1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
|
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* hcd_queue.c - DesignWare HS OTG Controller host queuing routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the functions to manage Queue Heads and Queue
* Transfer Descriptors for Host mode
*/
#include <linux/gcd.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
/* Wait this long before releasing periodic reservation */
#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
/* If we get a NAK, wait this long before retrying */
#define DWC2_RETRY_WAIT_DELAY (msecs_to_jiffies(1))
/**
* dwc2_periodic_channel_available() - Checks that a channel is available for a
* periodic transfer
*
* @hsotg: The HCD state structure for the DWC OTG controller
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
{
/*
* Currently assuming that there is a dedicated host channel for
* each periodic transaction plus at least one host channel for
* non-periodic transactions
*/
int status;
int num_channels;
num_channels = hsotg->params.host_channels;
if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
status = 0;
} else {
dev_dbg(hsotg->dev,
"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
__func__, num_channels,
hsotg->periodic_channels, hsotg->non_periodic_channels);
status = -ENOSPC;
}
return status;
}
/**
* dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
* for the specified QH in the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH containing periodic bandwidth required
*
* Return: 0 if successful, negative error code otherwise
*
* For simplicity, this calculation assumes that all the transfers in the
* periodic schedule may occur in the same (micro)frame
*/
static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
int status;
s16 max_claimed_usecs;
status = 0;
if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
/*
* High speed mode
* Max periodic usecs is 80% x 125 usec = 100 usec
*/
max_claimed_usecs = 100 - qh->host_us;
} else {
/*
* Full speed mode
* Max periodic usecs is 90% x 1000 usec = 900 usec
*/
max_claimed_usecs = 900 - qh->host_us;
}
if (hsotg->periodic_usecs > max_claimed_usecs) {
dev_err(hsotg->dev,
"%s: already claimed usecs %d, required usecs %d\n",
__func__, hsotg->periodic_usecs, qh->host_us);
status = -ENOSPC;
}
return status;
}
/**
* pmap_schedule() - Schedule time in a periodic bitmap (pmap).
*
* @map: The bitmap representing the schedule; will be updated
* upon success.
* @bits_per_period: The schedule represents several periods. This is how many
* bits are in each period. It's assumed that the beginning
* of the schedule will repeat after its end.
* @periods_in_map: The number of periods in the schedule.
* @num_bits: The number of bits we need per period we want to reserve
* in this function call.
* @interval: How often we need to be scheduled for the reservation this
* time. 1 means every period. 2 means every other period.
* ...you get the picture?
* @start: The bit number to start at. Normally 0. Must be within
* the interval or we return failure right away.
* @only_one_period: Normally we'll allow picking a start anywhere within the
* first interval, since we can still make all repetition
* requirements by doing that. However, if you pass true
* here then we'll return failure if we can't fit within
* the period that "start" is in.
*
* The idea here is that we want to schedule time for repeating events that all
* want the same resource. The resource is divided into fixed-sized periods
* and the events want to repeat every "interval" periods. The schedule
* granularity is one bit.
*
* To keep things "simple", we'll represent our schedule with a bitmap that
* contains a fixed number of periods. This gets rid of a lot of complexity
* but does mean that we need to handle things specially (and non-ideally) if
* the number of the periods in the schedule doesn't match well with the
* intervals that we're trying to schedule.
*
* Here's an explanation of the scheme we'll implement, assuming 8 periods.
* - If interval is 1, we need to take up space in each of the 8
* periods we're scheduling. Easy.
* - If interval is 2, we need to take up space in half of the
* periods. Again, easy.
* - If interval is 3, we actually need to fall back to interval 1.
* Why? Because we might need time in any period. AKA for the
* first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
* in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
* 0, 3, and 6. Since we could be in any frame we need to reserve
* for all of them. Sucks, but that's what you gotta do. Note that
* if we were instead scheduling 8 * 3 = 24 we'd do much better, but
* then we need more memory and time to do scheduling.
* - If interval is 4, easy.
* - If interval is 5, we again need interval 1. The schedule will be
* 0, 5, 2, 7, 4, 1, 6, 3, 0
* - If interval is 6, we need interval 2. 0, 6, 4, 2.
* - If interval is 7, we need interval 1.
* - If interval is 8, we need interval 8.
*
* If you do the math, you'll see that we need to pretend that interval is
* equal to the greatest_common_divisor(interval, periods_in_map).
*
* Note that at the moment this function tends to front-pack the schedule.
* In some cases that's really non-ideal (it's hard to schedule things that
* need to repeat every period). In other cases it's perfect (you can easily
* schedule bigger, less often repeating things).
*
* Here's the algorithm in action (8 periods, 5 bits per period):
* |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
* |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
* |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
* |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
* |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
* |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
* |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
* |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
* |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
* | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
* | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
* | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
* | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
* | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
* | | | | | | | | | Remv 1 bits, intv 1 at 4
* |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
* |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
* |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
* |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
* |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
* |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
* |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
*
* This function is pretty generic and could be easily abstracted if anything
* needed similar scheduling.
*
* Returns either -ENOSPC or a >= 0 start bit which should be passed to the
* unschedule routine. The map bitmap will be updated on a non-error result.
*/
static int pmap_schedule(unsigned long *map, int bits_per_period,
int periods_in_map, int num_bits,
int interval, int start, bool only_one_period)
{
int interval_bits;
int to_reserve;
int first_end;
int i;
if (num_bits > bits_per_period)
return -ENOSPC;
/* Adjust interval as per description */
interval = gcd(interval, periods_in_map);
interval_bits = bits_per_period * interval;
to_reserve = periods_in_map / interval;
/* If start has gotten us past interval then we can't schedule */
if (start >= interval_bits)
return -ENOSPC;
if (only_one_period)
/* Must fit within same period as start; end at begin of next */
first_end = (start / bits_per_period + 1) * bits_per_period;
else
/* Can fit anywhere in the first interval */
first_end = interval_bits;
/*
* We'll try to pick the first repetition, then see if that time
* is free for each of the subsequent repetitions. If it's not
* we'll adjust the start time for the next search of the first
* repetition.
*/
while (start + num_bits <= first_end) {
int end;
/* Need to stay within this period */
end = (start / bits_per_period + 1) * bits_per_period;
/* Look for num_bits us in this microframe starting at start */
start = bitmap_find_next_zero_area(map, end, start, num_bits,
0);
/*
* We should get start >= end if we fail. We might be
* able to check the next microframe depending on the
* interval, so continue on (start already updated).
*/
if (start >= end) {
start = end;
continue;
}
/* At this point we have a valid point for first one */
for (i = 1; i < to_reserve; i++) {
int ith_start = start + interval_bits * i;
int ith_end = end + interval_bits * i;
int ret;
/* Use this as a dumb "check if bits are 0" */
ret = bitmap_find_next_zero_area(
map, ith_start + num_bits, ith_start, num_bits,
0);
/* We got the right place, continue checking */
if (ret == ith_start)
continue;
/* Move start up for next time and exit for loop */
ith_start = bitmap_find_next_zero_area(
map, ith_end, ith_start, num_bits, 0);
if (ith_start >= ith_end)
/* Need a while new period next time */
start = end;
else
start = ith_start - interval_bits * i;
break;
}
/* If didn't exit the for loop with a break, we have success */
if (i == to_reserve)
break;
}
if (start + num_bits > first_end)
return -ENOSPC;
for (i = 0; i < to_reserve; i++) {
int ith_start = start + interval_bits * i;
bitmap_set(map, ith_start, num_bits);
}
return start;
}
/**
* pmap_unschedule() - Undo work done by pmap_schedule()
*
* @map: See pmap_schedule().
* @bits_per_period: See pmap_schedule().
* @periods_in_map: See pmap_schedule().
* @num_bits: The number of bits that was passed to schedule.
* @interval: The interval that was passed to schedule.
* @start: The return value from pmap_schedule().
*/
static void pmap_unschedule(unsigned long *map, int bits_per_period,
int periods_in_map, int num_bits,
int interval, int start)
{
int interval_bits;
int to_release;
int i;
/* Adjust interval as per description in pmap_schedule() */
interval = gcd(interval, periods_in_map);
interval_bits = bits_per_period * interval;
to_release = periods_in_map / interval;
for (i = 0; i < to_release; i++) {
int ith_start = start + interval_bits * i;
bitmap_clear(map, ith_start, num_bits);
}
}
/**
* dwc2_get_ls_map() - Get the map used for the given qh
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*
* We'll always get the periodic map out of our TT. Note that even if we're
* running the host straight in low speed / full speed mode it appears as if
* a TT is allocated for us, so we'll use it. If that ever changes we can
* add logic here to get a map out of "hsotg" if !qh->do_split.
*
* Returns: the map or NULL if a map couldn't be found.
*/
static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
unsigned long *map;
/* Don't expect to be missing a TT and be doing low speed scheduling */
if (WARN_ON(!qh->dwc_tt))
return NULL;
/* Get the map and adjust if this is a multi_tt hub */
map = qh->dwc_tt->periodic_bitmaps;
if (qh->dwc_tt->usb_tt->multi)
map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
return map;
}
#ifdef DWC2_PRINT_SCHEDULE
/*
* cat_printf() - A printf() + strcat() helper
*
* This is useful for concatenating a bunch of strings where each string is
* constructed using printf.
*
* @buf: The destination buffer; will be updated to point after the printed
* data.
* @size: The number of bytes in the buffer (includes space for '\0').
* @fmt: The format for printf.
* @...: The args for printf.
*/
static __printf(3, 4)
void cat_printf(char **buf, size_t *size, const char *fmt, ...)
{
va_list args;
int i;
if (*size == 0)
return;
va_start(args, fmt);
i = vsnprintf(*buf, *size, fmt, args);
va_end(args);
if (i >= *size) {
(*buf)[*size - 1] = '\0';
*buf += *size;
*size = 0;
} else {
*buf += i;
*size -= i;
}
}
/*
* pmap_print() - Print the given periodic map
*
* Will attempt to print out the periodic schedule.
*
* @map: See pmap_schedule().
* @bits_per_period: See pmap_schedule().
* @periods_in_map: See pmap_schedule().
* @period_name: The name of 1 period, like "uFrame"
* @units: The name of the units, like "us".
* @print_fn: The function to call for printing.
* @print_data: Opaque data to pass to the print function.
*/
static void pmap_print(unsigned long *map, int bits_per_period,
int periods_in_map, const char *period_name,
const char *units,
void (*print_fn)(const char *str, void *data),
void *print_data)
{
int period;
for (period = 0; period < periods_in_map; period++) {
char tmp[64];
char *buf = tmp;
size_t buf_size = sizeof(tmp);
int period_start = period * bits_per_period;
int period_end = period_start + bits_per_period;
int start = 0;
int count = 0;
bool printed = false;
int i;
for (i = period_start; i < period_end + 1; i++) {
/* Handle case when ith bit is set */
if (i < period_end &&
bitmap_find_next_zero_area(map, i + 1,
i, 1, 0) != i) {
if (count == 0)
start = i - period_start;
count++;
continue;
}
/* ith bit isn't set; don't care if count == 0 */
if (count == 0)
continue;
if (!printed)
cat_printf(&buf, &buf_size, "%s %d: ",
period_name, period);
else
cat_printf(&buf, &buf_size, ", ");
printed = true;
cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
units, start + count - 1, units);
count = 0;
}
if (printed)
print_fn(tmp, print_data);
}
}
struct dwc2_qh_print_data {
struct dwc2_hsotg *hsotg;
struct dwc2_qh *qh;
};
/**
* dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
*
* @str: The string to print
* @data: A pointer to a struct dwc2_qh_print_data
*/
static void dwc2_qh_print(const char *str, void *data)
{
struct dwc2_qh_print_data *print_data = data;
dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
}
/**
* dwc2_qh_schedule_print() - Print the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH to print.
*/
static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
struct dwc2_qh_print_data print_data = { hsotg, qh };
int i;
/*
* The printing functions are quite slow and inefficient.
* If we don't have tracing turned on, don't run unless the special
* define is turned on.
*/
if (qh->schedule_low_speed) {
unsigned long *map = dwc2_get_ls_map(hsotg, qh);
dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
qh, qh->device_us,
DWC2_ROUND_US_TO_SLICE(qh->device_us),
DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
if (map) {
dwc2_sch_dbg(hsotg,
"QH=%p Whole low/full speed map %p now:\n",
qh, map);
pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
dwc2_qh_print, &print_data);
}
}
for (i = 0; i < qh->num_hs_transfers; i++) {
struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
int uframe = trans_time->start_schedule_us /
DWC2_HS_PERIODIC_US_PER_UFRAME;
int rel_us = trans_time->start_schedule_us %
DWC2_HS_PERIODIC_US_PER_UFRAME;
dwc2_sch_dbg(hsotg,
"QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
qh, i, trans_time->duration_us, uframe, rel_us);
}
if (qh->num_hs_transfers) {
dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
pmap_print(hsotg->hs_periodic_bitmap,
DWC2_HS_PERIODIC_US_PER_UFRAME,
DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
dwc2_qh_print, &print_data);
}
}
#else
static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh) {};
#endif
/**
* dwc2_ls_pmap_schedule() - Schedule a low speed QH
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
* @search_slice: We'll start trying to schedule at the passed slice.
* Remember that slices are the units of the low speed
* schedule (think 25us or so).
*
* Wraps pmap_schedule() with the right parameters for low speed scheduling.
*
* Normally we schedule low speed devices on the map associated with the TT.
*
* Returns: 0 for success or an error code.
*/
static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
int search_slice)
{
int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
unsigned long *map = dwc2_get_ls_map(hsotg, qh);
int slice;
if (!map)
return -EINVAL;
/*
* Schedule on the proper low speed map with our low speed scheduling
* parameters. Note that we use the "device_interval" here since
* we want the low speed interval and the only way we'd be in this
* function is if the device is low speed.
*
* If we happen to be doing low speed and high speed scheduling for the
* same transaction (AKA we have a split) we always do low speed first.
* That means we can always pass "false" for only_one_period (that
* parameters is only useful when we're trying to get one schedule to
* match what we already planned in the other schedule).
*/
slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
DWC2_LS_SCHEDULE_FRAMES, slices,
qh->device_interval, search_slice, false);
if (slice < 0)
return slice;
qh->ls_start_schedule_slice = slice;
return 0;
}
/**
* dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
unsigned long *map = dwc2_get_ls_map(hsotg, qh);
/* Schedule should have failed, so no worries about no error code */
if (!map)
return;
pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
qh->ls_start_schedule_slice);
}
/**
* dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
*
* This will schedule something on the main dwc2 schedule.
*
* We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
* update this with the result upon success. We also use the duration from
* the same structure.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
* @only_one_period: If true we will limit ourselves to just looking at
* one period (aka one 100us chunk). This is used if we have
* already scheduled something on the low speed schedule and
* need to find something that matches on the high speed one.
* @index: The index into qh->hs_transfers that we're working with.
*
* Returns: 0 for success or an error code. Upon success the
* dwc2_hs_transfer_time specified by "index" will be updated.
*/
static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
bool only_one_period, int index)
{
struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
int us;
us = pmap_schedule(hsotg->hs_periodic_bitmap,
DWC2_HS_PERIODIC_US_PER_UFRAME,
DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
qh->host_interval, trans_time->start_schedule_us,
only_one_period);
if (us < 0)
return us;
trans_time->start_schedule_us = us;
return 0;
}
/**
* dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
* @index: Transfer index
*/
static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, int index)
{
struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
pmap_unschedule(hsotg->hs_periodic_bitmap,
DWC2_HS_PERIODIC_US_PER_UFRAME,
DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
qh->host_interval, trans_time->start_schedule_us);
}
/**
* dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
*
* This is the most complicated thing in USB. We have to find matching time
* in both the global high speed schedule for the port and the low speed
* schedule for the TT associated with the given device.
*
* Being here means that the host must be running in high speed mode and the
* device is in low or full speed mode (and behind a hub).
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
int ls_search_slice;
int err = 0;
int host_interval_in_sched;
/*
* The interval (how often to repeat) in the actual host schedule.
* See pmap_schedule() for gcd() explanation.
*/
host_interval_in_sched = gcd(qh->host_interval,
DWC2_HS_SCHEDULE_UFRAMES);
/*
* We always try to find space in the low speed schedule first, then
* try to find high speed time that matches. If we don't, we'll bump
* up the place we start searching in the low speed schedule and try
* again. To start we'll look right at the beginning of the low speed
* schedule.
*
* Note that this will tend to front-load the high speed schedule.
* We may eventually want to try to avoid this by either considering
* both schedules together or doing some sort of round robin.
*/
ls_search_slice = 0;
while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
int start_s_uframe;
int ssplit_s_uframe;
int second_s_uframe;
int rel_uframe;
int first_count;
int middle_count;
int end_count;
int first_data_bytes;
int other_data_bytes;
int i;
if (qh->schedule_low_speed) {
err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
/*
* If we got an error here there's no other magic we
* can do, so bail. All the looping above is only
* helpful to redo things if we got a low speed slot
* and then couldn't find a matching high speed slot.
*/
if (err)
return err;
} else {
/* Must be missing the tt structure? Why? */
WARN_ON_ONCE(1);
}
/*
* This will give us a number 0 - 7 if
* DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
*/
start_s_uframe = qh->ls_start_schedule_slice /
DWC2_SLICES_PER_UFRAME;
/* Get a number that's always 0 - 7 */
rel_uframe = (start_s_uframe % 8);
/*
* If we were going to start in uframe 7 then we would need to
* issue a start split in uframe 6, which spec says is not OK.
* Move on to the next full frame (assuming there is one).
*
* See 11.18.4 Host Split Transaction Scheduling Requirements
* bullet 1.
*/
if (rel_uframe == 7) {
if (qh->schedule_low_speed)
dwc2_ls_pmap_unschedule(hsotg, qh);
ls_search_slice =
(qh->ls_start_schedule_slice /
DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
DWC2_LS_PERIODIC_SLICES_PER_FRAME;
continue;
}
/*
* For ISOC in:
* - start split (frame -1)
* - complete split w/ data (frame +1)
* - complete split w/ data (frame +2)
* - ...
* - complete split w/ data (frame +num_data_packets)
* - complete split w/ data (frame +num_data_packets+1)
* - complete split w/ data (frame +num_data_packets+2, max 8)
* ...though if frame was "0" then max is 7...
*
* For ISOC out we might need to do:
* - start split w/ data (frame -1)
* - start split w/ data (frame +0)
* - ...
* - start split w/ data (frame +num_data_packets-2)
*
* For INTERRUPT in we might need to do:
* - start split (frame -1)
* - complete split w/ data (frame +1)
* - complete split w/ data (frame +2)
* - complete split w/ data (frame +3, max 8)
*
* For INTERRUPT out we might need to do:
* - start split w/ data (frame -1)
* - complete split (frame +1)
* - complete split (frame +2)
* - complete split (frame +3, max 8)
*
* Start adjusting!
*/
ssplit_s_uframe = (start_s_uframe +
host_interval_in_sched - 1) %
host_interval_in_sched;
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
second_s_uframe = start_s_uframe;
else
second_s_uframe = start_s_uframe + 1;
/* First data transfer might not be all 188 bytes. */
first_data_bytes = 188 -
DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
DWC2_SLICES_PER_UFRAME),
DWC2_SLICES_PER_UFRAME);
if (first_data_bytes > bytecount)
first_data_bytes = bytecount;
other_data_bytes = bytecount - first_data_bytes;
/*
* For now, skip OUT xfers where first xfer is partial
*
* Main dwc2 code assumes:
* - INT transfers never get split in two.
* - ISOC transfers can always transfer 188 bytes the first
* time.
*
* Until that code is fixed, try again if the first transfer
* couldn't transfer everything.
*
* This code can be removed if/when the rest of dwc2 handles
* the above cases. Until it's fixed we just won't be able
* to schedule quite as tightly.
*/
if (!qh->ep_is_in &&
(first_data_bytes != min_t(int, 188, bytecount))) {
dwc2_sch_dbg(hsotg,
"QH=%p avoiding broken 1st xfer (%d, %d)\n",
qh, first_data_bytes, bytecount);
if (qh->schedule_low_speed)
dwc2_ls_pmap_unschedule(hsotg, qh);
ls_search_slice = (start_s_uframe + 1) *
DWC2_SLICES_PER_UFRAME;
continue;
}
/* Start by assuming transfers for the bytes */
qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
/*
* Everything except ISOC OUT has extra transfers. Rules are
* complicated. See 11.18.4 Host Split Transaction Scheduling
* Requirements bullet 3.
*/
if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
if (rel_uframe == 6)
qh->num_hs_transfers += 2;
else
qh->num_hs_transfers += 3;
if (qh->ep_is_in) {
/*
* First is start split, middle/end is data.
* Allocate full data bytes for all data.
*/
first_count = 4;
middle_count = bytecount;
end_count = bytecount;
} else {
/*
* First is data, middle/end is complete.
* First transfer and second can have data.
* Rest should just have complete split.
*/
first_count = first_data_bytes;
middle_count = max_t(int, 4, other_data_bytes);
end_count = 4;
}
} else {
if (qh->ep_is_in) {
int last;
/* Account for the start split */
qh->num_hs_transfers++;
/* Calculate "L" value from spec */
last = rel_uframe + qh->num_hs_transfers + 1;
/* Start with basic case */
if (last <= 6)
qh->num_hs_transfers += 2;
else
qh->num_hs_transfers += 1;
/* Adjust downwards */
if (last >= 6 && rel_uframe == 0)
qh->num_hs_transfers--;
/* 1st = start; rest can contain data */
first_count = 4;
middle_count = min_t(int, 188, bytecount);
end_count = middle_count;
} else {
/* All contain data, last might be smaller */
first_count = first_data_bytes;
middle_count = min_t(int, 188,
other_data_bytes);
end_count = other_data_bytes % 188;
}
}
/* Assign durations per uFrame */
qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
for (i = 1; i < qh->num_hs_transfers - 1; i++)
qh->hs_transfers[i].duration_us =
HS_USECS_ISO(middle_count);
if (qh->num_hs_transfers > 1)
qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
HS_USECS_ISO(end_count);
/*
* Assign start us. The call below to dwc2_hs_pmap_schedule()
* will start with these numbers but may adjust within the same
* microframe.
*/
qh->hs_transfers[0].start_schedule_us =
ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
for (i = 1; i < qh->num_hs_transfers; i++)
qh->hs_transfers[i].start_schedule_us =
((second_s_uframe + i - 1) %
DWC2_HS_SCHEDULE_UFRAMES) *
DWC2_HS_PERIODIC_US_PER_UFRAME;
/* Try to schedule with filled in hs_transfers above */
for (i = 0; i < qh->num_hs_transfers; i++) {
err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
if (err)
break;
}
/* If we scheduled all w/out breaking out then we're all good */
if (i == qh->num_hs_transfers)
break;
for (; i >= 0; i--)
dwc2_hs_pmap_unschedule(hsotg, qh, i);
if (qh->schedule_low_speed)
dwc2_ls_pmap_unschedule(hsotg, qh);
/* Try again starting in the next microframe */
ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
}
if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
return -ENOSPC;
return 0;
}
/**
* dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
*
* Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
* interface.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
/* In non-split host and device time are the same */
WARN_ON(qh->host_us != qh->device_us);
WARN_ON(qh->host_interval != qh->device_interval);
WARN_ON(qh->num_hs_transfers != 1);
/* We'll have one transfer; init start to 0 before calling scheduler */
qh->hs_transfers[0].start_schedule_us = 0;
qh->hs_transfers[0].duration_us = qh->host_us;
return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
}
/**
* dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
*
* Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
* interface.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
/* In non-split host and device time are the same */
WARN_ON(qh->host_us != qh->device_us);
WARN_ON(qh->host_interval != qh->device_interval);
WARN_ON(!qh->schedule_low_speed);
/* Run on the main low speed schedule (no split = no hub = no TT) */
return dwc2_ls_pmap_schedule(hsotg, qh, 0);
}
/**
* dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
*
* Calls one of the 3 sub-function depending on what type of transfer this QH
* is for. Also adds some printing.
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int ret;
if (qh->dev_speed == USB_SPEED_HIGH)
ret = dwc2_uframe_schedule_hs(hsotg, qh);
else if (!qh->do_split)
ret = dwc2_uframe_schedule_ls(hsotg, qh);
else
ret = dwc2_uframe_schedule_split(hsotg, qh);
if (ret)
dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
else
dwc2_qh_schedule_print(hsotg, qh);
return ret;
}
/**
* dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
*
* @hsotg: The HCD state structure for the DWC OTG controller.
* @qh: QH for the periodic transfer.
*/
static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int i;
for (i = 0; i < qh->num_hs_transfers; i++)
dwc2_hs_pmap_unschedule(hsotg, qh, i);
if (qh->schedule_low_speed)
dwc2_ls_pmap_unschedule(hsotg, qh);
dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
}
/**
* dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
*
* Takes a qh that has already been scheduled (which means we know we have the
* bandwdith reserved for us) and set the next_active_frame and the
* start_active_frame.
*
* This is expected to be called on qh's that weren't previously actively
* running. It just picks the next frame that we can fit into without any
* thought about the past.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for a periodic endpoint
*
*/
static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
u16 frame_number;
u16 earliest_frame;
u16 next_active_frame;
u16 relative_frame;
u16 interval;
/*
* Use the real frame number rather than the cached value as of the
* last SOF to give us a little extra slop.
*/
frame_number = dwc2_hcd_get_frame_number(hsotg);
/*
* We wouldn't want to start any earlier than the next frame just in
* case the frame number ticks as we're doing this calculation.
*
* NOTE: if we could quantify how long till we actually get scheduled
* we might be able to avoid the "+ 1" by looking at the upper part of
* HFNUM (the FRREM field). For now we'll just use the + 1 though.
*/
earliest_frame = dwc2_frame_num_inc(frame_number, 1);
next_active_frame = earliest_frame;
/* Get the "no microframe schduler" out of the way... */
if (!hsotg->params.uframe_sched) {
if (qh->do_split)
/* Splits are active at microframe 0 minus 1 */
next_active_frame |= 0x7;
goto exit;
}
if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
/*
* We're either at high speed or we're doing a split (which
* means we're talking high speed to a hub). In any case
* the first frame should be based on when the first scheduled
* event is.
*/
WARN_ON(qh->num_hs_transfers < 1);
relative_frame = qh->hs_transfers[0].start_schedule_us /
DWC2_HS_PERIODIC_US_PER_UFRAME;
/* Adjust interval as per high speed schedule */
interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
} else {
/*
* Low or full speed directly on dwc2. Just about the same
* as high speed but on a different schedule and with slightly
* different adjustments. Note that this works because when
* the host and device are both low speed then frames in the
* controller tick at low speed.
*/
relative_frame = qh->ls_start_schedule_slice /
DWC2_LS_PERIODIC_SLICES_PER_FRAME;
interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
}
/* Scheduler messed up if frame is past interval */
WARN_ON(relative_frame >= interval);
/*
* We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
* done the gcd(), so it's safe to move to the beginning of the current
* interval like this.
*
* After this we might be before earliest_frame, but don't worry,
* we'll fix it...
*/
next_active_frame = (next_active_frame / interval) * interval;
/*
* Actually choose to start at the frame number we've been
* scheduled for.
*/
next_active_frame = dwc2_frame_num_inc(next_active_frame,
relative_frame);
/*
* We actually need 1 frame before since the next_active_frame is
* the frame number we'll be put on the ready list and we won't be on
* the bus until 1 frame later.
*/
next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
/*
* By now we might actually be before the earliest_frame. Let's move
* up intervals until we're not.
*/
while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
next_active_frame = dwc2_frame_num_inc(next_active_frame,
interval);
exit:
qh->next_active_frame = next_active_frame;
qh->start_active_frame = next_active_frame;
dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
qh, frame_number, qh->next_active_frame);
}
/**
* dwc2_do_reserve() - Make a periodic reservation
*
* Try to allocate space in the periodic schedule. Depending on parameters
* this might use the microframe scheduler or the dumb scheduler.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer.
*
* Returns: 0 upon success; error upon failure.
*/
static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int status;
if (hsotg->params.uframe_sched) {
status = dwc2_uframe_schedule(hsotg, qh);
} else {
status = dwc2_periodic_channel_available(hsotg);
if (status) {
dev_info(hsotg->dev,
"%s: No host channel available for periodic transfer\n",
__func__);
return status;
}
status = dwc2_check_periodic_bandwidth(hsotg, qh);
}
if (status) {
dev_dbg(hsotg->dev,
"%s: Insufficient periodic bandwidth for periodic transfer\n",
__func__);
return status;
}
if (!hsotg->params.uframe_sched)
/* Reserve periodic channel */
hsotg->periodic_channels++;
/* Update claimed usecs per (micro)frame */
hsotg->periodic_usecs += qh->host_us;
dwc2_pick_first_frame(hsotg, qh);
return 0;
}
/**
* dwc2_do_unreserve() - Actually release the periodic reservation
*
* This function actually releases the periodic bandwidth that was reserved
* by the given qh.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer.
*/
static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
assert_spin_locked(&hsotg->lock);
WARN_ON(!qh->unreserve_pending);
/* No more unreserve pending--we're doing it */
qh->unreserve_pending = false;
if (WARN_ON(!list_empty(&qh->qh_list_entry)))
list_del_init(&qh->qh_list_entry);
/* Update claimed usecs per (micro)frame */
hsotg->periodic_usecs -= qh->host_us;
if (hsotg->params.uframe_sched) {
dwc2_uframe_unschedule(hsotg, qh);
} else {
/* Release periodic channel reservation */
hsotg->periodic_channels--;
}
}
/**
* dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
*
* According to the kernel doc for usb_submit_urb() (specifically the part about
* "Reserved Bandwidth Transfers"), we need to keep a reservation active as
* long as a device driver keeps submitting. Since we're using HCD_BH to give
* back the URB we need to give the driver a little bit of time before we
* release the reservation. This worker is called after the appropriate
* delay.
*
* @t: Address to a qh unreserve_work.
*/
static void dwc2_unreserve_timer_fn(struct timer_list *t)
{
struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
struct dwc2_hsotg *hsotg = qh->hsotg;
unsigned long flags;
/*
* Wait for the lock, or for us to be scheduled again. We
* could be scheduled again if:
* - We started executing but didn't get the lock yet.
* - A new reservation came in, but cancel didn't take effect
* because we already started executing.
* - The timer has been kicked again.
* In that case cancel and wait for the next call.
*/
while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
if (timer_pending(&qh->unreserve_timer))
return;
}
/*
* Might be no more unreserve pending if:
* - We started executing but didn't get the lock yet.
* - A new reservation came in, but cancel didn't take effect
* because we already started executing.
*
* We can't put this in the loop above because unreserve_pending needs
* to be accessed under lock, so we can only check it once we got the
* lock.
*/
if (qh->unreserve_pending)
dwc2_do_unreserve(hsotg, qh);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/**
* dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
* host channel is large enough to handle the maximum data transfer in a single
* (micro)frame for a periodic transfer
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for a periodic endpoint
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
u32 max_xfer_size;
u32 max_channel_xfer_size;
int status = 0;
max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
max_channel_xfer_size = hsotg->params.max_transfer_size;
if (max_xfer_size > max_channel_xfer_size) {
dev_err(hsotg->dev,
"%s: Periodic xfer length %d > max xfer length for channel %d\n",
__func__, max_xfer_size, max_channel_xfer_size);
status = -ENOSPC;
}
return status;
}
/**
* dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
* the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer. The QH should already contain the
* scheduling information.
*
* Return: 0 if successful, negative error code otherwise
*/
static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int status;
status = dwc2_check_max_xfer_size(hsotg, qh);
if (status) {
dev_dbg(hsotg->dev,
"%s: Channel max transfer size too small for periodic transfer\n",
__func__);
return status;
}
/* Cancel pending unreserve; if canceled OK, unreserve was pending */
if (del_timer(&qh->unreserve_timer))
WARN_ON(!qh->unreserve_pending);
/*
* Only need to reserve if there's not an unreserve pending, since if an
* unreserve is pending then by definition our old reservation is still
* valid. Unreserve might still be pending even if we didn't cancel if
* dwc2_unreserve_timer_fn() already started. Code in the timer handles
* that case.
*/
if (!qh->unreserve_pending) {
status = dwc2_do_reserve(hsotg, qh);
if (status)
return status;
} else {
/*
* It might have been a while, so make sure that frame_number
* is still good. Note: we could also try to use the similar
* dwc2_next_periodic_start() but that schedules much more
* tightly and we might need to hurry and queue things up.
*/
if (dwc2_frame_num_le(qh->next_active_frame,
hsotg->frame_number))
dwc2_pick_first_frame(hsotg, qh);
}
qh->unreserve_pending = 0;
if (hsotg->params.dma_desc_enable)
/* Don't rely on SOF and start in ready schedule */
list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
else
/* Always start in inactive schedule */
list_add_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_inactive);
return 0;
}
/**
* dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
* from the periodic schedule
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: QH for the periodic transfer
*/
static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
bool did_modify;
assert_spin_locked(&hsotg->lock);
/*
* Schedule the unreserve to happen in a little bit. Cases here:
* - Unreserve worker might be sitting there waiting to grab the lock.
* In this case it will notice it's been schedule again and will
* quit.
* - Unreserve worker might not be scheduled.
*
* We should never already be scheduled since dwc2_schedule_periodic()
* should have canceled the scheduled unreserve timer (hence the
* warning on did_modify).
*
* We add + 1 to the timer to guarantee that at least 1 jiffy has
* passed (otherwise if the jiffy counter might tick right after we
* read it and we'll get no delay).
*/
did_modify = mod_timer(&qh->unreserve_timer,
jiffies + DWC2_UNRESERVE_DELAY + 1);
WARN_ON(did_modify);
qh->unreserve_pending = 1;
list_del_init(&qh->qh_list_entry);
}
/**
* dwc2_wait_timer_fn() - Timer function to re-queue after waiting
*
* As per the spec, a NAK indicates that "a function is temporarily unable to
* transmit or receive data, but will eventually be able to do so without need
* of host intervention".
*
* That means that when we encounter a NAK we're supposed to retry.
*
* ...but if we retry right away (from the interrupt handler that saw the NAK)
* then we can end up with an interrupt storm (if the other side keeps NAKing
* us) because on slow enough CPUs it could take us longer to get out of the
* interrupt routine than it takes for the device to send another NAK. That
* leads to a constant stream of NAK interrupts and the CPU locks.
*
* ...so instead of retrying right away in the case of a NAK we'll set a timer
* to retry some time later. This function handles that timer and moves the
* qh back to the "inactive" list, then queues transactions.
*
* @t: Pointer to wait_timer in a qh.
*/
static void dwc2_wait_timer_fn(struct timer_list *t)
{
struct dwc2_qh *qh = from_timer(qh, t, wait_timer);
struct dwc2_hsotg *hsotg = qh->hsotg;
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
/*
* We'll set wait_timer_cancel to true if we want to cancel this
* operation in dwc2_hcd_qh_unlink().
*/
if (!qh->wait_timer_cancel) {
enum dwc2_transaction_type tr_type;
qh->want_wait = false;
list_move(&qh->qh_list_entry,
&hsotg->non_periodic_sched_inactive);
tr_type = dwc2_hcd_select_transactions(hsotg);
if (tr_type != DWC2_TRANSACTION_NONE)
dwc2_hcd_queue_transactions(hsotg, tr_type);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/**
* dwc2_qh_init() - Initializes a QH structure
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to init
* @urb: Holds the information about the device/endpoint needed to initialize
* the QH
* @mem_flags: Flags for allocating memory.
*/
static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
struct dwc2_hcd_urb *urb, gfp_t mem_flags)
{
int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
dev_speed != USB_SPEED_HIGH);
int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
char *speed, *type;
/* Initialize QH */
qh->hsotg = hsotg;
timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
timer_setup(&qh->wait_timer, dwc2_wait_timer_fn, 0);
qh->ep_type = ep_type;
qh->ep_is_in = ep_is_in;
qh->data_toggle = DWC2_HC_PID_DATA0;
qh->maxp = maxp;
INIT_LIST_HEAD(&qh->qtd_list);
INIT_LIST_HEAD(&qh->qh_list_entry);
qh->do_split = do_split;
qh->dev_speed = dev_speed;
if (ep_is_int || ep_is_isoc) {
/* Compute scheduling parameters once and save them */
int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
mem_flags,
&qh->ttport);
int device_ns;
qh->dwc_tt = dwc_tt;
qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
ep_is_isoc, bytecount));
device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
ep_is_isoc, bytecount);
if (do_split && dwc_tt)
device_ns += dwc_tt->usb_tt->think_time;
qh->device_us = NS_TO_US(device_ns);
qh->device_interval = urb->interval;
qh->host_interval = urb->interval * (do_split ? 8 : 1);
/*
* Schedule low speed if we're running the host in low or
* full speed OR if we've got a "TT" to deal with to access this
* device.
*/
qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
dwc_tt;
if (do_split) {
/* We won't know num transfers until we schedule */
qh->num_hs_transfers = -1;
} else if (dev_speed == USB_SPEED_HIGH) {
qh->num_hs_transfers = 1;
} else {
qh->num_hs_transfers = 0;
}
/* We'll schedule later when we have something to do */
}
switch (dev_speed) {
case USB_SPEED_LOW:
speed = "low";
break;
case USB_SPEED_FULL:
speed = "full";
break;
case USB_SPEED_HIGH:
speed = "high";
break;
default:
speed = "?";
break;
}
switch (qh->ep_type) {
case USB_ENDPOINT_XFER_ISOC:
type = "isochronous";
break;
case USB_ENDPOINT_XFER_INT:
type = "interrupt";
break;
case USB_ENDPOINT_XFER_CONTROL:
type = "control";
break;
case USB_ENDPOINT_XFER_BULK:
type = "bulk";
break;
default:
type = "?";
break;
}
dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
speed, bytecount);
dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
dwc2_hcd_get_dev_addr(&urb->pipe_info),
dwc2_hcd_get_ep_num(&urb->pipe_info),
ep_is_in ? "IN" : "OUT");
if (ep_is_int || ep_is_isoc) {
dwc2_sch_dbg(hsotg,
"QH=%p ...duration: host=%d us, device=%d us\n",
qh, qh->host_us, qh->device_us);
dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
qh, qh->host_interval, qh->device_interval);
if (qh->schedule_low_speed)
dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
qh, dwc2_get_ls_map(hsotg, qh));
}
}
/**
* dwc2_hcd_qh_create() - Allocates and initializes a QH
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @urb: Holds the information about the device/endpoint needed
* to initialize the QH
* @mem_flags: Flags for allocating memory.
*
* Return: Pointer to the newly allocated QH, or NULL on error
*/
struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb,
gfp_t mem_flags)
{
struct dwc2_qh *qh;
if (!urb->priv)
return NULL;
/* Allocate memory */
qh = kzalloc(sizeof(*qh), mem_flags);
if (!qh)
return NULL;
dwc2_qh_init(hsotg, qh, urb, mem_flags);
if (hsotg->params.dma_desc_enable &&
dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
dwc2_hcd_qh_free(hsotg, qh);
return NULL;
}
return qh;
}
/**
* dwc2_hcd_qh_free() - Frees the QH
*
* @hsotg: HCD instance
* @qh: The QH to free
*
* QH should already be removed from the list. QTD list should already be empty
* if called from URB Dequeue.
*
* Must NOT be called with interrupt disabled or spinlock held
*/
void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
/* Make sure any unreserve work is finished. */
if (del_timer_sync(&qh->unreserve_timer)) {
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_do_unreserve(hsotg, qh);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* We don't have the lock so we can safely wait until the wait timer
* finishes. Of course, at this point in time we'd better have set
* wait_timer_active to false so if this timer was still pending it
* won't do anything anyway, but we want it to finish before we free
* memory.
*/
del_timer_sync(&qh->wait_timer);
dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
if (qh->desc_list)
dwc2_hcd_qh_free_ddma(hsotg, qh);
else if (hsotg->unaligned_cache && qh->dw_align_buf)
kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
kfree(qh);
}
/**
* dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
* schedule if it is not already in the schedule. If the QH is already in
* the schedule, no action is taken.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to add
*
* Return: 0 if successful, negative error code otherwise
*/
int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
int status;
u32 intr_mask;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (!list_empty(&qh->qh_list_entry))
/* QH already in a schedule */
return 0;
/* Add the new QH to the appropriate schedule */
if (dwc2_qh_is_non_per(qh)) {
/* Schedule right away */
qh->start_active_frame = hsotg->frame_number;
qh->next_active_frame = qh->start_active_frame;
if (qh->want_wait) {
list_add_tail(&qh->qh_list_entry,
&hsotg->non_periodic_sched_waiting);
qh->wait_timer_cancel = false;
mod_timer(&qh->wait_timer,
jiffies + DWC2_RETRY_WAIT_DELAY + 1);
} else {
list_add_tail(&qh->qh_list_entry,
&hsotg->non_periodic_sched_inactive);
}
return 0;
}
status = dwc2_schedule_periodic(hsotg, qh);
if (status)
return status;
if (!hsotg->periodic_qh_count) {
intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
intr_mask |= GINTSTS_SOF;
dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
}
hsotg->periodic_qh_count++;
return 0;
}
/**
* dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
* schedule. Memory is not freed.
*
* @hsotg: The HCD state structure
* @qh: QH to remove from schedule
*/
void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
u32 intr_mask;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
/* If the wait_timer is pending, this will stop it from acting */
qh->wait_timer_cancel = true;
if (list_empty(&qh->qh_list_entry))
/* QH is not in a schedule */
return;
if (dwc2_qh_is_non_per(qh)) {
if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
hsotg->non_periodic_qh_ptr =
hsotg->non_periodic_qh_ptr->next;
list_del_init(&qh->qh_list_entry);
return;
}
dwc2_deschedule_periodic(hsotg, qh);
hsotg->periodic_qh_count--;
if (!hsotg->periodic_qh_count &&
!hsotg->params.dma_desc_enable) {
intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
intr_mask &= ~GINTSTS_SOF;
dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
}
}
/**
* dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
*
* This is called for setting next_active_frame for periodic splits for all but
* the first packet of the split. Confusing? I thought so...
*
* Periodic splits are single low/full speed transfers that we end up splitting
* up into several high speed transfers. They always fit into one full (1 ms)
* frame but might be split over several microframes (125 us each). We to put
* each of the parts on a very specific high speed frame.
*
* This function figures out where the next active uFrame needs to be.
*
* @hsotg: The HCD state structure
* @qh: QH for the periodic transfer.
* @frame_number: The current frame number.
*
* Return: number missed by (or 0 if we didn't miss).
*/
static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, u16 frame_number)
{
u16 old_frame = qh->next_active_frame;
u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
int missed = 0;
u16 incr;
/*
* See dwc2_uframe_schedule_split() for split scheduling.
*
* Basically: increment 1 normally, but 2 right after the start split
* (except for ISOC out).
*/
if (old_frame == qh->start_active_frame &&
!(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
incr = 2;
else
incr = 1;
qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
/*
* Note that it's OK for frame_number to be 1 frame past
* next_active_frame. Remember that next_active_frame is supposed to
* be 1 frame _before_ when we want to be scheduled. If we're 1 frame
* past it just means schedule ASAP.
*
* It's _not_ OK, however, if we're more than one frame past.
*/
if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
/*
* OOPS, we missed. That's actually pretty bad since
* the hub will be unhappy; try ASAP I guess.
*/
missed = dwc2_frame_num_dec(prev_frame_number,
qh->next_active_frame);
qh->next_active_frame = frame_number;
}
return missed;
}
/**
* dwc2_next_periodic_start() - Set next_active_frame for next transfer start
*
* This is called for setting next_active_frame for a periodic transfer for
* all cases other than midway through a periodic split. This will also update
* start_active_frame.
*
* Since we _always_ keep start_active_frame as the start of the previous
* transfer this is normally pretty easy: we just add our interval to
* start_active_frame and we've got our answer.
*
* The tricks come into play if we miss. In that case we'll look for the next
* slot we can fit into.
*
* @hsotg: The HCD state structure
* @qh: QH for the periodic transfer.
* @frame_number: The current frame number.
*
* Return: number missed by (or 0 if we didn't miss).
*/
static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, u16 frame_number)
{
int missed = 0;
u16 interval = qh->host_interval;
u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
interval);
/*
* The dwc2_frame_num_gt() function used below won't work terribly well
* with if we just incremented by a really large intervals since the
* frame counter only goes to 0x3fff. It's terribly unlikely that we
* will have missed in this case anyway. Just go to exit. If we want
* to try to do better we'll need to keep track of a bigger counter
* somewhere in the driver and handle overflows.
*/
if (interval >= 0x1000)
goto exit;
/*
* Test for misses, which is when it's too late to schedule.
*
* A few things to note:
* - We compare against prev_frame_number since start_active_frame
* and next_active_frame are always 1 frame before we want things
* to be active and we assume we can still get scheduled in the
* current frame number.
* - It's possible for start_active_frame (now incremented) to be
* next_active_frame if we got an EO MISS (even_odd miss) which
* basically means that we detected there wasn't enough time for
* the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
* at the last second. We want to make sure we don't schedule
* another transfer for the same frame. My test webcam doesn't seem
* terribly upset by missing a transfer but really doesn't like when
* we do two transfers in the same frame.
* - Some misses are expected. Specifically, in order to work
* perfectly dwc2 really needs quite spectacular interrupt latency
* requirements. It needs to be able to handle its interrupts
* completely within 125 us of them being asserted. That not only
* means that the dwc2 interrupt handler needs to be fast but it
* means that nothing else in the system has to block dwc2 for a long
* time. We can help with the dwc2 parts of this, but it's hard to
* guarantee that a system will have interrupt latency < 125 us, so
* we have to be robust to some misses.
*/
if (qh->start_active_frame == qh->next_active_frame ||
dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
u16 ideal_start = qh->start_active_frame;
int periods_in_map;
/*
* Adjust interval as per gcd with map size.
* See pmap_schedule() for more details here.
*/
if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
else
periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
interval = gcd(interval, periods_in_map);
do {
qh->start_active_frame = dwc2_frame_num_inc(
qh->start_active_frame, interval);
} while (dwc2_frame_num_gt(prev_frame_number,
qh->start_active_frame));
missed = dwc2_frame_num_dec(qh->start_active_frame,
ideal_start);
}
exit:
qh->next_active_frame = qh->start_active_frame;
return missed;
}
/*
* Deactivates a QH. For non-periodic QHs, removes the QH from the active
* non-periodic schedule. The QH is added to the inactive non-periodic
* schedule if any QTDs are still attached to the QH.
*
* For periodic QHs, the QH is removed from the periodic queued schedule. If
* there are any QTDs still attached to the QH, the QH is added to either the
* periodic inactive schedule or the periodic ready schedule and its next
* scheduled frame is calculated. The QH is placed in the ready schedule if
* the scheduled frame has been reached already. Otherwise it's placed in the
* inactive schedule. If there are no QTDs attached to the QH, the QH is
* completely removed from the periodic schedule.
*/
void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
int sched_next_periodic_split)
{
u16 old_frame = qh->next_active_frame;
u16 frame_number;
int missed;
if (dbg_qh(qh))
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (dwc2_qh_is_non_per(qh)) {
dwc2_hcd_qh_unlink(hsotg, qh);
if (!list_empty(&qh->qtd_list))
/* Add back to inactive/waiting non-periodic schedule */
dwc2_hcd_qh_add(hsotg, qh);
return;
}
/*
* Use the real frame number rather than the cached value as of the
* last SOF just to get us a little closer to reality. Note that
* means we don't actually know if we've already handled the SOF
* interrupt for this frame.
*/
frame_number = dwc2_hcd_get_frame_number(hsotg);
if (sched_next_periodic_split)
missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
else
missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
dwc2_sch_vdbg(hsotg,
"QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
qh, sched_next_periodic_split, frame_number, old_frame,
qh->next_active_frame,
dwc2_frame_num_dec(qh->next_active_frame, old_frame),
missed, missed ? "MISS" : "");
if (list_empty(&qh->qtd_list)) {
dwc2_hcd_qh_unlink(hsotg, qh);
return;
}
/*
* Remove from periodic_sched_queued and move to
* appropriate queue
*
* Note: we purposely use the frame_number from the "hsotg" structure
* since we know SOF interrupt will handle future frames.
*/
if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
list_move_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_ready);
else
list_move_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_inactive);
}
/**
* dwc2_hcd_qtd_init() - Initializes a QTD structure
*
* @qtd: The QTD to initialize
* @urb: The associated URB
*/
void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
{
qtd->urb = urb;
if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
USB_ENDPOINT_XFER_CONTROL) {
/*
* The only time the QTD data toggle is used is on the data
* phase of control transfers. This phase always starts with
* DATA1.
*/
qtd->data_toggle = DWC2_HC_PID_DATA1;
qtd->control_phase = DWC2_CONTROL_SETUP;
}
/* Start split */
qtd->complete_split = 0;
qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
qtd->isoc_split_offset = 0;
qtd->in_process = 0;
/* Store the qtd ptr in the urb to reference the QTD */
urb->qtd = qtd;
}
/**
* dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
* Caller must hold driver lock.
*
* @hsotg: The DWC HCD structure
* @qtd: The QTD to add
* @qh: Queue head to add qtd to
*
* Return: 0 if successful, negative error code otherwise
*
* If the QH to which the QTD is added is not currently scheduled, it is placed
* into the proper schedule based on its EP type.
*/
int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
struct dwc2_qh *qh)
{
int retval;
if (unlikely(!qh)) {
dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
retval = -EINVAL;
goto fail;
}
retval = dwc2_hcd_qh_add(hsotg, qh);
if (retval)
goto fail;
qtd->qh = qh;
list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
return 0;
fail:
return retval;
}
|