summaryrefslogtreecommitdiffstats
path: root/kernel/pid_namespace.c
blob: b3c7fd5542500ab13940814211692bbe3b7ef8d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 * Pid namespaces
 *
 * Authors:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/syscalls.h>
#include <linux/err.h>
#include <linux/acct.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/reboot.h>

#define BITS_PER_PAGE		(PAGE_SIZE*8)

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry(pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
{
	struct pid_namespace *ns;
	unsigned int level = parent_pid_ns->level + 1;
	int i, err = -ENOMEM;

	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
	if (ns == NULL)
		goto out;

	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!ns->pidmap[0].page)
		goto out_free;

	ns->pid_cachep = create_pid_cachep(level + 1);
	if (ns->pid_cachep == NULL)
		goto out_free_map;

	kref_init(&ns->kref);
	ns->level = level;
	ns->parent = get_pid_ns(parent_pid_ns);

	set_bit(0, ns->pidmap[0].page);
	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);

	for (i = 1; i < PIDMAP_ENTRIES; i++)
		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);

	err = pid_ns_prepare_proc(ns);
	if (err)
		goto out_put_parent_pid_ns;

	return ns;

out_put_parent_pid_ns:
	put_pid_ns(parent_pid_ns);
out_free_map:
	kfree(ns->pidmap[0].page);
out_free:
	kmem_cache_free(pid_ns_cachep, ns);
out:
	return ERR_PTR(err);
}

static void destroy_pid_namespace(struct pid_namespace *ns)
{
	int i;

	for (i = 0; i < PIDMAP_ENTRIES; i++)
		kfree(ns->pidmap[i].page);
	kmem_cache_free(pid_ns_cachep, ns);
}

struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
{
	if (!(flags & CLONE_NEWPID))
		return get_pid_ns(old_ns);
	if (flags & (CLONE_THREAD|CLONE_PARENT))
		return ERR_PTR(-EINVAL);
	return create_pid_namespace(old_ns);
}

void free_pid_ns(struct kref *kref)
{
	struct pid_namespace *ns, *parent;

	ns = container_of(kref, struct pid_namespace, kref);

	parent = ns->parent;
	destroy_pid_namespace(ns);

	if (parent != NULL)
		put_pid_ns(parent);
}

void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
	int nr;
	int rc;
	struct task_struct *task, *me = current;

	/* Ignore SIGCHLD causing any terminated children to autoreap */
	spin_lock_irq(&me->sighand->siglock);
	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
	spin_unlock_irq(&me->sighand->siglock);

	/*
	 * The last thread in the cgroup-init thread group is terminating.
	 * Find remaining pid_ts in the namespace, signal and wait for them
	 * to exit.
	 *
	 * Note:  This signals each threads in the namespace - even those that
	 * 	  belong to the same thread group, To avoid this, we would have
	 * 	  to walk the entire tasklist looking a processes in this
	 * 	  namespace, but that could be unnecessarily expensive if the
	 * 	  pid namespace has just a few processes. Or we need to
	 * 	  maintain a tasklist for each pid namespace.
	 *
	 */
	read_lock(&tasklist_lock);
	nr = next_pidmap(pid_ns, 1);
	while (nr > 0) {
		rcu_read_lock();

		task = pid_task(find_vpid(nr), PIDTYPE_PID);
		if (task && !__fatal_signal_pending(task))
			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);

		rcu_read_unlock();

		nr = next_pidmap(pid_ns, nr);
	}
	read_unlock(&tasklist_lock);

	/* Firstly reap the EXIT_ZOMBIE children we may have. */
	do {
		clear_thread_flag(TIF_SIGPENDING);
		rc = sys_wait4(-1, NULL, __WALL, NULL);
	} while (rc != -ECHILD);

	/*
	 * sys_wait4() above can't reap the TASK_DEAD children.
	 * Make sure they all go away, see __unhash_process().
	 */
	for (;;) {
		bool need_wait = false;

		read_lock(&tasklist_lock);
		if (!list_empty(&current->children)) {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			need_wait = true;
		}
		read_unlock(&tasklist_lock);

		if (!need_wait)
			break;
		schedule();
	}

	if (pid_ns->reboot)
		current->signal->group_exit_code = pid_ns->reboot;

	acct_exit_ns(pid_ns);
	return;
}

#ifdef CONFIG_CHECKPOINT_RESTORE
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table tmp = *table;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	/*
	 * Writing directly to ns' last_pid field is OK, since this field
	 * is volatile in a living namespace anyway and a code writing to
	 * it should synchronize its usage with external means.
	 */

	tmp.data = &current->nsproxy->pid_ns->last_pid;
	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
}

static struct ctl_table pid_ns_ctl_table[] = {
	{
		.procname = "ns_last_pid",
		.maxlen = sizeof(int),
		.mode = 0666, /* permissions are checked in the handler */
		.proc_handler = pid_ns_ctl_handler,
	},
	{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
#endif	/* CONFIG_CHECKPOINT_RESTORE */

int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
	if (pid_ns == &init_pid_ns)
		return 0;

	switch (cmd) {
	case LINUX_REBOOT_CMD_RESTART2:
	case LINUX_REBOOT_CMD_RESTART:
		pid_ns->reboot = SIGHUP;
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
	case LINUX_REBOOT_CMD_HALT:
		pid_ns->reboot = SIGINT;
		break;
	default:
		return -EINVAL;
	}

	read_lock(&tasklist_lock);
	force_sig(SIGKILL, pid_ns->child_reaper);
	read_unlock(&tasklist_lock);

	do_exit(0);

	/* Not reached */
	return 0;
}

static __init int pid_namespaces_init(void)
{
	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);

#ifdef CONFIG_CHECKPOINT_RESTORE
	register_sysctl_paths(kern_path, pid_ns_ctl_table);
#endif
	return 0;
}

__initcall(pid_namespaces_init);
OpenPOWER on IntegriCloud