1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/*
* xfrm_input.c
*
* Changes:
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific portion
*
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <net/dst.h>
#include <net/ip.h>
#include <net/xfrm.h>
static struct kmem_cache *secpath_cachep __read_mostly;
static DEFINE_SPINLOCK(xfrm_input_afinfo_lock);
static struct xfrm_input_afinfo __rcu *xfrm_input_afinfo[NPROTO];
int xfrm_input_register_afinfo(struct xfrm_input_afinfo *afinfo)
{
int err = 0;
if (unlikely(afinfo == NULL))
return -EINVAL;
if (unlikely(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_input_afinfo_lock);
if (unlikely(xfrm_input_afinfo[afinfo->family] != NULL))
err = -EEXIST;
else
rcu_assign_pointer(xfrm_input_afinfo[afinfo->family], afinfo);
spin_unlock_bh(&xfrm_input_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_input_register_afinfo);
int xfrm_input_unregister_afinfo(struct xfrm_input_afinfo *afinfo)
{
int err = 0;
if (unlikely(afinfo == NULL))
return -EINVAL;
if (unlikely(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_input_afinfo_lock);
if (likely(xfrm_input_afinfo[afinfo->family] != NULL)) {
if (unlikely(xfrm_input_afinfo[afinfo->family] != afinfo))
err = -EINVAL;
else
RCU_INIT_POINTER(xfrm_input_afinfo[afinfo->family], NULL);
}
spin_unlock_bh(&xfrm_input_afinfo_lock);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL(xfrm_input_unregister_afinfo);
static struct xfrm_input_afinfo *xfrm_input_get_afinfo(unsigned int family)
{
struct xfrm_input_afinfo *afinfo;
if (unlikely(family >= NPROTO))
return NULL;
rcu_read_lock();
afinfo = rcu_dereference(xfrm_input_afinfo[family]);
if (unlikely(!afinfo))
rcu_read_unlock();
return afinfo;
}
static void xfrm_input_put_afinfo(struct xfrm_input_afinfo *afinfo)
{
rcu_read_unlock();
}
static int xfrm_rcv_cb(struct sk_buff *skb, unsigned int family, u8 protocol,
int err)
{
int ret;
struct xfrm_input_afinfo *afinfo = xfrm_input_get_afinfo(family);
if (!afinfo)
return -EAFNOSUPPORT;
ret = afinfo->callback(skb, protocol, err);
xfrm_input_put_afinfo(afinfo);
return ret;
}
void __secpath_destroy(struct sec_path *sp)
{
int i;
for (i = 0; i < sp->len; i++)
xfrm_state_put(sp->xvec[i]);
kmem_cache_free(secpath_cachep, sp);
}
EXPORT_SYMBOL(__secpath_destroy);
struct sec_path *secpath_dup(struct sec_path *src)
{
struct sec_path *sp;
sp = kmem_cache_alloc(secpath_cachep, GFP_ATOMIC);
if (!sp)
return NULL;
sp->len = 0;
if (src) {
int i;
memcpy(sp, src, sizeof(*sp));
for (i = 0; i < sp->len; i++)
xfrm_state_hold(sp->xvec[i]);
}
atomic_set(&sp->refcnt, 1);
return sp;
}
EXPORT_SYMBOL(secpath_dup);
/* Fetch spi and seq from ipsec header */
int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq)
{
int offset, offset_seq;
int hlen;
switch (nexthdr) {
case IPPROTO_AH:
hlen = sizeof(struct ip_auth_hdr);
offset = offsetof(struct ip_auth_hdr, spi);
offset_seq = offsetof(struct ip_auth_hdr, seq_no);
break;
case IPPROTO_ESP:
hlen = sizeof(struct ip_esp_hdr);
offset = offsetof(struct ip_esp_hdr, spi);
offset_seq = offsetof(struct ip_esp_hdr, seq_no);
break;
case IPPROTO_COMP:
if (!pskb_may_pull(skb, sizeof(struct ip_comp_hdr)))
return -EINVAL;
*spi = htonl(ntohs(*(__be16 *)(skb_transport_header(skb) + 2)));
*seq = 0;
return 0;
default:
return 1;
}
if (!pskb_may_pull(skb, hlen))
return -EINVAL;
*spi = *(__be32 *)(skb_transport_header(skb) + offset);
*seq = *(__be32 *)(skb_transport_header(skb) + offset_seq);
return 0;
}
int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb)
{
struct xfrm_mode *inner_mode = x->inner_mode;
int err;
err = x->outer_mode->afinfo->extract_input(x, skb);
if (err)
return err;
if (x->sel.family == AF_UNSPEC) {
inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
if (inner_mode == NULL)
return -EAFNOSUPPORT;
}
skb->protocol = inner_mode->afinfo->eth_proto;
return inner_mode->input2(x, skb);
}
EXPORT_SYMBOL(xfrm_prepare_input);
int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type)
{
struct net *net = dev_net(skb->dev);
int err;
__be32 seq;
__be32 seq_hi;
struct xfrm_state *x = NULL;
xfrm_address_t *daddr;
struct xfrm_mode *inner_mode;
unsigned int family;
int decaps = 0;
int async = 0;
/* A negative encap_type indicates async resumption. */
if (encap_type < 0) {
async = 1;
x = xfrm_input_state(skb);
seq = XFRM_SKB_CB(skb)->seq.input.low;
family = x->outer_mode->afinfo->family;
goto resume;
}
daddr = (xfrm_address_t *)(skb_network_header(skb) +
XFRM_SPI_SKB_CB(skb)->daddroff);
family = XFRM_SPI_SKB_CB(skb)->family;
/* Allocate new secpath or COW existing one. */
if (!skb->sp || atomic_read(&skb->sp->refcnt) != 1) {
struct sec_path *sp;
sp = secpath_dup(skb->sp);
if (!sp) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
goto drop;
}
if (skb->sp)
secpath_put(skb->sp);
skb->sp = sp;
}
seq = 0;
if (!spi && (err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto drop;
}
do {
if (skb->sp->len == XFRM_MAX_DEPTH) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
goto drop;
}
x = xfrm_state_lookup(net, skb->mark, daddr, spi, nexthdr, family);
if (x == NULL) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
xfrm_audit_state_notfound(skb, family, spi, seq);
goto drop;
}
skb->sp->xvec[skb->sp->len++] = x;
spin_lock(&x->lock);
if (unlikely(x->km.state != XFRM_STATE_VALID)) {
if (x->km.state == XFRM_STATE_ACQ)
XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR);
else
XFRM_INC_STATS(net,
LINUX_MIB_XFRMINSTATEINVALID);
goto drop_unlock;
}
if ((x->encap ? x->encap->encap_type : 0) != encap_type) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMISMATCH);
goto drop_unlock;
}
if (x->repl->check(x, skb, seq)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
goto drop_unlock;
}
if (xfrm_state_check_expire(x)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEEXPIRED);
goto drop_unlock;
}
spin_unlock(&x->lock);
if (xfrm_tunnel_check(skb, x, family)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
goto drop;
}
seq_hi = htonl(xfrm_replay_seqhi(x, seq));
XFRM_SKB_CB(skb)->seq.input.low = seq;
XFRM_SKB_CB(skb)->seq.input.hi = seq_hi;
skb_dst_force(skb);
nexthdr = x->type->input(x, skb);
if (nexthdr == -EINPROGRESS)
return 0;
resume:
spin_lock(&x->lock);
if (nexthdr <= 0) {
if (nexthdr == -EBADMSG) {
xfrm_audit_state_icvfail(x, skb,
x->type->proto);
x->stats.integrity_failed++;
}
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR);
goto drop_unlock;
}
/* only the first xfrm gets the encap type */
encap_type = 0;
if (async && x->repl->recheck(x, skb, seq)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR);
goto drop_unlock;
}
x->repl->advance(x, seq);
x->curlft.bytes += skb->len;
x->curlft.packets++;
spin_unlock(&x->lock);
XFRM_MODE_SKB_CB(skb)->protocol = nexthdr;
inner_mode = x->inner_mode;
if (x->sel.family == AF_UNSPEC) {
inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol);
if (inner_mode == NULL)
goto drop;
}
if (inner_mode->input(x, skb)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR);
goto drop;
}
if (x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL) {
decaps = 1;
break;
}
/*
* We need the inner address. However, we only get here for
* transport mode so the outer address is identical.
*/
daddr = &x->id.daddr;
family = x->outer_mode->afinfo->family;
err = xfrm_parse_spi(skb, nexthdr, &spi, &seq);
if (err < 0) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR);
goto drop;
}
} while (!err);
err = xfrm_rcv_cb(skb, family, x->type->proto, 0);
if (err)
goto drop;
nf_reset(skb);
if (decaps) {
skb_dst_drop(skb);
netif_rx(skb);
return 0;
} else {
return x->inner_mode->afinfo->transport_finish(skb, async);
}
drop_unlock:
spin_unlock(&x->lock);
drop:
xfrm_rcv_cb(skb, family, x && x->type ? x->type->proto : nexthdr, -1);
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL(xfrm_input);
int xfrm_input_resume(struct sk_buff *skb, int nexthdr)
{
return xfrm_input(skb, nexthdr, 0, -1);
}
EXPORT_SYMBOL(xfrm_input_resume);
void __init xfrm_input_init(void)
{
secpath_cachep = kmem_cache_create("secpath_cache",
sizeof(struct sec_path),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
NULL);
}
|