// -*-C++-*- #ifndef MATHFUNCS_SIN_H #define MATHFUNCS_SIN_H #include "mathfuncs_base.h" #include #include namespace vecmathlib { template realvec_t mathfuncs::vml_sin(realvec_t x) { typename realvec_t::scalar_t eps __attribute__((__unused__)) = 0.000001; // Reduce range: sin(x) = sin(x + 2pi) x = remainder(x, RV(2.0*M_PI)); assert(all(x >= RV(-(1.0+eps)*M_PI) && x <= RV((1.0+eps)*M_PI))); // Reduce range: sin(x) = -sin(-x) realvec_t sign = x; x = fabs(x); assert(all(x >= RV(0.0) && x <= RV((1.0+eps)*M_PI))); // Reduce range: sin(x) = sin(pi-x) x = ifthen(x > RV(M_PI_2), RV(M_PI) - x, x); assert(all(x >= RV(0.0-eps) && x <= RV(M_PI_2))); // Reduce range: cos(x) = sin(pi/2 - x) boolvec_t use_cos = x > RV(0.5*M_PI_2); x = ifthen(use_cos, RV(M_PI_2) - x, x); // Taylor expansion // sin(x) = Sum[n=0,nmax,n%2!=0] (-1)^((n-1)/2) x^n / n! // cos(x) = Sum[n=0,nmax,n%2==0] (-1)^((n-1)/2) x^n / n! realvec_t noffset = ifthen(use_cos, RV(-1.0), RV(0.0)); int const nmax = 15; realvec_t x2 = x*x; realvec_t y = ifthen(use_cos, RV(1.0), x); realvec_t r = y; for (int n=3; n realvec_t mathfuncs::vml_cos(realvec_t x) { return vml_sin(x + RV(M_PI_2)); } template realvec_t mathfuncs::vml_tan(realvec_t x) { // Reduce range: tan(x) = tan(x + pi) x = remainder(x, RV(M_PI)); assert(all(x >= RV(-M_PI_2) && x <= RV(M_PI_2))); // Reduce range: tan(x) = -tan(-x) realvec_t sign = x; x = fabs(x); assert(all(x >= RV(0.0) && x <= RV(M_PI_2))); // Reduce range: cot(x) = -tan(x + pi/2) boolvec_t use_cot = x > RV(0.5 * M_PI_2); x = ifthen(use_cot, RV(M_PI_2) -x, x); assert(all(x >= RV(0.0) && x <= RV(0.5 * M_PI_2))); // Calculate tan realvec_t r = sin(x) / cos(x); // Undo range reduction r = ifthen(use_cot, -rcp(r), r); // Undo range reducion r = copysign(r, sign); return r; } template realvec_t mathfuncs::vml_sin_chebyshev_single(realvec_t x) { typename realvec_t::scalar_t const eps __attribute__((__unused__)) = 0.000001; realvec_t r, s, t; // Reduce range: sin(x) = sin(x + 2PI) t = x + RV(M_PI); t = t * RV(1.0 / (2.0 * M_PI)); t = floor(t); t = x - (t * RV(2.0 * M_PI)); assert(all(t >= RV(-(1.0 + eps) * M_PI) && t <= RV((1.0 + eps) * M_PI))); // Reduce range: -sin(x) = -sin(-x) s = copysign(RV(1.0), t); t = fabs(t); // Reduce range: sin(x) = sin(pi-x) x = ifthen(t > RV(M_PI_2), RV(M_PI) - t, t); assert(all(x >= RV(0.0 - eps) && x <= RV(M_PI_2))); // Evaluate Chebyshev polynomial expansion r = s*T(x) // where T(x) = x + c1*x^3 + c2*x^5 + c3*x^7 + ... t = x * x; x = x * s; s = t * x; r = fma(RV(-2.2636462059494963e-09), t, RV(1.9761453001926614e-08)); r = fma(r, t, RV(-9.1621870444937360e-08)); r = fma(r, t, RV(2.8673509297532770e-06)); r = fma(r, t, RV(-1.9850777498822076e-04)); r = fma(r, t, RV(8.3333708144611930e-03)); r = fma(r, t, RV(-1.6666667163372040e-01)); r = fma(r, s, x); return r; } template realvec_t mathfuncs::vml_sin_chebyshev_double(realvec_t x) { typename realvec_t::scalar_t const eps __attribute__((__unused__)) = 0.000001; realvec_t r, s, t; // Reduce range: sin(x) = sin(x + 2PI) t = x + RV(M_PI); t = t * RV(1.0 / (2.0 * M_PI)); t = floor(t); t = x - (t * RV(2.0 * M_PI)); assert(all(t >= RV(-(1.0 + eps) * M_PI) && t <= RV((1.0 + eps) * M_PI))); // Reduce range: -sin(x) = -sin(-x) s = copysign(RV(1.0), t); t = fabs(t); // Reduce range: sin(x) = sin(pi-x) x = ifthen(t > RV(M_PI_2), RV(M_PI) - t, t); assert(all(x >= RV(0.0 - eps) && x <= RV(M_PI_2))); // Evaluate Chebyshev polynomial expansion r = s*T(x) // where T(x) = x + c1*x^3 + c2*x^5 + c3*x^7 + ... t = x * x; x = x * s; s = t * x; r = fma(RV(1.1888871779171205e-23), t, RV(-1.6213346583948200e-21)); r = fma(r, t, RV(9.4674830124704450e-19)); r = fma(r, t, RV(-3.6586864533554100e-16)); r = fma(r, t, RV(-7.5815669263036780e-13)); r = fma(r, t, RV(1.6058175109947732e-10)); r = fma(r, t, RV(-2.5052101017560582e-08)); r = fma(r, t, RV(2.7557319185249400e-06)); r = fma(r, t, RV(-1.9841269841152493e-04)); r = fma(r, t, RV(8.3333333333331560e-03)); r = fma(r, t, RV(-1.6666666666666666e-01)); r = fma(r, s, x); return r; } template realvec_t mathfuncs::vml_cos_chebyshev_single(realvec_t x) { typename realvec_t::boolvec_t m; realvec_t r, s, t; // Reduce range: cos(x) = cos(x + 2PI) t = x + RV(M_PI); t = t * RV(1.0 / (2.0 * M_PI)); t = floor(t); t = x - (t * RV(2.0 * M_PI)); // Reduce range: cos(x) = sin(PI/2 - x) t = fabs(t); m = t > RV(M_PI_2); x = RV(M_PI) - t; s = ifthen(m, RV(-1.0), RV(1.0)); x = ifthen(m, x, t); // Evaluate Chebyshev polynomial s*T(x) where // T(x) = 1 + c1*x^2 + c2*x^4 + c3*x^6 + ... t = x * x; x = t * s; r = fma(RV(-1.0986536764839979e-11), t, RV(2.0856702467901100e-09)); r = fma(r, t, RV(-2.7556891974788950e-07)); r = fma(r, t, RV(2.4801582421938170e-05)); r = fma(r, t, RV(-1.3888888860984269e-03)); r = fma(r, t, RV(4.1666666666056330e-02)); r = fma(r, t, RV(-5.0000000000000000e-01)); r = fma(r, x, s); return r; } template realvec_t mathfuncs::vml_cos_chebyshev_double(realvec_t x) { typename realvec_t::boolvec_t m; realvec_t r, s, t; // Reduce range: cos(x) = cos(x + 2PI) t = x + RV(M_PI); t = t * RV(1.0 / (2.0 * M_PI)); t = floor(t); t = x - (t * RV(2.0 * M_PI)); // Reduce range: cos(x) = sin(PI/2 - x) t = fabs(t); m = t > RV(M_PI_2); x = RV(M_PI) - t; s = ifthen(m, RV(-1.0), RV(1.0)); x = ifthen(m, x, t); // Evaluate Chebyshev polynomial s*T(x) where // T(x) = 1 + c1*x^2 + c2*x^4 + c3*x^6 + ... t = x * x; x = t * s; r = fma(RV(-8.6512994843471700e-22), t, RV(4.1086675770914360e-19)); r = fma(r, t, RV(-1.5619143199049570e-16)); r = fma(r, t, RV(4.7794771764282040e-14)); r = fma(r, t, RV(-1.1470745595224050e-11)); r = fma(r, t, RV(2.0876756987841530e-09)); r = fma(r, t, RV(-2.7557319223985710e-07)); r = fma(r, t, RV(2.4801587301587300e-05)); r = fma(r, t, RV(-1.3888888888888890e-03)); r = fma(r, t, RV(4.1666666666666664e-02)); r = fma(r, t, RV(-5.0000000000000000e-01)); r = fma(r, x, s); return r; } }; // namespace vecmathlib #endif // #ifndef MATHFUNCS_SIN_H