summaryrefslogtreecommitdiffstats
path: root/include/asm-ppc64/mmu_context.h
blob: c2e8e046638308653f7f7b8a7c2f5a66a98318ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#ifndef __PPC64_MMU_CONTEXT_H
#define __PPC64_MMU_CONTEXT_H

#include <linux/config.h>
#include <linux/kernel.h>	
#include <linux/mm.h>	
#include <asm/mmu.h>	
#include <asm/cputable.h>

/*
 * Copyright (C) 2001 PPC 64 Team, IBM Corp
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/*
 * Every architecture must define this function. It's the fastest
 * way of searching a 140-bit bitmap where the first 100 bits are
 * unlikely to be set. It's guaranteed that at least one of the 140
 * bits is cleared.
 */
static inline int sched_find_first_bit(unsigned long *b)
{
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 64;
	return __ffs(b[2]) + 128;
}

static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
{
}

#define NO_CONTEXT	0
#define MAX_CONTEXT	(0x100000-1)

extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
extern void destroy_context(struct mm_struct *mm);

extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm);
extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm);

/*
 * switch_mm is the entry point called from the architecture independent
 * code in kernel/sched.c
 */
static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
			     struct task_struct *tsk)
{
	if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask))
		cpu_set(smp_processor_id(), next->cpu_vm_mask);

	/* No need to flush userspace segments if the mm doesnt change */
	if (prev == next)
		return;

#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		asm volatile ("dssall");
#endif /* CONFIG_ALTIVEC */

	if (cpu_has_feature(CPU_FTR_SLB))
		switch_slb(tsk, next);
	else
		switch_stab(tsk, next);
}

#define deactivate_mm(tsk,mm)	do { } while (0)

/*
 * After we have set current->mm to a new value, this activates
 * the context for the new mm so we see the new mappings.
 */
static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next)
{
	unsigned long flags;

	local_irq_save(flags);
	switch_mm(prev, next, current);
	local_irq_restore(flags);
}

/* VSID allocation
 * ===============
 *
 * We first generate a 36-bit "proto-VSID".  For kernel addresses this
 * is equal to the ESID, for user addresses it is:
 *	(context << 15) | (esid & 0x7fff)
 *
 * The two forms are distinguishable because the top bit is 0 for user
 * addresses, whereas the top two bits are 1 for kernel addresses.
 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
 * now.
 *
 * The proto-VSIDs are then scrambled into real VSIDs with the
 * multiplicative hash:
 *
 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
 *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
 *
 * This scramble is only well defined for proto-VSIDs below
 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
 * reserved.  VSID_MULTIPLIER is prime, so in particular it is
 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 * Because the modulus is 2^n-1 we can compute it efficiently without
 * a divide or extra multiply (see below).
 *
 * This scheme has several advantages over older methods:
 *
 * 	- We have VSIDs allocated for every kernel address
 * (i.e. everything above 0xC000000000000000), except the very top
 * segment, which simplifies several things.
 *
 * 	- We allow for 15 significant bits of ESID and 20 bits of
 * context for user addresses.  i.e. 8T (43 bits) of address space for
 * up to 1M contexts (although the page table structure and context
 * allocation will need changes to take advantage of this).
 *
 * 	- The scramble function gives robust scattering in the hash
 * table (at least based on some initial results).  The previous
 * method was more susceptible to pathological cases giving excessive
 * hash collisions.
 */

/*
 * WARNING - If you change these you must make sure the asm
 * implementations in slb_allocate(), do_stab_bolted and mmu.h
 * (ASM_VSID_SCRAMBLE macro) are changed accordingly.
 *
 * You'll also need to change the precomputed VSID values in head.S
 * which are used by the iSeries firmware.
 */

static inline unsigned long vsid_scramble(unsigned long protovsid)
{
#if 0
	/* The code below is equivalent to this function for arguments
	 * < 2^VSID_BITS, which is all this should ever be called
	 * with.  However gcc is not clever enough to compute the
	 * modulus (2^n-1) without a second multiply. */
	return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
#else /* 1 */
	unsigned long x;

	x = protovsid * VSID_MULTIPLIER;
	x = (x >> VSID_BITS) + (x & VSID_MODULUS);
	return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
#endif /* 1 */
}

/* This is only valid for addresses >= KERNELBASE */
static inline unsigned long get_kernel_vsid(unsigned long ea)
{
	return vsid_scramble(ea >> SID_SHIFT);
}

/* This is only valid for user addresses (which are below 2^41) */
static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
{
	return vsid_scramble((context << USER_ESID_BITS)
			     | (ea >> SID_SHIFT));
}

#endif /* __PPC64_MMU_CONTEXT_H */
OpenPOWER on IntegriCloud