diff options
Diffstat (limited to 'xmrstak/backend/nvidia/nvcc_code')
-rw-r--r-- | xmrstak/backend/nvidia/nvcc_code/cryptonight.hpp | 3 | ||||
-rw-r--r-- | xmrstak/backend/nvidia/nvcc_code/cuda_core.cu | 30 | ||||
-rw-r--r-- | xmrstak/backend/nvidia/nvcc_code/cuda_device.hpp | 37 | ||||
-rw-r--r-- | xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu | 32 |
4 files changed, 76 insertions, 26 deletions
diff --git a/xmrstak/backend/nvidia/nvcc_code/cryptonight.hpp b/xmrstak/backend/nvidia/nvcc_code/cryptonight.hpp index 1b63379..afbdbaf 100644 --- a/xmrstak/backend/nvidia/nvcc_code/cryptonight.hpp +++ b/xmrstak/backend/nvidia/nvcc_code/cryptonight.hpp @@ -11,7 +11,8 @@ typedef struct { int device_blocks; int device_threads; int device_bfactor; - int device_bsleep; + int device_bsleep; + int syncMode; uint32_t *d_input; uint32_t inputlen; diff --git a/xmrstak/backend/nvidia/nvcc_code/cuda_core.cu b/xmrstak/backend/nvidia/nvcc_code/cuda_core.cu index a92fa8c..0b175b5 100644 --- a/xmrstak/backend/nvidia/nvcc_code/cuda_core.cu +++ b/xmrstak/backend/nvidia/nvcc_code/cuda_core.cu @@ -167,10 +167,10 @@ __forceinline__ __device__ uint32_t shuffle(volatile uint32_t* ptr,const uint32_ #endif } +template<size_t ITERATIONS, uint32_t THREAD_SHIFT, uint32_t MASK> #ifdef XMR_STAK_THREADS __launch_bounds__( XMR_STAK_THREADS * 4 ) #endif -template<size_t ITERATIONS, uint32_t THREAD_SHIFT, uint32_t MASK> __global__ void cryptonight_core_gpu_phase2( int threads, int bfactor, int partidx, uint32_t * d_long_state, uint32_t * d_ctx_a, uint32_t * d_ctx_b ) { __shared__ uint32_t sharedMemory[1024]; @@ -327,18 +327,22 @@ void cryptonight_core_gpu_hash(nvid_ctx* ctx) for ( int i = 0; i < partcount; i++ ) { - CUDA_CHECK_KERNEL(ctx->device_id, cryptonight_core_gpu_phase2<ITERATIONS,THREAD_SHIFT,MASK><<< - grid, - block4, - block4.x * sizeof(uint32_t) * static_cast< int >( ctx->device_arch[0] < 3 ) - >>>( - ctx->device_blocks*ctx->device_threads, - ctx->device_bfactor, - i, - ctx->d_long_state, - ctx->d_ctx_a, - ctx->d_ctx_b - )); + CUDA_CHECK_MSG_KERNEL( + ctx->device_id, + "\n**suggestion: Try to increase the value of the attribute 'bfactor' or \nreduce 'threads' in the NVIDIA config file.**", + cryptonight_core_gpu_phase2<ITERATIONS,THREAD_SHIFT,MASK><<< + grid, + block4, + block4.x * sizeof(uint32_t) * static_cast< int >( ctx->device_arch[0] < 3 ) + >>>( + ctx->device_blocks*ctx->device_threads, + ctx->device_bfactor, + i, + ctx->d_long_state, + ctx->d_ctx_a, + ctx->d_ctx_b + ) + ); if ( partcount > 1 && ctx->device_bsleep > 0) compat_usleep( ctx->device_bsleep ); } diff --git a/xmrstak/backend/nvidia/nvcc_code/cuda_device.hpp b/xmrstak/backend/nvidia/nvcc_code/cuda_device.hpp index 078c165..563bb3b 100644 --- a/xmrstak/backend/nvidia/nvcc_code/cuda_device.hpp +++ b/xmrstak/backend/nvidia/nvcc_code/cuda_device.hpp @@ -9,22 +9,41 @@ /** execute and check a CUDA api command * * @param id gpu id (thread id) + * @param msg message string which should be added to the error message * @param ... CUDA api command */ -#define CUDA_CHECK(id, ...) { \ - cudaError_t error = __VA_ARGS__; \ - if(error!=cudaSuccess){ \ - std::cerr << "[CUDA] Error gpu " << id << ": <" << __FILE__ << ">:" << __LINE__ << std::endl; \ - throw std::runtime_error(std::string("[CUDA] Error: ") + std::string(cudaGetErrorString(error))); \ - } \ -} \ +#define CUDA_CHECK_MSG(id, msg, ...) { \ + cudaError_t error = __VA_ARGS__; \ + if(error!=cudaSuccess){ \ + std::cerr << "[CUDA] Error gpu " << id << ": <" << __FILE__ << ">:" << __LINE__; \ + std::cerr << msg << std::endl; \ + throw std::runtime_error(std::string("[CUDA] Error: ") + std::string(cudaGetErrorString(error))); \ + } \ +} \ ( (void) 0 ) +/** execute and check a CUDA api command + * + * @param id gpu id (thread id) + * @param ... CUDA api command + */ +#define CUDA_CHECK(id, ...) CUDA_CHECK_MSG(id, "", __VA_ARGS__) + /** execute and check a CUDA kernel * * @param id gpu id (thread id) * @param ... CUDA kernel call */ -#define CUDA_CHECK_KERNEL(id, ...) \ - __VA_ARGS__; \ +#define CUDA_CHECK_KERNEL(id, ...) \ + __VA_ARGS__; \ CUDA_CHECK(id, cudaGetLastError()) + +/** execute and check a CUDA kernel + * + * @param id gpu id (thread id) + * @param msg message string which should be added to the error message + * @param ... CUDA kernel call + */ +#define CUDA_CHECK_MSG_KERNEL(id, msg, ...) \ + __VA_ARGS__; \ + CUDA_CHECK_MSG(id, msg, cudaGetLastError()) diff --git a/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu b/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu index 5501d8d..492201d 100644 --- a/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu +++ b/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu @@ -189,7 +189,22 @@ extern "C" int cryptonight_extra_cpu_init(nvid_ctx* ctx) } cudaDeviceReset(); - cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); + switch(ctx->syncMode) + { + case 0: + cudaSetDeviceFlags(cudaDeviceScheduleAuto); + break; + case 1: + cudaSetDeviceFlags(cudaDeviceScheduleSpin); + break; + case 2: + cudaSetDeviceFlags(cudaDeviceScheduleYield); + break; + case 3: + cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); + break; + + }; cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); size_t hashMemSize; @@ -203,7 +218,6 @@ extern "C" int cryptonight_extra_cpu_init(nvid_ctx* ctx) } size_t wsize = ctx->device_blocks * ctx->device_threads; - CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_long_state, hashMemSize * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_state, 50 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_key1, 40 * sizeof(uint32_t) * wsize)); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_ctx_key2, 40 * sizeof(uint32_t) * wsize)); @@ -213,6 +227,10 @@ extern "C" int cryptonight_extra_cpu_init(nvid_ctx* ctx) CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_input, 21 * sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_result_count, sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMalloc(&ctx->d_result_nonce, 10 * sizeof (uint32_t ) )); + CUDA_CHECK_MSG( + ctx->device_id, + "\n**suggestion: Try to reduce the value of the attribute 'threads' in the NVIDIA config file.**", + cudaMalloc(&ctx->d_long_state, hashMemSize * wsize)); return 1; } @@ -239,7 +257,11 @@ extern "C" void cryptonight_extra_cpu_final(nvid_ctx* ctx, uint32_t startNonce, CUDA_CHECK(ctx->device_id, cudaMemset( ctx->d_result_nonce, 0xFF, 10 * sizeof (uint32_t ) )); CUDA_CHECK(ctx->device_id, cudaMemset( ctx->d_result_count, 0, sizeof (uint32_t ) )); - CUDA_CHECK_KERNEL(ctx->device_id, cryptonight_extra_gpu_final<<<grid, block >>>( wsize, target, ctx->d_result_count, ctx->d_result_nonce, ctx->d_ctx_state )); + CUDA_CHECK_MSG_KERNEL( + ctx->device_id, + "\n**suggestion: Try to increase the value of the attribute 'bfactor' in the NVIDIA config file.**", + cryptonight_extra_gpu_final<<<grid, block >>>( wsize, target, ctx->d_result_count, ctx->d_result_nonce, ctx->d_ctx_state ) + ); CUDA_CHECK(ctx->device_id, cudaMemcpy( rescount, ctx->d_result_count, sizeof (uint32_t ), cudaMemcpyDeviceToHost )); CUDA_CHECK(ctx->device_id, cudaMemcpy( resnonce, ctx->d_result_nonce, 10 * sizeof (uint32_t ), cudaMemcpyDeviceToHost )); @@ -380,6 +402,10 @@ extern "C" int cuda_get_deviceinfo(nvid_ctx* ctx) */ ctx->device_blocks = props.multiProcessorCount * ( props.major < 3 ? 2 : 3 ); + + // increase bfactor for low end devices to avoid that the miner is killed by the OS + if(props.multiProcessorCount < 6) + ctx->device_bfactor += 2; } if(ctx->device_threads == -1) { |