd.h" #include "jconf.h" #include "crypto/cryptonight_aesni.h" telemetry::telemetry(size_t iThd) { ppHashCounts = new uint64_t*[iThd]; ppTimestamps = new uint64_t*[iThd]; iBucketTop = new uint32_t[iThd]; for (size_t i = 0; i < iThd; i++) { ppHashCounts[i] = new uint64_t[iBucketSize]; ppTimestamps[i] = new uint64_t[iBucketSize]; iBucketTop[i] = 0; memset(ppHashCounts[0], 0, sizeof(uint64_t) * iBucketSize); memset(ppTimestamps[0], 0, sizeof(uint64_t) * iBucketSize); } } double telemetry::calc_telemetry_data(size_t iLastMilisec, size_t iThread) { using namespace std::chrono; uint64_t iTimeNow = time_point_cast(high_resolution_clock::now()).time_since_epoch().count(); uint64_t iEarliestHashCnt = 0; uint64_t iEarliestStamp = 0; uint64_t iLastestStamp = 0; uint64_t iLastestHashCnt = 0; bool bHaveFullSet = false; //Start at 1, buckettop points to next empty for (size_t i = 1; i < iBucketSize; i++) { size_t idx = (iBucketTop[iThread] - i) & iBucketMask; //overflow expected here if (ppTimestamps[iThread][idx] == 0) break; //That means we don't have the data yet if (iLastestStamp == 0) { iLastestStamp = ppTimestamps[iThread][idx]; iLastestHashCnt = ppHashCounts[iThread][idx]; } if (iTimeNow - ppTimestamps[iThread][idx] > iLastMilisec) { bHaveFullSet = true; break; //We are out of the requested time period } iEarliestStamp = ppTimestamps[iThread][idx]; iEarliestHashCnt = ppHashCounts[iThread][idx]; } if (!bHaveFullSet || iEarliestStamp == 0 || iLastestStamp == 0) return nan(""); //Don't think that can happen, but just in case if (iLastestStamp - iEarliestStamp == 0) return nan(""); double fHashes, fTime; fHashes = iLastestHashCnt - iEarliestHashCnt; fTime = iLastestStamp - iEarliestStamp; fTime /= 1000.0; return fHashes / fTime; } void telemetry::push_perf_value(size_t iThd, uint64_t iHashCount, uint64_t iTimestamp) { size_t iTop = iBucketTop[iThd]; ppHashCounts[iThd][iTop] = iHashCount; ppTimestamps[iThd][iTop] = iTimestamp; iBucketTop[iThd] = (iTop + 1) & iBucketMask; } minethd::minethd(miner_work& pWork, size_t iNo, bool double_work, bool no_prefetch) { oWork = pWork; bQuit = 0; iThreadNo = (uint8_t)iNo; iJobNo = 0; iHashCount = 0; iTimestamp = 0; bNoPrefetch = no_prefetch; if(double_work) oWorkThd = std::thread(&minethd::double_work_main, this); else oWorkThd = std::thread(&minethd::work_main, this); } std::atomic minethd::iGlobalJobNo; std::atomic minethd::iConsumeCnt; //Threads get jobs as they are initialized minethd::miner_work minethd::oGlobalWork; uint64_t minethd::iThreadCount = 0; cryptonight_ctx* minethd_alloc_ctx() { cryptonight_ctx* ctx; alloc_msg msg = { 0 }; switch (jconf::inst()->GetSlowMemSetting()) { case jconf::never_use: ctx = cryptonight_alloc_ctx(1, 1, &msg); if (ctx == NULL) printer::inst()->print_msg(L0, "MEMORY ALLOC FAILED: %s", msg.warning); return ctx; case jconf::no_mlck: ctx = cryptonight_alloc_ctx(1, 0, &msg); if (ctx == NULL) printer::inst()->print_msg(L0, "MEMORY ALLOC FAILED: %s", msg.warning); return ctx; case jconf::print_warning: ctx = cryptonight_alloc_ctx(1, 1, &msg); if (msg.warning != NULL) printer::inst()->print_msg(L0, "MEMORY ALLOC FAILED: %s", msg.warning); if (ctx == NULL) ctx = cryptonight_alloc_ctx(0, 0, NULL); return ctx; case jconf::always_use: return cryptonight_alloc_ctx(0, 0, NULL); case jconf::unknown_value: return NULL; //Shut up compiler } return nullptr; //Should never happen } bool minethd::self_test() { alloc_msg msg = { 0 }; size_t res; bool fatal = false; switch (jconf::inst()->GetSlowMemSetting()) { case jconf::never_use: res = cryptonight_init(1, 1, &msg); fatal = true; break; case jconf::no_mlck: res = cryptonight_init(1, 0, &msg); fatal = true; break; case jconf::print_warning: res = cryptonight_init(1, 1, &msg); break; case jconf::always_use: res = cryptonight_init(0, 0, &msg); break; case jconf::unknown_value: default: return false; //Shut up compiler } if(msg.warning != nullptr) printer::inst()->print_msg(L0, "MEMORY INIT ERROR: %s", msg.warning); if(res == 0 && fatal) return false; cryptonight_ctx *ctx0, *ctx1; if((ctx0 = minethd_alloc_ctx()) == nullptr) return false; if((ctx1 = minethd_alloc_ctx()) == nullptr) { cryptonight_free_ctx(ctx0); return false; } unsigned char out[64]; bool bResult; cn_hash_fun hashf; cn_hash_fun_dbl hashdf; hashf = func_selector(jconf::inst()->HaveHardwareAes(), false); hashf("This is a test", 14, out, ctx0); bResult = memcmp(out, "\xa0\x84\xf0\x1d\x14\x37\xa0\x9c\x69\x85\x40\x1b\x60\xd4\x35\x54\xae\x10\x58\x02\xc5\xf5\xd8\xa9\xb3\x25\x36\x49\xc0\xbe\x66\x05", 32) == 0; hashf = func_selector(jconf::inst()->HaveHardwareAes(), true); hashf("This is a test", 14, out, ctx0); bResult &= memcmp(out, "\xa0\x84\xf0\x1d\x14\x37\xa0\x9c\x69\x85\x40\x1b\x60\xd4\x35\x54\xae\x10\x58\x02\xc5\xf5\xd8\xa9\xb3\x25\x36\x49\xc0\xbe\x66\x05", 32) == 0; hashdf = func_dbl_selector(jconf::inst()->HaveHardwareAes(), false); hashdf("The quick brown fox jumps over the lazy dogThe quick brown fox jumps over the lazy log", 43, out, ctx0, ctx1); bResult &= memcmp(out, "\x3e\xbb\x7f\x9f\x7d\x27\x3d\x7c\x31\x8d\x86\x94\x77\x55\x0c\xc8\x00\xcf\xb1\x1b\x0c\xad\xb7\xff\xbd\xf6\xf8\x9f\x3a\x47\x1c\x59" "\xb4\x77\xd5\x02\xe4\xd8\x48\x7f\x42\xdf\xe3\x8e\xed\x73\x81\x7a\xda\x91\xb7\xe2\x63\xd2\x91\x71\xb6\x5c\x44\x3a\x01\x2a\x41\x22", 64) == 0; hashdf = func_dbl_selector(jconf::inst()->HaveHardwareAes(), true); hashdf("The quick brown fox jumps over the lazy dogThe quick brown fox jumps over the lazy log", 43, out, ctx0, ctx1); bResult &= memcmp(out, "\x3e\xbb\x7f\x9f\x7d\x27\x3d\x7c\x31\x8d\x86\x94\x77\x55\x0c\xc8\x00\xcf\xb1\x1b\x0c\xad\xb7\xff\xbd\xf6\xf8\x9f\x3a\x47\x1c\x59" "\xb4\x77\xd5\x02\xe4\xd8\x48\x7f\x42\xdf\xe3\x8e\xed\x73\x81\x7a\xda\x91\xb7\xe2\x63\xd2\x91\x71\xb6\x5c\x44\x3a\x01\x2a\x41\x22", 64) == 0; cryptonight_free_ctx(ctx0); cryptonight_free_ctx(ctx1); if(!bResult) printer::inst()->print_msg(L0, "Cryptonight hash self-test failed. This might be caused by bad compiler optimizations."); return bResult; } std::vector* minethd::thread_starter(miner_work& pWork) { iGlobalJobNo = 0; iConsumeCnt = 0; std::vector* pvThreads = new std::vector; //Launch the requested number of single and double threads, to distribute //load evenly we need to alternate single and double threads size_t i, n = jconf::inst()->GetThreadCount(); pvThreads->reserve(n); jconf::thd_cfg cfg; for (i = 0; i < n; i++) { jconf::inst()->GetThreadConfig(i, cfg); minethd* thd = new minethd(pWork, i, cfg.bDoubleMode, cfg.bNoPrefetch); if(cfg.iCpuAff >= 0) { #if defined(__APPLE__) printer::inst()->print_msg(L1, "WARNING on MacOS thread affinity is only advisory."); #endif thd_setaffinity(thd->oWorkThd.native_handle(), cfg.iCpuAff); } pvThreads->push_back(thd); if(cfg.iCpuAff >= 0) printer::inst()->print_msg(L1, "Starting %s thread, affinity: %d.", cfg.bDoubleMode ? "double" : "single", (int)cfg.iCpuAff); else printer::inst()->print_msg(L1, "Starting %s thread, no affinity.", cfg.bDoubleMode ? "double" : "single"); } iThreadCount = n; return pvThreads; } void minethd::switch_work(miner_work& pWork) { // iConsumeCnt is a basic lock-like polling mechanism just in case we happen to push work // faster than threads can consume them. This should never happen in real life. // Pool cant physically send jobs faster than every 250ms or so due to net latency. while (iConsumeCnt.load(std::memory_order_seq_cst) < iThreadCount) std::this_thread::sleep_for(std::chrono::milliseconds(100)); oGlobalWork = pWork; iConsumeCnt.store(0, std::memory_order_seq_cst); iGlobalJobNo++; } void minethd::consume_work() { memcpy(&oWork, &oGlobalWork, sizeof(miner_work)); iJobNo++; iConsumeCnt++; } minethd::cn_hash_fun minethd::func_selector(bool bHaveAes, bool bNoPrefetch) { // We have two independent flag bits in the functions // therefore we will build a binary digit and select the // function as a two digit binary // Digit order SOFT_AES, NO_PREFETCH static const cn_hash_fun func_table[4] = { cryptonight_hash<0x80000, MEMORY, false, false>, cryptonight_hash<0x80000, MEMORY, false, true>, cryptonight_hash<0x80000, MEMORY, true, false>, cryptonight_hash<0x80000, MEMORY, true, true> }; std::bitset<2> digit; digit.set(0, !bNoPrefetch); digit.set(1, !bHaveAes); return func_table[digit.to_ulong()]; } void minethd::work_main() { cn_hash_fun hash_fun; cryptonight_ctx* ctx; uint64_t iCount = 0; uint64_t* piHashVal; uint32_t* piNonce; job_result result; hash_fun = func_selector(jconf::inst()->HaveHardwareAes(), bNoPrefetch); ctx = minethd_alloc_ctx(); piHashVal = (uint64_t*)(result.bResult + 24); piNonce = (uint32_t*)(oWork.bWorkBlob + 39); iConsumeCnt++; while (bQuit == 0) { if (oWork.bStall) { /* We are stalled here because the executor didn't find a job for us yet, either because of network latency, or a socket problem. Since we are raison d'etre of this software it us sensible to just wait until we have something*/ while (iGlobalJobNo.load(std::memory_order_relaxed) == iJobNo) std::this_thread::sleep_for(std::chrono::milliseconds(100)); consume_work(); continue; } if(oWork.bNiceHash) result.iNonce = calc_nicehash_nonce(*piNonce, oWork.iResumeCnt); else result.iNonce = calc_start_nonce(oWork.iResumeCnt); assert(sizeof(job_result::sJobID) == sizeof(pool_job::sJobID)); memcpy(result.sJobID, oWork.sJobID, sizeof(job_result::sJobID)); while(iGlobalJobNo.load(std::memory_order_relaxed) == iJobNo) { if ((iCount & 0xF) == 0) //Store stats every 16 hashes { using namespace std::chrono; uint64_t iStamp = time_point_cast(high_resolution_clock::now()).time_since_epoch().count(); iHashCount.store(iCount, std::memory_order_relaxed); iTimestamp.store(iStamp, std::memory_order_relaxed); } iCount++; *piNonce = ++result.iNonce; hash_fun(oWork.bWorkBlob, oWork.iWorkSize, result.bResult, ctx); if (*piHashVal < oWork.iTarget) executor::inst()->push_event(ex_event(result, oWork.iPoolId)); std::this_thread::yield(); } consume_work(); } cryptonight_free_ctx(ctx); } minethd::cn_hash_fun_dbl minethd::func_dbl_selector(bool bHaveAes, bool bNoPrefetch) { // We have two independent flag bits in the functions // therefore we will build a binary digit and select the // function as a two digit binary // Digit order SOFT_AES, NO_PREFETCH static const cn_hash_fun_dbl func_table[4] = { cryptonight_double_hash<0x80000, MEMORY, false, false>, cryptonight_double_hash<0x80000, MEMORY, false, true>, cryptonight_double_hash<0x80000, MEMORY, true, false>, cryptonight_double_hash<0x80000, MEMORY, true, true> }; std::bitset<2> digit; digit.set(0, !bNoPrefetch); digit.set(1, !bHaveAes); return func_table[digit.to_ulong()]; } void minethd::double_work_main() { cn_hash_fun_dbl hash_fun; cryptonight_ctx* ctx0; cryptonight_ctx* ctx1; uint64_t iCount = 0; uint64_t *piHashVal0, *piHashVal1; uint32_t *piNonce0, *piNonce1; uint8_t bDoubleHashOut[64]; uint8_t bDoubleWorkBlob[sizeof(miner_work::bWorkBlob) * 2]; uint32_t iNonce; job_result res; hash_fun = func_dbl_selector(jconf::inst()->HaveHardwareAes(), bNoPrefetch); ctx0 = minethd_alloc_ctx(); ctx1 = minethd_alloc_ctx(); piHashVal0 = (uint64_t*)(bDoubleHashOut + 24); piHashVal1 = (uint64_t*)(bDoubleHashOut + 32 + 24); piNonce0 = (uint32_t*)(bDoubleWorkBlob + 39); piNonce1 = nullptr; iConsumeCnt++; while (bQuit == 0) { if (oWork.bStall) { /* We are stalled here because the executor didn't find a job for us yet, either because of network latency, or a socket problem. Since we are raison d'etre of this software it us sensible to just wait until we have something*/ while (iGlobalJobNo.load(std::memory_order_relaxed) == iJobNo) std::this_thread::sleep_for(std::chrono::milliseconds(100)); consume_work(); memcpy(bDoubleWorkBlob, oWork.bWorkBlob, oWork.iWorkSize); memcpy(bDoubleWorkBlob + oWork.iWorkSize, oWork.bWorkBlob, oWork.iWorkSize); piNonce1 = (uint32_t*)(bDoubleWorkBlob + oWork.iWorkSize + 39); continue; } if(oWork.bNiceHash) iNonce = calc_nicehash_nonce(*piNonce0, oWork.iResumeCnt); else iNonce = calc_start_nonce(oWork.iResumeCnt); assert(sizeof(job_result::sJobID) == sizeof(pool_job::sJobID)); while (iGlobalJobNo.load(std::memory_order_relaxed) == iJobNo) { if ((iCount & 0x7) == 0) //Store stats every 16 hashes { using namespace std::chrono; uint64_t iStamp = time_point_cast(high_resolution_clock::now()).time_since_epoch().count(); iHashCount.store(iCount, std::memory_order_relaxed); iTimestamp.store(iStamp, std::memory_order_relaxed); } iCount += 2; *piNonce0 = ++iNonce; *piNonce1 = ++iNonce; hash_fun(bDoubleWorkBlob, oWork.iWorkSize, bDoubleHashOut, ctx0, ctx1); if (*piHashVal0 < oWork.iTarget) executor::inst()->push_event(ex_event(job_result(oWork.sJobID, iNonce-1, bDoubleHashOut), oWork.iPoolId)); if (*piHashVal1 < oWork.iTarget) executor::inst()->push_event(ex_event(job_result(oWork.sJobID, iNonce, bDoubleHashOut + 32), oWork.iPoolId)); std::this_thread::yield(); } consume_work(); memcpy(bDoubleWorkBlob, oWork.bWorkBlob, oWork.iWorkSize); memcpy(bDoubleWorkBlob + oWork.iWorkSize, oWork.bWorkBlob, oWork.iWorkSize); piNonce1 = (uint32_t*)(bDoubleWorkBlob + oWork.iWorkSize + 39); } cryptonight_free_ctx(ctx0); cryptonight_free_ctx(ctx1); }