summaryrefslogtreecommitdiffstats
path: root/include/asm-s390/pgtable.h
blob: 26215a976127dff569d4016f51ca4da5c7f6bb2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/*
 *  include/asm-s390/pgtable.h
 *
 *  S390 version
 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Hartmut Penner (hp@de.ibm.com)
 *               Ulrich Weigand (weigand@de.ibm.com)
 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
 *
 *  Derived from "include/asm-i386/pgtable.h"
 */

#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H

#include <asm-generic/4level-fixup.h>

/*
 * The Linux memory management assumes a three-level page table setup. For
 * s390 31 bit we "fold" the mid level into the top-level page table, so
 * that we physically have the same two-level page table as the s390 mmu
 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
 * the hardware provides (region first and region second tables are not
 * used).
 *
 * The "pgd_xxx()" functions are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 *
 * This file contains the functions and defines necessary to modify and use
 * the S390 page table tree.
 */
#ifndef __ASSEMBLY__
#include <linux/mm_types.h>
#include <asm/bug.h>
#include <asm/processor.h>

struct vm_area_struct; /* forward declaration (include/linux/mm.h) */
struct mm_struct;

extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
extern void paging_init(void);
extern void vmem_map_init(void);

/*
 * The S390 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
#define update_mmu_cache(vma, address, pte)     do { } while (0)

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern char empty_zero_page[PAGE_SIZE];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */

/*
 * PMD_SHIFT determines the size of the area a second-level page
 * table can map
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#ifndef __s390x__
# define PMD_SHIFT	22
# define PGDIR_SHIFT	22
#else /* __s390x__ */
# define PMD_SHIFT	21
# define PGDIR_SHIFT	31
#endif /* __s390x__ */

#define PMD_SIZE        (1UL << PMD_SHIFT)
#define PMD_MASK        (~(PMD_SIZE-1))
#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
#define PGDIR_MASK      (~(PGDIR_SIZE-1))

/*
 * entries per page directory level: the S390 is two-level, so
 * we don't really have any PMD directory physically.
 * for S390 segment-table entries are combined to one PGD
 * that leads to 1024 pte per pgd
 */
#ifndef __s390x__
# define PTRS_PER_PTE    1024
# define PTRS_PER_PMD    1
# define PTRS_PER_PGD    512
#else /* __s390x__ */
# define PTRS_PER_PTE    512
# define PTRS_PER_PMD    1024
# define PTRS_PER_PGD    2048
#endif /* __s390x__ */

#define FIRST_USER_ADDRESS  0

#define pte_ERROR(e) \
	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
#define pmd_ERROR(e) \
	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
#define pgd_ERROR(e) \
	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))

#ifndef __ASSEMBLY__
/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
extern unsigned long vmalloc_end;
#define VMALLOC_OFFSET  (8*1024*1024)
#define VMALLOC_START   (((unsigned long) high_memory + VMALLOC_OFFSET) \
			 & ~(VMALLOC_OFFSET-1))
#define VMALLOC_END	vmalloc_end

/*
 * We need some free virtual space to be able to do vmalloc.
 * VMALLOC_MIN_SIZE defines the minimum size of the vmalloc
 * area. On a machine with 2GB memory we make sure that we
 * have at least 128MB free space for vmalloc. On a machine
 * with 4TB we make sure we have at least 128GB.
 */
#ifndef __s390x__
#define VMALLOC_MIN_SIZE	0x8000000UL
#define VMALLOC_END_INIT	0x80000000UL
#else /* __s390x__ */
#define VMALLOC_MIN_SIZE	0x2000000000UL
#define VMALLOC_END_INIT	0x40000000000UL
#endif /* __s390x__ */

/*
 * A 31 bit pagetable entry of S390 has following format:
 *  |   PFRA          |    |  OS  |
 * 0                   0IP0
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * I Page-Invalid Bit:    Page is not available for address-translation
 * P Page-Protection Bit: Store access not possible for page
 *
 * A 31 bit segmenttable entry of S390 has following format:
 *  |   P-table origin      |  |PTL
 * 0                         IC
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * I Segment-Invalid Bit:    Segment is not available for address-translation
 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 *
 * The 31 bit segmenttable origin of S390 has following format:
 *
 *  |S-table origin   |     | STL |
 * X                   **GPS
 * 00000000001111111111222222222233
 * 01234567890123456789012345678901
 *
 * X Space-Switch event:
 * G Segment-Invalid Bit:     *
 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 * S Storage-Alteration:
 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 *
 * A 64 bit pagetable entry of S390 has following format:
 * |                     PFRA                         |0IP0|  OS  |
 * 0000000000111111111122222222223333333333444444444455555555556666
 * 0123456789012345678901234567890123456789012345678901234567890123
 *
 * I Page-Invalid Bit:    Page is not available for address-translation
 * P Page-Protection Bit: Store access not possible for page
 *
 * A 64 bit segmenttable entry of S390 has following format:
 * |        P-table origin                              |      TT
 * 0000000000111111111122222222223333333333444444444455555555556666
 * 0123456789012345678901234567890123456789012345678901234567890123
 *
 * I Segment-Invalid Bit:    Segment is not available for address-translation
 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 * P Page-Protection Bit: Store access not possible for page
 * TT Type 00
 *
 * A 64 bit region table entry of S390 has following format:
 * |        S-table origin                             |   TF  TTTL
 * 0000000000111111111122222222223333333333444444444455555555556666
 * 0123456789012345678901234567890123456789012345678901234567890123
 *
 * I Segment-Invalid Bit:    Segment is not available for address-translation
 * TT Type 01
 * TF
 * TL Table lenght
 *
 * The 64 bit regiontable origin of S390 has following format:
 * |      region table origon                          |       DTTL
 * 0000000000111111111122222222223333333333444444444455555555556666
 * 0123456789012345678901234567890123456789012345678901234567890123
 *
 * X Space-Switch event:
 * G Segment-Invalid Bit:  
 * P Private-Space Bit:    
 * S Storage-Alteration:
 * R Real space
 * TL Table-Length:
 *
 * A storage key has the following format:
 * | ACC |F|R|C|0|
 *  0   3 4 5 6 7
 * ACC: access key
 * F  : fetch protection bit
 * R  : referenced bit
 * C  : changed bit
 */

/* Hardware bits in the page table entry */
#define _PAGE_RO	0x200		/* HW read-only bit  */
#define _PAGE_INVALID	0x400		/* HW invalid bit    */
#define _PAGE_SWT	0x001		/* SW pte type bit t */
#define _PAGE_SWX	0x002		/* SW pte type bit x */

/* Six different types of pages. */
#define _PAGE_TYPE_EMPTY	0x400
#define _PAGE_TYPE_NONE		0x401
#define _PAGE_TYPE_SWAP		0x403
#define _PAGE_TYPE_FILE		0x601	/* bit 0x002 is used for offset !! */
#define _PAGE_TYPE_RO		0x200
#define _PAGE_TYPE_RW		0x000
#define _PAGE_TYPE_EX_RO	0x202
#define _PAGE_TYPE_EX_RW	0x002

/*
 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 * This change is done while holding the lock, but the intermediate step
 * of a previously valid pte with the hw invalid bit set can be observed by
 * handle_pte_fault. That makes it necessary that all valid pte types with
 * the hw invalid bit set must be distinguishable from the four pte types
 * empty, none, swap and file.
 *
 *			irxt  ipte  irxt
 * _PAGE_TYPE_EMPTY	1000   ->   1000
 * _PAGE_TYPE_NONE	1001   ->   1001
 * _PAGE_TYPE_SWAP	1011   ->   1011
 * _PAGE_TYPE_FILE	11?1   ->   11?1
 * _PAGE_TYPE_RO	0100   ->   1100
 * _PAGE_TYPE_RW	0000   ->   1000
 * _PAGE_TYPE_EX_RO	0110   ->   1110
 * _PAGE_TYPE_EX_RW	0010   ->   1010
 *
 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 * pte_file is true for bits combinations 1101, 1111
 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 */

#ifndef __s390x__

/* Bits in the segment table entry */
#define _PAGE_TABLE_LEN 0xf            /* only full page-tables            */
#define _PAGE_TABLE_COM 0x10           /* common page-table                */
#define _PAGE_TABLE_INV 0x20           /* invalid page-table               */
#define _SEG_PRESENT    0x001          /* Software (overlap with PTL)      */

/* Bits int the storage key */
#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */

#define _USER_SEG_TABLE_LEN    0x7f    /* user-segment-table up to 2 GB    */
#define _KERNEL_SEG_TABLE_LEN  0x7f    /* kernel-segment-table up to 2 GB  */

/*
 * User and Kernel pagetables are identical
 */
#define _PAGE_TABLE	_PAGE_TABLE_LEN
#define _KERNPG_TABLE	_PAGE_TABLE_LEN

/*
 * The Kernel segment-tables includes the User segment-table
 */

#define _SEGMENT_TABLE	(_USER_SEG_TABLE_LEN|0x80000000|0x100)
#define _KERNSEG_TABLE	_KERNEL_SEG_TABLE_LEN

#define USER_STD_MASK	0x00000080UL

#else /* __s390x__ */

/* Bits in the segment table entry */
#define _PMD_ENTRY_INV   0x20          /* invalid segment table entry      */
#define _PMD_ENTRY       0x00        

/* Bits in the region third table entry */
#define _PGD_ENTRY_INV   0x20          /* invalid region table entry       */
#define _PGD_ENTRY       0x07

/*
 * User and kernel page directory
 */
#define _REGION_THIRD       0x4
#define _REGION_THIRD_LEN   0x3 
#define _REGION_TABLE       (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
#define _KERN_REGION_TABLE  (_REGION_THIRD|_REGION_THIRD_LEN)

#define USER_STD_MASK           0x0000000000000080UL

/* Bits in the storage key */
#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */

#endif /* __s390x__ */

/*
 * Page protection definitions.
 */
#define PAGE_NONE	__pgprot(_PAGE_TYPE_NONE)
#define PAGE_RO		__pgprot(_PAGE_TYPE_RO)
#define PAGE_RW		__pgprot(_PAGE_TYPE_RW)
#define PAGE_EX_RO	__pgprot(_PAGE_TYPE_EX_RO)
#define PAGE_EX_RW	__pgprot(_PAGE_TYPE_EX_RW)

#define PAGE_KERNEL	PAGE_RW
#define PAGE_COPY	PAGE_RO

/*
 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
 * Write permission always implies read permission. In theory with a
 * primary/secondary page table execute only can be implemented but
 * it would cost an additional bit in the pte to distinguish all the
 * different pte types. To avoid that execute permission currently
 * implies read permission as well.
 */
         /*xwr*/
#define __P000	PAGE_NONE
#define __P001	PAGE_RO
#define __P010	PAGE_RO
#define __P011	PAGE_RO
#define __P100	PAGE_EX_RO
#define __P101	PAGE_EX_RO
#define __P110	PAGE_EX_RO
#define __P111	PAGE_EX_RO

#define __S000	PAGE_NONE
#define __S001	PAGE_RO
#define __S010	PAGE_RW
#define __S011	PAGE_RW
#define __S100	PAGE_EX_RO
#define __S101	PAGE_EX_RO
#define __S110	PAGE_EX_RW
#define __S111	PAGE_EX_RW

#ifndef __s390x__
# define PMD_SHADOW_SHIFT	1
# define PGD_SHADOW_SHIFT	1
#else /* __s390x__ */
# define PMD_SHADOW_SHIFT	2
# define PGD_SHADOW_SHIFT	2
#endif /* __s390x__ */

static inline struct page *get_shadow_page(struct page *page)
{
	if (s390_noexec && !list_empty(&page->lru))
		return virt_to_page(page->lru.next);
	return NULL;
}

static inline pte_t *get_shadow_pte(pte_t *ptep)
{
	unsigned long pteptr = (unsigned long) (ptep);

	if (s390_noexec) {
		unsigned long offset = pteptr & (PAGE_SIZE - 1);
		void *addr = (void *) (pteptr ^ offset);
		struct page *page = virt_to_page(addr);
		if (!list_empty(&page->lru))
			return (pte_t *) ((unsigned long) page->lru.next |
								offset);
	}
	return NULL;
}

static inline pmd_t *get_shadow_pmd(pmd_t *pmdp)
{
	unsigned long pmdptr = (unsigned long) (pmdp);

	if (s390_noexec) {
		unsigned long offset = pmdptr &
				((PAGE_SIZE << PMD_SHADOW_SHIFT) - 1);
		void *addr = (void *) (pmdptr ^ offset);
		struct page *page = virt_to_page(addr);
		if (!list_empty(&page->lru))
			return (pmd_t *) ((unsigned long) page->lru.next |
								offset);
	}
	return NULL;
}

static inline pgd_t *get_shadow_pgd(pgd_t *pgdp)
{
	unsigned long pgdptr = (unsigned long) (pgdp);

	if (s390_noexec) {
		unsigned long offset = pgdptr &
				((PAGE_SIZE << PGD_SHADOW_SHIFT) - 1);
		void *addr = (void *) (pgdptr ^ offset);
		struct page *page = virt_to_page(addr);
		if (!list_empty(&page->lru))
			return (pgd_t *) ((unsigned long) page->lru.next |
								offset);
	}
	return NULL;
}

/*
 * Certain architectures need to do special things when PTEs
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
static inline void set_pte(pte_t *pteptr, pte_t pteval)
{
	pte_t *shadow_pte = get_shadow_pte(pteptr);

	*pteptr = pteval;
	if (shadow_pte) {
		if (!(pte_val(pteval) & _PAGE_INVALID) &&
		    (pte_val(pteval) & _PAGE_SWX))
			pte_val(*shadow_pte) = pte_val(pteval) | _PAGE_RO;
		else
			pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
	}
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)

/*
 * pgd/pmd/pte query functions
 */
#ifndef __s390x__

static inline int pgd_present(pgd_t pgd) { return 1; }
static inline int pgd_none(pgd_t pgd)    { return 0; }
static inline int pgd_bad(pgd_t pgd)     { return 0; }

static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
static inline int pmd_none(pmd_t pmd)    { return pmd_val(pmd) & _PAGE_TABLE_INV; }
static inline int pmd_bad(pmd_t pmd)
{
	return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE;
}

#else /* __s390x__ */

static inline int pgd_present(pgd_t pgd)
{
	return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY;
}

static inline int pgd_none(pgd_t pgd)
{
	return pgd_val(pgd) & _PGD_ENTRY_INV;
}

static inline int pgd_bad(pgd_t pgd)
{
	return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY;
}

static inline int pmd_present(pmd_t pmd)
{
	return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY;
}

static inline int pmd_none(pmd_t pmd)
{
	return pmd_val(pmd) & _PMD_ENTRY_INV;
}

static inline int pmd_bad(pmd_t pmd)
{
	return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY;
}

#endif /* __s390x__ */

static inline int pte_none(pte_t pte)
{
	return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
}

static inline int pte_present(pte_t pte)
{
	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
	return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
		(!(pte_val(pte) & _PAGE_INVALID) &&
		 !(pte_val(pte) & _PAGE_SWT));
}

static inline int pte_file(pte_t pte)
{
	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
	return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
}

#define pte_same(a,b)	(pte_val(a) == pte_val(b))

/*
 * query functions pte_write/pte_dirty/pte_young only work if
 * pte_present() is true. Undefined behaviour if not..
 */
static inline int pte_write(pte_t pte)
{
	return (pte_val(pte) & _PAGE_RO) == 0;
}

static inline int pte_dirty(pte_t pte)
{
	/* A pte is neither clean nor dirty on s/390. The dirty bit
	 * is in the storage key. See page_test_and_clear_dirty for
	 * details.
	 */
	return 0;
}

static inline int pte_young(pte_t pte)
{
	/* A pte is neither young nor old on s/390. The young bit
	 * is in the storage key. See page_test_and_clear_young for
	 * details.
	 */
	return 0;
}

/*
 * pgd/pmd/pte modification functions
 */

#ifndef __s390x__

static inline void pgd_clear(pgd_t * pgdp)      { }

static inline void pmd_clear_kernel(pmd_t * pmdp)
{
	pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
	pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
}

static inline void pmd_clear(pmd_t * pmdp)
{
	pmd_t *shadow_pmd = get_shadow_pmd(pmdp);

	pmd_clear_kernel(pmdp);
	if (shadow_pmd)
		pmd_clear_kernel(shadow_pmd);
}

#else /* __s390x__ */

static inline void pgd_clear_kernel(pgd_t * pgdp)
{
	pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY;
}

static inline void pgd_clear(pgd_t * pgdp)
{
	pgd_t *shadow_pgd = get_shadow_pgd(pgdp);

	pgd_clear_kernel(pgdp);
	if (shadow_pgd)
		pgd_clear_kernel(shadow_pgd);
}

static inline void pmd_clear_kernel(pmd_t * pmdp)
{
	pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
	pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
}

static inline void pmd_clear(pmd_t * pmdp)
{
	pmd_t *shadow_pmd = get_shadow_pmd(pmdp);

	pmd_clear_kernel(pmdp);
	if (shadow_pmd)
		pmd_clear_kernel(shadow_pmd);
}

#endif /* __s390x__ */

static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	pte_t *shadow_pte = get_shadow_pte(ptep);

	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
	if (shadow_pte)
		pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
}

/*
 * The following pte modification functions only work if
 * pte_present() is true. Undefined behaviour if not..
 */
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	pte_val(pte) &= PAGE_MASK;
	pte_val(pte) |= pgprot_val(newprot);
	return pte;
}

static inline pte_t pte_wrprotect(pte_t pte)
{
	/* Do not clobber _PAGE_TYPE_NONE pages!  */
	if (!(pte_val(pte) & _PAGE_INVALID))
		pte_val(pte) |= _PAGE_RO;
	return pte;
}

static inline pte_t pte_mkwrite(pte_t pte)
{
	pte_val(pte) &= ~_PAGE_RO;
	return pte;
}

static inline pte_t pte_mkclean(pte_t pte)
{
	/* The only user of pte_mkclean is the fork() code.
	   We must *not* clear the *physical* page dirty bit
	   just because fork() wants to clear the dirty bit in
	   *one* of the page's mappings.  So we just do nothing. */
	return pte;
}

static inline pte_t pte_mkdirty(pte_t pte)
{
	/* We do not explicitly set the dirty bit because the
	 * sske instruction is slow. It is faster to let the
	 * next instruction set the dirty bit.
	 */
	return pte;
}

static inline pte_t pte_mkold(pte_t pte)
{
	/* S/390 doesn't keep its dirty/referenced bit in the pte.
	 * There is no point in clearing the real referenced bit.
	 */
	return pte;
}

static inline pte_t pte_mkyoung(pte_t pte)
{
	/* S/390 doesn't keep its dirty/referenced bit in the pte.
	 * There is no point in setting the real referenced bit.
	 */
	return pte;
}

static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
	return 0;
}

static inline int
ptep_clear_flush_young(struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep)
{
	/* No need to flush TLB; bits are in storage key */
	return ptep_test_and_clear_young(vma, address, ptep);
}

static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
	return 0;
}

static inline int
ptep_clear_flush_dirty(struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep)
{
	/* No need to flush TLB; bits are in storage key */
	return ptep_test_and_clear_dirty(vma, address, ptep);
}

static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_clear(mm, addr, ptep);
	return pte;
}

static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
{
	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
#ifndef __s390x__
		/* S390 has 1mb segments, we are emulating 4MB segments */
		pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
#else
		/* ipte in zarch mode can do the math */
		pte_t *pto = ptep;
#endif
		asm volatile(
			"	ipte	%2,%3"
			: "=m" (*ptep) : "m" (*ptep),
			  "a" (pto), "a" (address));
	}
	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
}

static inline pte_t
ptep_clear_flush(struct vm_area_struct *vma,
		 unsigned long address, pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_t *shadow_pte = get_shadow_pte(ptep);

	__ptep_ipte(address, ptep);
	if (shadow_pte)
		__ptep_ipte(address, shadow_pte);
	return pte;
}

static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	pte_t old_pte = *ptep;
	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
}

static inline void
ptep_establish(struct vm_area_struct *vma, 
	       unsigned long address, pte_t *ptep,
	       pte_t entry)
{
	ptep_clear_flush(vma, address, ptep);
	set_pte(ptep, entry);
}

#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
({									  \
	int __changed = !pte_same(*(__ptep), __entry);			  \
	if (__changed)							  \
		ptep_establish(__vma, __address, __ptep, __entry);	  \
	__changed;							  \
})

/*
 * Test and clear dirty bit in storage key.
 * We can't clear the changed bit atomically. This is a potential
 * race against modification of the referenced bit. This function
 * should therefore only be called if it is not mapped in any
 * address space.
 */
static inline int page_test_dirty(struct page *page)
{
	return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
}

static inline void page_clear_dirty(struct page *page)
{
	page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
}

/*
 * Test and clear referenced bit in storage key.
 */
static inline int page_test_and_clear_young(struct page *page)
{
	unsigned long physpage = page_to_phys(page);
	int ccode;

	asm volatile(
		"	rrbe	0,%1\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (ccode) : "a" (physpage) : "cc" );
	return ccode & 2;
}

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
	pte_t __pte;
	pte_val(__pte) = physpage + pgprot_val(pgprot);
	return __pte;
}

static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
{
	unsigned long physpage = page_to_phys(page);

	return mk_pte_phys(physpage, pgprot);
}

static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
	unsigned long physpage = __pa((pfn) << PAGE_SHIFT);

	return mk_pte_phys(physpage, pgprot);
}

#ifdef __s390x__

static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
	unsigned long physpage = __pa((pfn) << PAGE_SHIFT);

	return __pmd(physpage + pgprot_val(pgprot));
}

#endif /* __s390x__ */

#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
#define pte_page(x) pfn_to_page(pte_pfn(x))

#define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK)

#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)

#define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK)

#define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)

/* to find an entry in a page-table-directory */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

#ifndef __s390x__

/* Find an entry in the second-level page table.. */
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
        return (pmd_t *) dir;
}

#else /* __s390x__ */

/* Find an entry in the second-level page table.. */
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pmd_offset(dir,addr) \
	((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr))

#endif /* __s390x__ */

/* Find an entry in the third-level page table.. */
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
#define pte_offset_kernel(pmd, address) \
	((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)

/*
 * 31 bit swap entry format:
 * A page-table entry has some bits we have to treat in a special way.
 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
 * exception will occur instead of a page translation exception. The
 * specifiation exception has the bad habit not to store necessary
 * information in the lowcore.
 * Bit 21 and bit 22 are the page invalid bit and the page protection
 * bit. We set both to indicate a swapped page.
 * Bit 30 and 31 are used to distinguish the different page types. For
 * a swapped page these bits need to be zero.
 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
 * plus 24 for the offset.
 * 0|     offset        |0110|o|type |00|
 * 0 0000000001111111111 2222 2 22222 33
 * 0 1234567890123456789 0123 4 56789 01
 *
 * 64 bit swap entry format:
 * A page-table entry has some bits we have to treat in a special way.
 * Bits 52 and bit 55 have to be zero, otherwise an specification
 * exception will occur instead of a page translation exception. The
 * specifiation exception has the bad habit not to store necessary
 * information in the lowcore.
 * Bit 53 and bit 54 are the page invalid bit and the page protection
 * bit. We set both to indicate a swapped page.
 * Bit 62 and 63 are used to distinguish the different page types. For
 * a swapped page these bits need to be zero.
 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
 * plus 56 for the offset.
 * |                      offset                        |0110|o|type |00|
 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
 */
#ifndef __s390x__
#define __SWP_OFFSET_MASK (~0UL >> 12)
#else
#define __SWP_OFFSET_MASK (~0UL >> 11)
#endif
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{
	pte_t pte;
	offset &= __SWP_OFFSET_MASK;
	pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
	return pte;
}

#define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
#define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })

#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x)	((pte_t) { (x).val })

#ifndef __s390x__
# define PTE_FILE_MAX_BITS	26
#else /* __s390x__ */
# define PTE_FILE_MAX_BITS	59
#endif /* __s390x__ */

#define pte_to_pgoff(__pte) \
	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))

#define pgoff_to_pte(__off) \
	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
		   | _PAGE_TYPE_FILE })

#endif /* !__ASSEMBLY__ */

#define kern_addr_valid(addr)   (1)

extern int add_shared_memory(unsigned long start, unsigned long size);
extern int remove_shared_memory(unsigned long start, unsigned long size);

/*
 * No page table caches to initialise
 */
#define pgtable_cache_init()	do { } while (0)

#define __HAVE_ARCH_MEMMAP_INIT
extern void memmap_init(unsigned long, int, unsigned long, unsigned long);

#define __HAVE_ARCH_PTEP_ESTABLISH
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#define __HAVE_ARCH_PAGE_TEST_DIRTY
#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
#include <asm-generic/pgtable.h>

#endif /* _S390_PAGE_H */

OpenPOWER on IntegriCloud