summaryrefslogtreecommitdiffstats
path: root/kernel/locking/qspinlock.c
blob: 1b8dda90ebfa4d9fa999b0631429340673bdf8bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/*
 * Queued spinlock
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 * (C) Copyright 2013-2014 Red Hat, Inc.
 * (C) Copyright 2015 Intel Corp.
 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
 *
 * Authors: Waiman Long <waiman.long@hpe.com>
 *          Peter Zijlstra <peterz@infradead.org>
 */

#ifndef _GEN_PV_LOCK_SLOWPATH

#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/mutex.h>
#include <asm/byteorder.h>
#include <asm/qspinlock.h>

/*
 * The basic principle of a queue-based spinlock can best be understood
 * by studying a classic queue-based spinlock implementation called the
 * MCS lock. The paper below provides a good description for this kind
 * of lock.
 *
 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 *
 * This queued spinlock implementation is based on the MCS lock, however to make
 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 * API, we must modify it somehow.
 *
 * In particular; where the traditional MCS lock consists of a tail pointer
 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 * unlock the next pending (next->locked), we compress both these: {tail,
 * next->locked} into a single u32 value.
 *
 * Since a spinlock disables recursion of its own context and there is a limit
 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 * we can encode the tail by combining the 2-bit nesting level with the cpu
 * number. With one byte for the lock value and 3 bytes for the tail, only a
 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 * we extend it to a full byte to achieve better performance for architectures
 * that support atomic byte write.
 *
 * We also change the first spinner to spin on the lock bit instead of its
 * node; whereby avoiding the need to carry a node from lock to unlock, and
 * preserving existing lock API. This also makes the unlock code simpler and
 * faster.
 *
 * N.B. The current implementation only supports architectures that allow
 *      atomic operations on smaller 8-bit and 16-bit data types.
 *
 */

#include "mcs_spinlock.h"

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define MAX_NODES	8
#else
#define MAX_NODES	4
#endif

/*
 * Per-CPU queue node structures; we can never have more than 4 nested
 * contexts: task, softirq, hardirq, nmi.
 *
 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
 *
 * PV doubles the storage and uses the second cacheline for PV state.
 */
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);

/*
 * We must be able to distinguish between no-tail and the tail at 0:0,
 * therefore increment the cpu number by one.
 */

static inline __pure u32 encode_tail(int cpu, int idx)
{
	u32 tail;

#ifdef CONFIG_DEBUG_SPINLOCK
	BUG_ON(idx > 3);
#endif
	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */

	return tail;
}

static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
{
	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;

	return per_cpu_ptr(&mcs_nodes[idx], cpu);
}

#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)

/*
 * By using the whole 2nd least significant byte for the pending bit, we
 * can allow better optimization of the lock acquisition for the pending
 * bit holder.
 *
 * This internal structure is also used by the set_locked function which
 * is not restricted to _Q_PENDING_BITS == 8.
 */
struct __qspinlock {
	union {
		atomic_t val;
#ifdef __LITTLE_ENDIAN
		struct {
			u8	locked;
			u8	pending;
		};
		struct {
			u16	locked_pending;
			u16	tail;
		};
#else
		struct {
			u16	tail;
			u16	locked_pending;
		};
		struct {
			u8	reserved[2];
			u8	pending;
			u8	locked;
		};
#endif
	};
};

#if _Q_PENDING_BITS == 8
/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 *
 * Lock stealing is not allowed if this function is used.
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	struct __qspinlock *l = (void *)lock;

	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
}

/*
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	struct __qspinlock *l = (void *)lock;

	/*
	 * Use release semantics to make sure that the MCS node is properly
	 * initialized before changing the tail code.
	 */
	return (u32)xchg_release(&l->tail,
				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}

#else /* _Q_PENDING_BITS == 8 */

/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
}

/**
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	u32 old, new, val = atomic_read(&lock->val);

	for (;;) {
		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
		/*
		 * Use release semantics to make sure that the MCS node is
		 * properly initialized before changing the tail code.
		 */
		old = atomic_cmpxchg_release(&lock->val, val, new);
		if (old == val)
			break;

		val = old;
	}
	return old;
}
#endif /* _Q_PENDING_BITS == 8 */

/**
 * set_locked - Set the lock bit and own the lock
 * @lock: Pointer to queued spinlock structure
 *
 * *,*,0 -> *,0,1
 */
static __always_inline void set_locked(struct qspinlock *lock)
{
	struct __qspinlock *l = (void *)lock;

	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
}


/*
 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 * all the PV callbacks.
 */

static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
					   struct mcs_spinlock *prev) { }
static __always_inline void __pv_kick_node(struct qspinlock *lock,
					   struct mcs_spinlock *node) { }
static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
						   struct mcs_spinlock *node)
						   { return 0; }

#define pv_enabled()		false

#define pv_init_node		__pv_init_node
#define pv_wait_node		__pv_wait_node
#define pv_kick_node		__pv_kick_node
#define pv_wait_head_or_lock	__pv_wait_head_or_lock

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
#endif

/*
 * Various notes on spin_is_locked() and spin_unlock_wait(), which are
 * 'interesting' functions:
 *
 * PROBLEM: some architectures have an interesting issue with atomic ACQUIRE
 * operations in that the ACQUIRE applies to the LOAD _not_ the STORE (ARM64,
 * PPC). Also qspinlock has a similar issue per construction, the setting of
 * the locked byte can be unordered acquiring the lock proper.
 *
 * This gets to be 'interesting' in the following cases, where the /should/s
 * end up false because of this issue.
 *
 *
 * CASE 1:
 *
 * So the spin_is_locked() correctness issue comes from something like:
 *
 *   CPU0				CPU1
 *
 *   global_lock();			local_lock(i)
 *     spin_lock(&G)			  spin_lock(&L[i])
 *     for (i)				  if (!spin_is_locked(&G)) {
 *       spin_unlock_wait(&L[i]);	    smp_acquire__after_ctrl_dep();
 *					    return;
 *					  }
 *					  // deal with fail
 *
 * Where it is important CPU1 sees G locked or CPU0 sees L[i] locked such
 * that there is exclusion between the two critical sections.
 *
 * The load from spin_is_locked(&G) /should/ be constrained by the ACQUIRE from
 * spin_lock(&L[i]), and similarly the load(s) from spin_unlock_wait(&L[i])
 * /should/ be constrained by the ACQUIRE from spin_lock(&G).
 *
 * Similarly, later stuff is constrained by the ACQUIRE from CTRL+RMB.
 *
 *
 * CASE 2:
 *
 * For spin_unlock_wait() there is a second correctness issue, namely:
 *
 *   CPU0				CPU1
 *
 *   flag = set;
 *   smp_mb();				spin_lock(&l)
 *   spin_unlock_wait(&l);		if (!flag)
 *					  // add to lockless list
 *					spin_unlock(&l);
 *   // iterate lockless list
 *
 * Which wants to ensure that CPU1 will stop adding bits to the list and CPU0
 * will observe the last entry on the list (if spin_unlock_wait() had ACQUIRE
 * semantics etc..)
 *
 * Where flag /should/ be ordered against the locked store of l.
 */

/*
 * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
 * issuing an _unordered_ store to set _Q_LOCKED_VAL.
 *
 * This means that the store can be delayed, but no later than the
 * store-release from the unlock. This means that simply observing
 * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
 *
 * There are two paths that can issue the unordered store:
 *
 *  (1) clear_pending_set_locked():	*,1,0 -> *,0,1
 *
 *  (2) set_locked():			t,0,0 -> t,0,1 ; t != 0
 *      atomic_cmpxchg_relaxed():	t,0,0 -> 0,0,1
 *
 * However, in both cases we have other !0 state we've set before to queue
 * ourseves:
 *
 * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
 * load is constrained by that ACQUIRE to not pass before that, and thus must
 * observe the store.
 *
 * For (2) we have a more intersting scenario. We enqueue ourselves using
 * xchg_tail(), which ends up being a RELEASE. This in itself is not
 * sufficient, however that is followed by an smp_cond_acquire() on the same
 * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
 * guarantees we must observe that store.
 *
 * Therefore both cases have other !0 state that is observable before the
 * unordered locked byte store comes through. This means we can use that to
 * wait for the lock store, and then wait for an unlock.
 */
#ifndef queued_spin_unlock_wait
void queued_spin_unlock_wait(struct qspinlock *lock)
{
	u32 val;

	for (;;) {
		val = atomic_read(&lock->val);

		if (!val) /* not locked, we're done */
			goto done;

		if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
			break;

		/* not locked, but pending, wait until we observe the lock */
		cpu_relax();
	}

	/* any unlock is good */
	while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
		cpu_relax();

done:
	smp_rmb(); /* CTRL + RMB -> ACQUIRE */
}
EXPORT_SYMBOL(queued_spin_unlock_wait);
#endif

#endif /* _GEN_PV_LOCK_SLOWPATH */

/**
 * queued_spin_lock_slowpath - acquire the queued spinlock
 * @lock: Pointer to queued spinlock structure
 * @val: Current value of the queued spinlock 32-bit word
 *
 * (queue tail, pending bit, lock value)
 *
 *              fast     :    slow                                  :    unlock
 *                       :                                          :
 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 *                       :       | ^--------.------.             /  :
 *                       :       v           \      \            |  :
 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 *                       :       | ^--'              |           |  :
 *                       :       v                   |           |  :
 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 *   queue               :       | ^--'                          |  :
 *                       :       v                               |  :
 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 *   queue               :         ^--'                             :
 */
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
	struct mcs_spinlock *prev, *next, *node;
	u32 new, old, tail;
	int idx;

	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));

	if (pv_enabled())
		goto queue;

	if (virt_spin_lock(lock))
		return;

	/*
	 * wait for in-progress pending->locked hand-overs
	 *
	 * 0,1,0 -> 0,0,1
	 */
	if (val == _Q_PENDING_VAL) {
		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
			cpu_relax();
	}

	/*
	 * trylock || pending
	 *
	 * 0,0,0 -> 0,0,1 ; trylock
	 * 0,0,1 -> 0,1,1 ; pending
	 */
	for (;;) {
		/*
		 * If we observe any contention; queue.
		 */
		if (val & ~_Q_LOCKED_MASK)
			goto queue;

		new = _Q_LOCKED_VAL;
		if (val == new)
			new |= _Q_PENDING_VAL;

		/*
		 * Acquire semantic is required here as the function may
		 * return immediately if the lock was free.
		 */
		old = atomic_cmpxchg_acquire(&lock->val, val, new);
		if (old == val)
			break;

		val = old;
	}

	/*
	 * we won the trylock
	 */
	if (new == _Q_LOCKED_VAL)
		return;

	/*
	 * we're pending, wait for the owner to go away.
	 *
	 * *,1,1 -> *,1,0
	 *
	 * this wait loop must be a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because not all clear_pending_set_locked()
	 * implementations imply full barriers.
	 */
	smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));

	/*
	 * take ownership and clear the pending bit.
	 *
	 * *,1,0 -> *,0,1
	 */
	clear_pending_set_locked(lock);
	return;

	/*
	 * End of pending bit optimistic spinning and beginning of MCS
	 * queuing.
	 */
queue:
	node = this_cpu_ptr(&mcs_nodes[0]);
	idx = node->count++;
	tail = encode_tail(smp_processor_id(), idx);

	node += idx;
	node->locked = 0;
	node->next = NULL;
	pv_init_node(node);

	/*
	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
	 * attempt the trylock once more in the hope someone let go while we
	 * weren't watching.
	 */
	if (queued_spin_trylock(lock))
		goto release;

	/*
	 * We have already touched the queueing cacheline; don't bother with
	 * pending stuff.
	 *
	 * p,*,* -> n,*,*
	 *
	 * RELEASE, such that the stores to @node must be complete.
	 */
	old = xchg_tail(lock, tail);
	next = NULL;

	/*
	 * if there was a previous node; link it and wait until reaching the
	 * head of the waitqueue.
	 */
	if (old & _Q_TAIL_MASK) {
		prev = decode_tail(old);
		/*
		 * The above xchg_tail() is also a load of @lock which generates,
		 * through decode_tail(), a pointer.
		 *
		 * The address dependency matches the RELEASE of xchg_tail()
		 * such that the access to @prev must happen after.
		 */
		smp_read_barrier_depends();

		WRITE_ONCE(prev->next, node);

		pv_wait_node(node, prev);
		arch_mcs_spin_lock_contended(&node->locked);

		/*
		 * While waiting for the MCS lock, the next pointer may have
		 * been set by another lock waiter. We optimistically load
		 * the next pointer & prefetch the cacheline for writing
		 * to reduce latency in the upcoming MCS unlock operation.
		 */
		next = READ_ONCE(node->next);
		if (next)
			prefetchw(next);
	}

	/*
	 * we're at the head of the waitqueue, wait for the owner & pending to
	 * go away.
	 *
	 * *,x,y -> *,0,0
	 *
	 * this wait loop must use a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because the set_locked() function below
	 * does not imply a full barrier.
	 *
	 * The PV pv_wait_head_or_lock function, if active, will acquire
	 * the lock and return a non-zero value. So we have to skip the
	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
	 * designated yet, there is no way for the locked value to become
	 * _Q_SLOW_VAL. So both the set_locked() and the
	 * atomic_cmpxchg_relaxed() calls will be safe.
	 *
	 * If PV isn't active, 0 will be returned instead.
	 *
	 */
	if ((val = pv_wait_head_or_lock(lock, node)))
		goto locked;

	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));

locked:
	/*
	 * claim the lock:
	 *
	 * n,0,0 -> 0,0,1 : lock, uncontended
	 * *,0,0 -> *,0,1 : lock, contended
	 *
	 * If the queue head is the only one in the queue (lock value == tail),
	 * clear the tail code and grab the lock. Otherwise, we only need
	 * to grab the lock.
	 */
	for (;;) {
		/* In the PV case we might already have _Q_LOCKED_VAL set */
		if ((val & _Q_TAIL_MASK) != tail) {
			set_locked(lock);
			break;
		}
		/*
		 * The smp_cond_load_acquire() call above has provided the
		 * necessary acquire semantics required for locking. At most
		 * two iterations of this loop may be ran.
		 */
		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
		if (old == val)
			goto release;	/* No contention */

		val = old;
	}

	/*
	 * contended path; wait for next if not observed yet, release.
	 */
	if (!next) {
		while (!(next = READ_ONCE(node->next)))
			cpu_relax();
	}

	arch_mcs_spin_unlock_contended(&next->locked);
	pv_kick_node(lock, next);

release:
	/*
	 * release the node
	 */
	this_cpu_dec(mcs_nodes[0].count);
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);

/*
 * Generate the paravirt code for queued_spin_unlock_slowpath().
 */
#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
#define _GEN_PV_LOCK_SLOWPATH

#undef  pv_enabled
#define pv_enabled()	true

#undef pv_init_node
#undef pv_wait_node
#undef pv_kick_node
#undef pv_wait_head_or_lock

#undef  queued_spin_lock_slowpath
#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath

#include "qspinlock_paravirt.h"
#include "qspinlock.c"

#endif
OpenPOWER on IntegriCloud