summaryrefslogtreecommitdiffstats
path: root/fs/f2fs/segment.h
blob: fecb856ad874a87c75e15a1ce9bd169c5dbc6b5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*
 * fs/f2fs/segment.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/blkdev.h>
#include <linux/backing-dev.h>

/* constant macro */
#define NULL_SEGNO			((unsigned int)(~0))
#define NULL_SECNO			((unsigned int)(~0))

#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */

/* L: Logical segment # in volume, R: Relative segment # in main area */
#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)

#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)

#define IS_CURSEG(sbi, seg)						\
	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))

#define IS_CURSEC(sbi, secno)						\
	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
	  sbi->segs_per_sec))	\

#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)

#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
#define MAIN_SECS(sbi)	(sbi->total_sections)

#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)

#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
					sbi->log_blocks_per_seg))

#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))

#define NEXT_FREE_BLKADDR(sbi, curseg)					\
	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)

#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))

#define GET_SEGNO(sbi, blk_addr)					\
	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
#define GET_SECNO(sbi, segno)					\
	((segno) / sbi->segs_per_sec)
#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)

#define GET_SUM_BLOCK(sbi, segno)				\
	((sbi->sm_info->ssa_blkaddr) + segno)

#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)

#define SIT_ENTRY_OFFSET(sit_i, segno)					\
	(segno % sit_i->sents_per_block)
#define SIT_BLOCK_OFFSET(segno)					\
	(segno / SIT_ENTRY_PER_BLOCK)
#define	START_SEGNO(segno)		\
	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
#define SIT_BLK_CNT(sbi)			\
	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
#define f2fs_bitmap_size(nr)			\
	(BITS_TO_LONGS(nr) * sizeof(unsigned long))

#define SECTOR_FROM_BLOCK(blk_addr)					\
	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
#define SECTOR_TO_BLOCK(sectors)					\
	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
#define MAX_BIO_BLOCKS(sbi)						\
	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))

/*
 * indicate a block allocation direction: RIGHT and LEFT.
 * RIGHT means allocating new sections towards the end of volume.
 * LEFT means the opposite direction.
 */
enum {
	ALLOC_RIGHT = 0,
	ALLOC_LEFT
};

/*
 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 * LFS writes data sequentially with cleaning operations.
 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 */
enum {
	LFS = 0,
	SSR
};

/*
 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 * GC_CB is based on cost-benefit algorithm.
 * GC_GREEDY is based on greedy algorithm.
 */
enum {
	GC_CB = 0,
	GC_GREEDY
};

/*
 * BG_GC means the background cleaning job.
 * FG_GC means the on-demand cleaning job.
 * FORCE_FG_GC means on-demand cleaning job in background.
 */
enum {
	BG_GC = 0,
	FG_GC,
	FORCE_FG_GC,
};

/* for a function parameter to select a victim segment */
struct victim_sel_policy {
	int alloc_mode;			/* LFS or SSR */
	int gc_mode;			/* GC_CB or GC_GREEDY */
	unsigned long *dirty_segmap;	/* dirty segment bitmap */
	unsigned int max_search;	/* maximum # of segments to search */
	unsigned int offset;		/* last scanned bitmap offset */
	unsigned int ofs_unit;		/* bitmap search unit */
	unsigned int min_cost;		/* minimum cost */
	unsigned int min_segno;		/* segment # having min. cost */
};

struct seg_entry {
	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
	unsigned int valid_blocks:10;	/* # of valid blocks */
	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
	unsigned int padding:6;		/* padding */
	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
	/*
	 * # of valid blocks and the validity bitmap stored in the the last
	 * checkpoint pack. This information is used by the SSR mode.
	 */
	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
	unsigned char *discard_map;
	unsigned long long mtime;	/* modification time of the segment */
};

struct sec_entry {
	unsigned int valid_blocks;	/* # of valid blocks in a section */
};

struct segment_allocation {
	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};

/*
 * this value is set in page as a private data which indicate that
 * the page is atomically written, and it is in inmem_pages list.
 */
#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)

#define IS_ATOMIC_WRITTEN_PAGE(page)			\
		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)

struct inmem_pages {
	struct list_head list;
	struct page *page;
	block_t old_addr;		/* for revoking when fail to commit */
};

struct sit_info {
	const struct segment_allocation *s_ops;

	block_t sit_base_addr;		/* start block address of SIT area */
	block_t sit_blocks;		/* # of blocks used by SIT area */
	block_t written_valid_blocks;	/* # of valid blocks in main area */
	char *sit_bitmap;		/* SIT bitmap pointer */
	unsigned int bitmap_size;	/* SIT bitmap size */

	unsigned long *tmp_map;			/* bitmap for temporal use */
	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
	unsigned int dirty_sentries;		/* # of dirty sentries */
	unsigned int sents_per_block;		/* # of SIT entries per block */
	struct mutex sentry_lock;		/* to protect SIT cache */
	struct seg_entry *sentries;		/* SIT segment-level cache */
	struct sec_entry *sec_entries;		/* SIT section-level cache */

	/* for cost-benefit algorithm in cleaning procedure */
	unsigned long long elapsed_time;	/* elapsed time after mount */
	unsigned long long mounted_time;	/* mount time */
	unsigned long long min_mtime;		/* min. modification time */
	unsigned long long max_mtime;		/* max. modification time */
};

struct free_segmap_info {
	unsigned int start_segno;	/* start segment number logically */
	unsigned int free_segments;	/* # of free segments */
	unsigned int free_sections;	/* # of free sections */
	spinlock_t segmap_lock;		/* free segmap lock */
	unsigned long *free_segmap;	/* free segment bitmap */
	unsigned long *free_secmap;	/* free section bitmap */
};

/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
enum dirty_type {
	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
	DIRTY,			/* to count # of dirty segments */
	PRE,			/* to count # of entirely obsolete segments */
	NR_DIRTY_TYPE
};

struct dirty_seglist_info {
	const struct victim_selection *v_ops;	/* victim selction operation */
	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
	struct mutex seglist_lock;		/* lock for segment bitmaps */
	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
	unsigned long *victim_secmap;		/* background GC victims */
};

/* victim selection function for cleaning and SSR */
struct victim_selection {
	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
							int, int, char);
};

/* for active log information */
struct curseg_info {
	struct mutex curseg_mutex;		/* lock for consistency */
	struct f2fs_summary_block *sum_blk;	/* cached summary block */
	struct rw_semaphore journal_rwsem;	/* protect journal area */
	struct f2fs_journal *journal;		/* cached journal info */
	unsigned char alloc_type;		/* current allocation type */
	unsigned int segno;			/* current segment number */
	unsigned short next_blkoff;		/* next block offset to write */
	unsigned int zone;			/* current zone number */
	unsigned int next_segno;		/* preallocated segment */
};

struct sit_entry_set {
	struct list_head set_list;	/* link with all sit sets */
	unsigned int start_segno;	/* start segno of sits in set */
	unsigned int entry_cnt;		/* the # of sit entries in set */
};

/*
 * inline functions
 */
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}

static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sentries[segno];
}

static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
}

static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
				unsigned int segno, int section)
{
	/*
	 * In order to get # of valid blocks in a section instantly from many
	 * segments, f2fs manages two counting structures separately.
	 */
	if (section > 1)
		return get_sec_entry(sbi, segno)->valid_blocks;
	else
		return get_seg_entry(sbi, segno)->valid_blocks;
}

static inline void seg_info_from_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	se->valid_blocks = GET_SIT_VBLOCKS(rs);
	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->type = GET_SIT_TYPE(rs);
	se->mtime = le64_to_cpu(rs->mtime);
}

static inline void seg_info_to_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
					se->valid_blocks;
	rs->vblocks = cpu_to_le16(raw_vblocks);
	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->ckpt_valid_blocks = se->valid_blocks;
	rs->mtime = cpu_to_le64(se->mtime);
}

static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
		unsigned int max, unsigned int segno)
{
	unsigned int ret;
	spin_lock(&free_i->segmap_lock);
	ret = find_next_bit(free_i->free_segmap, max, segno);
	spin_unlock(&free_i->segmap_lock);
	return ret;
}

static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

	spin_lock(&free_i->segmap_lock);
	clear_bit(segno, free_i->free_segmap);
	free_i->free_segments++;

	next = find_next_bit(free_i->free_segmap,
			start_segno + sbi->segs_per_sec, start_segno);
	if (next >= start_segno + sbi->segs_per_sec) {
		clear_bit(secno, free_i->free_secmap);
		free_i->free_sections++;
	}
	spin_unlock(&free_i->segmap_lock);
}

static inline void __set_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	set_bit(segno, free_i->free_segmap);
	free_i->free_segments--;
	if (!test_and_set_bit(secno, free_i->free_secmap))
		free_i->free_sections--;
}

static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

	spin_lock(&free_i->segmap_lock);
	if (test_and_clear_bit(segno, free_i->free_segmap)) {
		free_i->free_segments++;

		next = find_next_bit(free_i->free_segmap,
				start_segno + sbi->segs_per_sec, start_segno);
		if (next >= start_segno + sbi->segs_per_sec) {
			if (test_and_clear_bit(secno, free_i->free_secmap))
				free_i->free_sections++;
		}
	}
	spin_unlock(&free_i->segmap_lock);
}

static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	spin_lock(&free_i->segmap_lock);
	if (!test_and_set_bit(segno, free_i->free_segmap)) {
		free_i->free_segments--;
		if (!test_and_set_bit(secno, free_i->free_secmap))
			free_i->free_sections--;
	}
	spin_unlock(&free_i->segmap_lock);
}

static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
		void *dst_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
}

static inline block_t written_block_count(struct f2fs_sb_info *sbi)
{
	return SIT_I(sbi)->written_valid_blocks;
}

static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
{
	return FREE_I(sbi)->free_segments;
}

static inline int reserved_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->reserved_segments;
}

static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
{
	return FREE_I(sbi)->free_sections;
}

static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[PRE];
}

static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
}

static inline int overprovision_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->ovp_segments;
}

static inline int overprovision_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
}

static inline int reserved_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
}

static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);

	if (test_opt(sbi, LFS))
		return false;

	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
						reserved_sections(sbi) + 1);
}

static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
					int freed, int needed)
{
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);

	node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);

	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
		return false;

	return (free_sections(sbi) + freed) <=
		(node_secs + 2 * dent_secs + reserved_sections(sbi) + needed);
}

static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
{
	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
}

static inline int utilization(struct f2fs_sb_info *sbi)
{
	return div_u64((u64)valid_user_blocks(sbi) * 100,
					sbi->user_block_count);
}

/*
 * Sometimes f2fs may be better to drop out-of-place update policy.
 * And, users can control the policy through sysfs entries.
 * There are five policies with triggering conditions as follows.
 * F2FS_IPU_FORCE - all the time,
 * F2FS_IPU_SSR - if SSR mode is activated,
 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 *                     threashold,
 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 *                     storages. IPU will be triggered only if the # of dirty
 *                     pages over min_fsync_blocks.
 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 */
#define DEF_MIN_IPU_UTIL	70
#define DEF_MIN_FSYNC_BLOCKS	8

enum {
	F2FS_IPU_FORCE,
	F2FS_IPU_SSR,
	F2FS_IPU_UTIL,
	F2FS_IPU_SSR_UTIL,
	F2FS_IPU_FSYNC,
};

static inline bool need_inplace_update(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	unsigned int policy = SM_I(sbi)->ipu_policy;

	/* IPU can be done only for the user data */
	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
		return false;

	if (test_opt(sbi, LFS))
		return false;

	if (policy & (0x1 << F2FS_IPU_FORCE))
		return true;
	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
		return true;
	if (policy & (0x1 << F2FS_IPU_UTIL) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;
	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
			utilization(sbi) > SM_I(sbi)->min_ipu_util)
		return true;

	/* this is only set during fdatasync */
	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
			is_inode_flag_set(inode, FI_NEED_IPU))
		return true;

	return false;
}

static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->segno;
}

static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->alloc_type;
}

static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->next_blkoff;
}

static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
}

static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
			|| blk_addr >= MAX_BLKADDR(sbi));
}

/*
 * Summary block is always treated as an invalid block
 */
static inline void check_block_count(struct f2fs_sb_info *sbi,
		int segno, struct f2fs_sit_entry *raw_sit)
{
#ifdef CONFIG_F2FS_CHECK_FS
	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
	int valid_blocks = 0;
	int cur_pos = 0, next_pos;

	/* check bitmap with valid block count */
	do {
		if (is_valid) {
			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
			valid_blocks += next_pos - cur_pos;
		} else
			next_pos = find_next_bit_le(&raw_sit->valid_map,
					sbi->blocks_per_seg,
					cur_pos);
		cur_pos = next_pos;
		is_valid = !is_valid;
	} while (cur_pos < sbi->blocks_per_seg);
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
#endif
	/* check segment usage, and check boundary of a given segment number */
	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
					|| segno > TOTAL_SEGS(sbi) - 1);
}

static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
						unsigned int start)
{
	struct sit_info *sit_i = SIT_I(sbi);
	unsigned int offset = SIT_BLOCK_OFFSET(start);
	block_t blk_addr = sit_i->sit_base_addr + offset;

	check_seg_range(sbi, start);

	/* calculate sit block address */
	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
		blk_addr += sit_i->sit_blocks;

	return blk_addr;
}

static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	block_addr -= sit_i->sit_base_addr;
	if (block_addr < sit_i->sit_blocks)
		block_addr += sit_i->sit_blocks;
	else
		block_addr -= sit_i->sit_blocks;

	return block_addr + sit_i->sit_base_addr;
}

static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
{
	unsigned int block_off = SIT_BLOCK_OFFSET(start);

	f2fs_change_bit(block_off, sit_i->sit_bitmap);
}

static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
						sit_i->mounted_time;
}

static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
			unsigned int ofs_in_node, unsigned char version)
{
	sum->nid = cpu_to_le32(nid);
	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
	sum->version = version;
}

static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
				- (base + 1) + type;
}

static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
{
	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
		return true;
	return false;
}

static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
{
	struct block_device *bdev = sbi->sb->s_bdev;
	struct request_queue *q = bdev_get_queue(bdev);
	return SECTOR_TO_BLOCK(queue_max_sectors(q));
}

/*
 * It is very important to gather dirty pages and write at once, so that we can
 * submit a big bio without interfering other data writes.
 * By default, 512 pages for directory data,
 * 512 pages (2MB) * 3 for three types of nodes, and
 * max_bio_blocks for meta are set.
 */
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
{
	if (sbi->sb->s_bdi->wb.dirty_exceeded)
		return 0;

	if (type == DATA)
		return sbi->blocks_per_seg;
	else if (type == NODE)
		return 8 * sbi->blocks_per_seg;
	else if (type == META)
		return 8 * MAX_BIO_BLOCKS(sbi);
	else
		return 0;
}

/*
 * When writing pages, it'd better align nr_to_write for segment size.
 */
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
					struct writeback_control *wbc)
{
	long nr_to_write, desired;

	if (wbc->sync_mode != WB_SYNC_NONE)
		return 0;

	nr_to_write = wbc->nr_to_write;

	if (type == NODE)
		desired = 2 * max_hw_blocks(sbi);
	else
		desired = MAX_BIO_BLOCKS(sbi);

	wbc->nr_to_write = desired;
	return desired - nr_to_write;
}
OpenPOWER on IntegriCloud