summaryrefslogtreecommitdiffstats
path: root/xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl
diff options
context:
space:
mode:
authorpsychocrypt <psychocrypt@users.noreply.github.com>2017-09-29 20:32:31 +0200
committerpsychocrypt <psychocrypt@users.noreply.github.com>2017-09-30 23:46:08 +0200
commitcc429b68fadc502b981fd0acd64a5ff6e2ae1d15 (patch)
tree3fb23fc4db15dbdd08af4c7ea20134b9d82e58fd /xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl
parente5b0319d5a9f58762fa934ad700113908940cb31 (diff)
downloadxmr-stak-cc429b68fadc502b981fd0acd64a5ff6e2ae1d15.zip
xmr-stak-cc429b68fadc502b981fd0acd64a5ff6e2ae1d15.tar.gz
group files
- move source code to `src` - categorize files and move to group folder - change upper case class files to lower case - change C++ header to `*.hpp`
Diffstat (limited to 'xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl')
-rw-r--r--xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl859
1 files changed, 859 insertions, 0 deletions
diff --git a/xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl b/xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl
new file mode 100644
index 0000000..1bb334a
--- /dev/null
+++ b/xmrstak/backend/amd/amd_gpu/opencl/cryptonight.cl
@@ -0,0 +1,859 @@
+R"===(
+/*
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifdef cl_amd_media_ops
+#pragma OPENCL EXTENSION cl_amd_media_ops : enable
+#else
+/* taken from https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_media_ops.txt
+ * Build-in Function
+ * uintn amd_bitalign (uintn src0, uintn src1, uintn src2)
+ * Description
+ * dst.s0 = (uint) (((((long)src0.s0) << 32) | (long)src1.s0) >> (src2.s0 & 31))
+ * similar operation applied to other components of the vectors.
+ *
+ * The implemented function is modified because the last is in our case always a scalar.
+ * We can ignore the bitwise AND operation.
+ */
+inline uint2 amd_bitalign( const uint2 src0, const uint2 src1, const uint src2)
+{
+ uint2 result;
+ result.s0 = (uint) (((((long)src0.s0) << 32) | (long)src1.s0) >> (src2));
+ result.s1 = (uint) (((((long)src0.s1) << 32) | (long)src1.s1) >> (src2));
+ return result;
+}
+#endif
+
+#ifdef cl_amd_media_ops2
+#pragma OPENCL EXTENSION cl_amd_media_ops2 : enable
+#else
+/* taken from: https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_media_ops2.txt
+ * Built-in Function:
+ * uintn amd_bfe (uintn src0, uintn src1, uintn src2)
+ * Description
+ * NOTE: operator >> below represent logical right shift
+ * offset = src1.s0 & 31;
+ * width = src2.s0 & 31;
+ * if width = 0
+ * dst.s0 = 0;
+ * else if (offset + width) < 32
+ * dst.s0 = (src0.s0 << (32 - offset - width)) >> (32 - width);
+ * else
+ * dst.s0 = src0.s0 >> offset;
+ * similar operation applied to other components of the vectors
+ */
+inline int amd_bfe(const uint src0, const uint offset, const uint width)
+{
+ /* casts are removed because we can implement everything as uint
+ * int offset = src1;
+ * int width = src2;
+ * remove check for edge case, this function is always called with
+ * `width==8`
+ * @code
+ * if ( width == 0 )
+ * return 0;
+ * @endcode
+ */
+ if ( (offset + width) < 32u )
+ return (src0 << (32u - offset - width)) >> (32u - width);
+
+ return src0 >> offset;
+}
+#endif
+
+//#include "opencl/wolf-aes.cl"
+XMRSTAK_INCLUDE_WOLF_AES
+//#include "opencl/wolf-skein.cl"
+XMRSTAK_INCLUDE_WOLF_SKEIN
+//#include "opencl/jh.cl"
+XMRSTAK_INCLUDE_JH
+//#include "opencl/blake256.cl"
+XMRSTAK_INCLUDE_BLAKE256
+//#include "opencl/groestl256.cl"
+XMRSTAK_INCLUDE_GROESTL256
+
+static const __constant ulong keccakf_rndc[24] =
+{
+ 0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
+ 0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
+ 0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
+ 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
+ 0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
+ 0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
+ 0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
+ 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
+};
+
+static const __constant uchar sbox[256] =
+{
+ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
+ 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
+ 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+ 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
+ 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
+ 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+ 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
+ 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
+ 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+ 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
+ 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
+ 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+ 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
+ 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
+ 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+ 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
+};
+
+
+void keccakf1600(ulong *s)
+{
+ for(int i = 0; i < 24; ++i)
+ {
+ ulong bc[5], tmp1, tmp2;
+ bc[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20] ^ rotate(s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22], 1UL);
+ bc[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21] ^ rotate(s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23], 1UL);
+ bc[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22] ^ rotate(s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24], 1UL);
+ bc[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23] ^ rotate(s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20], 1UL);
+ bc[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24] ^ rotate(s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21], 1UL);
+
+ tmp1 = s[1] ^ bc[0];
+
+ s[0] ^= bc[4];
+ s[1] = rotate(s[6] ^ bc[0], 44UL);
+ s[6] = rotate(s[9] ^ bc[3], 20UL);
+ s[9] = rotate(s[22] ^ bc[1], 61UL);
+ s[22] = rotate(s[14] ^ bc[3], 39UL);
+ s[14] = rotate(s[20] ^ bc[4], 18UL);
+ s[20] = rotate(s[2] ^ bc[1], 62UL);
+ s[2] = rotate(s[12] ^ bc[1], 43UL);
+ s[12] = rotate(s[13] ^ bc[2], 25UL);
+ s[13] = rotate(s[19] ^ bc[3], 8UL);
+ s[19] = rotate(s[23] ^ bc[2], 56UL);
+ s[23] = rotate(s[15] ^ bc[4], 41UL);
+ s[15] = rotate(s[4] ^ bc[3], 27UL);
+ s[4] = rotate(s[24] ^ bc[3], 14UL);
+ s[24] = rotate(s[21] ^ bc[0], 2UL);
+ s[21] = rotate(s[8] ^ bc[2], 55UL);
+ s[8] = rotate(s[16] ^ bc[0], 35UL);
+ s[16] = rotate(s[5] ^ bc[4], 36UL);
+ s[5] = rotate(s[3] ^ bc[2], 28UL);
+ s[3] = rotate(s[18] ^ bc[2], 21UL);
+ s[18] = rotate(s[17] ^ bc[1], 15UL);
+ s[17] = rotate(s[11] ^ bc[0], 10UL);
+ s[11] = rotate(s[7] ^ bc[1], 6UL);
+ s[7] = rotate(s[10] ^ bc[4], 3UL);
+ s[10] = rotate(tmp1, 1UL);
+
+ tmp1 = s[0]; tmp2 = s[1]; s[0] = bitselect(s[0] ^ s[2], s[0], s[1]); s[1] = bitselect(s[1] ^ s[3], s[1], s[2]); s[2] = bitselect(s[2] ^ s[4], s[2], s[3]); s[3] = bitselect(s[3] ^ tmp1, s[3], s[4]); s[4] = bitselect(s[4] ^ tmp2, s[4], tmp1);
+ tmp1 = s[5]; tmp2 = s[6]; s[5] = bitselect(s[5] ^ s[7], s[5], s[6]); s[6] = bitselect(s[6] ^ s[8], s[6], s[7]); s[7] = bitselect(s[7] ^ s[9], s[7], s[8]); s[8] = bitselect(s[8] ^ tmp1, s[8], s[9]); s[9] = bitselect(s[9] ^ tmp2, s[9], tmp1);
+ tmp1 = s[10]; tmp2 = s[11]; s[10] = bitselect(s[10] ^ s[12], s[10], s[11]); s[11] = bitselect(s[11] ^ s[13], s[11], s[12]); s[12] = bitselect(s[12] ^ s[14], s[12], s[13]); s[13] = bitselect(s[13] ^ tmp1, s[13], s[14]); s[14] = bitselect(s[14] ^ tmp2, s[14], tmp1);
+ tmp1 = s[15]; tmp2 = s[16]; s[15] = bitselect(s[15] ^ s[17], s[15], s[16]); s[16] = bitselect(s[16] ^ s[18], s[16], s[17]); s[17] = bitselect(s[17] ^ s[19], s[17], s[18]); s[18] = bitselect(s[18] ^ tmp1, s[18], s[19]); s[19] = bitselect(s[19] ^ tmp2, s[19], tmp1);
+ tmp1 = s[20]; tmp2 = s[21]; s[20] = bitselect(s[20] ^ s[22], s[20], s[21]); s[21] = bitselect(s[21] ^ s[23], s[21], s[22]); s[22] = bitselect(s[22] ^ s[24], s[22], s[23]); s[23] = bitselect(s[23] ^ tmp1, s[23], s[24]); s[24] = bitselect(s[24] ^ tmp2, s[24], tmp1);
+ s[0] ^= keccakf_rndc[i];
+ }
+}
+
+static const __constant uint keccakf_rotc[24] =
+{
+ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
+ 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
+};
+
+static const __constant uint keccakf_piln[24] =
+{
+ 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
+ 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
+};
+
+void keccakf1600_1(ulong *st)
+{
+ int i, round;
+ ulong t, bc[5];
+
+ #pragma unroll 1
+ for(round = 0; round < 24; ++round)
+ {
+
+ // Theta
+ bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
+ bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
+ bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
+ bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
+ bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
+
+ #pragma unroll 1
+ for (i = 0; i < 5; ++i) {
+ t = bc[(i + 4) % 5] ^ rotate(bc[(i + 1) % 5], 1UL);
+ st[i ] ^= t;
+ st[i + 5] ^= t;
+ st[i + 10] ^= t;
+ st[i + 15] ^= t;
+ st[i + 20] ^= t;
+ }
+
+ // Rho Pi
+ t = st[1];
+ #pragma unroll
+ for (i = 0; i < 24; ++i) {
+ bc[0] = st[keccakf_piln[i]];
+ st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]);
+ t = bc[0];
+ }
+
+ //ulong tmp1 = st[0]; ulong tmp2 = st[1]; st[0] = bitselect(st[0] ^ st[2], st[0], st[1]); st[1] = bitselect(st[1] ^ st[3], st[1], st[2]); st[2] = bitselect(st[2] ^ st[4], st[2], st[3]); st[3] = bitselect(st[3] ^ tmp1, st[3], st[4]); st[4] = bitselect(st[4] ^ tmp2, st[4], tmp1);
+ //tmp1 = st[5]; tmp2 = st[6]; st[5] = bitselect(st[5] ^ st[7], st[5], st[6]); st[6] = bitselect(st[6] ^ st[8], st[6], st[7]); st[7] = bitselect(st[7] ^ st[9], st[7], st[8]); st[8] = bitselect(st[8] ^ tmp1, st[8], st[9]); st[9] = bitselect(st[9] ^ tmp2, st[9], tmp1);
+ //tmp1 = st[10]; tmp2 = st[11]; st[10] = bitselect(st[10] ^ st[12], st[10], st[11]); st[11] = bitselect(st[11] ^ st[13], st[11], st[12]); st[12] = bitselect(st[12] ^ st[14], st[12], st[13]); st[13] = bitselect(st[13] ^ tmp1, st[13], st[14]); st[14] = bitselect(st[14] ^ tmp2, st[14], tmp1);
+ //tmp1 = st[15]; tmp2 = st[16]; st[15] = bitselect(st[15] ^ st[17], st[15], st[16]); st[16] = bitselect(st[16] ^ st[18], st[16], st[17]); st[17] = bitselect(st[17] ^ st[19], st[17], st[18]); st[18] = bitselect(st[18] ^ tmp1, st[18], st[19]); st[19] = bitselect(st[19] ^ tmp2, st[19], tmp1);
+ //tmp1 = st[20]; tmp2 = st[21]; st[20] = bitselect(st[20] ^ st[22], st[20], st[21]); st[21] = bitselect(st[21] ^ st[23], st[21], st[22]); st[22] = bitselect(st[22] ^ st[24], st[22], st[23]); st[23] = bitselect(st[23] ^ tmp1, st[23], st[24]); st[24] = bitselect(st[24] ^ tmp2, st[24], tmp1);
+
+ #pragma unroll 1
+ for(int i = 0; i < 25; i += 5)
+ {
+ ulong tmp[5];
+
+ #pragma unroll 1
+ for(int x = 0; x < 5; ++x)
+ tmp[x] = bitselect(st[i + x] ^ st[i + ((x + 2) % 5)], st[i + x], st[i + ((x + 1) % 5)]);
+
+ #pragma unroll 1
+ for(int x = 0; x < 5; ++x) st[i + x] = tmp[x];
+ }
+
+ // Iota
+ st[0] ^= keccakf_rndc[round];
+ }
+}
+
+void keccakf1600_2(ulong *st)
+{
+ int i, round;
+ ulong t, bc[5];
+
+ #pragma unroll 1
+ for(round = 0; round < 24; ++round)
+ {
+
+ // Theta
+ //bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
+ //bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
+ //bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
+ //bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
+ //bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
+
+ /*
+ #pragma unroll
+ for (i = 0; i < 5; ++i) {
+ t = bc[(i + 4) % 5] ^ rotate(bc[(i + 1) % 5], 1UL);
+ st[i ] ^= t;
+ st[i + 5] ^= t;
+ st[i + 10] ^= t;
+ st[i + 15] ^= t;
+ st[i + 20] ^= t;
+ }
+ */
+
+ bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20] ^ rotate(st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22], 1UL);
+ bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21] ^ rotate(st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23], 1UL);
+ bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22] ^ rotate(st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24], 1UL);
+ bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23] ^ rotate(st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20], 1UL);
+ bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24] ^ rotate(st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21], 1UL);
+
+ st[0] ^= bc[4];
+ st[5] ^= bc[4];
+ st[10] ^= bc[4];
+ st[15] ^= bc[4];
+ st[20] ^= bc[4];
+
+ st[1] ^= bc[0];
+ st[6] ^= bc[0];
+ st[11] ^= bc[0];
+ st[16] ^= bc[0];
+ st[21] ^= bc[0];
+
+ st[2] ^= bc[1];
+ st[7] ^= bc[1];
+ st[12] ^= bc[1];
+ st[17] ^= bc[1];
+ st[22] ^= bc[1];
+
+ st[3] ^= bc[2];
+ st[8] ^= bc[2];
+ st[13] ^= bc[2];
+ st[18] ^= bc[2];
+ st[23] ^= bc[2];
+
+ st[4] ^= bc[3];
+ st[9] ^= bc[3];
+ st[14] ^= bc[3];
+ st[19] ^= bc[3];
+ st[24] ^= bc[3];
+
+ // Rho Pi
+ t = st[1];
+ #pragma unroll
+ for (i = 0; i < 24; ++i) {
+ bc[0] = st[keccakf_piln[i]];
+ st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]);
+ t = bc[0];
+ }
+
+
+
+ /*ulong tmp1 = st[1] ^ bc[0];
+
+ st[0] ^= bc[4];
+ st[1] = rotate(st[6] ^ bc[0], 44UL);
+ st[6] = rotate(st[9] ^ bc[3], 20UL);
+ st[9] = rotate(st[22] ^ bc[1], 61UL);
+ st[22] = rotate(st[14] ^ bc[3], 39UL);
+ st[14] = rotate(st[20] ^ bc[4], 18UL);
+ st[20] = rotate(st[2] ^ bc[1], 62UL);
+ st[2] = rotate(st[12] ^ bc[1], 43UL);
+ st[12] = rotate(st[13] ^ bc[2], 25UL);
+ st[13] = rotate(st[19] ^ bc[3], 8UL);
+ st[19] = rotate(st[23] ^ bc[2], 56UL);
+ st[23] = rotate(st[15] ^ bc[4], 41UL);
+ st[15] = rotate(st[4] ^ bc[3], 27UL);
+ st[4] = rotate(st[24] ^ bc[3], 14UL);
+ st[24] = rotate(st[21] ^ bc[0], 2UL);
+ st[21] = rotate(st[8] ^ bc[2], 55UL);
+ st[8] = rotate(st[16] ^ bc[0], 35UL);
+ st[16] = rotate(st[5] ^ bc[4], 36UL);
+ st[5] = rotate(st[3] ^ bc[2], 28UL);
+ st[3] = rotate(st[18] ^ bc[2], 21UL);
+ st[18] = rotate(st[17] ^ bc[1], 15UL);
+ st[17] = rotate(st[11] ^ bc[0], 10UL);
+ st[11] = rotate(st[7] ^ bc[1], 6UL);
+ st[7] = rotate(st[10] ^ bc[4], 3UL);
+ st[10] = rotate(tmp1, 1UL);
+ */
+
+
+ //ulong tmp1 = st[0]; ulong tmp2 = st[1]; st[0] = bitselect(st[0] ^ st[2], st[0], st[1]); st[1] = bitselect(st[1] ^ st[3], st[1], st[2]); st[2] = bitselect(st[2] ^ st[4], st[2], st[3]); st[3] = bitselect(st[3] ^ tmp1, st[3], st[4]); st[4] = bitselect(st[4] ^ tmp2, st[4], tmp1);
+ //tmp1 = st[5]; tmp2 = st[6]; st[5] = bitselect(st[5] ^ st[7], st[5], st[6]); st[6] = bitselect(st[6] ^ st[8], st[6], st[7]); st[7] = bitselect(st[7] ^ st[9], st[7], st[8]); st[8] = bitselect(st[8] ^ tmp1, st[8], st[9]); st[9] = bitselect(st[9] ^ tmp2, st[9], tmp1);
+ //tmp1 = st[10]; tmp2 = st[11]; st[10] = bitselect(st[10] ^ st[12], st[10], st[11]); st[11] = bitselect(st[11] ^ st[13], st[11], st[12]); st[12] = bitselect(st[12] ^ st[14], st[12], st[13]); st[13] = bitselect(st[13] ^ tmp1, st[13], st[14]); st[14] = bitselect(st[14] ^ tmp2, st[14], tmp1);
+ //tmp1 = st[15]; tmp2 = st[16]; st[15] = bitselect(st[15] ^ st[17], st[15], st[16]); st[16] = bitselect(st[16] ^ st[18], st[16], st[17]); st[17] = bitselect(st[17] ^ st[19], st[17], st[18]); st[18] = bitselect(st[18] ^ tmp1, st[18], st[19]); st[19] = bitselect(st[19] ^ tmp2, st[19], tmp1);
+ //tmp1 = st[20]; tmp2 = st[21]; st[20] = bitselect(st[20] ^ st[22], st[20], st[21]); st[21] = bitselect(st[21] ^ st[23], st[21], st[22]); st[22] = bitselect(st[22] ^ st[24], st[22], st[23]); st[23] = bitselect(st[23] ^ tmp1, st[23], st[24]); st[24] = bitselect(st[24] ^ tmp2, st[24], tmp1);
+
+ #pragma unroll
+ for(int i = 0; i < 25; i += 5)
+ {
+ ulong tmp1 = st[i], tmp2 = st[i + 1];
+
+ st[i] = bitselect(st[i] ^ st[i + 2], st[i], st[i + 1]);
+ st[i + 1] = bitselect(st[i + 1] ^ st[i + 3], st[i + 1], st[i + 2]);
+ st[i + 2] = bitselect(st[i + 2] ^ st[i + 4], st[i + 2], st[i + 3]);
+ st[i + 3] = bitselect(st[i + 3] ^ tmp1, st[i + 3], st[i + 4]);
+ st[i + 4] = bitselect(st[i + 4] ^ tmp2, st[i + 4], tmp1);
+ }
+
+ // Iota
+ st[0] ^= keccakf_rndc[round];
+ }
+}
+
+)==="
+R"===(
+
+void CNKeccak(ulong *output, ulong *input)
+{
+ ulong st[25];
+
+ // Copy 72 bytes
+ for(int i = 0; i < 9; ++i) st[i] = input[i];
+
+ // Last four and '1' bit for padding
+ //st[9] = as_ulong((uint2)(((uint *)input)[18], 0x00000001U));
+
+ st[9] = (input[9] & 0x00000000FFFFFFFFUL) | 0x0000000100000000UL;
+
+ for(int i = 10; i < 25; ++i) st[i] = 0x00UL;
+
+ // Last bit of padding
+ st[16] = 0x8000000000000000UL;
+
+ keccakf1600_1(st);
+
+ for(int i = 0; i < 25; ++i) output[i] = st[i];
+}
+
+static const __constant uchar rcon[8] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40 };
+
+#define BYTE(x, y) (amd_bfe((x), (y) << 3U, 8U))
+
+#define SubWord(inw) ((sbox[BYTE(inw, 3)] << 24) | (sbox[BYTE(inw, 2)] << 16) | (sbox[BYTE(inw, 1)] << 8) | sbox[BYTE(inw, 0)])
+
+void AESExpandKey256(uint *keybuf)
+{
+ //#pragma unroll 4
+ for(uint c = 8, i = 1; c < 60; ++c)
+ {
+ // For 256-bit keys, an sbox permutation is done every other 4th uint generated, AND every 8th
+ uint t = ((!(c & 7)) || ((c & 7) == 4)) ? SubWord(keybuf[c - 1]) : keybuf[c - 1];
+
+ // If the uint we're generating has an index that is a multiple of 8, rotate and XOR with the round constant,
+ // then XOR this with previously generated uint. If it's 4 after a multiple of 8, only the sbox permutation
+ // is done, followed by the XOR. If neither are true, only the XOR with the previously generated uint is done.
+ keybuf[c] = keybuf[c - 8] ^ ((!(c & 7)) ? rotate(t, 24U) ^ as_uint((uchar4)(rcon[i++], 0U, 0U, 0U)) : t);
+ }
+}
+
+#define IDX(x) (x)
+
+__attribute__((reqd_work_group_size(WORKSIZE, 8, 1)))
+__kernel void cn0(__global ulong *input, __global uint4 *Scratchpad, __global ulong *states)
+{
+ ulong State[25];
+ uint ExpandedKey1[256];
+ __local uint AES0[256], AES1[256], AES2[256], AES3[256];
+ uint4 text;
+
+ states += (25 * (get_global_id(0) - get_global_offset(0)));
+ Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2);
+
+ for(int i = get_local_id(0); i < 256; i += WORKSIZE)
+ {
+ const uint tmp = AES0_C[i];
+ AES0[i] = tmp;
+ AES1[i] = rotate(tmp, 8U);
+ AES2[i] = rotate(tmp, 16U);
+ AES3[i] = rotate(tmp, 24U);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ ((ulong8 *)State)[0] = vload8(0, input);
+ State[8] = input[8];
+ State[9] = input[9];
+ State[10] = input[10];
+
+ ((uint *)State)[9] &= 0x00FFFFFFU;
+ ((uint *)State)[9] |= ((get_global_id(0)) & 0xFF) << 24;
+ ((uint *)State)[10] &= 0xFF000000U;
+ ((uint *)State)[10] |= ((get_global_id(0) >> 8));
+
+ for(int i = 11; i < 25; ++i) State[i] = 0x00UL;
+
+ // Last bit of padding
+ State[16] = 0x8000000000000000UL;
+
+ keccakf1600_2(State);
+
+ mem_fence(CLK_GLOBAL_MEM_FENCE);
+
+ #pragma unroll
+ for(int i = 0; i < 25; ++i) states[i] = State[i];
+
+ text = vload4(get_local_id(1) + 4, (__global uint *)(states));
+
+ #pragma unroll
+ for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey1)[i] = states[i];
+
+ AESExpandKey256(ExpandedKey1);
+
+ mem_fence(CLK_LOCAL_MEM_FENCE);
+
+ #pragma unroll 2
+ for(int i = 0; i < 0x4000; ++i)
+ {
+ #pragma unroll
+ for(int j = 0; j < 10; ++j)
+ text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey1)[j]);
+
+ Scratchpad[IDX((i << 3) + get_local_id(1))] = text;
+ }
+
+ mem_fence(CLK_GLOBAL_MEM_FENCE);
+}
+
+__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
+__kernel void cn1(__global uint4 *Scratchpad, __global ulong *states)
+{
+ ulong a[2], b[2];
+ __local uint AES0[256], AES1[256], AES2[256], AES3[256];
+
+ Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2);
+ states += (25 * (get_global_id(0) - get_global_offset(0)));
+
+ for(int i = get_local_id(0); i < 256; i += WORKSIZE)
+ {
+ const uint tmp = AES0_C[i];
+ AES0[i] = tmp;
+ AES1[i] = rotate(tmp, 8U);
+ AES2[i] = rotate(tmp, 16U);
+ AES3[i] = rotate(tmp, 24U);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ a[0] = states[0] ^ states[4];
+ b[0] = states[2] ^ states[6];
+ a[1] = states[1] ^ states[5];
+ b[1] = states[3] ^ states[7];
+
+ uint4 b_x = ((uint4 *)b)[0];
+
+ mem_fence(CLK_LOCAL_MEM_FENCE);
+
+ #pragma unroll 8
+ for(int i = 0; i < 0x80000; ++i)
+ {
+ ulong c[2];
+
+ ((uint4 *)c)[0] = Scratchpad[IDX((a[0] & 0x1FFFF0) >> 4)];
+ ((uint4 *)c)[0] = AES_Round(AES0, AES1, AES2, AES3, ((uint4 *)c)[0], ((uint4 *)a)[0]);
+ //b_x ^= ((uint4 *)c)[0];
+
+ Scratchpad[IDX((a[0] & 0x1FFFF0) >> 4)] = b_x ^ ((uint4 *)c)[0];
+
+ uint4 tmp;
+ tmp = Scratchpad[IDX((c[0] & 0x1FFFF0) >> 4)];
+
+ a[1] += c[0] * as_ulong2(tmp).s0;
+ a[0] += mul_hi(c[0], as_ulong2(tmp).s0);
+
+ Scratchpad[IDX((c[0] & 0x1FFFF0) >> 4)] = ((uint4 *)a)[0];
+
+ ((uint4 *)a)[0] ^= tmp;
+
+ b_x = ((uint4 *)c)[0];
+ }
+
+ mem_fence(CLK_GLOBAL_MEM_FENCE);
+}
+
+__attribute__((reqd_work_group_size(WORKSIZE, 8, 1)))
+__kernel void cn2(__global uint4 *Scratchpad, __global ulong *states, __global uint *Branch0, __global uint *Branch1, __global uint *Branch2, __global uint *Branch3)
+{
+ __local uint AES0[256], AES1[256], AES2[256], AES3[256];
+ uint ExpandedKey2[256];
+ ulong State[25];
+ uint4 text;
+
+ Scratchpad += ((get_global_id(0) - get_global_offset(0))) * (0x80000 >> 2);
+ states += (25 * (get_global_id(0) - get_global_offset(0)));
+
+ for(int i = get_local_id(0); i < 256; i += WORKSIZE)
+ {
+ const uint tmp = AES0_C[i];
+ AES0[i] = tmp;
+ AES1[i] = rotate(tmp, 8U);
+ AES2[i] = rotate(tmp, 16U);
+ AES3[i] = rotate(tmp, 24U);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ #if defined(__Tahiti__) || defined(__Pitcairn__)
+
+ for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey2)[i] = states[i + 4];
+ text = vload4(get_local_id(1) + 4, (__global uint *)states);
+
+ #else
+
+ text = vload4(get_local_id(1) + 4, (__global uint *)states);
+ ((uint8 *)ExpandedKey2)[0] = vload8(1, (__global uint *)states);
+
+ #endif
+
+ AESExpandKey256(ExpandedKey2);
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ #pragma unroll 2
+ for(int i = 0; i < 0x4000; ++i)
+ {
+ text ^= Scratchpad[IDX((i << 3) + get_local_id(1))];
+
+ #pragma unroll
+ for(int j = 0; j < 10; ++j)
+ text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]);
+ }
+
+ vstore2(as_ulong2(text), get_local_id(1) + 4, states);
+
+ barrier(CLK_GLOBAL_MEM_FENCE);
+
+ if(!get_local_id(1))
+ {
+ for(int i = 0; i < 25; ++i) State[i] = states[i];
+
+ keccakf1600_2(State);
+
+ for(int i = 0; i < 25; ++i) states[i] = State[i];
+
+ switch(State[0] & 3)
+ {
+ case 0:
+ Branch0[atomic_inc(Branch0 + get_global_size(0))] = get_global_id(0) - get_global_offset(0);
+ break;
+ case 1:
+ Branch1[atomic_inc(Branch1 + get_global_size(0))] = get_global_id(0) - get_global_offset(0);
+ break;
+ case 2:
+ Branch2[atomic_inc(Branch2 + get_global_size(0))] = get_global_id(0) - get_global_offset(0);
+ break;
+ case 3:
+ Branch3[atomic_inc(Branch3 + get_global_size(0))] = get_global_id(0) - get_global_offset(0);
+ break;
+ }
+ }
+
+ mem_fence(CLK_GLOBAL_MEM_FENCE);
+}
+
+)==="
+R"===(
+
+#define VSWAP8(x) (((x) >> 56) | (((x) >> 40) & 0x000000000000FF00UL) | (((x) >> 24) & 0x0000000000FF0000UL) \
+ | (((x) >> 8) & 0x00000000FF000000UL) | (((x) << 8) & 0x000000FF00000000UL) \
+ | (((x) << 24) & 0x0000FF0000000000UL) | (((x) << 40) & 0x00FF000000000000UL) | (((x) << 56) & 0xFF00000000000000UL))
+
+#define VSWAP4(x) ((((x) >> 24) & 0xFFU) | (((x) >> 8) & 0xFF00U) | (((x) << 8) & 0xFF0000U) | (((x) << 24) & 0xFF000000U))
+
+__kernel void Skein(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads)
+{
+ const ulong idx = get_global_id(0) - get_global_offset(0);
+
+ if(idx >= Threads) return;
+
+ states += 25 * BranchBuf[idx];
+
+ // skein
+ ulong8 h = vload8(0, SKEIN512_256_IV);
+
+ // Type field begins with final bit, first bit, then six bits of type; the last 96
+ // bits are input processed (including in the block to be processed with that tweak)
+ // The output transform is only one run of UBI, since we need only 256 bits of output
+ // The tweak for the output transform is Type = Output with the Final bit set
+ // T[0] for the output is 8, and I don't know why - should be message size...
+ ulong t[3] = { 0x00UL, 0x7000000000000000UL, 0x00UL };
+ ulong8 p, m;
+
+ for(uint i = 0; i < 4; ++i)
+ {
+ if(i < 3) t[0] += 0x40UL;
+ else t[0] += 0x08UL;
+
+ t[2] = t[0] ^ t[1];
+
+ m = (i < 3) ? vload8(i, states) : (ulong8)(states[24], 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL);
+ const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY;
+ p = Skein512Block(m, h, h8, t);
+
+ h = m ^ p;
+
+ if(i < 2) t[1] = 0x3000000000000000UL;
+ else t[1] = 0xB000000000000000UL;
+ }
+
+ t[0] = 0x08UL;
+ t[1] = 0xFF00000000000000UL;
+ t[2] = t[0] ^ t[1];
+
+ p = (ulong8)(0);
+ const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY;
+
+ p = Skein512Block(p, h, h8, t);
+
+ //vstore8(p, 0, output);
+
+ if(as_uint16(p).s7 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0);
+
+ mem_fence(CLK_GLOBAL_MEM_FENCE);
+}
+
+#define SWAP8(x) as_ulong(as_uchar8(x).s76543210)
+
+__kernel void JH(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads)
+{
+ const uint idx = get_global_id(0) - get_global_offset(0);
+
+ if(idx >= Threads) return;
+
+ states += 25 * BranchBuf[idx];
+
+ sph_u64 h0h = 0xEBD3202C41A398EBUL, h0l = 0xC145B29C7BBECD92UL, h1h = 0xFAC7D4609151931CUL, h1l = 0x038A507ED6820026UL, h2h = 0x45B92677269E23A4UL, h2l = 0x77941AD4481AFBE0UL, h3h = 0x7A176B0226ABB5CDUL, h3l = 0xA82FFF0F4224F056UL;
+ sph_u64 h4h = 0x754D2E7F8996A371UL, h4l = 0x62E27DF70849141DUL, h5h = 0x948F2476F7957627UL, h5l = 0x6C29804757B6D587UL, h6h = 0x6C0D8EAC2D275E5CUL, h6l = 0x0F7A0557C6508451UL, h7h = 0xEA12247067D3E47BUL, h7l = 0x69D71CD313ABE389UL;
+ sph_u64 tmp;
+
+ for(int i = 0; i < 5; ++i)
+ {
+ ulong input[8];
+
+ if(i < 3)
+ {
+ for(int x = 0; x < 8; ++x) input[x] = (states[(i << 3) + x]);
+ }
+ else if(i == 3)
+ {
+ input[0] = (states[24]);
+ input[1] = 0x80UL;
+ for(int x = 2; x < 8; ++x) input[x] = 0x00UL;
+ }
+ else
+ {
+ input[7] = 0x4006000000000000UL;
+
+ for(int x = 0; x < 7; ++x) input[x] = 0x00UL;
+ }
+
+ h0h ^= input[0];
+ h0l ^= input[1];
+ h1h ^= input[2];
+ h1l ^= input[3];
+ h2h ^= input[4];
+ h2l ^= input[5];
+ h3h ^= input[6];
+ h3l ^= input[7];
+
+ E8;
+
+ h4h ^= input[0];
+ h4l ^= input[1];
+ h5h ^= input[2];
+ h5l ^= input[3];
+ h6h ^= input[4];
+ h6l ^= input[5];
+ h7h ^= input[6];
+ h7l ^= input[7];
+ }
+
+ //output[0] = h6h;
+ //output[1] = h6l;
+ //output[2] = h7h;
+ //output[3] = h7l;
+
+ if(as_uint2(h7l).s1 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0);
+}
+
+#define SWAP4(x) as_uint(as_uchar4(x).s3210)
+
+__kernel void Blake(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads)
+{
+ const uint idx = get_global_id(0) - get_global_offset(0);
+
+ if(idx >= Threads) return;
+
+ states += 25 * BranchBuf[idx];
+
+ unsigned int m[16];
+ unsigned int v[16];
+ uint h[8];
+
+ ((uint8 *)h)[0] = vload8(0U, c_IV256);
+
+ for(uint i = 0, bitlen = 0; i < 4; ++i)
+ {
+ if(i < 3)
+ {
+ ((uint16 *)m)[0] = vload16(i, (__global uint *)states);
+ for(int i = 0; i < 16; ++i) m[i] = SWAP4(m[i]);
+ bitlen += 512;
+ }
+ else
+ {
+ m[0] = SWAP4(((__global uint *)states)[48]);
+ m[1] = SWAP4(((__global uint *)states)[49]);
+ m[2] = 0x80000000U;
+
+ for(int i = 3; i < 13; ++i) m[i] = 0x00U;
+
+ m[13] = 1U;
+ m[14] = 0U;
+ m[15] = 0x640;
+ bitlen += 64;
+ }
+
+ ((uint16 *)v)[0].lo = ((uint8 *)h)[0];
+ ((uint16 *)v)[0].hi = vload8(0U, c_u256);
+
+ //v[12] ^= (i < 3) ? (i + 1) << 9 : 1600U;
+ //v[13] ^= (i < 3) ? (i + 1) << 9 : 1600U;
+
+ v[12] ^= bitlen;
+ v[13] ^= bitlen;
+
+ for(int r = 0; r < 14; r++)
+ {
+ GS(0, 4, 0x8, 0xC, 0x0);
+ GS(1, 5, 0x9, 0xD, 0x2);
+ GS(2, 6, 0xA, 0xE, 0x4);
+ GS(3, 7, 0xB, 0xF, 0x6);
+ GS(0, 5, 0xA, 0xF, 0x8);
+ GS(1, 6, 0xB, 0xC, 0xA);
+ GS(2, 7, 0x8, 0xD, 0xC);
+ GS(3, 4, 0x9, 0xE, 0xE);
+ }
+
+ ((uint8 *)h)[0] ^= ((uint8 *)v)[0] ^ ((uint8 *)v)[1];
+ }
+
+ for(int i = 0; i < 8; ++i) h[i] = SWAP4(h[i]);
+
+ //for(int i = 0; i < 4; ++i) output[i] = ((ulong *)h)[i];
+ if(h[7] <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0);
+}
+
+__kernel void Groestl(__global ulong *states, __global uint *BranchBuf, __global uint *output, uint Target, ulong Threads)
+{
+ const uint idx = get_global_id(0) - get_global_offset(0);
+
+ if(idx >= Threads) return;
+
+ states += 25 * BranchBuf[idx];
+
+ ulong State[8];
+
+ for(int i = 0; i < 7; ++i) State[i] = 0UL;
+
+ State[7] = 0x0001000000000000UL;
+
+ for(uint i = 0; i < 4; ++i)
+ {
+ ulong H[8], M[8];
+
+ if(i < 3)
+ {
+ ((ulong8 *)M)[0] = vload8(i, states);
+ }
+ else
+ {
+ M[0] = states[24];
+ M[1] = 0x80UL;
+
+ for(int x = 2; x < 7; ++x) M[x] = 0UL;
+
+ M[7] = 0x0400000000000000UL;
+ }
+
+ for(int x = 0; x < 8; ++x) H[x] = M[x] ^ State[x];
+
+ PERM_SMALL_P(H);
+ PERM_SMALL_Q(M);
+
+ for(int x = 0; x < 8; ++x) State[x] ^= H[x] ^ M[x];
+ }
+
+ ulong tmp[8];
+
+ for(int i = 0; i < 8; ++i) tmp[i] = State[i];
+
+ PERM_SMALL_P(State);
+
+ for(int i = 0; i < 8; ++i) State[i] ^= tmp[i];
+
+ //for(int i = 0; i < 4; ++i) output[i] = State[i + 4];
+ if(as_uint2(State[7]).s1 <= Target) output[atomic_inc(output + 0xFF)] = BranchBuf[idx] + get_global_offset(0);
+}
+
+)===" \ No newline at end of file
OpenPOWER on IntegriCloud