summaryrefslogtreecommitdiffstats
path: root/include/linux/reiserfs_fs.h
blob: bccff8b17dc4e7de717e957523b2e16b75d7ae19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
/*
 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
 */

				/* this file has an amazingly stupid
                                   name, yura please fix it to be
                                   reiserfs.h, and merge all the rest
                                   of our .h files that are in this
                                   directory into it.  */


#ifndef _LINUX_REISER_FS_H
#define _LINUX_REISER_FS_H

#include <linux/types.h>
#ifdef __KERNEL__
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <asm/unaligned.h>
#include <linux/bitops.h>
#include <linux/proc_fs.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/reiserfs_fs_i.h>
#include <linux/reiserfs_fs_sb.h>
#endif

/*
 *  include/linux/reiser_fs.h
 *
 *  Reiser File System constants and structures
 *
 */

/* in reading the #defines, it may help to understand that they employ
   the following abbreviations:

   B = Buffer
   I = Item header
   H = Height within the tree (should be changed to LEV)
   N = Number of the item in the node
   STAT = stat data
   DEH = Directory Entry Header
   EC = Entry Count
   E = Entry number
   UL = Unsigned Long
   BLKH = BLocK Header
   UNFM = UNForMatted node
   DC = Disk Child
   P = Path

   These #defines are named by concatenating these abbreviations,
   where first comes the arguments, and last comes the return value,
   of the macro.

*/

#define USE_INODE_GENERATION_COUNTER

#define REISERFS_PREALLOCATE
#define DISPLACE_NEW_PACKING_LOCALITIES
#define PREALLOCATION_SIZE 9

/* n must be power of 2 */
#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))

// to be ok for alpha and others we have to align structures to 8 byte
// boundary.
// FIXME: do not change 4 by anything else: there is code which relies on that
#define ROUND_UP(x) _ROUND_UP(x,8LL)

/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
** messages.
*/
#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 

void reiserfs_warning (struct super_block *s, const char * fmt, ...);
/* assertions handling */

/** always check a condition and panic if it's false. */
#define RASSERT( cond, format, args... )					\
if( !( cond ) ) 								\
  reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at "	\
		  __FILE__ ":%i:%s: " format "\n",		\
		  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )

#if defined( CONFIG_REISERFS_CHECK )
#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
#else
#define RFALSE( cond, format, args... ) do {;} while( 0 )
#endif

#define CONSTF __attribute_const__
/*
 * Disk Data Structures
 */

/***************************************************************************/
/*                             SUPER BLOCK                                 */
/***************************************************************************/

/*
 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
 * the version in RAM is part of a larger structure containing fields never written to disk.
 */
#define UNSET_HASH 0 // read_super will guess about, what hash names
                     // in directories were sorted with
#define TEA_HASH  1
#define YURA_HASH 2
#define R5_HASH   3
#define DEFAULT_HASH R5_HASH


struct journal_params {
    __u32 jp_journal_1st_block;	      /* where does journal start from on its
				       * device */
    __u32 jp_journal_dev;	      /* journal device st_rdev */
    __u32 jp_journal_size;	      /* size of the journal */
    __u32 jp_journal_trans_max;	      /* max number of blocks in a transaction. */
    __u32 jp_journal_magic; 	      /* random value made on fs creation (this
				       * was sb_journal_block_count) */
    __u32 jp_journal_max_batch;	      /* max number of blocks to batch into a
				       * trans */
    __u32 jp_journal_max_commit_age;  /* in seconds, how old can an async
				       * commit be */
    __u32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
				       * be */
};

/* this is the super from 3.5.X, where X >= 10 */
struct reiserfs_super_block_v1
{
    __u32 s_block_count;	   /* blocks count         */
    __u32 s_free_blocks;           /* free blocks count    */
    __u32 s_root_block;            /* root block number    */
    struct journal_params s_journal;
    __u16 s_blocksize;             /* block size */
    __u16 s_oid_maxsize;	   /* max size of object id array, see
				    * get_objectid() commentary  */
    __u16 s_oid_cursize;	   /* current size of object id array */
    __u16 s_umount_state;          /* this is set to 1 when filesystem was
				    * umounted, to 2 - when not */    
    char s_magic[10];              /* reiserfs magic string indicates that
				    * file system is reiserfs:
				    * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
    __u16 s_fs_state;	           /* it is set to used by fsck to mark which
				    * phase of rebuilding is done */
    __u32 s_hash_function_code;    /* indicate, what hash function is being use
				    * to sort names in a directory*/
    __u16 s_tree_height;           /* height of disk tree */
    __u16 s_bmap_nr;               /* amount of bitmap blocks needed to address
				    * each block of file system */
    __u16 s_version;               /* this field is only reliable on filesystem
				    * with non-standard journal */
    __u16 s_reserved_for_journal;  /* size in blocks of journal area on main
				    * device, we need to keep after
				    * making fs with non-standard journal */	
} __attribute__ ((__packed__));

#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))

/* this is the on disk super block */
struct reiserfs_super_block
{
    struct reiserfs_super_block_v1 s_v1;
    __u32 s_inode_generation;
    __u32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
    unsigned char s_uuid[16];       /* filesystem unique identifier */
    unsigned char s_label[16];      /* filesystem volume label */
    char s_unused[88] ;             /* zero filled by mkreiserfs and
				     * reiserfs_convert_objectid_map_v1()
				     * so any additions must be updated
				     * there as well. */
}  __attribute__ ((__packed__));

#define SB_SIZE (sizeof(struct reiserfs_super_block))

#define REISERFS_VERSION_1 0
#define REISERFS_VERSION_2 2


// on-disk super block fields converted to cpu form
#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
#define SB_BLOCKSIZE(s) \
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
#define SB_BLOCK_COUNT(s) \
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
#define SB_FREE_BLOCKS(s) \
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
#define SB_REISERFS_MAGIC(s) \
        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
#define SB_ROOT_BLOCK(s) \
        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
#define SB_TREE_HEIGHT(s) \
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
#define SB_REISERFS_STATE(s) \
        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))

#define PUT_SB_BLOCK_COUNT(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
#define PUT_SB_FREE_BLOCKS(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
#define PUT_SB_ROOT_BLOCK(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
#define PUT_SB_TREE_HEIGHT(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
#define PUT_SB_REISERFS_STATE(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 
#define PUT_SB_VERSION(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
#define PUT_SB_BMAP_NR(s, val) \
   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)


#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
#define SB_ONDISK_JOURNAL_SIZE(s) \
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
#define SB_ONDISK_JOURNAL_DEVICE(s) \
         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))

#define is_block_in_log_or_reserved_area(s, block) \
         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 



				/* used by gcc */
#define REISERFS_SUPER_MAGIC 0x52654973
				/* used by file system utilities that
                                   look at the superblock, etc. */
#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"

int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
int is_reiserfs_jr (struct reiserfs_super_block * rs);

/* ReiserFS leaves the first 64k unused, so that partition labels have
   enough space.  If someone wants to write a fancy bootloader that
   needs more than 64k, let us know, and this will be increased in size.
   This number must be larger than than the largest block size on any
   platform, or code will break.  -Hans */
#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
#define REISERFS_FIRST_BLOCK unused_define
#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES

/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)

// reiserfs internal error code (used by search_by_key adn fix_nodes))
#define CARRY_ON      0
#define REPEAT_SEARCH -1
#define IO_ERROR      -2
#define NO_DISK_SPACE -3
#define NO_BALANCING_NEEDED  (-4)
#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
#define QUOTA_EXCEEDED -6

typedef __u32 b_blocknr_t;
typedef __u32 unp_t;

struct unfm_nodeinfo {
    unp_t unfm_nodenum;
    unsigned short unfm_freespace;
};

/* there are two formats of keys: 3.5 and 3.6
 */
#define KEY_FORMAT_3_5 0
#define KEY_FORMAT_3_6 1

/* there are two stat datas */
#define STAT_DATA_V1 0
#define STAT_DATA_V2 1


static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
{
	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
}

static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
{
	return sb->s_fs_info;
}

/** this says about version of key of all items (but stat data) the
    object consists of */
#define get_inode_item_key_version( inode )                                    \
    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)

#define set_inode_item_key_version( inode, version )                           \
         ({ if((version)==KEY_FORMAT_3_6)                                      \
                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
            else                                                               \
                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })

#define get_inode_sd_version(inode)                                            \
    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)

#define set_inode_sd_version(inode, version)                                   \
         ({ if((version)==STAT_DATA_V2)                                        \
                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
            else                                                               \
                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })

/* This is an aggressive tail suppression policy, I am hoping it
   improves our benchmarks. The principle behind it is that percentage
   space saving is what matters, not absolute space saving.  This is
   non-intuitive, but it helps to understand it if you consider that the
   cost to access 4 blocks is not much more than the cost to access 1
   block, if you have to do a seek and rotate.  A tail risks a
   non-linear disk access that is significant as a percentage of total
   time cost for a 4 block file and saves an amount of space that is
   less significant as a percentage of space, or so goes the hypothesis.
   -Hans */
#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
(\
  (!(n_tail_size)) || \
  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
   ( (n_file_size) >= (n_block_size) * 4 ) || \
   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
   ( ( (n_file_size) >= (n_block_size) ) && \
     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
)

/* Another strategy for tails, this one means only create a tail if all the
   file would fit into one DIRECT item.
   Primary intention for this one is to increase performance by decreasing
   seeking.
*/   
#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
(\
  (!(n_tail_size)) || \
  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
)



/*
 * values for s_umount_state field
 */
#define REISERFS_VALID_FS    1
#define REISERFS_ERROR_FS    2

//
// there are 5 item types currently
//
#define TYPE_STAT_DATA 0
#define TYPE_INDIRECT 1
#define TYPE_DIRECT 2
#define TYPE_DIRENTRY 3 
#define TYPE_MAXTYPE 3 
#define TYPE_ANY 15 // FIXME: comment is required

/***************************************************************************/
/*                       KEY & ITEM HEAD                                   */
/***************************************************************************/

//
// directories use this key as well as old files
//
struct offset_v1 {
    __u32 k_offset;
    __u32 k_uniqueness;
} __attribute__ ((__packed__));

struct offset_v2 {
#ifdef __LITTLE_ENDIAN
	    /* little endian version */
	    __u64 k_offset:60;
	    __u64 k_type: 4;
#else
	    /* big endian version */
	    __u64 k_type: 4;
	    __u64 k_offset:60;
#endif
} __attribute__ ((__packed__));

#ifndef __LITTLE_ENDIAN
typedef union {
    struct offset_v2 offset_v2;
    __u64 linear;
} __attribute__ ((__packed__)) offset_v2_esafe_overlay;

static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
{
    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
    tmp.linear = le64_to_cpu( tmp.linear );
    return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
}
 
static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
{
    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
    tmp->linear = le64_to_cpu(tmp->linear);
    tmp->offset_v2.k_type = type;
    tmp->linear = cpu_to_le64(tmp->linear);
}
 
static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
{
    offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
    tmp.linear = le64_to_cpu( tmp.linear );
    return tmp.offset_v2.k_offset;
}

static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
    offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
    tmp->linear = le64_to_cpu(tmp->linear);
    tmp->offset_v2.k_offset = offset;
    tmp->linear = cpu_to_le64(tmp->linear);
}
#else
# define offset_v2_k_type(v2)           ((v2)->k_type)
# define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
# define offset_v2_k_offset(v2)         ((v2)->k_offset)
# define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
#endif

/* Key of an item determines its location in the S+tree, and
   is composed of 4 components */
struct reiserfs_key {
    __u32 k_dir_id;    /* packing locality: by default parent
			  directory object id */
    __u32 k_objectid;  /* object identifier */
    union {
	struct offset_v1 k_offset_v1;
	struct offset_v2 k_offset_v2;
    } __attribute__ ((__packed__)) u;
} __attribute__ ((__packed__));


struct cpu_key {
    struct reiserfs_key on_disk_key;
    int version;
    int key_length; /* 3 in all cases but direct2indirect and
		       indirect2direct conversion */
};

/* Our function for comparing keys can compare keys of different
   lengths.  It takes as a parameter the length of the keys it is to
   compare.  These defines are used in determining what is to be passed
   to it as that parameter. */
#define REISERFS_FULL_KEY_LEN     4
#define REISERFS_SHORT_KEY_LEN    2

/* The result of the key compare */
#define FIRST_GREATER 1
#define SECOND_GREATER -1
#define KEYS_IDENTICAL 0
#define KEY_FOUND 1
#define KEY_NOT_FOUND 0

#define KEY_SIZE (sizeof(struct reiserfs_key))
#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))

/* return values for search_by_key and clones */
#define ITEM_FOUND 1
#define ITEM_NOT_FOUND 0
#define ENTRY_FOUND 1
#define ENTRY_NOT_FOUND 0
#define DIRECTORY_NOT_FOUND -1
#define REGULAR_FILE_FOUND -2
#define DIRECTORY_FOUND -3
#define BYTE_FOUND 1
#define BYTE_NOT_FOUND 0
#define FILE_NOT_FOUND -1

#define POSITION_FOUND 1
#define POSITION_NOT_FOUND 0

// return values for reiserfs_find_entry and search_by_entry_key
#define NAME_FOUND 1
#define NAME_NOT_FOUND 0
#define GOTO_PREVIOUS_ITEM 2
#define NAME_FOUND_INVISIBLE 3

/*  Everything in the filesystem is stored as a set of items.  The
    item head contains the key of the item, its free space (for
    indirect items) and specifies the location of the item itself
    within the block.  */

struct item_head
{
	/* Everything in the tree is found by searching for it based on
	 * its key.*/
	struct reiserfs_key ih_key;
	union {
		/* The free space in the last unformatted node of an
		   indirect item if this is an indirect item.  This
		   equals 0xFFFF iff this is a direct item or stat data
		   item. Note that the key, not this field, is used to
		   determine the item type, and thus which field this
		   union contains. */
		__u16 ih_free_space_reserved; 
		/* Iff this is a directory item, this field equals the
		   number of directory entries in the directory item. */
		__u16 ih_entry_count; 
	} __attribute__ ((__packed__)) u;
	__u16 ih_item_len;           /* total size of the item body */
	__u16 ih_item_location;      /* an offset to the item body
				      * within the block */
	__u16 ih_version;	     /* 0 for all old items, 2 for new
					ones. Highest bit is set by fsck
					temporary, cleaned after all
					done */
} __attribute__ ((__packed__));
/* size of item header     */
#define IH_SIZE (sizeof(struct item_head))

#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)

#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)


#define unreachable_item(ih) (ih_version(ih) & (1 << 15))

#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))

/* these operate on indirect items, where you've got an array of ints
** at a possibly unaligned location.  These are a noop on ia32
** 
** p is the array of __u32, i is the index into the array, v is the value
** to store there.
*/
#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))

//
// in old version uniqueness field shows key type
//
#define V1_SD_UNIQUENESS 0
#define V1_INDIRECT_UNIQUENESS 0xfffffffe
#define V1_DIRECT_UNIQUENESS 0xffffffff
#define V1_DIRENTRY_UNIQUENESS 500
#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required

//
// here are conversion routines
//
static inline int uniqueness2type (__u32 uniqueness) CONSTF;
static inline int uniqueness2type (__u32 uniqueness)
{
    switch ((int)uniqueness) {
    case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
    case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
    case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
    case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
    default:
	    reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
			      uniqueness);
	case V1_ANY_UNIQUENESS:
	    return TYPE_ANY;
    }
}

static inline __u32 type2uniqueness (int type) CONSTF;
static inline __u32 type2uniqueness (int type)
{
    switch (type) {
    case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
    case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
    case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
    case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
    default:
	    reiserfs_warning (NULL, "vs-501: unknown type %d", type);
	case TYPE_ANY:
	    return V1_ANY_UNIQUENESS;
    }
}

//
// key is pointer to on disk key which is stored in le, result is cpu,
// there is no way to get version of object from key, so, provide
// version to these defines
//
static inline loff_t le_key_k_offset (int version, const struct reiserfs_key * key)
{
    return (version == KEY_FORMAT_3_5) ?
        le32_to_cpu( key->u.k_offset_v1.k_offset ) :
	offset_v2_k_offset( &(key->u.k_offset_v2) );
}

static inline loff_t le_ih_k_offset (const struct item_head * ih)
{
    return le_key_k_offset (ih_version (ih), &(ih->ih_key));
}

static inline loff_t le_key_k_type (int version, const struct reiserfs_key * key)
{
    return (version == KEY_FORMAT_3_5) ?
        uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
	offset_v2_k_type( &(key->u.k_offset_v2) );
}

static inline loff_t le_ih_k_type (const struct item_head * ih)
{
    return le_key_k_type (ih_version (ih), &(ih->ih_key));
}


static inline void set_le_key_k_offset (int version, struct reiserfs_key * key, loff_t offset)
{
    (version == KEY_FORMAT_3_5) ?
        (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
	(void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
}


static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
{
    set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
}


static inline void set_le_key_k_type (int version, struct reiserfs_key * key, int type)
{
    (version == KEY_FORMAT_3_5) ?
        (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
	(void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
}
static inline void set_le_ih_k_type (struct item_head * ih, int type)
{
    set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
}


#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)

//
// item header has version.
//
#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))



//
// key is pointer to cpu key, result is cpu
//
static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
{
    return (key->version == KEY_FORMAT_3_5) ?
        key->on_disk_key.u.k_offset_v1.k_offset :
	key->on_disk_key.u.k_offset_v2.k_offset;
}

static inline loff_t cpu_key_k_type (const struct cpu_key * key)
{
    return (key->version == KEY_FORMAT_3_5) ?
        uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
	key->on_disk_key.u.k_offset_v2.k_type;
}

static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
{
    (key->version == KEY_FORMAT_3_5) ?
        (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
	(key->on_disk_key.u.k_offset_v2.k_offset = offset);
}


static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
{
    (key->version == KEY_FORMAT_3_5) ?
        (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
	(key->on_disk_key.u.k_offset_v2.k_type = type);
}


static inline void cpu_key_k_offset_dec (struct cpu_key * key)
{
    if (key->version == KEY_FORMAT_3_5)
	key->on_disk_key.u.k_offset_v1.k_offset --;
    else
	key->on_disk_key.u.k_offset_v2.k_offset --;
}


#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)


/* are these used ? */
#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))





#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )

/* maximal length of item */ 
#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
#define MIN_ITEM_LEN 1


/* object identifier for root dir */
#define REISERFS_ROOT_OBJECTID 2
#define REISERFS_ROOT_PARENT_OBJECTID 1
extern struct reiserfs_key root_key;




/* 
 * Picture represents a leaf of the S+tree
 *  ______________________________________________________
 * |      |  Array of     |                   |           |
 * |Block |  Object-Item  |      F r e e      |  Objects- |
 * | head |  Headers      |     S p a c e     |   Items   |
 * |______|_______________|___________________|___________|
 */

/* Header of a disk block.  More precisely, header of a formatted leaf
   or internal node, and not the header of an unformatted node. */
struct block_head {       
  __u16 blk_level;        /* Level of a block in the tree. */
  __u16 blk_nr_item;      /* Number of keys/items in a block. */
  __u16 blk_free_space;   /* Block free space in bytes. */
  __u16 blk_reserved;
				/* dump this in v4/planA */
  struct reiserfs_key  blk_right_delim_key; /* kept only for compatibility */
};

#define BLKH_SIZE                     (sizeof(struct block_head))
#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)

/*
 * values for blk_level field of the struct block_head
 */

#define FREE_LEVEL 0 /* when node gets removed from the tree its
			blk_level is set to FREE_LEVEL. It is then
			used to see whether the node is still in the
			tree */

#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/

/* Given the buffer head of a formatted node, resolve to the block head of that node. */
#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
/* Number of items that are in buffer. */
#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))

#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)


/* Get right delimiting key. -- little endian */
#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))

/* Does the buffer contain a disk leaf. */
#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)

/* Does the buffer contain a disk internal node */
#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)




/***************************************************************************/
/*                             STAT DATA                                   */
/***************************************************************************/


//
// old stat data is 32 bytes long. We are going to distinguish new one by
// different size
//
struct stat_data_v1
{
    __u16 sd_mode;	/* file type, permissions */
    __u16 sd_nlink;	/* number of hard links */
    __u16 sd_uid;		/* owner */
    __u16 sd_gid;		/* group */
    __u32 sd_size;	/* file size */
    __u32 sd_atime;	/* time of last access */
    __u32 sd_mtime;	/* time file was last modified  */
    __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
    union {
	__u32 sd_rdev;
	__u32 sd_blocks;	/* number of blocks file uses */
    } __attribute__ ((__packed__)) u;
    __u32 sd_first_direct_byte; /* first byte of file which is stored
				   in a direct item: except that if it
				   equals 1 it is a symlink and if it
				   equals ~(__u32)0 there is no
				   direct item.  The existence of this
				   field really grates on me. Let's
				   replace it with a macro based on
				   sd_size and our tail suppression
				   policy.  Someday.  -Hans */
} __attribute__ ((__packed__));

#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
#define sd_v1_first_direct_byte(sdp) \
                                (le32_to_cpu((sdp)->sd_first_direct_byte))
#define set_sd_v1_first_direct_byte(sdp,v) \
                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))

#include <linux/ext2_fs.h>

/* inode flags stored in sd_attrs (nee sd_reserved) */

/* we want common flags to have the same values as in ext2,
   so chattr(1) will work without problems */
#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
#define REISERFS_APPEND_FL    EXT2_APPEND_FL
#define REISERFS_SYNC_FL      EXT2_SYNC_FL
#define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
#define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
#define REISERFS_SECRM_FL     EXT2_SECRM_FL
#define REISERFS_UNRM_FL      EXT2_UNRM_FL
#define REISERFS_COMPR_FL     EXT2_COMPR_FL
#define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL

/* persistent flags that file inherits from the parent directory */
#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
				REISERFS_SYNC_FL |	\
				REISERFS_NOATIME_FL |	\
				REISERFS_NODUMP_FL |	\
				REISERFS_SECRM_FL |	\
				REISERFS_COMPR_FL |	\
				REISERFS_NOTAIL_FL )

/* Stat Data on disk (reiserfs version of UFS disk inode minus the
   address blocks) */
struct stat_data {
    __u16 sd_mode;	/* file type, permissions */
    __u16 sd_attrs;     /* persistent inode flags */
    __u32 sd_nlink;	/* number of hard links */
    __u64 sd_size;	/* file size */
    __u32 sd_uid;		/* owner */
    __u32 sd_gid;		/* group */
    __u32 sd_atime;	/* time of last access */
    __u32 sd_mtime;	/* time file was last modified  */
    __u32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
    __u32 sd_blocks;
    union {
	__u32 sd_rdev;
	__u32 sd_generation;
      //__u32 sd_first_direct_byte; 
      /* first byte of file which is stored in a
				       direct item: except that if it equals 1
				       it is a symlink and if it equals
				       ~(__u32)0 there is no direct item.  The
				       existence of this field really grates
				       on me. Let's replace it with a macro
				       based on sd_size and our tail
				       suppression policy? */
  } __attribute__ ((__packed__)) u;
} __attribute__ ((__packed__));
//
// this is 44 bytes long
//
#define SD_SIZE (sizeof(struct stat_data))
#define SD_V2_SIZE              SD_SIZE
#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
/* sd_reserved */
/* set_sd_reserved */
#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))


/***************************************************************************/
/*                      DIRECTORY STRUCTURE                                */
/***************************************************************************/
/* 
   Picture represents the structure of directory items
   ________________________________________________
   |  Array of     |   |     |        |       |   |
   | directory     |N-1| N-2 | ....   |   1st |0th|
   | entry headers |   |     |        |       |   |
   |_______________|___|_____|________|_______|___|
                    <----   directory entries         ------>

 First directory item has k_offset component 1. We store "." and ".."
 in one item, always, we never split "." and ".." into differing
 items.  This makes, among other things, the code for removing
 directories simpler. */
#define SD_OFFSET  0
#define SD_UNIQUENESS 0
#define DOT_OFFSET 1
#define DOT_DOT_OFFSET 2
#define DIRENTRY_UNIQUENESS 500

/* */
#define FIRST_ITEM_OFFSET 1

/*
   Q: How to get key of object pointed to by entry from entry?  

   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
      of object, entry points to */

/* NOT IMPLEMENTED:   
   Directory will someday contain stat data of object */



struct reiserfs_de_head
{
  __u32 deh_offset;		/* third component of the directory entry key */
  __u32 deh_dir_id;		/* objectid of the parent directory of the object, that is referenced
					   by directory entry */
  __u32 deh_objectid;		/* objectid of the object, that is referenced by directory entry */
  __u16 deh_location;		/* offset of name in the whole item */
  __u16 deh_state;		/* whether 1) entry contains stat data (for future), and 2) whether
					   entry is hidden (unlinked) */
} __attribute__ ((__packed__));
#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))

#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))

/* empty directory contains two entries "." and ".." and their headers */
#define EMPTY_DIR_SIZE \
(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))

/* old format directories have this size when empty */
#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)

#define DEH_Statdata 0			/* not used now */
#define DEH_Visible 2

/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
#   define ADDR_UNALIGNED_BITS  (3)
#endif

/* These are only used to manipulate deh_state.
 * Because of this, we'll use the ext2_ bit routines,
 * since they are little endian */
#ifdef ADDR_UNALIGNED_BITS

#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)

#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))

#else

#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)

#endif

#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))

#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))

extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
				    __u32 par_dirid, __u32 par_objid);
extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
				 __u32 par_dirid, __u32 par_objid);

/* array of the entry headers */
 /* get item body */
#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))

/* length of the directory entry in directory item. This define
   calculates length of i-th directory entry using directory entry
   locations from dir entry head. When it calculates length of 0-th
   directory entry, it uses length of whole item in place of entry
   location of the non-existent following entry in the calculation.
   See picture above.*/
/*
#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
*/
static inline int entry_length (const struct buffer_head * bh, 
								const struct item_head * ih, int pos_in_item)
{
    struct reiserfs_de_head * deh;

    deh = B_I_DEH (bh, ih) + pos_in_item;
    if (pos_in_item)
	return deh_location(deh-1) - deh_location(deh);

    return ih_item_len(ih) - deh_location(deh);
}



/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))


/* name by bh, ih and entry_num */
#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))

// two entries per block (at least)
#define REISERFS_MAX_NAME(block_size) 255


/* this structure is used for operations on directory entries. It is
   not a disk structure. */
/* When reiserfs_find_entry or search_by_entry_key find directory
   entry, they return filled reiserfs_dir_entry structure */
struct reiserfs_dir_entry
{
  struct buffer_head * de_bh;
  int de_item_num;
  struct item_head * de_ih;
  int de_entry_num;
  struct reiserfs_de_head * de_deh;
  int de_entrylen;
  int de_namelen;
  char * de_name;
  char * de_gen_number_bit_string;

  __u32 de_dir_id;
  __u32 de_objectid;

  struct cpu_key de_entry_key;
};
   
/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */

/* pointer to file name, stored in entry */
#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))

/* length of name */
#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))



/* hash value occupies bits from 7 up to 30 */
#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
/* generation number occupies 7 bits starting from 0 up to 6 */
#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
#define MAX_GENERATION_NUMBER  127

#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))


/*
 * Picture represents an internal node of the reiserfs tree
 *  ______________________________________________________
 * |      |  Array of     |  Array of         |  Free     |
 * |block |    keys       |  pointers         | space     |
 * | head |      N        |      N+1          |           |
 * |______|_______________|___________________|___________|
 */

/***************************************************************************/
/*                      DISK CHILD                                         */
/***************************************************************************/
/* Disk child pointer: The pointer from an internal node of the tree
   to a node that is on disk. */
struct disk_child {
  __u32       dc_block_number;              /* Disk child's block number. */
  __u16       dc_size;		            /* Disk child's used space.   */
  __u16       dc_reserved;
};

#define DC_SIZE (sizeof(struct disk_child))
#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)

/* Get disk child by buffer header and position in the tree node. */
#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))

/* Get disk child number by buffer header and position in the tree node. */
#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))

 /* maximal value of field child_size in structure disk_child */ 
 /* child size is the combined size of all items and their headers */
#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))

/* amount of used space in buffer (not including block head) */
#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))

/* max and min number of keys in internal node */
#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)

/***************************************************************************/
/*                      PATH STRUCTURES AND DEFINES                        */
/***************************************************************************/


/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
   position of the block_number of the next node if it is looking through an internal node.  If it
   is looking through a leaf node bin_search will find the position of the item which has key either
   equal to given key, or which is the maximal key less than the given key. */

struct  path_element  {
  struct buffer_head *	pe_buffer;    /* Pointer to the buffer at the path in the tree. */
  int         		pe_position;  /* Position in the tree node which is placed in the */
                                      /* buffer above.                                  */
};

#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
#define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
#define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */

#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
#define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */



/* We need to keep track of who the ancestors of nodes are.  When we
   perform a search we record which nodes were visited while
   descending the tree looking for the node we searched for. This list
   of nodes is called the path.  This information is used while
   performing balancing.  Note that this path information may become
   invalid, and this means we must check it when using it to see if it
   is still valid. You'll need to read search_by_key and the comments
   in it, especially about decrement_counters_in_path(), to understand
   this structure.  

Paths make the code so much harder to work with and debug.... An
enormous number of bugs are due to them, and trying to write or modify
code that uses them just makes my head hurt.  They are based on an
excessive effort to avoid disturbing the precious VFS code.:-( The
gods only know how we are going to SMP the code that uses them.
znodes are the way! */

#define PATH_READA	0x1 /* do read ahead */
#define PATH_READA_BACK 0x2 /* read backwards */

struct  path {
  int                   path_length;                      	/* Length of the array above.   */
  int			reada;
  struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
  int			pos_in_item;
};

#define pos_in_item(path) ((path)->pos_in_item)

#define INITIALIZE_PATH(var) \
struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}

/* Get path element by path and path position. */
#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))

/* Get buffer header at the path by path and path position. */
#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)

/* Get position in the element at the path by path and path position. */
#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)


#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
				/* you know, to the person who didn't
                                   write this the macro name does not
                                   at first suggest what it does.
                                   Maybe POSITION_FROM_PATH_END? Or
                                   maybe we should just focus on
                                   dumping paths... -Hans */
#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))


#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))

/* in do_balance leaf has h == 0 in contrast with path structure,
   where root has level == 0. That is why we need these defines */
#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)			/* tb->F[h] or tb->S[0]->b_parent */
#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))	
#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)		/* tb->S[h]->b_item_order */

#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))

#define get_last_bh(path) PATH_PLAST_BUFFER(path)
#define get_ih(path) PATH_PITEM_HEAD(path)
#define get_item_pos(path) PATH_LAST_POSITION(path)
#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
#define item_moved(ih,path) comp_items(ih, path)
#define path_changed(ih,path) comp_items (ih, path)


/***************************************************************************/
/*                       MISC                                              */
/***************************************************************************/

/* Size of pointer to the unformatted node. */
#define UNFM_P_SIZE (sizeof(unp_t))
#define UNFM_P_SHIFT 2

// in in-core inode key is stored on le form
#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))

#define MAX_UL_INT 0xffffffff
#define MAX_INT    0x7ffffff
#define MAX_US_INT 0xffff

// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
#define U32_MAX (~(__u32)0)

static inline loff_t max_reiserfs_offset (struct inode * inode)
{
    if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
	return (loff_t)U32_MAX;

    return (loff_t)((~(__u64)0) >> 4);
}


/*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
#define MAX_KEY_OBJECTID	MAX_UL_INT


#define MAX_B_NUM  MAX_UL_INT
#define MAX_FC_NUM MAX_US_INT


/* the purpose is to detect overflow of an unsigned short */
#define REISERFS_LINK_MAX (MAX_US_INT - 1000)


/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
#define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode	*/
#define REISERFS_USER_MEM		1	/* reiserfs user memory mode		*/

#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
#define get_generation(s) atomic_read (&fs_generation(s))
#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
#define __fs_changed(gen,s) (gen != get_generation (s))
#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})


/***************************************************************************/
/*                  FIXATE NODES                                           */
/***************************************************************************/

#define VI_TYPE_LEFT_MERGEABLE 1
#define VI_TYPE_RIGHT_MERGEABLE 2

/* To make any changes in the tree we always first find node, that
   contains item to be changed/deleted or place to insert a new
   item. We call this node S. To do balancing we need to decide what
   we will shift to left/right neighbor, or to a new node, where new
   item will be etc. To make this analysis simpler we build virtual
   node. Virtual node is an array of items, that will replace items of
   node S. (For instance if we are going to delete an item, virtual
   node does not contain it). Virtual node keeps information about
   item sizes and types, mergeability of first and last items, sizes
   of all entries in directory item. We use this array of items when
   calculating what we can shift to neighbors and how many nodes we
   have to have if we do not any shiftings, if we shift to left/right
   neighbor or to both. */
struct virtual_item
{
    int vi_index; // index in the array of item operations
    unsigned short vi_type;	// left/right mergeability
    unsigned short vi_item_len;           /* length of item that it will have after balancing */
    struct item_head * vi_ih;
    const char * vi_item;     // body of item (old or new)
    const void * vi_new_data; // 0 always but paste mode
    void * vi_uarea;    // item specific area
};


struct virtual_node
{
  char * vn_free_ptr;		/* this is a pointer to the free space in the buffer */
  unsigned short vn_nr_item;	/* number of items in virtual node */
  short vn_size;        	/* size of node , that node would have if it has unlimited size and no balancing is performed */
  short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
  short vn_affected_item_num; 
  short vn_pos_in_item;
  struct item_head * vn_ins_ih;	/* item header of inserted item, 0 for other modes */
  const void * vn_data;
  struct virtual_item * vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
};

/* used by directory items when creating virtual nodes */
struct direntry_uarea {
    int flags;
    __u16 entry_count;
    __u16 entry_sizes[1];
} __attribute__ ((__packed__)) ;


/***************************************************************************/
/*                  TREE BALANCE                                           */
/***************************************************************************/

/* This temporary structure is used in tree balance algorithms, and
   constructed as we go to the extent that its various parts are
   needed.  It contains arrays of nodes that can potentially be
   involved in the balancing of node S, and parameters that define how
   each of the nodes must be balanced.  Note that in these algorithms
   for balancing the worst case is to need to balance the current node
   S and the left and right neighbors and all of their parents plus
   create a new node.  We implement S1 balancing for the leaf nodes
   and S0 balancing for the internal nodes (S1 and S0 are defined in
   our papers.)*/

#define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */

/* maximum number of FEB blocknrs on a single level */
#define MAX_AMOUNT_NEEDED 2

/* someday somebody will prefix every field in this struct with tb_ */
struct tree_balance
{
  int tb_mode;
  int need_balance_dirty;
  struct super_block * tb_sb;
  struct reiserfs_transaction_handle *transaction_handle ;
  struct path * tb_path;
  struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
  struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
  struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
  struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
  struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
  struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */

  struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
					     cur_blknum. */
  struct buffer_head * used[MAX_FEB_SIZE];
  struct buffer_head * thrown[MAX_FEB_SIZE];
  int lnum[MAX_HEIGHT];	/* array of number of items which must be
			   shifted to the left in order to balance the
			   current node; for leaves includes item that
			   will be partially shifted; for internal
			   nodes, it is the number of child pointers
			   rather than items. It includes the new item
			   being created. The code sometimes subtracts
			   one to get the number of wholly shifted
			   items for other purposes. */
  int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
  int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
					       S[h] to its item number within the node CFL[h] */
  int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
  int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
					       S[h]. A negative value means removing.  */
  int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
					       balancing on the level h of the tree.  If 0 then S is
					       being deleted, if 1 then S is remaining and no new nodes
					       are being created, if 2 or 3 then 1 or 2 new nodes is
					       being created */

  /* fields that are used only for balancing leaves of the tree */
  int cur_blknum;	/* number of empty blocks having been already allocated			*/
  int s0num;             /* number of items that fall into left most  node when S[0] splits	*/
  int s1num;             /* number of items that fall into first  new node when S[0] splits	*/
  int s2num;             /* number of items that fall into second new node when S[0] splits	*/
  int lbytes;            /* number of bytes which can flow to the left neighbor from the	left	*/
  /* most liquid item that cannot be shifted from S[0] entirely		*/
  /* if -1 then nothing will be partially shifted */
  int rbytes;            /* number of bytes which will flow to the right neighbor from the right	*/
  /* most liquid item that cannot be shifted from S[0] entirely		*/
  /* if -1 then nothing will be partially shifted                           */
  int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits	*/
            			/* note: if S[0] splits into 3 nodes, then items do not need to be cut	*/
  int s2bytes;
  struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
  char * vn_buf;		/* kmalloced memory. Used to create
				   virtual node and keep map of
				   dirtied bitmap blocks */
  int vn_buf_size;		/* size of the vn_buf */
  struct virtual_node * tb_vn;	/* VN starts after bitmap of bitmap blocks */

  int fs_gen;                  /* saved value of `reiserfs_generation' counter
			          see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
  struct reiserfs_key  key;	      /* key pointer, to pass to block allocator or
				 another low-level subsystem */
#endif
} ;

/* These are modes of balancing */

/* When inserting an item. */
#define M_INSERT	'i'
/* When inserting into (directories only) or appending onto an already
   existant item. */
#define M_PASTE		'p'
/* When deleting an item. */
#define M_DELETE	'd'
/* When truncating an item or removing an entry from a (directory) item. */
#define M_CUT 		'c'

/* used when balancing on leaf level skipped (in reiserfsck) */
#define M_INTERNAL	'n'

/* When further balancing is not needed, then do_balance does not need
   to be called. */
#define M_SKIP_BALANCING 		's'
#define M_CONVERT	'v'

/* modes of leaf_move_items */
#define LEAF_FROM_S_TO_L 0
#define LEAF_FROM_S_TO_R 1
#define LEAF_FROM_R_TO_L 2
#define LEAF_FROM_L_TO_R 3
#define LEAF_FROM_S_TO_SNEW 4

#define FIRST_TO_LAST 0
#define LAST_TO_FIRST 1

/* used in do_balance for passing parent of node information that has
   been gotten from tb struct */
struct buffer_info {
    struct tree_balance * tb;
    struct buffer_head * bi_bh;
    struct buffer_head * bi_parent;
    int bi_position;
};


/* there are 4 types of items: stat data, directory item, indirect, direct.
+-------------------+------------+--------------+------------+
|	            |  k_offset  | k_uniqueness | mergeable? |
+-------------------+------------+--------------+------------+
|     stat data     |	0        |      0       |   no       |
+-------------------+------------+--------------+------------+
| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
| non 1st directory | hash value |              |   yes      |
|     item          |            |              |            |
+-------------------+------------+--------------+------------+
| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
+-------------------+------------+--------------+------------+
| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
+-------------------+------------+--------------+------------+
*/

struct item_operations {
    int (*bytes_number) (struct item_head * ih, int block_size);
    void (*decrement_key) (struct cpu_key *);
    int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
    void (*print_item) (struct item_head *, char * item);
    void (*check_item) (struct item_head *, char * item);

    int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 
		      int is_affected, int insert_size);
    int (*check_left) (struct virtual_item * vi, int free, 
			    int start_skip, int end_skip);
    int (*check_right) (struct virtual_item * vi, int free);
    int (*part_size) (struct virtual_item * vi, int from, int to);
    int (*unit_num) (struct virtual_item * vi);
    void (*print_vi) (struct virtual_item * vi);
};


extern struct item_operations * item_ops [TYPE_ANY + 1];

#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)



#define COMP_SHORT_KEYS comp_short_keys

/* number of blocks pointed to by the indirect item */
#define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )

/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))

/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */


/* get the item header */ 
#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )

/* get key */
#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )

/* get the key */
#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )

/* get item body */
#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))

/* get the stat data by the buffer header and the item order */
#define B_N_STAT_DATA(bh,nr) \
( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )

    /* following defines use reiserfs buffer header and item header */

/* get stat-data */
#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )

// this is 3976 for size==4096
#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)

/* indirect items consist of entries which contain blocknrs, pos
   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
   blocknr contained by the entry pos points to */
#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)

struct reiserfs_iget_args {
    __u32 objectid ;
    __u32 dirid ;
} ;

/***************************************************************************/
/*                    FUNCTION DECLARATIONS                                */
/***************************************************************************/

/*#ifdef __KERNEL__*/
#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)

#define journal_trans_half(blocksize) \
	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))

/* journal.c see journal.c for all the comments here */

/* first block written in a commit.  */
struct reiserfs_journal_desc {
  __u32 j_trans_id ;			/* id of commit */
  __u32 j_len ;			/* length of commit. len +1 is the commit block */
  __u32 j_mount_id ;				/* mount id of this trans*/
  __u32 j_realblock[1] ; /* real locations for each block */
} ;

#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)

#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)

/* last block written in a commit */
struct reiserfs_journal_commit {
  __u32 j_trans_id ;			/* must match j_trans_id from the desc block */
  __u32 j_len ;			/* ditto */
  __u32 j_realblock[1] ; /* real locations for each block */
} ;

#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)

#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)

/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
** and this transaction does not need to be replayed.
*/
struct reiserfs_journal_header {
  __u32 j_last_flush_trans_id ;		/* id of last fully flushed transaction */
  __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
  __u32 j_mount_id ;
  /* 12 */ struct journal_params jh_journal;
} ;

/* biggest tunable defines are right here */
#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
#define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
#define JOURNAL_TRANS_MIN_DEFAULT 256
#define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
#define JOURNAL_MIN_RATIO 2
#define JOURNAL_MAX_COMMIT_AGE 30 
#define JOURNAL_MAX_TRANS_AGE 30
#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
#ifdef CONFIG_QUOTA
#define REISERFS_QUOTA_TRANS_BLOCKS 2	/* We need to update data and inode (atime) */
#define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1)	/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
#else
#define REISERFS_QUOTA_TRANS_BLOCKS 0
#define REISERFS_QUOTA_INIT_BLOCKS 0
#endif

/* both of these can be as low as 1, or as high as you want.  The min is the
** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
** as needed, and released when transactions are committed.  On release, if 
** the current number of nodes is > max, the node is freed, otherwise, 
** it is put on a free list for faster use later.
*/
#define REISERFS_MIN_BITMAP_NODES 10 
#define REISERFS_MAX_BITMAP_NODES 100 

#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
#define JBH_HASH_MASK 8191

#define _jhashfn(sb,block)	\
	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])

// We need these to make journal.c code more readable
#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)

enum reiserfs_bh_state_bits {
    BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
    BH_JDirty_wait,
    BH_JNew,                     /* disk block was taken off free list before
                                  * being in a finished transaction, or
                                  * written to disk. Can be reused immed. */
    BH_JPrepared,
    BH_JRestore_dirty,
    BH_JTest, // debugging only will go away
};

BUFFER_FNS(JDirty, journaled);
TAS_BUFFER_FNS(JDirty, journaled);
BUFFER_FNS(JDirty_wait, journal_dirty);
TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
BUFFER_FNS(JNew, journal_new);
TAS_BUFFER_FNS(JNew, journal_new);
BUFFER_FNS(JPrepared, journal_prepared);
TAS_BUFFER_FNS(JPrepared, journal_prepared);
BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
BUFFER_FNS(JTest, journal_test);
TAS_BUFFER_FNS(JTest, journal_test);

/*
** transaction handle which is passed around for all journal calls
*/
struct reiserfs_transaction_handle {
  struct super_block *t_super ; /* super for this FS when journal_begin was
				   called. saves calls to reiserfs_get_super
				   also used by nested transactions to make
				   sure they are nesting on the right FS
				   _must_ be first in the handle
				*/
  int t_refcount;
  int t_blocks_logged ;         /* number of blocks this writer has logged */
  int t_blocks_allocated ;      /* number of blocks this writer allocated */
  unsigned long t_trans_id ;    /* sanity check, equals the current trans id */
  void *t_handle_save ;		/* save existing current->journal_info */
  unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
				   should be displaced from others */
  struct list_head t_list;
} ;

/* used to keep track of ordered and tail writes, attached to the buffer
 * head through b_journal_head.
 */
struct reiserfs_jh {
    struct reiserfs_journal_list *jl;
    struct buffer_head *bh;
    struct list_head list;
};

void reiserfs_free_jh(struct buffer_head *bh);
int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;

static inline int
reiserfs_file_data_log(struct inode *inode) {
    if (reiserfs_data_log(inode->i_sb) ||
       (REISERFS_I(inode)->i_flags & i_data_log))
        return 1 ;
    return 0 ;
}

static inline int reiserfs_transaction_running(struct super_block *s) {
    struct reiserfs_transaction_handle *th = current->journal_info ;
    if (th && th->t_super == s)
        return 1 ;
    if (th && th->t_super == NULL)
        BUG();
    return 0 ;
}

int reiserfs_async_progress_wait(struct super_block *s);

struct reiserfs_transaction_handle *
reiserfs_persistent_transaction(struct super_block *, int count);
int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
int reiserfs_commit_page(struct inode *inode, struct page *page,
		unsigned from, unsigned to);
int reiserfs_flush_old_commits(struct super_block *);
int reiserfs_commit_for_inode(struct inode *) ;
int  reiserfs_inode_needs_commit(struct inode *) ;
void reiserfs_update_inode_transaction(struct inode *) ;
void reiserfs_wait_on_write_block(struct super_block *s) ;
void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
void reiserfs_allow_writes(struct super_block *s) ;
void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
void reiserfs_journal_abort (struct super_block *sb, int errno);
void reiserfs_abort (struct super_block *sb, int errno, const char *fmt, ...);
int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;

void add_save_link (struct reiserfs_transaction_handle * th,
					struct inode * inode, int truncate);
int remove_save_link (struct inode * inode, int truncate);

/* objectid.c */
__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
int reiserfs_convert_objectid_map_v1(struct super_block *) ;

/* stree.c */
int B_IS_IN_TREE(const struct buffer_head *);
extern void copy_item_head(struct item_head * p_v_to,
								  const struct item_head * p_v_from);

// first key is in cpu form, second - le
extern int  comp_short_keys (const struct reiserfs_key * le_key,
				    const struct cpu_key * cpu_key);
extern void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from);

// both are in le form
extern int comp_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
extern int comp_short_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);

//
// get key version from on disk key - kludge
//
static inline int le_key_version (const struct reiserfs_key * key)
{
    int type;
    
    type = offset_v2_k_type( &(key->u.k_offset_v2));
    if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
	return KEY_FORMAT_3_5;

    return KEY_FORMAT_3_6;
	
}


static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
{
    memcpy (to, from, KEY_SIZE);
}


int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
const struct reiserfs_key * get_rkey (const struct path * p_s_chk_path,
							 const struct super_block  * p_s_sb);
int search_by_key (struct super_block *, const struct cpu_key *, 
				   struct path *, int);
#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
int search_for_position_by_key (struct super_block * p_s_sb, 
								const struct cpu_key * p_s_cpu_key, 
								struct path * p_s_search_path);
extern void decrement_bcount (struct buffer_head * p_s_bh);
void decrement_counters_in_path (struct path * p_s_search_path);
void pathrelse (struct path * p_s_search_path);
int reiserfs_check_path(struct path *p) ;
void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);

int reiserfs_insert_item (struct reiserfs_transaction_handle *th, 
			  struct path * path, 
			  const struct cpu_key * key,
			  struct item_head * ih,
			  struct inode *inode, const char * body);

int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
			      struct path * path,
			      const struct cpu_key * key,
			      struct inode *inode,
			      const char * body, int paste_size);

int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
			    struct path * path,
			    struct cpu_key * key,
			    struct inode * inode,
			    struct page *page,
			    loff_t new_file_size);

int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
			  struct path * path, 
			  const struct cpu_key * key,
			  struct inode * inode, 
			  struct buffer_head  * p_s_un_bh);

void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
			struct inode *inode, struct reiserfs_key * key);
int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
			   struct  inode * p_s_inode, struct page *, 
			   int update_timestamps);

#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
#define file_size(inode) ((inode)->i_size)
#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))

#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )

void padd_item (char * item, int total_length, int length);

/* inode.c */
/* args for the create parameter of reiserfs_get_block */
#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
#define GET_BLOCK_CREATE 1    /* add anything you need to find block */
#define GET_BLOCK_NO_HOLE 2   /* return -ENOENT for file holes */
#define GET_BLOCK_READ_DIRECT 4  /* read the tail if indirect item not found */
#define GET_BLOCK_NO_ISEM     8 /* i_sem is not held, don't preallocate */
#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */

int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
int reiserfs_find_actor(struct inode * inode, void *p) ;
int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
void reiserfs_delete_inode (struct inode * inode);
int reiserfs_write_inode (struct inode * inode, int) ;
int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
                                     int len, int fhtype,
				  int (*acceptable)(void *contect, struct dentry *de),
				  void *context) ;
int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, 
						int connectable );

int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
		   int type, int key_length);
void make_le_item_head (struct item_head * ih, const struct cpu_key * key, 
			int version,
			loff_t offset, int type, int length, int entry_count);
struct inode * reiserfs_iget (struct super_block * s, 
			      const struct cpu_key * key);


int reiserfs_new_inode (struct reiserfs_transaction_handle *th, 
				   struct inode * dir, int mode, 
				   const char * symname, loff_t i_size,
				   struct dentry *dentry, struct inode *inode);

void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
                              struct inode * inode, loff_t size);

static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
                                      struct inode *inode)
{
    reiserfs_update_sd_size(th, inode, inode->i_size) ;
}

void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);

/* namei.c */
void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, 
			 struct path * path, 
			 struct reiserfs_dir_entry * de);
struct dentry *reiserfs_get_parent(struct dentry *) ;
/* procfs.c */

#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
#define REISERFS_PROC_INFO
#else
#undef REISERFS_PROC_INFO
#endif

int reiserfs_proc_info_init( struct super_block *sb );
int reiserfs_proc_info_done( struct super_block *sb );
struct proc_dir_entry *reiserfs_proc_register_global( char *name, 
													  read_proc_t *func );
void reiserfs_proc_unregister_global( const char *name );
int reiserfs_proc_info_global_init( void );
int reiserfs_proc_info_global_done( void );
int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
									 int count, int *eof, void *data );

#if defined( REISERFS_PROC_INFO )

#define PROC_EXP( e )   e

#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
#define PROC_INFO_MAX( sb, field, value )								\
    __PINFO( sb ).field =												\
        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
#define PROC_INFO_BH_STAT( sb, bh, level )							\
    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
#else
#define PROC_EXP( e )
#define VOID_V ( ( void ) 0 )
#define PROC_INFO_MAX( sb, field, value ) VOID_V
#define PROC_INFO_INC( sb, field ) VOID_V
#define PROC_INFO_ADD( sb, field, val ) VOID_V
#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
#endif

/* dir.c */
extern struct inode_operations reiserfs_dir_inode_operations;
extern struct inode_operations reiserfs_symlink_inode_operations;
extern struct inode_operations reiserfs_special_inode_operations;
extern struct file_operations reiserfs_dir_operations;

/* tail_conversion.c */
int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
void reiserfs_unmap_buffer(struct buffer_head *) ;


/* file.c */
extern struct inode_operations reiserfs_file_inode_operations;
extern struct file_operations reiserfs_file_operations;
extern struct address_space_operations reiserfs_address_space_operations ;

/* fix_nodes.c */
#ifdef CONFIG_REISERFS_CHECK
void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
#else
static inline void *reiserfs_kmalloc(size_t size, int flags,
					struct super_block *s)
{
	return kmalloc(size, flags);
}

static inline void reiserfs_kfree(const void *vp, size_t size,
					struct super_block *s)
{
	kfree(vp);
}
#endif

int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb, 
	       struct item_head * p_s_ins_ih, const void *);
void unfix_nodes (struct tree_balance *);


/* prints.c */
void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
void reiserfs_info (struct super_block *s, const char * fmt, ...);
void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
void print_indirect_item (struct buffer_head * bh, int item_num);
void store_print_tb (struct tree_balance * tb);
void print_cur_tb (char * mes);
void print_de (struct reiserfs_dir_entry * de);
void print_bi (struct buffer_info * bi, char * mes);
#define PRINT_LEAF_ITEMS 1   /* print all items */
#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
void print_block (struct buffer_head * bh, ...);
void print_bmap (struct super_block * s, int silent);
void print_bmap_block (int i, char * data, int size, int silent);
/*void print_super_block (struct super_block * s, char * mes);*/
void print_objectid_map (struct super_block * s);
void print_block_head (struct buffer_head * bh, char * mes);
void check_leaf (struct buffer_head * bh);
void check_internal (struct buffer_head * bh);
void print_statistics (struct super_block * s);
char * reiserfs_hashname(int code);

/* lbalance.c */
int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
void leaf_insert_into_buf (struct buffer_info * bi, int before, 
                           struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num, 
                           int pos_in_item, int paste_size, const char * body, int zeros_number);
void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item, 
                           int cut_size);
void leaf_paste_entries (struct buffer_head * bh, int item_num, int before, 
                         int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
/* ibalance.c */
int balance_internal (struct tree_balance * , int, int, struct item_head * , 
                      struct buffer_head **);

/* do_balance.c */
void do_balance_mark_leaf_dirty (struct tree_balance * tb,
					struct buffer_head * bh, int flag);
#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty

void do_balance (struct tree_balance * tb, struct item_head * ih, 
                 const char * body, int flag);
void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);

int get_left_neighbor_position (struct tree_balance * tb, int h);
int get_right_neighbor_position (struct tree_balance * tb, int h);
void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
void make_empty_node (struct buffer_info *);
struct buffer_head * get_FEB (struct tree_balance *);

/* bitmap.c */

/* structure contains hints for block allocator, and it is a container for
 * arguments, such as node, search path, transaction_handle, etc. */
 struct __reiserfs_blocknr_hint {
     struct inode * inode;		/* inode passed to allocator, if we allocate unf. nodes */
     long block;			/* file offset, in blocks */
     struct reiserfs_key key;
     struct path * path;		/* search path, used by allocator to deternine search_start by
					 * various ways */
     struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
					       * bitmap blocks changes  */
     b_blocknr_t beg, end;
     b_blocknr_t search_start;		/* a field used to transfer search start value (block number)
					 * between different block allocator procedures
					 * (determine_search_start() and others) */
    int prealloc_size;			/* is set in determine_prealloc_size() function, used by underlayed
					 * function that do actual allocation */

    unsigned formatted_node:1;		/* the allocator uses different polices for getting disk space for
					 * formatted/unformatted blocks with/without preallocation */
    unsigned preallocate:1;
};

typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;

int reiserfs_parse_alloc_options (struct super_block *, char *);
void reiserfs_init_alloc_options (struct super_block *s);

/*
 * given a directory, this will tell you what packing locality
 * to use for a new object underneat it.  The locality is returned
 * in disk byte order (le).
 */
u32 reiserfs_choose_packing(struct inode *dir);

int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
					      b_blocknr_t *new_blocknrs, int amount_needed)
{
    reiserfs_blocknr_hint_t hint = {
	.th = tb->transaction_handle,
	.path = tb->tb_path,
	.inode = NULL,
	.key = tb->key,
	.block = 0,
	.formatted_node = 1
    };
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
}

extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
					     struct inode *inode,
					     b_blocknr_t *new_blocknrs,
					     struct path * path, long block)
{
    reiserfs_blocknr_hint_t hint = {
	.th = th,
	.path = path,
	.inode = inode,
	.block = block,
	.formatted_node = 0,
	.preallocate = 0
    };
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
}

#ifdef REISERFS_PREALLOCATE
extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
					     struct inode * inode,
					     b_blocknr_t *new_blocknrs,
					     struct path * path, long block)
{
    reiserfs_blocknr_hint_t hint = {
	.th = th,
	.path = path,
	.inode = inode,
	.block = block,
	.formatted_node = 0,
	.preallocate = 1
    };
    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
}

void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, 
				struct inode * inode);
void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
#endif
void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
int reiserfs_can_fit_pages(struct super_block *sb);

/* hashes.c */
__u32 keyed_hash (const signed char *msg, int len);
__u32 yura_hash (const signed char *msg, int len);
__u32 r5_hash (const signed char *msg, int len);

/* the ext2 bit routines adjust for big or little endian as
** appropriate for the arch, so in our laziness we use them rather
** than using the bit routines they call more directly.  These
** routines must be used when changing on disk bitmaps.  */
#define reiserfs_test_and_set_le_bit   ext2_set_bit
#define reiserfs_test_and_clear_le_bit ext2_clear_bit
#define reiserfs_test_le_bit           ext2_test_bit
#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit

/* sometimes reiserfs_truncate may require to allocate few new blocks
   to perform indirect2direct conversion. People probably used to
   think, that truncate should work without problems on a filesystem
   without free disk space. They may complain that they can not
   truncate due to lack of free disk space. This spare space allows us
   to not worry about it. 500 is probably too much, but it should be
   absolutely safe */
#define SPARE_SPACE 500


/* prototypes from ioctl.c */
int reiserfs_ioctl (struct inode * inode, struct file * filp, 
 		    unsigned int cmd, unsigned long arg);
 
/* ioctl's command */
#define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
/* define following flags to be the same as in ext2, so that chattr(1),
   lsattr(1) will work with us. */
#define REISERFS_IOC_GETFLAGS		EXT2_IOC_GETFLAGS
#define REISERFS_IOC_SETFLAGS		EXT2_IOC_SETFLAGS
#define REISERFS_IOC_GETVERSION		EXT2_IOC_GETVERSION
#define REISERFS_IOC_SETVERSION		EXT2_IOC_SETVERSION

/* Locking primitives */
/* Right now we are still falling back to (un)lock_kernel, but eventually that
   would evolve into real per-fs locks */
#define reiserfs_write_lock( sb ) lock_kernel()
#define reiserfs_write_unlock( sb ) unlock_kernel()
 			         
/* xattr stuff */
#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)

#endif /* _LINUX_REISER_FS_H */


OpenPOWER on IntegriCloud