summaryrefslogtreecommitdiffstats
path: root/include/linux/sched.h
blob: 5fb0cfb43ecfe431f107a0792b2542545c515045 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <uapi/linux/sched.h>


struct sched_param {
	int sched_priority;
};

#include <asm/param.h>	/* for HZ */

#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/plist.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
#include <linux/errno.h>
#include <linux/nodemask.h>
#include <linux/mm_types.h>
#include <linux/preempt_mask.h>

#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/cputime.h>

#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
#include <linux/topology.h>
#include <linux/proportions.h>
#include <linux/seccomp.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/rtmutex.h>

#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/task_io_accounting.h>
#include <linux/latencytop.h>
#include <linux/cred.h>
#include <linux/llist.h>
#include <linux/uidgid.h>
#include <linux/gfp.h>

#include <asm/processor.h>

#define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */

/*
 * Extended scheduling parameters data structure.
 *
 * This is needed because the original struct sched_param can not be
 * altered without introducing ABI issues with legacy applications
 * (e.g., in sched_getparam()).
 *
 * However, the possibility of specifying more than just a priority for
 * the tasks may be useful for a wide variety of application fields, e.g.,
 * multimedia, streaming, automation and control, and many others.
 *
 * This variant (sched_attr) is meant at describing a so-called
 * sporadic time-constrained task. In such model a task is specified by:
 *  - the activation period or minimum instance inter-arrival time;
 *  - the maximum (or average, depending on the actual scheduling
 *    discipline) computation time of all instances, a.k.a. runtime;
 *  - the deadline (relative to the actual activation time) of each
 *    instance.
 * Very briefly, a periodic (sporadic) task asks for the execution of
 * some specific computation --which is typically called an instance--
 * (at most) every period. Moreover, each instance typically lasts no more
 * than the runtime and must be completed by time instant t equal to
 * the instance activation time + the deadline.
 *
 * This is reflected by the actual fields of the sched_attr structure:
 *
 *  @size		size of the structure, for fwd/bwd compat.
 *
 *  @sched_policy	task's scheduling policy
 *  @sched_flags	for customizing the scheduler behaviour
 *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
 *  @sched_priority	task's static priority (SCHED_FIFO/RR)
 *  @sched_deadline	representative of the task's deadline
 *  @sched_runtime	representative of the task's runtime
 *  @sched_period	representative of the task's period
 *
 * Given this task model, there are a multiplicity of scheduling algorithms
 * and policies, that can be used to ensure all the tasks will make their
 * timing constraints.
 *
 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
 * only user of this new interface. More information about the algorithm
 * available in the scheduling class file or in Documentation/.
 */
struct sched_attr {
	u32 size;

	u32 sched_policy;
	u64 sched_flags;

	/* SCHED_NORMAL, SCHED_BATCH */
	s32 sched_nice;

	/* SCHED_FIFO, SCHED_RR */
	u32 sched_priority;

	/* SCHED_DEADLINE */
	u64 sched_runtime;
	u64 sched_deadline;
	u64 sched_period;
};

struct exec_domain;
struct futex_pi_state;
struct robust_list_head;
struct bio_list;
struct fs_struct;
struct perf_event_context;
struct blk_plug;

/*
 * List of flags we want to share for kernel threads,
 * if only because they are not used by them anyway.
 */
#define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];		/* Load averages */
extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);

#define FSHIFT		11		/* nr of bits of precision */
#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
#define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
#define EXP_5		2014		/* 1/exp(5sec/5min) */
#define EXP_15		2037		/* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
	load *= exp; \
	load += n*(FIXED_1-exp); \
	load >>= FSHIFT;

extern unsigned long total_forks;
extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_iowait(void);
extern unsigned long nr_iowait_cpu(int cpu);
extern unsigned long this_cpu_load(void);


extern void calc_global_load(unsigned long ticks);
extern void update_cpu_load_nohz(void);

extern unsigned long get_parent_ip(unsigned long addr);

extern void dump_cpu_task(int cpu);

struct seq_file;
struct cfs_rq;
struct task_group;
#ifdef CONFIG_SCHED_DEBUG
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#endif

/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define __TASK_STOPPED		4
#define __TASK_TRACED		8
/* in tsk->exit_state */
#define EXIT_ZOMBIE		16
#define EXIT_DEAD		32
/* in tsk->state again */
#define TASK_DEAD		64
#define TASK_WAKEKILL		128
#define TASK_WAKING		256
#define TASK_PARKED		512
#define TASK_STATE_MAX		1024

#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"

extern char ___assert_task_state[1 - 2*!!(
		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];

/* Convenience macros for the sake of set_task_state */
#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)

/* Convenience macros for the sake of wake_up */
#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)

/* get_task_state() */
#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
				 __TASK_TRACED)

#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
#define task_is_stopped_or_traced(task)	\
			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
#define task_contributes_to_load(task)	\
				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
				 (task->flags & PF_FROZEN) == 0)

#define __set_task_state(tsk, state_value)		\
	do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)		\
	set_mb((tsk)->state, (state_value))

/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
 *	set_current_state(TASK_UNINTERRUPTIBLE);
 *	if (do_i_need_to_sleep())
 *		schedule();
 *
 * If the caller does not need such serialisation then use __set_current_state()
 */
#define __set_current_state(state_value)			\
	do { current->state = (state_value); } while (0)
#define set_current_state(state_value)		\
	set_mb(current->state, (state_value))

/* Task command name length */
#define TASK_COMM_LEN 16

#include <linux/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

struct task_struct;

#ifdef CONFIG_PROVE_RCU
extern int lockdep_tasklist_lock_is_held(void);
#endif /* #ifdef CONFIG_PROVE_RCU */

extern void sched_init(void);
extern void sched_init_smp(void);
extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);

extern int runqueue_is_locked(int cpu);

#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
extern void nohz_balance_enter_idle(int cpu);
extern void set_cpu_sd_state_idle(void);
extern int get_nohz_timer_target(void);
#else
static inline void nohz_balance_enter_idle(int cpu) { }
static inline void set_cpu_sd_state_idle(void) { }
#endif

/*
 * Only dump TASK_* tasks. (0 for all tasks)
 */
extern void show_state_filter(unsigned long state_filter);

static inline void show_state(void)
{
	show_state_filter(0);
}

extern void show_regs(struct pt_regs *);

/*
 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 * task), SP is the stack pointer of the first frame that should be shown in the back
 * trace (or NULL if the entire call-chain of the task should be shown).
 */
extern void show_stack(struct task_struct *task, unsigned long *sp);

void io_schedule(void);
long io_schedule_timeout(long timeout);

extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);

extern void sched_show_task(struct task_struct *p);

#ifdef CONFIG_LOCKUP_DETECTOR
extern void touch_softlockup_watchdog(void);
extern void touch_softlockup_watchdog_sync(void);
extern void touch_all_softlockup_watchdogs(void);
extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
				  void __user *buffer,
				  size_t *lenp, loff_t *ppos);
extern unsigned int  softlockup_panic;
void lockup_detector_init(void);
#else
static inline void touch_softlockup_watchdog(void)
{
}
static inline void touch_softlockup_watchdog_sync(void)
{
}
static inline void touch_all_softlockup_watchdogs(void)
{
}
static inline void lockup_detector_init(void)
{
}
#endif

#ifdef CONFIG_DETECT_HUNG_TASK
void reset_hung_task_detector(void);
#else
static inline void reset_hung_task_detector(void)
{
}
#endif

/* Attach to any functions which should be ignored in wchan output. */
#define __sched		__attribute__((__section__(".sched.text")))

/* Linker adds these: start and end of __sched functions */
extern char __sched_text_start[], __sched_text_end[];

/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);

#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
extern signed long schedule_timeout(signed long timeout);
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);

struct nsproxy;
struct user_namespace;

#ifdef CONFIG_MMU
extern void arch_pick_mmap_layout(struct mm_struct *mm);
extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
		       unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
			  unsigned long len, unsigned long pgoff,
			  unsigned long flags);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
#endif


extern void set_dumpable(struct mm_struct *mm, int value);
extern int get_dumpable(struct mm_struct *mm);

#define SUID_DUMP_DISABLE	0	/* No setuid dumping */
#define SUID_DUMP_USER		1	/* Dump as user of process */
#define SUID_DUMP_ROOT		2	/* Dump as root */

/* mm flags */
/* dumpable bits */
#define MMF_DUMPABLE      0  /* core dump is permitted */
#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */

#define MMF_DUMPABLE_BITS 2
#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)

/* coredump filter bits */
#define MMF_DUMP_ANON_PRIVATE	2
#define MMF_DUMP_ANON_SHARED	3
#define MMF_DUMP_MAPPED_PRIVATE	4
#define MMF_DUMP_MAPPED_SHARED	5
#define MMF_DUMP_ELF_HEADERS	6
#define MMF_DUMP_HUGETLB_PRIVATE 7
#define MMF_DUMP_HUGETLB_SHARED  8

#define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
#define MMF_DUMP_FILTER_BITS	7
#define MMF_DUMP_FILTER_MASK \
	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
#define MMF_DUMP_FILTER_DEFAULT \
	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)

#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
# define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
#else
# define MMF_DUMP_MASK_DEFAULT_ELF	0
#endif
					/* leave room for more dump flags */
#define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
#define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */

#define MMF_HAS_UPROBES		19	/* has uprobes */
#define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */

#define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)

struct sighand_struct {
	atomic_t		count;
	struct k_sigaction	action[_NSIG];
	spinlock_t		siglock;
	wait_queue_head_t	signalfd_wqh;
};

struct pacct_struct {
	int			ac_flag;
	long			ac_exitcode;
	unsigned long		ac_mem;
	cputime_t		ac_utime, ac_stime;
	unsigned long		ac_minflt, ac_majflt;
};

struct cpu_itimer {
	cputime_t expires;
	cputime_t incr;
	u32 error;
	u32 incr_error;
};

/**
 * struct cputime - snaphsot of system and user cputime
 * @utime: time spent in user mode
 * @stime: time spent in system mode
 *
 * Gathers a generic snapshot of user and system time.
 */
struct cputime {
	cputime_t utime;
	cputime_t stime;
};

/**
 * struct task_cputime - collected CPU time counts
 * @utime:		time spent in user mode, in &cputime_t units
 * @stime:		time spent in kernel mode, in &cputime_t units
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 *
 * This is an extension of struct cputime that includes the total runtime
 * spent by the task from the scheduler point of view.
 *
 * As a result, this structure groups together three kinds of CPU time
 * that are tracked for threads and thread groups.  Most things considering
 * CPU time want to group these counts together and treat all three
 * of them in parallel.
 */
struct task_cputime {
	cputime_t utime;
	cputime_t stime;
	unsigned long long sum_exec_runtime;
};
/* Alternate field names when used to cache expirations. */
#define prof_exp	stime
#define virt_exp	utime
#define sched_exp	sum_exec_runtime

#define INIT_CPUTIME	\
	(struct task_cputime) {					\
		.utime = 0,					\
		.stime = 0,					\
		.sum_exec_runtime = 0,				\
	}

#ifdef CONFIG_PREEMPT_COUNT
#define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
#else
#define PREEMPT_DISABLED	PREEMPT_ENABLED
#endif

/*
 * Disable preemption until the scheduler is running.
 * Reset by start_kernel()->sched_init()->init_idle().
 *
 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 * before the scheduler is active -- see should_resched().
 */
#define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)

/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime:		thread group interval timers.
 * @running:		non-zero when there are timers running and
 * 			@cputime receives updates.
 * @lock:		lock for fields in this struct.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
	struct task_cputime cputime;
	int running;
	raw_spinlock_t lock;
};

#include <linux/rwsem.h>
struct autogroup;

/*
 * NOTE! "signal_struct" does not have its own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
 */
struct signal_struct {
	atomic_t		sigcnt;
	atomic_t		live;
	int			nr_threads;

	wait_queue_head_t	wait_chldexit;	/* for wait4() */

	/* current thread group signal load-balancing target: */
	struct task_struct	*curr_target;

	/* shared signal handling: */
	struct sigpending	shared_pending;

	/* thread group exit support */
	int			group_exit_code;
	/* overloaded:
	 * - notify group_exit_task when ->count is equal to notify_count
	 * - everyone except group_exit_task is stopped during signal delivery
	 *   of fatal signals, group_exit_task processes the signal.
	 */
	int			notify_count;
	struct task_struct	*group_exit_task;

	/* thread group stop support, overloads group_exit_code too */
	int			group_stop_count;
	unsigned int		flags; /* see SIGNAL_* flags below */

	/*
	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
	 * manager, to re-parent orphan (double-forking) child processes
	 * to this process instead of 'init'. The service manager is
	 * able to receive SIGCHLD signals and is able to investigate
	 * the process until it calls wait(). All children of this
	 * process will inherit a flag if they should look for a
	 * child_subreaper process at exit.
	 */
	unsigned int		is_child_subreaper:1;
	unsigned int		has_child_subreaper:1;

	/* POSIX.1b Interval Timers */
	int			posix_timer_id;
	struct list_head	posix_timers;

	/* ITIMER_REAL timer for the process */
	struct hrtimer real_timer;
	struct pid *leader_pid;
	ktime_t it_real_incr;

	/*
	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
	 * values are defined to 0 and 1 respectively
	 */
	struct cpu_itimer it[2];

	/*
	 * Thread group totals for process CPU timers.
	 * See thread_group_cputimer(), et al, for details.
	 */
	struct thread_group_cputimer cputimer;

	/* Earliest-expiration cache. */
	struct task_cputime cputime_expires;

	struct list_head cpu_timers[3];

	struct pid *tty_old_pgrp;

	/* boolean value for session group leader */
	int leader;

	struct tty_struct *tty; /* NULL if no tty */

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
	/*
	 * Cumulative resource counters for dead threads in the group,
	 * and for reaped dead child processes forked by this group.
	 * Live threads maintain their own counters and add to these
	 * in __exit_signal, except for the group leader.
	 */
	cputime_t utime, stime, cutime, cstime;
	cputime_t gtime;
	cputime_t cgtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
	struct cputime prev_cputime;
#endif
	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
	unsigned long inblock, oublock, cinblock, coublock;
	unsigned long maxrss, cmaxrss;
	struct task_io_accounting ioac;

	/*
	 * Cumulative ns of schedule CPU time fo dead threads in the
	 * group, not including a zombie group leader, (This only differs
	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
	 * other than jiffies.)
	 */
	unsigned long long sum_sched_runtime;

	/*
	 * We don't bother to synchronize most readers of this at all,
	 * because there is no reader checking a limit that actually needs
	 * to get both rlim_cur and rlim_max atomically, and either one
	 * alone is a single word that can safely be read normally.
	 * getrlimit/setrlimit use task_lock(current->group_leader) to
	 * protect this instead of the siglock, because they really
	 * have no need to disable irqs.
	 */
	struct rlimit rlim[RLIM_NLIMITS];

#ifdef CONFIG_BSD_PROCESS_ACCT
	struct pacct_struct pacct;	/* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
	struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
	unsigned audit_tty;
	unsigned audit_tty_log_passwd;
	struct tty_audit_buf *tty_audit_buf;
#endif
#ifdef CONFIG_CGROUPS
	/*
	 * group_rwsem prevents new tasks from entering the threadgroup and
	 * member tasks from exiting,a more specifically, setting of
	 * PF_EXITING.  fork and exit paths are protected with this rwsem
	 * using threadgroup_change_begin/end().  Users which require
	 * threadgroup to remain stable should use threadgroup_[un]lock()
	 * which also takes care of exec path.  Currently, cgroup is the
	 * only user.
	 */
	struct rw_semaphore group_rwsem;
#endif

	oom_flags_t oom_flags;
	short oom_score_adj;		/* OOM kill score adjustment */
	short oom_score_adj_min;	/* OOM kill score adjustment min value.
					 * Only settable by CAP_SYS_RESOURCE. */

	struct mutex cred_guard_mutex;	/* guard against foreign influences on
					 * credential calculations
					 * (notably. ptrace) */
};

/*
 * Bits in flags field of signal_struct.
 */
#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
/*
 * Pending notifications to parent.
 */
#define SIGNAL_CLD_STOPPED	0x00000010
#define SIGNAL_CLD_CONTINUED	0x00000020
#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)

#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */

/* If true, all threads except ->group_exit_task have pending SIGKILL */
static inline int signal_group_exit(const struct signal_struct *sig)
{
	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
		(sig->group_exit_task != NULL);
}

/*
 * Some day this will be a full-fledged user tracking system..
 */
struct user_struct {
	atomic_t __count;	/* reference count */
	atomic_t processes;	/* How many processes does this user have? */
	atomic_t files;		/* How many open files does this user have? */
	atomic_t sigpending;	/* How many pending signals does this user have? */
#ifdef CONFIG_INOTIFY_USER
	atomic_t inotify_watches; /* How many inotify watches does this user have? */
	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
#endif
#ifdef CONFIG_FANOTIFY
	atomic_t fanotify_listeners;
#endif
#ifdef CONFIG_EPOLL
	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
#endif
#ifdef CONFIG_POSIX_MQUEUE
	/* protected by mq_lock	*/
	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
#endif
	unsigned long locked_shm; /* How many pages of mlocked shm ? */

#ifdef CONFIG_KEYS
	struct key *uid_keyring;	/* UID specific keyring */
	struct key *session_keyring;	/* UID's default session keyring */
#endif

	/* Hash table maintenance information */
	struct hlist_node uidhash_node;
	kuid_t uid;

#ifdef CONFIG_PERF_EVENTS
	atomic_long_t locked_vm;
#endif
};

extern int uids_sysfs_init(void);

extern struct user_struct *find_user(kuid_t);

extern struct user_struct root_user;
#define INIT_USER (&root_user)


struct backing_dev_info;
struct reclaim_state;

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info {
	/* cumulative counters */
	unsigned long pcount;	      /* # of times run on this cpu */
	unsigned long long run_delay; /* time spent waiting on a runqueue */

	/* timestamps */
	unsigned long long last_arrival,/* when we last ran on a cpu */
			   last_queued;	/* when we were last queued to run */
};
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */

#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info {
	spinlock_t	lock;
	unsigned int	flags;	/* Private per-task flags */

	/* For each stat XXX, add following, aligned appropriately
	 *
	 * struct timespec XXX_start, XXX_end;
	 * u64 XXX_delay;
	 * u32 XXX_count;
	 *
	 * Atomicity of updates to XXX_delay, XXX_count protected by
	 * single lock above (split into XXX_lock if contention is an issue).
	 */

	/*
	 * XXX_count is incremented on every XXX operation, the delay
	 * associated with the operation is added to XXX_delay.
	 * XXX_delay contains the accumulated delay time in nanoseconds.
	 */
	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
	u64 blkio_delay;	/* wait for sync block io completion */
	u64 swapin_delay;	/* wait for swapin block io completion */
	u32 blkio_count;	/* total count of the number of sync block */
				/* io operations performed */
	u32 swapin_count;	/* total count of the number of swapin block */
				/* io operations performed */

	struct timespec freepages_start, freepages_end;
	u64 freepages_delay;	/* wait for memory reclaim */
	u32 freepages_count;	/* total count of memory reclaim */
};
#endif	/* CONFIG_TASK_DELAY_ACCT */

static inline int sched_info_on(void)
{
#ifdef CONFIG_SCHEDSTATS
	return 1;
#elif defined(CONFIG_TASK_DELAY_ACCT)
	extern int delayacct_on;
	return delayacct_on;
#else
	return 0;
#endif
}

enum cpu_idle_type {
	CPU_IDLE,
	CPU_NOT_IDLE,
	CPU_NEWLY_IDLE,
	CPU_MAX_IDLE_TYPES
};

/*
 * Increase resolution of cpu_power calculations
 */
#define SCHED_POWER_SHIFT	10
#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)

/*
 * sched-domains (multiprocessor balancing) declarations:
 */
#ifdef CONFIG_SMP
#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
#define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
#define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
#define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
#define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
#define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
#define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
#define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
#define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
#define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
#define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
#define SD_NUMA			0x4000	/* cross-node balancing */

extern int __weak arch_sd_sibiling_asym_packing(void);

struct sched_domain_attr {
	int relax_domain_level;
};

#define SD_ATTR_INIT	(struct sched_domain_attr) {	\
	.relax_domain_level = -1,			\
}

extern int sched_domain_level_max;

struct sched_group;

struct sched_domain {
	/* These fields must be setup */
	struct sched_domain *parent;	/* top domain must be null terminated */
	struct sched_domain *child;	/* bottom domain must be null terminated */
	struct sched_group *groups;	/* the balancing groups of the domain */
	unsigned long min_interval;	/* Minimum balance interval ms */
	unsigned long max_interval;	/* Maximum balance interval ms */
	unsigned int busy_factor;	/* less balancing by factor if busy */
	unsigned int imbalance_pct;	/* No balance until over watermark */
	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
	unsigned int busy_idx;
	unsigned int idle_idx;
	unsigned int newidle_idx;
	unsigned int wake_idx;
	unsigned int forkexec_idx;
	unsigned int smt_gain;

	int nohz_idle;			/* NOHZ IDLE status */
	int flags;			/* See SD_* */
	int level;

	/* Runtime fields. */
	unsigned long last_balance;	/* init to jiffies. units in jiffies */
	unsigned int balance_interval;	/* initialise to 1. units in ms. */
	unsigned int nr_balance_failed; /* initialise to 0 */

	/* idle_balance() stats */
	u64 max_newidle_lb_cost;
	unsigned long next_decay_max_lb_cost;

#ifdef CONFIG_SCHEDSTATS
	/* load_balance() stats */
	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];

	/* Active load balancing */
	unsigned int alb_count;
	unsigned int alb_failed;
	unsigned int alb_pushed;

	/* SD_BALANCE_EXEC stats */
	unsigned int sbe_count;
	unsigned int sbe_balanced;
	unsigned int sbe_pushed;

	/* SD_BALANCE_FORK stats */
	unsigned int sbf_count;
	unsigned int sbf_balanced;
	unsigned int sbf_pushed;

	/* try_to_wake_up() stats */
	unsigned int ttwu_wake_remote;
	unsigned int ttwu_move_affine;
	unsigned int ttwu_move_balance;
#endif
#ifdef CONFIG_SCHED_DEBUG
	char *name;
#endif
	union {
		void *private;		/* used during construction */
		struct rcu_head rcu;	/* used during destruction */
	};

	unsigned int span_weight;
	/*
	 * Span of all CPUs in this domain.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long span[0];
};

static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
{
	return to_cpumask(sd->span);
}

extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
				    struct sched_domain_attr *dattr_new);

/* Allocate an array of sched domains, for partition_sched_domains(). */
cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);

bool cpus_share_cache(int this_cpu, int that_cpu);

#else /* CONFIG_SMP */

struct sched_domain_attr;

static inline void
partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
			struct sched_domain_attr *dattr_new)
{
}

static inline bool cpus_share_cache(int this_cpu, int that_cpu)
{
	return true;
}

#endif	/* !CONFIG_SMP */


struct io_context;			/* See blkdev.h */


#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
extern void prefetch_stack(struct task_struct *t);
#else
static inline void prefetch_stack(struct task_struct *t) { }
#endif

struct audit_context;		/* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;

struct load_weight {
	unsigned long weight;
	u32 inv_weight;
};

struct sched_avg {
	/*
	 * These sums represent an infinite geometric series and so are bound
	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
	 * choices of y < 1-2^(-32)*1024.
	 */
	u32 runnable_avg_sum, runnable_avg_period;
	u64 last_runnable_update;
	s64 decay_count;
	unsigned long load_avg_contrib;
};

#ifdef CONFIG_SCHEDSTATS
struct sched_statistics {
	u64			wait_start;
	u64			wait_max;
	u64			wait_count;
	u64			wait_sum;
	u64			iowait_count;
	u64			iowait_sum;

	u64			sleep_start;
	u64			sleep_max;
	s64			sum_sleep_runtime;

	u64			block_start;
	u64			block_max;
	u64			exec_max;
	u64			slice_max;

	u64			nr_migrations_cold;
	u64			nr_failed_migrations_affine;
	u64			nr_failed_migrations_running;
	u64			nr_failed_migrations_hot;
	u64			nr_forced_migrations;

	u64			nr_wakeups;
	u64			nr_wakeups_sync;
	u64			nr_wakeups_migrate;
	u64			nr_wakeups_local;
	u64			nr_wakeups_remote;
	u64			nr_wakeups_affine;
	u64			nr_wakeups_affine_attempts;
	u64			nr_wakeups_passive;
	u64			nr_wakeups_idle;
};
#endif

struct sched_entity {
	struct load_weight	load;		/* for load-balancing */
	struct rb_node		run_node;
	struct list_head	group_node;
	unsigned int		on_rq;

	u64			exec_start;
	u64			sum_exec_runtime;
	u64			vruntime;
	u64			prev_sum_exec_runtime;

	u64			nr_migrations;

#ifdef CONFIG_SCHEDSTATS
	struct sched_statistics statistics;
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct cfs_rq		*cfs_rq;
	/* rq "owned" by this entity/group: */
	struct cfs_rq		*my_q;
#endif

#ifdef CONFIG_SMP
	/* Per-entity load-tracking */
	struct sched_avg	avg;
#endif
};

struct sched_rt_entity {
	struct list_head run_list;
	unsigned long timeout;
	unsigned long watchdog_stamp;
	unsigned int time_slice;

	struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct rt_rq		*rt_rq;
	/* rq "owned" by this entity/group: */
	struct rt_rq		*my_q;
#endif
};

struct sched_dl_entity {
	struct rb_node	rb_node;

	/*
	 * Original scheduling parameters. Copied here from sched_attr
	 * during sched_setscheduler2(), they will remain the same until
	 * the next sched_setscheduler2().
	 */
	u64 dl_runtime;		/* maximum runtime for each instance	*/
	u64 dl_deadline;	/* relative deadline of each instance	*/
	u64 dl_period;		/* separation of two instances (period) */
	u64 dl_bw;		/* dl_runtime / dl_deadline		*/

	/*
	 * Actual scheduling parameters. Initialized with the values above,
	 * they are continously updated during task execution. Note that
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
	s64 runtime;		/* remaining runtime for this instance	*/
	u64 deadline;		/* absolute deadline for this instance	*/
	unsigned int flags;	/* specifying the scheduler behaviour	*/

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
	 * @dl_new tells if a new instance arrived. If so we must
	 * start executing it with full runtime and reset its absolute
	 * deadline;
	 *
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
	 * exit the critical section).
	 */
	int dl_throttled, dl_new, dl_boosted;

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
	struct hrtimer dl_timer;
};

struct rcu_node;

enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
	perf_sw_context,
	perf_nr_task_contexts,
};

struct task_struct {
	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
	void *stack;
	atomic_t usage;
	unsigned int flags;	/* per process flags, defined below */
	unsigned int ptrace;

#ifdef CONFIG_SMP
	struct llist_node wake_entry;
	int on_cpu;
	struct task_struct *last_wakee;
	unsigned long wakee_flips;
	unsigned long wakee_flip_decay_ts;

	int wake_cpu;
#endif
	int on_rq;

	int prio, static_prio, normal_prio;
	unsigned int rt_priority;
	const struct sched_class *sched_class;
	struct sched_entity se;
	struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
	struct task_group *sched_task_group;
#endif
	struct sched_dl_entity dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
	/* list of struct preempt_notifier: */
	struct hlist_head preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
	unsigned int btrace_seq;
#endif

	unsigned int policy;
	int nr_cpus_allowed;
	cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
	int rcu_read_lock_nesting;
	char rcu_read_unlock_special;
	struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
	struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rcu_boost_mutex;
#endif /* #ifdef CONFIG_RCU_BOOST */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	struct sched_info sched_info;
#endif

	struct list_head tasks;
#ifdef CONFIG_SMP
	struct plist_node pushable_tasks;
	struct rb_node pushable_dl_tasks;
#endif

	struct mm_struct *mm, *active_mm;
#ifdef CONFIG_COMPAT_BRK
	unsigned brk_randomized:1;
#endif
#if defined(SPLIT_RSS_COUNTING)
	struct task_rss_stat	rss_stat;
#endif
/* task state */
	int exit_state;
	int exit_code, exit_signal;
	int pdeath_signal;  /*  The signal sent when the parent dies  */
	unsigned int jobctl;	/* JOBCTL_*, siglock protected */

	/* Used for emulating ABI behavior of previous Linux versions */
	unsigned int personality;

	unsigned did_exec:1;
	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
				 * execve */
	unsigned in_iowait:1;

	/* task may not gain privileges */
	unsigned no_new_privs:1;

	/* Revert to default priority/policy when forking */
	unsigned sched_reset_on_fork:1;
	unsigned sched_contributes_to_load:1;

	pid_t pid;
	pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
	/* Canary value for the -fstack-protector gcc feature */
	unsigned long stack_canary;
#endif
	/*
	 * pointers to (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with
	 * p->real_parent->pid)
	 */
	struct task_struct __rcu *real_parent; /* real parent process */
	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
	/*
	 * children/sibling forms the list of my natural children
	 */
	struct list_head children;	/* list of my children */
	struct list_head sibling;	/* linkage in my parent's children list */
	struct task_struct *group_leader;	/* threadgroup leader */

	/*
	 * ptraced is the list of tasks this task is using ptrace on.
	 * This includes both natural children and PTRACE_ATTACH targets.
	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
	 */
	struct list_head ptraced;
	struct list_head ptrace_entry;

	/* PID/PID hash table linkage. */
	struct pid_link pids[PIDTYPE_MAX];
	struct list_head thread_group;

	struct completion *vfork_done;		/* for vfork() */
	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */

	cputime_t utime, stime, utimescaled, stimescaled;
	cputime_t gtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
	struct cputime prev_cputime;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	seqlock_t vtime_seqlock;
	unsigned long long vtime_snap;
	enum {
		VTIME_SLEEPING = 0,
		VTIME_USER,
		VTIME_SYS,
	} vtime_snap_whence;
#endif
	unsigned long nvcsw, nivcsw; /* context switch counts */
	struct timespec start_time; 		/* monotonic time */
	struct timespec real_start_time;	/* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
	unsigned long min_flt, maj_flt;

	struct task_cputime cputime_expires;
	struct list_head cpu_timers[3];

/* process credentials */
	const struct cred __rcu *real_cred; /* objective and real subjective task
					 * credentials (COW) */
	const struct cred __rcu *cred;	/* effective (overridable) subjective task
					 * credentials (COW) */
	char comm[TASK_COMM_LEN]; /* executable name excluding path
				     - access with [gs]et_task_comm (which lock
				       it with task_lock())
				     - initialized normally by setup_new_exec */
/* file system info */
	int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
	struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
	unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */
	struct thread_struct thread;
/* filesystem information */
	struct fs_struct *fs;
/* open file information */
	struct files_struct *files;
/* namespaces */
	struct nsproxy *nsproxy;
/* signal handlers */
	struct signal_struct *signal;
	struct sighand_struct *sighand;

	sigset_t blocked, real_blocked;
	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
	struct sigpending pending;

	unsigned long sas_ss_sp;
	size_t sas_ss_size;
	int (*notifier)(void *priv);
	void *notifier_data;
	sigset_t *notifier_mask;
	struct callback_head *task_works;

	struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
	kuid_t loginuid;
	unsigned int sessionid;
#endif
	struct seccomp seccomp;

/* Thread group tracking */
   	u32 parent_exec_id;
   	u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
	spinlock_t alloc_lock;

	/* Protection of the PI data structures: */
	raw_spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES
	/* PI waiters blocked on a rt_mutex held by this task */
	struct rb_root pi_waiters;
	struct rb_node *pi_waiters_leftmost;
	/* Deadlock detection and priority inheritance handling */
	struct rt_mutex_waiter *pi_blocked_on;
	/* Top pi_waiters task */
	struct task_struct *pi_top_task;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	/* mutex deadlock detection */
	struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	unsigned int irq_events;
	unsigned long hardirq_enable_ip;
	unsigned long hardirq_disable_ip;
	unsigned int hardirq_enable_event;
	unsigned int hardirq_disable_event;
	int hardirqs_enabled;
	int hardirq_context;
	unsigned long softirq_disable_ip;
	unsigned long softirq_enable_ip;
	unsigned int softirq_disable_event;
	unsigned int softirq_enable_event;
	int softirqs_enabled;
	int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
	u64 curr_chain_key;
	int lockdep_depth;
	unsigned int lockdep_recursion;
	struct held_lock held_locks[MAX_LOCK_DEPTH];
	gfp_t lockdep_reclaim_gfp;
#endif

/* journalling filesystem info */
	void *journal_info;

/* stacked block device info */
	struct bio_list *bio_list;

#ifdef CONFIG_BLOCK
/* stack plugging */
	struct blk_plug *plug;
#endif

/* VM state */
	struct reclaim_state *reclaim_state;

	struct backing_dev_info *backing_dev_info;

	struct io_context *io_context;

	unsigned long ptrace_message;
	siginfo_t *last_siginfo; /* For ptrace use.  */
	struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
	u64 acct_rss_mem1;	/* accumulated rss usage */
	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
	cputime_t acct_timexpd;	/* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
	nodemask_t mems_allowed;	/* Protected by alloc_lock */
	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
	int cpuset_mem_spread_rotor;
	int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
	/* Control Group info protected by css_set_lock */
	struct css_set __rcu *cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock */
	struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
	struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
	struct list_head pi_state_list;
	struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
	struct mutex perf_event_mutex;
	struct list_head perf_event_list;
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
	short il_next;
	short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
	int numa_scan_seq;
	unsigned int numa_scan_period;
	unsigned int numa_scan_period_max;
	int numa_preferred_nid;
	unsigned long numa_migrate_retry;
	u64 node_stamp;			/* migration stamp  */
	struct callback_head numa_work;

	struct list_head numa_entry;
	struct numa_group *numa_group;

	/*
	 * Exponential decaying average of faults on a per-node basis.
	 * Scheduling placement decisions are made based on the these counts.
	 * The values remain static for the duration of a PTE scan
	 */
	unsigned long *numa_faults_memory;
	unsigned long total_numa_faults;

	/*
	 * numa_faults_buffer records faults per node during the current
	 * scan window. When the scan completes, the counts in
	 * numa_faults_memory decay and these values are copied.
	 */
	unsigned long *numa_faults_buffer_memory;

	/*
	 * Track the nodes the process was running on when a NUMA hinting
	 * fault was incurred.
	 */
	unsigned long *numa_faults_cpu;
	unsigned long *numa_faults_buffer_cpu;

	/*
	 * numa_faults_locality tracks if faults recorded during the last
	 * scan window were remote/local. The task scan period is adapted
	 * based on the locality of the faults with different weights
	 * depending on whether they were shared or private faults
	 */
	unsigned long numa_faults_locality[2];

	unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

	struct rcu_head rcu;

	/*
	 * cache last used pipe for splice
	 */
	struct pipe_inode_info *splice_pipe;

	struct page_frag task_frag;

#ifdef	CONFIG_TASK_DELAY_ACCT
	struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
	int make_it_fail;
#endif
	/*
	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for some dirty throttling pause
	 */
	int nr_dirtied;
	int nr_dirtied_pause;
	unsigned long dirty_paused_when; /* start of a write-and-pause period */

#ifdef CONFIG_LATENCYTOP
	int latency_record_count;
	struct latency_record latency_record[LT_SAVECOUNT];
#endif
	/*
	 * time slack values; these are used to round up poll() and
	 * select() etc timeout values. These are in nanoseconds.
	 */
	unsigned long timer_slack_ns;
	unsigned long default_timer_slack_ns;

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/* Index of current stored address in ret_stack */
	int curr_ret_stack;
	/* Stack of return addresses for return function tracing */
	struct ftrace_ret_stack	*ret_stack;
	/* time stamp for last schedule */
	unsigned long long ftrace_timestamp;
	/*
	 * Number of functions that haven't been traced
	 * because of depth overrun.
	 */
	atomic_t trace_overrun;
	/* Pause for the tracing */
	atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
	/* state flags for use by tracers */
	unsigned long trace;
	/* bitmask and counter of trace recursion */
	unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
	struct memcg_batch_info {
		int do_batch;	/* incremented when batch uncharge started */
		struct mem_cgroup *memcg; /* target memcg of uncharge */
		unsigned long nr_pages;	/* uncharged usage */
		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
	} memcg_batch;
	unsigned int memcg_kmem_skip_account;
	struct memcg_oom_info {
		struct mem_cgroup *memcg;
		gfp_t gfp_mask;
		int order;
		unsigned int may_oom:1;
	} memcg_oom;
#endif
#ifdef CONFIG_UPROBES
	struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
	unsigned int	sequential_io;
	unsigned int	sequential_io_avg;
#endif
};

/* Future-safe accessor for struct task_struct's cpus_allowed. */
#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)

#define TNF_MIGRATED	0x01
#define TNF_NO_GROUP	0x02
#define TNF_SHARED	0x04
#define TNF_FAULT_LOCAL	0x08

#ifdef CONFIG_NUMA_BALANCING
extern void task_numa_fault(int last_node, int node, int pages, int flags);
extern pid_t task_numa_group_id(struct task_struct *p);
extern void set_numabalancing_state(bool enabled);
extern void task_numa_free(struct task_struct *p);
#else
static inline void task_numa_fault(int last_node, int node, int pages,
				   int flags)
{
}
static inline pid_t task_numa_group_id(struct task_struct *p)
{
	return 0;
}
static inline void set_numabalancing_state(bool enabled)
{
}
static inline void task_numa_free(struct task_struct *p)
{
}
#endif

static inline struct pid *task_pid(struct task_struct *task)
{
	return task->pids[PIDTYPE_PID].pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PID].pid;
}

/*
 * Without tasklist or rcu lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PGID].pid;
}

static inline struct pid *task_session(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_SID].pid;
}

struct pid_namespace;

/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * set_task_vxid()   : assigns a virtual id to a task;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
			struct pid_namespace *ns);

static inline pid_t task_pid_nr(struct task_struct *tsk)
{
	return tsk->pid;
}

static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}


static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
	return tsk->tgid;
}

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
	return pid_vnr(task_tgid(tsk));
}


static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}


static inline pid_t task_session_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}

/* obsolete, do not use */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}

/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(struct task_struct *p)
{
	return p->pids[PIDTYPE_PID].pid != NULL;
}

/**
 * is_global_init - check if a task structure is init
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
 *
 * Return: 1 if the task structure is init. 0 otherwise.
 */
static inline int is_global_init(struct task_struct *tsk)
{
	return tsk->pid == 1;
}

extern struct pid *cad_pid;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
{
	if (atomic_dec_and_test(&t->usage))
		__put_task_struct(t);
}

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void task_cputime(struct task_struct *t,
			 cputime_t *utime, cputime_t *stime);
extern void task_cputime_scaled(struct task_struct *t,
				cputime_t *utimescaled, cputime_t *stimescaled);
extern cputime_t task_gtime(struct task_struct *t);
#else
static inline void task_cputime(struct task_struct *t,
				cputime_t *utime, cputime_t *stime)
{
	if (utime)
		*utime = t->utime;
	if (stime)
		*stime = t->stime;
}

static inline void task_cputime_scaled(struct task_struct *t,
				       cputime_t *utimescaled,
				       cputime_t *stimescaled)
{
	if (utimescaled)
		*utimescaled = t->utimescaled;
	if (stimescaled)
		*stimescaled = t->stimescaled;
}

static inline cputime_t task_gtime(struct task_struct *t)
{
	return t->gtime;
}
#endif
extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);

/*
 * Per process flags
 */
#define PF_EXITING	0x00000004	/* getting shut down */
#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
#define PF_DUMPCORE	0x00000200	/* dumped core */
#define PF_SIGNALED	0x00000400	/* killed by a signal */
#define PF_MEMALLOC	0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
#define PF_FROZEN	0x00010000	/* frozen for system suspend */
#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
#define PF_KSWAPD	0x00040000	/* I am kswapd */
#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
#define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
#define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
#define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
	conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
static inline gfp_t memalloc_noio_flags(gfp_t flags)
{
	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
		flags &= ~__GFP_IO;
	return flags;
}

static inline unsigned int memalloc_noio_save(void)
{
	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
	current->flags |= PF_MEMALLOC_NOIO;
	return flags;
}

static inline void memalloc_noio_restore(unsigned int flags)
{
	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
}

/*
 * task->jobctl flags
 */
#define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */

#define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
#define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
#define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
#define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
#define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
#define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
#define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */

#define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
#define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
#define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
#define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
#define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
#define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
#define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)

#define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
#define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)

extern bool task_set_jobctl_pending(struct task_struct *task,
				    unsigned int mask);
extern void task_clear_jobctl_trapping(struct task_struct *task);
extern void task_clear_jobctl_pending(struct task_struct *task,
				      unsigned int mask);

#ifdef CONFIG_PREEMPT_RCU

#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */

static inline void rcu_copy_process(struct task_struct *p)
{
	p->rcu_read_lock_nesting = 0;
	p->rcu_read_unlock_special = 0;
#ifdef CONFIG_TREE_PREEMPT_RCU
	p->rcu_blocked_node = NULL;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
	p->rcu_boost_mutex = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
	INIT_LIST_HEAD(&p->rcu_node_entry);
}

#else

static inline void rcu_copy_process(struct task_struct *p)
{
}

#endif

static inline void tsk_restore_flags(struct task_struct *task,
				unsigned long orig_flags, unsigned long flags)
{
	task->flags &= ~flags;
	task->flags |= orig_flags & flags;
}

#ifdef CONFIG_SMP
extern void do_set_cpus_allowed(struct task_struct *p,
			       const struct cpumask *new_mask);

extern int set_cpus_allowed_ptr(struct task_struct *p,
				const struct cpumask *new_mask);
#else
static inline void do_set_cpus_allowed(struct task_struct *p,
				      const struct cpumask *new_mask)
{
}
static inline int set_cpus_allowed_ptr(struct task_struct *p,
				       const struct cpumask *new_mask)
{
	if (!cpumask_test_cpu(0, new_mask))
		return -EINVAL;
	return 0;
}
#endif

#ifdef CONFIG_NO_HZ_COMMON
void calc_load_enter_idle(void);
void calc_load_exit_idle(void);
#else
static inline void calc_load_enter_idle(void) { }
static inline void calc_load_exit_idle(void) { }
#endif /* CONFIG_NO_HZ_COMMON */

#ifndef CONFIG_CPUMASK_OFFSTACK
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
{
	return set_cpus_allowed_ptr(p, &new_mask);
}
#endif

/*
 * Do not use outside of architecture code which knows its limitations.
 *
 * sched_clock() has no promise of monotonicity or bounded drift between
 * CPUs, use (which you should not) requires disabling IRQs.
 *
 * Please use one of the three interfaces below.
 */
extern unsigned long long notrace sched_clock(void);
/*
 * See the comment in kernel/sched/clock.c
 */
extern u64 cpu_clock(int cpu);
extern u64 local_clock(void);
extern u64 sched_clock_cpu(int cpu);


extern void sched_clock_init(void);

#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
static inline void sched_clock_tick(void)
{
}

static inline void sched_clock_idle_sleep_event(void)
{
}

static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
{
}
#else
/*
 * Architectures can set this to 1 if they have specified
 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
 * but then during bootup it turns out that sched_clock()
 * is reliable after all:
 */
extern int sched_clock_stable(void);
extern void set_sched_clock_stable(void);
extern void clear_sched_clock_stable(void);

extern void sched_clock_tick(void);
extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
 * The reason for this explicit opt-in is not to have perf penalty with
 * slow sched_clocks.
 */
extern void enable_sched_clock_irqtime(void);
extern void disable_sched_clock_irqtime(void);
#else
static inline void enable_sched_clock_irqtime(void) {}
static inline void disable_sched_clock_irqtime(void) {}
#endif

extern unsigned long long
task_sched_runtime(struct task_struct *task);

/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec()   {}
#endif

extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);

#ifdef CONFIG_HOTPLUG_CPU
extern void idle_task_exit(void);
#else
static inline void idle_task_exit(void) {}
#endif

#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
extern void wake_up_nohz_cpu(int cpu);
#else
static inline void wake_up_nohz_cpu(int cpu) { }
#endif

#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(void);
extern u64 scheduler_tick_max_deferment(void);
#else
static inline bool sched_can_stop_tick(void) { return false; }
#endif

#ifdef CONFIG_SCHED_AUTOGROUP
extern void sched_autogroup_create_attach(struct task_struct *p);
extern void sched_autogroup_detach(struct task_struct *p);
extern void sched_autogroup_fork(struct signal_struct *sig);
extern void sched_autogroup_exit(struct signal_struct *sig);
#ifdef CONFIG_PROC_FS
extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
#endif
#else
static inline void sched_autogroup_create_attach(struct task_struct *p) { }
static inline void sched_autogroup_detach(struct task_struct *p) { }
static inline void sched_autogroup_fork(struct signal_struct *sig) { }
static inline void sched_autogroup_exit(struct signal_struct *sig) { }
#endif

extern bool yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p);
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int,
			      const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int,
				      const struct sched_param *);
extern int sched_setattr(struct task_struct *,
			 const struct sched_attr *);
extern struct task_struct *idle_task(int cpu);
/**
 * is_idle_task - is the specified task an idle task?
 * @p: the task in question.
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
 */
static inline bool is_idle_task(const struct task_struct *p)
{
	return p->pid == 0;
}
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);

void yield(void);

/*
 * The default (Linux) execution domain.
 */
extern struct exec_domain	default_exec_domain;

union thread_union {
	struct thread_info thread_info;
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
	/* Reliable end of stack detection:
	 * Some APM bios versions misalign the stack
	 */
	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct   mm_struct init_mm;

extern struct pid_namespace init_pid_ns;

/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
 * find_task_by_vpid():
 *      finds a task by its virtual pid
 *
 * see also find_vpid() etc in include/linux/pid.h
 */

extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
		struct pid_namespace *ns);

/* per-UID process charging. */
extern struct user_struct * alloc_uid(kuid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
{
	atomic_inc(&u->__count);
	return u;
}
extern void free_uid(struct user_struct *);

#include <asm/current.h>

extern void xtime_update(unsigned long ticks);

extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk);
#ifdef CONFIG_SMP
 extern void kick_process(struct task_struct *tsk);
#else
 static inline void kick_process(struct task_struct *tsk) { }
#endif
extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
extern void sched_dead(struct task_struct *p);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void __flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);

static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&tsk->sighand->siglock, flags);
	ret = dequeue_signal(tsk, mask, info);
	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);

	return ret;
}

extern void block_all_signals(int (*notifier)(void *priv), void *priv,
			      sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
				const struct cred *, u32);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern __must_check bool do_notify_parent(struct task_struct *, int);
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
extern void force_sig(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern int zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);

static inline void restore_saved_sigmask(void)
{
	if (test_and_clear_restore_sigmask())
		__set_current_blocked(&current->saved_sigmask);
}

static inline sigset_t *sigmask_to_save(void)
{
	sigset_t *res = &current->blocked;
	if (unlikely(test_restore_sigmask()))
		res = &current->saved_sigmask;
	return res;
}

static inline int kill_cad_pid(int sig, int priv)
{
	return kill_pid(cad_pid, sig, priv);
}

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV	((struct siginfo *) 1)
#define SEND_SIG_FORCED	((struct siginfo *) 2)

/*
 * True if we are on the alternate signal stack.
 */
static inline int on_sig_stack(unsigned long sp)
{
#ifdef CONFIG_STACK_GROWSUP
	return sp >= current->sas_ss_sp &&
		sp - current->sas_ss_sp < current->sas_ss_size;
#else
	return sp > current->sas_ss_sp &&
		sp - current->sas_ss_sp <= current->sas_ss_size;
#endif
}

static inline int sas_ss_flags(unsigned long sp)
{
	return (current->sas_ss_size == 0 ? SS_DISABLE
		: on_sig_stack(sp) ? SS_ONSTACK : 0);
}

static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
{
	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
#ifdef CONFIG_STACK_GROWSUP
		return current->sas_ss_sp;
#else
		return current->sas_ss_sp + current->sas_ss_size;
#endif
	return sp;
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);

/* mmdrop drops the mm and the page tables */
extern void __mmdrop(struct mm_struct *);
static inline void mmdrop(struct mm_struct * mm)
{
	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
		__mmdrop(mm);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/*
 * Grab a reference to a task's mm, if it is not already going away
 * and ptrace_may_access with the mode parameter passed to it
 * succeeds.
 */
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
/* Allocate a new mm structure and copy contents from tsk->mm */
extern struct mm_struct *dup_mm(struct task_struct *tsk);

extern int copy_thread(unsigned long, unsigned long, unsigned long,
			struct task_struct *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_files(struct task_struct *);
extern void __cleanup_sighand(struct sighand_struct *);

extern void exit_itimers(struct signal_struct *);
extern void flush_itimer_signals(void);

extern void do_group_exit(int);

extern int allow_signal(int);
extern int disallow_signal(int);

extern int do_execve(const char *,
		     const char __user * const __user *,
		     const char __user * const __user *);
extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);
extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);

extern void set_task_comm(struct task_struct *tsk, char *from);
extern char *get_task_comm(char *to, struct task_struct *tsk);

#ifdef CONFIG_SMP
void scheduler_ipi(void);
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline void scheduler_ipi(void) { }
static inline unsigned long wait_task_inactive(struct task_struct *p,
					       long match_state)
{
	return 1;
}
#endif

#define next_task(p) \
	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
	for (p = &init_task ; (p = next_task(p)) != &init_task ; )

extern bool current_is_single_threaded(void);

/*
 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
 */
#define do_each_thread(g, t) \
	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
	while ((t = next_thread(t)) != g)

static inline int get_nr_threads(struct task_struct *tsk)
{
	return tsk->signal->nr_threads;
}

static inline bool thread_group_leader(struct task_struct *p)
{
	return p->exit_signal >= 0;
}

/* Do to the insanities of de_thread it is possible for a process
 * to have the pid of the thread group leader without actually being
 * the thread group leader.  For iteration through the pids in proc
 * all we care about is that we have a task with the appropriate
 * pid, we don't actually care if we have the right task.
 */
static inline bool has_group_leader_pid(struct task_struct *p)
{
	return task_pid(p) == p->signal->leader_pid;
}

static inline
bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
	return p1->signal == p2->signal;
}

static inline struct task_struct *next_thread(const struct task_struct *p)
{
	return list_entry_rcu(p->thread_group.next,
			      struct task_struct, thread_group);
}

static inline int thread_group_empty(struct task_struct *p)
{
	return list_empty(&p->thread_group);
}

#define delay_group_leader(p) \
		(thread_group_leader(p) && !thread_group_empty(p))

/*
 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset and
 * ->cgroup.subsys[]. And ->vfork_done.
 *
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
 */
static inline void task_lock(struct task_struct *p)
{
	spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
	spin_unlock(&p->alloc_lock);
}

extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
							unsigned long *flags);

static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
						       unsigned long *flags)
{
	struct sighand_struct *ret;

	ret = __lock_task_sighand(tsk, flags);
	(void)__cond_lock(&tsk->sighand->siglock, ret);
	return ret;
}

static inline void unlock_task_sighand(struct task_struct *tsk,
						unsigned long *flags)
{
	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
}

#ifdef CONFIG_CGROUPS
static inline void threadgroup_change_begin(struct task_struct *tsk)
{
	down_read(&tsk->signal->group_rwsem);
}
static inline void threadgroup_change_end(struct task_struct *tsk)
{
	up_read(&tsk->signal->group_rwsem);
}

/**
 * threadgroup_lock - lock threadgroup
 * @tsk: member task of the threadgroup to lock
 *
 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
 * change ->group_leader/pid.  This is useful for cases where the threadgroup
 * needs to stay stable across blockable operations.
 *
 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
 * synchronization.  While held, no new task will be added to threadgroup
 * and no existing live task will have its PF_EXITING set.
 *
 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
 * sub-thread becomes a new leader.
 */
static inline void threadgroup_lock(struct task_struct *tsk)
{
	down_write(&tsk->signal->group_rwsem);
}

/**
 * threadgroup_unlock - unlock threadgroup
 * @tsk: member task of the threadgroup to unlock
 *
 * Reverse threadgroup_lock().
 */
static inline void threadgroup_unlock(struct task_struct *tsk)
{
	up_write(&tsk->signal->group_rwsem);
}
#else
static inline void threadgroup_change_begin(struct task_struct *tsk) {}
static inline void threadgroup_change_end(struct task_struct *tsk) {}
static inline void threadgroup_lock(struct task_struct *tsk) {}
static inline void threadgroup_unlock(struct task_struct *tsk) {}
#endif

#ifndef __HAVE_THREAD_FUNCTIONS

#define task_thread_info(task)	((struct thread_info *)(task)->stack)
#define task_stack_page(task)	((task)->stack)

static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
	*task_thread_info(p) = *task_thread_info(org);
	task_thread_info(p)->task = p;
}

static inline unsigned long *end_of_stack(struct task_struct *p)
{
	return (unsigned long *)(task_thread_info(p) + 1);
}

#endif

static inline int object_is_on_stack(void *obj)
{
	void *stack = task_stack_page(current);

	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
}

extern void thread_info_cache_init(void);

#ifdef CONFIG_DEBUG_STACK_USAGE
static inline unsigned long stack_not_used(struct task_struct *p)
{
	unsigned long *n = end_of_stack(p);

	do { 	/* Skip over canary */
		n++;
	} while (!*n);

	return (unsigned long)n - (unsigned long)end_of_stack(p);
}
#endif

/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

static inline int restart_syscall(void)
{
	set_tsk_thread_flag(current, TIF_SIGPENDING);
	return -ERESTARTNOINTR;
}

static inline int signal_pending(struct task_struct *p)
{
	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}

static inline int __fatal_signal_pending(struct task_struct *p)
{
	return unlikely(sigismember(&p->pending.signal, SIGKILL));
}

static inline int fatal_signal_pending(struct task_struct *p)
{
	return signal_pending(p) && __fatal_signal_pending(p);
}

static inline int signal_pending_state(long state, struct task_struct *p)
{
	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
		return 0;
	if (!signal_pending(p))
		return 0;

	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}

/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
 */
extern int _cond_resched(void);

#define cond_resched() ({			\
	__might_sleep(__FILE__, __LINE__, 0);	\
	_cond_resched();			\
})

extern int __cond_resched_lock(spinlock_t *lock);

#ifdef CONFIG_PREEMPT_COUNT
#define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
#else
#define PREEMPT_LOCK_OFFSET	0
#endif

#define cond_resched_lock(lock) ({				\
	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
	__cond_resched_lock(lock);				\
})

extern int __cond_resched_softirq(void);

#define cond_resched_softirq() ({					\
	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
	__cond_resched_softirq();					\
})

static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

/*
 * Does a critical section need to be broken due to another
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
 */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
	return 0;
#endif
}

/*
 * Idle thread specific functions to determine the need_resched
 * polling state. We have two versions, one based on TS_POLLING in
 * thread_info.status and one based on TIF_POLLING_NRFLAG in
 * thread_info.flags
 */
#ifdef TS_POLLING
static inline int tsk_is_polling(struct task_struct *p)
{
	return task_thread_info(p)->status & TS_POLLING;
}
static inline void __current_set_polling(void)
{
	current_thread_info()->status |= TS_POLLING;
}

static inline bool __must_check current_set_polling_and_test(void)
{
	__current_set_polling();

	/*
	 * Polling state must be visible before we test NEED_RESCHED,
	 * paired by resched_task()
	 */
	smp_mb();

	return unlikely(tif_need_resched());
}

static inline void __current_clr_polling(void)
{
	current_thread_info()->status &= ~TS_POLLING;
}

static inline bool __must_check current_clr_polling_and_test(void)
{
	__current_clr_polling();

	/*
	 * Polling state must be visible before we test NEED_RESCHED,
	 * paired by resched_task()
	 */
	smp_mb();

	return unlikely(tif_need_resched());
}
#elif defined(TIF_POLLING_NRFLAG)
static inline int tsk_is_polling(struct task_struct *p)
{
	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
}

static inline void __current_set_polling(void)
{
	set_thread_flag(TIF_POLLING_NRFLAG);
}

static inline bool __must_check current_set_polling_and_test(void)
{
	__current_set_polling();

	/*
	 * Polling state must be visible before we test NEED_RESCHED,
	 * paired by resched_task()
	 *
	 * XXX: assumes set/clear bit are identical barrier wise.
	 */
	smp_mb__after_clear_bit();

	return unlikely(tif_need_resched());
}

static inline void __current_clr_polling(void)
{
	clear_thread_flag(TIF_POLLING_NRFLAG);
}

static inline bool __must_check current_clr_polling_and_test(void)
{
	__current_clr_polling();

	/*
	 * Polling state must be visible before we test NEED_RESCHED,
	 * paired by resched_task()
	 */
	smp_mb__after_clear_bit();

	return unlikely(tif_need_resched());
}

#else
static inline int tsk_is_polling(struct task_struct *p) { return 0; }
static inline void __current_set_polling(void) { }
static inline void __current_clr_polling(void) { }

static inline bool __must_check current_set_polling_and_test(void)
{
	return unlikely(tif_need_resched());
}
static inline bool __must_check current_clr_polling_and_test(void)
{
	return unlikely(tif_need_resched());
}
#endif

static inline void current_clr_polling(void)
{
	__current_clr_polling();

	/*
	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
	 * Once the bit is cleared, we'll get IPIs with every new
	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
	 * fold.
	 */
	smp_mb(); /* paired with resched_task() */

	preempt_fold_need_resched();
}

static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

/*
 * Thread group CPU time accounting.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);

static inline void thread_group_cputime_init(struct signal_struct *sig)
{
	raw_spin_lock_init(&sig->cputimer.lock);
}

/*
 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
 */
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);

extern void signal_wake_up_state(struct task_struct *t, unsigned int state);

static inline void signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
}
static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
}

/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return task_thread_info(p)->cpu;
}

static inline int task_node(const struct task_struct *p)
{
	return cpu_to_node(task_cpu(p));
}

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);

#ifdef CONFIG_CGROUP_SCHED
extern struct task_group root_task_group;
#endif /* CONFIG_CGROUP_SCHED */

extern int task_can_switch_user(struct user_struct *up,
					struct task_struct *tsk);

#ifdef CONFIG_TASK_XACCT
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
	tsk->ioac.rchar += amt;
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
	tsk->ioac.wchar += amt;
}

static inline void inc_syscr(struct task_struct *tsk)
{
	tsk->ioac.syscr++;
}

static inline void inc_syscw(struct task_struct *tsk)
{
	tsk->ioac.syscw++;
}
#else
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
}

static inline void inc_syscr(struct task_struct *tsk)
{
}

static inline void inc_syscw(struct task_struct *tsk)
{
}
#endif

#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

#ifdef CONFIG_MM_OWNER
extern void mm_update_next_owner(struct mm_struct *mm);
extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}

static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
}
#endif /* CONFIG_MM_OWNER */

static inline unsigned long task_rlimit(const struct task_struct *tsk,
		unsigned int limit)
{
	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
}

static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
		unsigned int limit)
{
	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
}

static inline unsigned long rlimit(unsigned int limit)
{
	return task_rlimit(current, limit);
}

static inline unsigned long rlimit_max(unsigned int limit)
{
	return task_rlimit_max(current, limit);
}

#endif
OpenPOWER on IntegriCloud