summaryrefslogtreecommitdiffstats
path: root/mm/vmscan.c
blob: 795a050fe4714cb781dac80dcfc9d3e3c8f45275 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

struct scan_control {
	/* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
	unsigned long nr_to_scan;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Incremented by the number of pages reclaimed */
	unsigned long nr_reclaimed;

	unsigned long nr_mapped;	/* From page_state */

	/* How many pages shrink_cache() should reclaim */
	int nr_to_reclaim;

	/* Ask shrink_caches, or shrink_zone to scan at this priority */
	unsigned int priority;

	/* This context's GFP mask */
	gfp_t gfp_mask;

	int may_writepage;

	/* Can pages be swapped as part of reclaim? */
	int may_swap;

	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
};

/*
 * The list of shrinker callbacks used by to apply pressure to
 * ageable caches.
 */
struct shrinker {
	shrinker_t		shrinker;
	struct list_head	list;
	int			seeks;	/* seeks to recreate an obj */
	long			nr;	/* objs pending delete */
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
static long total_memory;

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

/*
 * Add a shrinker callback to be called from the vm
 */
struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
{
        struct shrinker *shrinker;

        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
        if (shrinker) {
	        shrinker->shrinker = theshrinker;
	        shrinker->seeks = seeks;
	        shrinker->nr = 0;
	        down_write(&shrinker_rwsem);
	        list_add_tail(&shrinker->list, &shrinker_list);
	        up_write(&shrinker_rwsem);
	}
	return shrinker;
}
EXPORT_SYMBOL(set_shrinker);

/*
 * Remove one
 */
void remove_shrinker(struct shrinker *shrinker)
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
	kfree(shrinker);
}
EXPORT_SYMBOL(remove_shrinker);

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encounted mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
 *
 * Returns the number of slab objects which we shrunk.
 */
static int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
{
	struct shrinker *shrinker;
	int ret = 0;

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
		return 1;	/* Assume we'll be able to shrink next time */

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);

		delta = (4 * scanned) / shrinker->seeks;
		delta *= max_pass;
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
			int nr_before;

			nr_before = (*shrinker->shrinker)(0, gfp_mask);
			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
			if (shrink_ret == -1)
				break;
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
			mod_page_state(slabs_scanned, this_scan);
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
	return ret;
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
	if (current_is_kswapd())
		return 1;
	if (current_is_pdflush())	/* This is unlikely, but why not... */
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
	if (page_mapping(page) == mapping) {
		if (error == -ENOSPC)
			set_bit(AS_ENOSPC, &mapping->flags);
		else
			set_bit(AS_EIO, &mapping->flags);
	}
	unlock_page(page);
}

/*
 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
 */
static pageout_t pageout(struct page *page, struct address_space *mapping)
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
		if (PagePrivate(page)) {
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
		if (res == AOP_WRITEPAGE_ACTIVATE) {
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}

		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

/*
 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
 */
static int shrink_list(struct list_head *page_list, struct scan_control *sc)
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
	int reclaimed = 0;

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

		BUG_ON(PageActive(page));

		sc->nr_scanned++;
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

		if (PageWriteback(page))
			goto keep_locked;

		referenced = page_referenced(page, 1);
		/* In active use or really unfreeable?  Activate it. */
		if (referenced && page_mapping_inuse(page))
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
		if (PageAnon(page) && !PageSwapCache(page)) {
			if (!sc->may_swap)
				goto keep_locked;
			if (!add_to_swap(page))
				goto activate_locked;
		}
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
			switch (try_to_unmap(page)) {
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
			if (referenced)
				goto keep_locked;
			if (!may_enter_fs)
				goto keep_locked;
			if (laptop_mode && !sc->may_writepage)
				goto keep_locked;

			/* Page is dirty, try to write it out here */
			switch(pageout(page, mapping)) {
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
				if (PageWriteback(page) || PageDirty(page))
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

		if (!mapping)
			goto keep_locked;	/* truncate got there first */

		write_lock_irq(&mapping->tree_lock);

		/*
		 * The non-racy check for busy page.  It is critical to check
		 * PageDirty _after_ making sure that the page is freeable and
		 * not in use by anybody. 	(pagecache + us == 2)
		 */
		if (unlikely(page_count(page) != 2))
			goto cannot_free;
		smp_rmb();
		if (unlikely(PageDirty(page)))
			goto cannot_free;

#ifdef CONFIG_SWAP
		if (PageSwapCache(page)) {
			swp_entry_t swap = { .val = page_private(page) };
			__delete_from_swap_cache(page);
			write_unlock_irq(&mapping->tree_lock);
			swap_free(swap);
			__put_page(page);	/* The pagecache ref */
			goto free_it;
		}
#endif /* CONFIG_SWAP */

		__remove_from_page_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		__put_page(page);

free_it:
		unlock_page(page);
		reclaimed++;
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

cannot_free:
		write_unlock_irq(&mapping->tree_lock);
		goto keep_locked;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
		BUG_ON(PageLRU(page));
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
	mod_page_state(pgactivate, pgactivate);
	sc->nr_reclaimed += reclaimed;
	return reclaimed;
}

/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
 *
 * returns how many pages were moved onto *@dst.
 */
static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
			     struct list_head *dst, int *scanned)
{
	int nr_taken = 0;
	struct page *page;
	int scan = 0;

	while (scan++ < nr_to_scan && !list_empty(src)) {
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

		if (!TestClearPageLRU(page))
			BUG();
		list_del(&page->lru);
		if (get_page_testone(page)) {
			/*
			 * It is being freed elsewhere
			 */
			__put_page(page);
			SetPageLRU(page);
			list_add(&page->lru, src);
			continue;
		} else {
			list_add(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

/*
 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
 */
static void shrink_cache(struct zone *zone, struct scan_control *sc)
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
	int max_scan = sc->nr_to_scan;

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	while (max_scan > 0) {
		struct page *page;
		int nr_taken;
		int nr_scan;
		int nr_freed;

		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
					     &zone->inactive_list,
					     &page_list, &nr_scan);
		zone->nr_inactive -= nr_taken;
		zone->pages_scanned += nr_scan;
		spin_unlock_irq(&zone->lru_lock);

		if (nr_taken == 0)
			goto done;

		max_scan -= nr_scan;
		if (current_is_kswapd())
			mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
		else
			mod_page_state_zone(zone, pgscan_direct, nr_scan);
		nr_freed = shrink_list(&page_list, sc);
		if (current_is_kswapd())
			mod_page_state(kswapd_steal, nr_freed);
		mod_page_state_zone(zone, pgsteal, nr_freed);
		sc->nr_to_reclaim -= nr_freed;

		spin_lock_irq(&zone->lru_lock);
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
			if (TestSetPageLRU(page))
				BUG();
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
  	}
	spin_unlock_irq(&zone->lru_lock);
done:
	pagevec_release(&pvec);
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
static void
refill_inactive_zone(struct zone *zone, struct scan_control *sc)
{
	int pgmoved;
	int pgdeactivate = 0;
	int pgscanned;
	int nr_pages = sc->nr_to_scan;
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
	long mapped_ratio;
	long distress;
	long swap_tendency;

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
				    &l_hold, &pgscanned);
	zone->pages_scanned += pgscanned;
	zone->nr_active -= pgmoved;
	spin_unlock_irq(&zone->lru_lock);

	/*
	 * `distress' is a measure of how much trouble we're having reclaiming
	 * pages.  0 -> no problems.  100 -> great trouble.
	 */
	distress = 100 >> zone->prev_priority;

	/*
	 * The point of this algorithm is to decide when to start reclaiming
	 * mapped memory instead of just pagecache.  Work out how much memory
	 * is mapped.
	 */
	mapped_ratio = (sc->nr_mapped * 100) / total_memory;

	/*
	 * Now decide how much we really want to unmap some pages.  The mapped
	 * ratio is downgraded - just because there's a lot of mapped memory
	 * doesn't necessarily mean that page reclaim isn't succeeding.
	 *
	 * The distress ratio is important - we don't want to start going oom.
	 *
	 * A 100% value of vm_swappiness overrides this algorithm altogether.
	 */
	swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;

	/*
	 * Now use this metric to decide whether to start moving mapped memory
	 * onto the inactive list.
	 */
	if (swap_tendency >= 100)
		reclaim_mapped = 1;

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
			    page_referenced(page, 0)) {
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
		if (TestSetPageLRU(page))
			BUG();
		if (!TestClearPageActive(page))
			BUG();
		list_move(&page->lru, &zone->inactive_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_inactive += pgmoved;
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_inactive += pgmoved;
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
		if (TestSetPageLRU(page))
			BUG();
		BUG_ON(!PageActive(page));
		list_move(&page->lru, &zone->active_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_active += pgmoved;
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_active += pgmoved;
	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);

	mod_page_state_zone(zone, pgrefill, pgscanned);
	mod_page_state(pgdeactivate, pgdeactivate);
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void
shrink_zone(struct zone *zone, struct scan_control *sc)
{
	unsigned long nr_active;
	unsigned long nr_inactive;

	atomic_inc(&zone->reclaim_in_progress);

	/*
	 * Add one to `nr_to_scan' just to make sure that the kernel will
	 * slowly sift through the active list.
	 */
	zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
	nr_active = zone->nr_scan_active;
	if (nr_active >= sc->swap_cluster_max)
		zone->nr_scan_active = 0;
	else
		nr_active = 0;

	zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
	nr_inactive = zone->nr_scan_inactive;
	if (nr_inactive >= sc->swap_cluster_max)
		zone->nr_scan_inactive = 0;
	else
		nr_inactive = 0;

	sc->nr_to_reclaim = sc->swap_cluster_max;

	while (nr_active || nr_inactive) {
		if (nr_active) {
			sc->nr_to_scan = min(nr_active,
					(unsigned long)sc->swap_cluster_max);
			nr_active -= sc->nr_to_scan;
			refill_inactive_zone(zone, sc);
		}

		if (nr_inactive) {
			sc->nr_to_scan = min(nr_inactive,
					(unsigned long)sc->swap_cluster_max);
			nr_inactive -= sc->nr_to_scan;
			shrink_cache(zone, sc);
			if (sc->nr_to_reclaim <= 0)
				break;
		}
	}

	throttle_vm_writeout();

	atomic_dec(&zone->reclaim_in_progress);
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
static void
shrink_caches(struct zone **zones, struct scan_control *sc)
{
	int i;

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

		if (zone->present_pages == 0)
			continue;

		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
			continue;

		zone->temp_priority = sc->priority;
		if (zone->prev_priority > sc->priority)
			zone->prev_priority = sc->priority;

		if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
			continue;	/* Let kswapd poll it */

		shrink_zone(zone, sc);
	}
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
{
	int priority;
	int ret = 0;
	int total_scanned = 0, total_reclaimed = 0;
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct scan_control sc;
	unsigned long lru_pages = 0;
	int i;

	sc.gfp_mask = gfp_mask;
	sc.may_writepage = 0;
	sc.may_swap = 1;

	inc_page_state(allocstall);

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
			continue;

		zone->temp_priority = DEF_PRIORITY;
		lru_pages += zone->nr_active + zone->nr_inactive;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		sc.nr_mapped = read_page_state(nr_mapped);
		sc.nr_scanned = 0;
		sc.nr_reclaimed = 0;
		sc.priority = priority;
		sc.swap_cluster_max = SWAP_CLUSTER_MAX;
		if (!priority)
			disable_swap_token();
		shrink_caches(zones, &sc);
		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
		if (reclaim_state) {
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
		total_scanned += sc.nr_scanned;
		total_reclaimed += sc.nr_reclaimed;
		if (total_reclaimed >= sc.swap_cluster_max) {
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
		if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
			sc.may_writepage = 1;
		}

		/* Take a nap, wait for some writeback to complete */
		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);
	}
out:
	for (i = 0; zones[i] != 0; i++) {
		struct zone *zone = zones[i];

		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
			continue;

		zone->prev_priority = zone->temp_priority;
	}
	return ret;
}

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * If `nr_pages' is non-zero then it is the number of pages which are to be
 * reclaimed, regardless of the zone occupancies.  This is a software suspend
 * special.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
{
	int to_free = nr_pages;
	int all_zones_ok;
	int priority;
	int i;
	int total_scanned, total_reclaimed;
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct scan_control sc;

loop_again:
	total_scanned = 0;
	total_reclaimed = 0;
	sc.gfp_mask = GFP_KERNEL;
	sc.may_writepage = 0;
	sc.may_swap = 1;
	sc.nr_mapped = read_page_state(nr_mapped);

	inc_page_state(pageoutrun);

	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->temp_priority = DEF_PRIORITY;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

		all_zones_ok = 1;

		if (nr_pages == 0) {
			/*
			 * Scan in the highmem->dma direction for the highest
			 * zone which needs scanning
			 */
			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
				struct zone *zone = pgdat->node_zones + i;

				if (zone->present_pages == 0)
					continue;

				if (zone->all_unreclaimable &&
						priority != DEF_PRIORITY)
					continue;

				if (!zone_watermark_ok(zone, order,
						zone->pages_high, 0, 0)) {
					end_zone = i;
					goto scan;
				}
			}
			goto out;
		} else {
			end_zone = pgdat->nr_zones - 1;
		}
scan:
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			lru_pages += zone->nr_active + zone->nr_inactive;
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
			int nr_slab;

			if (zone->present_pages == 0)
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			if (nr_pages == 0) {	/* Not software suspend */
				if (!zone_watermark_ok(zone, order,
						zone->pages_high, end_zone, 0))
					all_zones_ok = 0;
			}
			zone->temp_priority = priority;
			if (zone->prev_priority > priority)
				zone->prev_priority = priority;
			sc.nr_scanned = 0;
			sc.nr_reclaimed = 0;
			sc.priority = priority;
			sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
			atomic_inc(&zone->reclaim_in_progress);
			shrink_zone(zone, &sc);
			atomic_dec(&zone->reclaim_in_progress);
			reclaim_state->reclaimed_slab = 0;
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
			total_reclaimed += sc.nr_reclaimed;
			total_scanned += sc.nr_scanned;
			if (zone->all_unreclaimable)
				continue;
			if (nr_slab == 0 && zone->pages_scanned >=
				    (zone->nr_active + zone->nr_inactive) * 4)
				zone->all_unreclaimable = 1;
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
			    total_scanned > total_reclaimed+total_reclaimed/2)
				sc.may_writepage = 1;
		}
		if (nr_pages && to_free > total_reclaimed)
			continue;	/* swsusp: need to do more work */
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
		if (total_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
		if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
			break;
	}
out:
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->prev_priority = zone->temp_priority;
	}
	if (!all_zones_ok) {
		cond_resched();
		goto loop_again;
	}

	return total_reclaimed;
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	daemonize("kswapd%d", pgdat->node_id);
	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
	tsk->flags |= PF_MEMALLOC|PF_KSWAPD;

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;

		try_to_freeze();

		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
			schedule();
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

		balance_pgdat(pgdat, 0, order);
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

	if (zone->present_pages == 0)
		return;

	pgdat = zone->zone_pgdat;
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
		return;
	if (!waitqueue_active(&pgdat->kswapd_wait))
		return;
	wake_up_interruptible(&pgdat->kswapd_wait);
}

#ifdef CONFIG_PM
/*
 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
 * pages.
 */
int shrink_all_memory(int nr_pages)
{
	pg_data_t *pgdat;
	int nr_to_free = nr_pages;
	int ret = 0;
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};

	current->reclaim_state = &reclaim_state;
	for_each_pgdat(pgdat) {
		int freed;
		freed = balance_pgdat(pgdat, nr_to_free, 0);
		ret += freed;
		nr_to_free -= freed;
		if (nr_to_free <= 0)
			break;
	}
	current->reclaim_state = NULL;
	return ret;
}
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
static int __devinit cpu_callback(struct notifier_block *nfb,
				  unsigned long action,
				  void *hcpu)
{
	pg_data_t *pgdat;
	cpumask_t mask;

	if (action == CPU_ONLINE) {
		for_each_pgdat(pgdat) {
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */

static int __init kswapd_init(void)
{
	pg_data_t *pgdat;
	swap_setup();
	for_each_pgdat(pgdat)
		pgdat->kswapd
		= find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
	total_memory = nr_free_pagecache_pages();
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)


/*
 * Try to free up some pages from this zone through reclaim.
 */
int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	struct scan_control sc;
	int nr_pages = 1 << order;
	int total_reclaimed = 0;

	/* The reclaim may sleep, so don't do it if sleep isn't allowed */
	if (!(gfp_mask & __GFP_WAIT))
		return 0;
	if (zone->all_unreclaimable)
		return 0;

	sc.gfp_mask = gfp_mask;
	sc.may_writepage = 0;
	sc.may_swap = 0;
	sc.nr_mapped = read_page_state(nr_mapped);
	sc.nr_scanned = 0;
	sc.nr_reclaimed = 0;
	/* scan at the highest priority */
	sc.priority = 0;
	disable_swap_token();

	if (nr_pages > SWAP_CLUSTER_MAX)
		sc.swap_cluster_max = nr_pages;
	else
		sc.swap_cluster_max = SWAP_CLUSTER_MAX;

	/* Don't reclaim the zone if there are other reclaimers active */
	if (atomic_read(&zone->reclaim_in_progress) > 0)
		goto out;

	shrink_zone(zone, &sc);
	total_reclaimed = sc.nr_reclaimed;

 out:
	return total_reclaimed;
}

asmlinkage long sys_set_zone_reclaim(unsigned int node, unsigned int zone,
				     unsigned int state)
{
	struct zone *z;
	int i;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;

	if (node >= MAX_NUMNODES || !node_online(node))
		return -EINVAL;

	/* This will break if we ever add more zones */
	if (!(zone & (1<<ZONE_DMA|1<<ZONE_NORMAL|1<<ZONE_HIGHMEM)))
		return -EINVAL;

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (!(zone & 1<<i))
			continue;

		z = &NODE_DATA(node)->node_zones[i];

		if (state)
			z->reclaim_pages = 1;
		else
			z->reclaim_pages = 0;
	}

	return 0;
}
OpenPOWER on IntegriCloud