// -*-C++-*- #ifndef VEC_QPX_DOUBLE4_H #define VEC_QPX_DOUBLE4_H #include "floatprops.h" #include "mathfuncs.h" #include "vec_base.h" #include // QPX intrinsics #ifdef __clang__ # include #else # include #endif #include namespace vecmathlib { #define VECMATHLIB_HAVE_VEC_DOUBLE_4 template<> struct boolvec; template<> struct intvec; template<> struct realvec; template<> struct boolvec: floatprops { static int const size = 4; typedef bool scalar_t; typedef vector4double bvector_t; static int const alignment = sizeof(bvector_t); static_assert(size * sizeof(real_t) == sizeof(bvector_t), "vector size is wrong"); private: // canonical true is +1.0, canonical false is -1.0 // >=0 is true, -0 is true, nan is false static real_t from_bool(bool a) { return a ? +1.0 : -1.0; } static bool to_bool(real_t a) { return a>=0.0; } public: typedef boolvec boolvec_t; typedef intvec intvec_t; typedef realvec realvec_t; // Short names for type casts typedef real_t R; typedef int_t I; typedef uint_t U; typedef realvec_t RV; typedef intvec_t IV; typedef boolvec_t BV; typedef floatprops FP; typedef mathfuncs MF; bvector_t v; boolvec() {} boolvec(bvector_t x): v(x) {} boolvec(bool a): v(vec_splats(from_bool(a))) {} boolvec(const bool* as) { for (int d=0; d struct intvec: floatprops { static int const size = 4; typedef int_t scalar_t; typedef vector4double ivector_t; static int const alignment = sizeof(ivector_t); static_assert(size * sizeof(real_t) == sizeof(ivector_t), "vector size is wrong"); typedef boolvec boolvec_t; typedef intvec intvec_t; typedef realvec realvec_t; // Short names for type casts typedef real_t R; typedef int_t I; typedef uint_t U; typedef realvec_t RV; typedef intvec_t IV; typedef boolvec_t BV; typedef floatprops FP; typedef mathfuncs MF; ivector_t v; intvec() {} // Can't have a non-trivial copy constructor; if so, objects won't // be passed in registers // intvec(const intvec& x): v(x.v) {} // intvec& operator=(const intvec& x) { return v=x.v, *this; } intvec(ivector_t x): v(x) {} intvec(int_t a): v(vec_splats(FP::as_float(a))) {} intvec(const int_t* as) { for (int d=0; d> U(n)); return r; } intvec_t rotate(int_t n) const; intvec operator>>(int_t n) const { intvec r; for (int d=0; d> n); return r; } intvec operator<<(int_t n) const { intvec r; for (int d=0; d>=(int_t n) { return *this=*this>>n; } intvec& operator<<=(int_t n) { return *this=*this<> U(n[d])); return r; } intvec_t rotate(intvec_t n) const; intvec operator>>(intvec n) const { intvec r; for (int d=0; d> n[d]); return r; } intvec operator<<(intvec n) const { intvec r; for (int d=0; d>=(intvec n) { return *this=*this>>n; } intvec& operator<<=(intvec n) { return *this=*this<(intvec x) const { boolvec_t r; for (int d=0; d x[d]); return r; } boolvec_t operator>=(intvec x) const { boolvec_t r; for (int d=0; d= x[d]); return r; } intvec_t abs() const; boolvec_t isignbit() const; intvec_t max(intvec_t x) const; intvec_t min(intvec_t x) const; }; template<> struct realvec: floatprops { static int const size = 4; typedef real_t scalar_t; typedef vector4double vector_t; static int const alignment = sizeof(vector_t); static const char* name() { return ""; } void barrier() { __asm__("": "+v"(v)); } static_assert(size * sizeof(real_t) == sizeof(vector_t), "vector size is wrong"); typedef boolvec boolvec_t; typedef intvec intvec_t; typedef realvec realvec_t; // Short names for type casts typedef real_t R; typedef int_t I; typedef uint_t U; typedef realvec_t RV; typedef intvec_t IV; typedef boolvec_t BV; typedef floatprops FP; typedef mathfuncs MF; vector_t v; realvec() {} // Can't have a non-trivial copy constructor; if so, objects won't // be passed in registers // realvec(const realvec& x): v(x.v) {} // realvec& operator=(const realvec& x) { return v=x.v, *this; } realvec(vector_t x): v(x) {} realvec(real_t a): v(vec_splats(a)) {} realvec(const real_t* as) { for (int d=0; d mask_t; static realvec_t loada(const real_t* p) { VML_ASSERT(intptr_t(p) % alignment == 0); return vec_lda(0, (real_t*)p); } static realvec_t loadu(const real_t* p) { realvec_t v0 = vec_ld(0, (real_t*)p); realvec_t v1 = vec_ld(31, (real_t*)p); return vec_perm(v0.v, v1.v, vec_lvsl(0, (real_t*)p)); } static realvec_t loadu(const real_t* p, std::ptrdiff_t ioff) { VML_ASSERT(intptr_t(p) % alignment == 0); if (ioff % realvec::size == 0) return loada(p+ioff); // TODO: use load instruction with fixed offset return loadu(p+ioff); } realvec_t loada(const real_t* p, mask_t m) const { VML_ASSERT(intptr_t(p) % alignment == 0); if (__builtin_expect(all(m.m), true)) { return loada(p); } else { return m.m.ifthen(loada(p), *this); } } realvec_t loadu(const real_t* p, mask_t m) const { if (__builtin_expect(m.all_m, true)) { return loadu(p); } else { return m.m.ifthen(loadu(p), *this); } } realvec_t loadu(const real_t* p, std::ptrdiff_t ioff, mask_t m) const { VML_ASSERT(intptr_t(p) % alignment == 0); if (ioff % realvec::size == 0) return loada(p+ioff, m); // TODO: use load instruction with fixed offset return loadu(p+ioff, m); } void storea(real_t* p) const { VML_ASSERT(intptr_t(p) % alignment == 0); vec_sta(v, 0, p); } void storeu(real_t* p) const { // Vector stores would require vector loads, which would need to // be atomic // TODO: see for good ideas p[0] = (*this)[0]; p[1] = (*this)[1]; p[2] = (*this)[2]; p[3] = (*this)[3]; } void storeu(real_t* p, std::ptrdiff_t ioff) const { VML_ASSERT(intptr_t(p) % alignment == 0); if (ioff % realvec::size == 0) return storea(p+ioff); storeu(p+ioff); } void storea(real_t* p, mask_t m) const { VML_ASSERT(intptr_t(p) % alignment == 0); if (__builtin_expect(m.all_m, true)) { storea(p); } else { if (m.m[0]) p[0] = (*this)[0]; if (m.m[1]) p[1] = (*this)[1]; if (m.m[2]) p[2] = (*this)[2]; if (m.m[3]) p[3] = (*this)[3]; } } void storeu(real_t* p, mask_t m) const { if (__builtin_expect(m.all_m, true)) { storeu(p); } else { if (m.m[0]) p[0] = (*this)[0]; if (m.m[1]) p[1] = (*this)[1]; if (m.m[2]) p[2] = (*this)[2]; if (m.m[3]) p[3] = (*this)[3]; } } void storeu(real_t* p, std::ptrdiff_t ioff, mask_t m) const { VML_ASSERT(intptr_t(p) % alignment == 0); if (ioff % realvec::size == 0) return storea(p+ioff, m); storeu(p+ioff, m); } intvec_t as_int() const { return v; } intvec_t convert_int() const { return vec_ctidz(v); } realvec operator+() const { return *this; } realvec operator-() const { return vec_neg(v); } realvec operator+(realvec x) const { return vec_add(v, x.v); } realvec operator-(realvec x) const { return vec_sub(v, x.v); } realvec operator*(realvec x) const { return vec_mul(v, x.v); } realvec operator/(realvec x) const { // return vec_swdiv_nochk(v, x.v); return div_fastd4(v, x.v); } realvec& operator+=(realvec x) { return *this=*this+x; } realvec& operator-=(realvec x) { return *this=*this-x; } realvec& operator*=(realvec x) { return *this=*this*x; } realvec& operator/=(realvec x) { return *this=*this/x; } real_t maxval() const { // return vml_std::fmax(vml_std::fmax((*this)[0], (*this)[1]), // vml_std::fmax((*this)[2], (*this)[3])); realvec_t x0123 = *this; realvec_t x1032 = vec_perm(x0123, x0123, vec_gpci(01032)); realvec_t y0022 = x0123.fmax(x1032); return vml_std::fmax(y0022[0], y0022[2]); } real_t minval() const { // return vml_std::fmin(vml_std::fmin((*this)[0], (*this)[1]), // vml_std::fmin((*this)[2], (*this)[3])); realvec_t x0123 = *this; realvec_t x1032 = vec_perm(x0123, x0123, vec_gpci(01032)); realvec_t y0022 = x0123.fmin(x1032); return vml_std::fmin(y0022[0], y0022[2]); } real_t prod() const { // return (*this)[0] * (*this)[1] * (*this)[2] * (*this)[3]; realvec_t x = vec_xmul(v, v); return x[1] * x[3]; } real_t sum() const { // return (*this)[0] + (*this)[1] + (*this)[2] + (*this)[3]; realvec_t c1 = vec_logical(v, v, 0xf); // +1.0 realvec_t x = vec_xxmadd(v, c1, v); return x[0] + x[2]; } boolvec_t operator==(realvec x) const { return vec_cmpeq(v, x.v); } boolvec_t operator!=(realvec x) const { return ! (*this == x); } boolvec_t operator<(realvec x) const { return vec_cmplt(v, x.v); } boolvec_t operator<=(realvec x) const { #ifdef VML_HAVE_NAN return *this < x || *this == x; #else return ! (*this > x); #endif } boolvec_t operator>(realvec x) const { return vec_cmpgt(v, x.v); } boolvec_t operator>=(realvec x) const { #ifdef VML_HAVE_NAN return *this > x || *this == x; #else return ! (*this < x); #endif } realvec acos() const { return acosd4(v); } realvec acosh() const { return acoshd4(v); } realvec asin() const { return asind4(v); } realvec asinh() const { return asinhd4(v); } realvec atan() const { return atand4(v); } realvec atan2(realvec y) const { return atan2d4(v, y.v); } realvec atanh() const { return atanhd4(v); } realvec cbrt() const { return cbrtd4(v); } realvec ceil() const { return vec_ceil(v); } realvec copysign(realvec y) const { return vec_cpsgn(y.v, v); } realvec cos() const { return cosd4(v); } realvec cosh() const { return coshd4(v); } realvec exp() const { return expd4(v); } realvec exp10() const { return exp10d4(v); } realvec exp2() const { return exp2d4(v); } realvec expm1() const { return expm1d4(v); } realvec fabs() const { return vec_abs(v); } realvec fdim(realvec y) const { return MF::vml_fdim(*this, y); } realvec floor() const { return vec_floor(v); } realvec fma(realvec y, realvec z) const { return vec_madd(v, y.v, z.v); } realvec fmax(realvec y) const { return MF::vml_fmax(v, y.v); } realvec fmin(realvec y) const { return MF::vml_fmin(v, y.v); } realvec fmod(realvec y) const { return MF::vml_fmod(*this, y); } realvec frexp(intvec_t* r) const { return MF::vml_frexp(*this, r); } realvec hypot(realvec y) const { return hypotd4(v, y.v); } intvec_t ilogb() const { // int_t ilogb_[] = { // ::ilogb((*this)[0]), // ::ilogb((*this)[1]), // ::ilogb((*this)[2]), // ::ilogb((*this)[3]) // }; // return intvec_t(ilogb_); return MF::vml_ilogb(v); } boolvec_t isfinite() const { return MF::vml_isfinite(*this); } boolvec_t isinf() const { return MF::vml_isinf(*this); } boolvec_t isnan() const { #ifdef VML_HAVE_NAN return vec_tstnan(v, v); #else return BV(false); #endif } boolvec_t isnormal() const { return MF::vml_isnormal(*this); } realvec ldexp(int_t n) const { return ldexp(intvec_t(n)); } realvec ldexp(intvec_t n) const { real_t ldexp_[] = { vml_std::ldexp((*this)[0], n[0]), vml_std::ldexp((*this)[1], n[1]), vml_std::ldexp((*this)[2], n[2]), vml_std::ldexp((*this)[3], n[3]) }; return realvec_t(ldexp_); } realvec log() const { return logd4(v); } realvec log10() const { return log10d4(v); } realvec log1p() const { return log1pd4(v); } realvec log2() const { return log2d4(v); } realvec nextafter(realvec y) const { return MF::vml_nextafter(*this, y); } realvec pow(realvec y) const { return powd4(v, y.v); } realvec rcp() const { return recip_fastd4(v); } realvec remainder(realvec y) const { return MF::vml_remainder(*this, y); } realvec rint() const { return MF::vml_rint(*this); // This is tempting, but seems too invasive // #ifdef VML_HAVE_FP_CONTRACT // return MF::vml_rint(*this); // #else // return vec_round(v); // use round instead of rint // #endif } realvec round() const { return vec_round(v); } realvec rsqrt() const { realvec x = *this; realvec r = vec_rsqrte(x.v); // this is only an approximation // TODO: use fma // two Newton iterations (see vml_rsqrt) r += RV(0.5)*r * (RV(1.0) - x * r*r); r += RV(0.5)*r * (RV(1.0) - x * r*r); return r; } boolvec_t signbit() const { return !RV(1.0).copysign(*this).as_int().as_bool(); } realvec sin() const { return sind4(v); } realvec sinh() const { return sinhd4(v); } realvec sqrt() const { // return vec_sqrtsw_nochk(v); return *this * rsqrt(); } realvec tan() const { return tand4(v); } realvec tanh() const { return tanhd4(v); } realvec trunc() const { return vec_trunc(v); } }; // boolvec definitions inline intvec boolvec::as_int() const { return v; } inline intvec boolvec::convert_int() const { return ifthen(IV(I(1)), IV(I(0))); } inline boolvec boolvec::ifthen(boolvec_t x, boolvec_t y) const { return ifthen(x.as_int(), y.as_int()).as_bool(); } inline intvec boolvec::ifthen(intvec_t x, intvec_t y) const { return ifthen(x.as_float(), y.as_float()).as_int(); } inline realvec boolvec::ifthen(realvec_t x, realvec_t y) const { return vec_sel(y.v, x.v, v); } // intvec definitions inline intvec intvec::abs() const { return MF::vml_abs(*this); } inline realvec intvec::as_float() const { return v; } inline intvec intvec::bitifthen(intvec_t x, intvec_t y) const { return MF::vml_bitifthen(*this, x, y); } inline intvec intvec::clz() const { return MF::vml_clz(*this); } inline realvec intvec::convert_float() const { return vec_cfid(v); } inline boolvec intvec::isignbit() const { return MF::vml_isignbit(*this); } inline intvec intvec::max(intvec_t x) const { return MF::vml_max(*this, x); } inline intvec intvec::min(intvec_t x) const { return MF::vml_min(*this, x); } inline intvec intvec::popcount() const { return MF::vml_popcount(*this); } inline intvec intvec::rotate(int_t n) const { return MF::vml_rotate(*this, n); } inline intvec intvec::rotate(intvec_t n) const { return MF::vml_rotate(*this, n); } } // namespace vecmathlib #endif // #ifndef VEC_QPX_DOUBLE4_H