summaryrefslogtreecommitdiffstats
path: root/drivers/net/tulip/xircom_tulip_cb.c
blob: f984fbde8b23356ab41805a4c0ae773477cc3996 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
/* xircom_tulip_cb.c: A Xircom CBE-100 ethernet driver for Linux. */
/*
	Written/copyright 1994-1999 by Donald Becker.

	This software may be used and distributed according to the terms
	of the GNU General Public License, incorporated herein by reference.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

*/

#define DRV_NAME	"xircom_tulip_cb"
#define DRV_VERSION	"0.92"
#define DRV_RELDATE	"June 27, 2006"

/* A few user-configurable values. */

#define xircom_debug debug
#ifdef XIRCOM_DEBUG
static int xircom_debug = XIRCOM_DEBUG;
#else
static int xircom_debug = 1;
#endif

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 25;

#define MAX_UNITS 4
/* Used to pass the full-duplex flag, etc. */
static int full_duplex[MAX_UNITS];
static int options[MAX_UNITS];
static int mtu[MAX_UNITS];			/* Jumbo MTU for interfaces. */

/* Keep the ring sizes a power of two for efficiency.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define RX_RING_SIZE	32

/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
#ifdef __alpha__
static int rx_copybreak = 1518;
#else
static int rx_copybreak = 100;
#endif

/*
  Set the bus performance register.
	Typical: Set 16 longword cache alignment, no burst limit.
	Cache alignment bits 15:14	     Burst length 13:8
		0000	No alignment  0x00000000 unlimited		0800 8 longwords
		4000	8  longwords		0100 1 longword		1000 16 longwords
		8000	16 longwords		0200 2 longwords	2000 32 longwords
		C000	32  longwords		0400 4 longwords
	Warning: many older 486 systems are broken and require setting 0x00A04800
	   8 longword cache alignment, 8 longword burst.
	ToDo: Non-Intel setting could be better.
*/

#if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
static int csr0 = 0x01A00000 | 0xE000;
#elif defined(__powerpc__)
static int csr0 = 0x01B00000 | 0x8000;
#elif defined(CONFIG_SPARC)
static int csr0 = 0x01B00080 | 0x8000;
#elif defined(__i386__)
static int csr0 = 0x01A00000 | 0x8000;
#else
#warning Processor architecture undefined!
static int csr0 = 0x00A00000 | 0x4800;
#endif

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT		(4 * HZ)
#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
#define PKT_SETUP_SZ		192			/* Size of the setup frame */

/* PCI registers */
#define PCI_POWERMGMT 	0x40

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>

#include <asm/io.h>
#include <asm/processor.h>	/* Processor type for cache alignment. */
#include <asm/uaccess.h>


/* These identify the driver base version and may not be removed. */
static char version[] __devinitdata =
KERN_INFO DRV_NAME ".c derived from tulip.c:v0.91 4/14/99 becker@scyld.com\n"
KERN_INFO " unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE "\n";

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Xircom CBE-100 ethernet driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);

module_param(debug, int, 0);
module_param(max_interrupt_work, int, 0);
module_param(rx_copybreak, int, 0);
module_param(csr0, int, 0);

module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);

#define RUN_AT(x) (jiffies + (x))

/*
				Theory of Operation

I. Board Compatibility

This device driver was forked from the driver for the DECchip "Tulip",
Digital's single-chip ethernet controllers for PCI.  It supports Xircom's
almost-Tulip-compatible CBE-100 CardBus adapters.

II. Board-specific settings

PCI bus devices are configured by the system at boot time, so no jumpers
need to be set on the board.  The system BIOS preferably should assign the
PCI INTA signal to an otherwise unused system IRQ line.

III. Driver operation

IIIa. Ring buffers

The Xircom can use either ring buffers or lists of Tx and Rx descriptors.
This driver uses statically allocated rings of Rx and Tx descriptors, set at
compile time by RX/TX_RING_SIZE.  This version of the driver allocates skbuffs
for the Rx ring buffers at open() time and passes the skb->data field to the
Xircom as receive data buffers.  When an incoming frame is less than
RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is
copied to the new skbuff.  When the incoming frame is larger, the skbuff is
passed directly up the protocol stack and replaced by a newly allocated
skbuff.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  For small frames the copying cost is negligible (esp. considering
that we are pre-loading the cache with immediately useful header
information).  For large frames the copying cost is non-trivial, and the
larger copy might flush the cache of useful data.  A subtle aspect of this
choice is that the Xircom only receives into longword aligned buffers, thus
the IP header at offset 14 isn't longword aligned for further processing.
Copied frames are put into the new skbuff at an offset of "+2", thus copying
has the beneficial effect of aligning the IP header and preloading the
cache.

IIIC. Synchronization
The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and other software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'tp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  (The Tx-done interrupt can't be selectively turned off, so
we can't avoid the interrupt overhead by having the Tx routine reap the Tx
stats.)	 After reaping the stats, it marks the queue entry as empty by setting
the 'base' to zero.	 Iff the 'tp->tx_full' flag is set, it clears both the
tx_full and tbusy flags.

IV. Notes

IVb. References

http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
http://www.digital.com  (search for current 21*4* datasheets and "21X4 SROM")
http://www.national.com/pf/DP/DP83840A.html

IVc. Errata

*/

/* A full-duplex map for media types. */
enum MediaIs {
	MediaIsFD = 1, MediaAlwaysFD=2, MediaIsMII=4, MediaIsFx=8,
	MediaIs100=16};
static const char media_cap[] =
{0,0,0,16,  3,19,16,24,  27,4,7,5, 0,20,23,20 };

/* Offsets to the Command and Status Registers, "CSRs".  All accesses
   must be longword instructions and quadword aligned. */
enum xircom_offsets {
	CSR0=0,    CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
	CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
	CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x04, };

/* The bits in the CSR5 status registers, mostly interrupt sources. */
enum status_bits {
	LinkChange=0x08000000,
	NormalIntr=0x10000, NormalIntrMask=0x00014045,
	AbnormalIntr=0x8000, AbnormalIntrMask=0x0a00a5a2,
	ReservedIntrMask=0xe0001a18,
	EarlyRxIntr=0x4000, BusErrorIntr=0x2000,
	EarlyTxIntr=0x400, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40,
	TxFIFOUnderflow=0x20, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01,
};

enum csr0_control_bits {
	EnableMWI=0x01000000, EnableMRL=0x00800000,
	EnableMRM=0x00200000, EqualBusPrio=0x02,
	SoftwareReset=0x01,
};

enum csr6_control_bits {
	ReceiveAllBit=0x40000000, AllMultiBit=0x80, PromiscBit=0x40,
	HashFilterBit=0x01, FullDuplexBit=0x0200,
	TxThresh10=0x400000, TxStoreForw=0x200000,
	TxThreshMask=0xc000, TxThreshShift=14,
	EnableTx=0x2000, EnableRx=0x02,
	ReservedZeroMask=0x8d930134, ReservedOneMask=0x320c0000,
	EnableTxRx=(EnableTx | EnableRx),
};


enum tbl_flag {
	HAS_MII=1, HAS_ACPI=2,
};
static struct xircom_chip_table {
	char *chip_name;
	int valid_intrs;			/* CSR7 interrupt enable settings */
	int flags;
} xircom_tbl[] = {
  { "Xircom Cardbus Adapter",
	LinkChange | NormalIntr | AbnormalIntr | BusErrorIntr |
	RxDied | RxNoBuf | RxIntr | TxFIFOUnderflow | TxNoBuf | TxDied | TxIntr,
	HAS_MII | HAS_ACPI, },
  { NULL, },
};
/* This matches the table above. */
enum chips {
	X3201_3,
};


/* The Xircom Rx and Tx buffer descriptors. */
struct xircom_rx_desc {
	s32 status;
	s32 length;
	u32 buffer1, buffer2;
};

struct xircom_tx_desc {
	s32 status;
	s32 length;
	u32 buffer1, buffer2;				/* We use only buffer 1.  */
};

enum tx_desc0_status_bits {
	Tx0DescOwned=0x80000000, Tx0DescError=0x8000, Tx0NoCarrier=0x0800,
	Tx0LateColl=0x0200, Tx0ManyColl=0x0100, Tx0Underflow=0x02,
};
enum tx_desc1_status_bits {
	Tx1ComplIntr=0x80000000, Tx1LastSeg=0x40000000, Tx1FirstSeg=0x20000000,
	Tx1SetupPkt=0x08000000, Tx1DisableCRC=0x04000000, Tx1RingWrap=0x02000000,
	Tx1ChainDesc=0x01000000, Tx1NoPad=0x800000, Tx1HashSetup=0x400000,
	Tx1WholePkt=(Tx1FirstSeg | Tx1LastSeg),
};
enum rx_desc0_status_bits {
	Rx0DescOwned=0x80000000, Rx0DescError=0x8000, Rx0NoSpace=0x4000,
	Rx0Runt=0x0800, Rx0McastPkt=0x0400, Rx0FirstSeg=0x0200, Rx0LastSeg=0x0100,
	Rx0HugeFrame=0x80, Rx0CRCError=0x02,
	Rx0WholePkt=(Rx0FirstSeg | Rx0LastSeg),
};
enum rx_desc1_status_bits {
	Rx1RingWrap=0x02000000, Rx1ChainDesc=0x01000000,
};

struct xircom_private {
	struct xircom_rx_desc rx_ring[RX_RING_SIZE];
	struct xircom_tx_desc tx_ring[TX_RING_SIZE];
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct sk_buff* tx_skbuff[TX_RING_SIZE];

	/* The X3201-3 requires 4-byte aligned tx bufs */
	struct sk_buff* tx_aligned_skbuff[TX_RING_SIZE];

	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	u16 setup_frame[PKT_SETUP_SZ / sizeof(u16)];	/* Pseudo-Tx frame to init address table. */
	int chip_id;
	struct net_device_stats stats;
	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
	unsigned int tx_full:1;				/* The Tx queue is full. */
	unsigned int speed100:1;
	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
	unsigned int autoneg:1;
	unsigned int default_port:4;		/* Last dev->if_port value. */
	unsigned int open:1;
	unsigned int csr0;					/* CSR0 setting. */
	unsigned int csr6;					/* Current CSR6 control settings. */
	u16 to_advertise;					/* NWay capabilities advertised.  */
	u16 advertising[4];
	signed char phys[4], mii_cnt;		/* MII device addresses. */
	int saved_if_port;
	struct pci_dev *pdev;
	spinlock_t lock;
};

static int mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static void xircom_up(struct net_device *dev);
static void xircom_down(struct net_device *dev);
static int xircom_open(struct net_device *dev);
static void xircom_tx_timeout(struct net_device *dev);
static void xircom_init_ring(struct net_device *dev);
static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int xircom_rx(struct net_device *dev);
static void xircom_media_change(struct net_device *dev);
static irqreturn_t xircom_interrupt(int irq, void *dev_instance);
static int xircom_close(struct net_device *dev);
static struct net_device_stats *xircom_get_stats(struct net_device *dev);
static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void set_rx_mode(struct net_device *dev);
static void check_duplex(struct net_device *dev);
static const struct ethtool_ops ops;


/* The Xircom cards are picky about when certain bits in CSR6 can be
   manipulated.  Keith Owens <kaos@ocs.com.au>. */
static void outl_CSR6(u32 newcsr6, long ioaddr)
{
	const int strict_bits =
		TxThresh10 | TxStoreForw | TxThreshMask | EnableTxRx | FullDuplexBit;
    int csr5, csr5_22_20, csr5_19_17, currcsr6, attempts = 200;
    unsigned long flags;
    save_flags(flags);
    cli();
	/* mask out the reserved bits that always read 0 on the Xircom cards */
	newcsr6 &= ~ReservedZeroMask;
	/* or in the reserved bits that always read 1 */
	newcsr6 |= ReservedOneMask;
    currcsr6 = inl(ioaddr + CSR6);
    if (((newcsr6 & strict_bits) == (currcsr6 & strict_bits)) ||
	((currcsr6 & ~EnableTxRx) == 0)) {
		outl(newcsr6, ioaddr + CSR6);	/* safe */
		restore_flags(flags);
		return;
    }
    /* make sure the transmitter and receiver are stopped first */
    currcsr6 &= ~EnableTxRx;
    while (1) {
		csr5 = inl(ioaddr + CSR5);
		if (csr5 == 0xffffffff)
			break;  /* cannot read csr5, card removed? */
		csr5_22_20 = csr5 & 0x700000;
		csr5_19_17 = csr5 & 0x0e0000;
		if ((csr5_22_20 == 0 || csr5_22_20 == 0x600000) &&
			(csr5_19_17 == 0 || csr5_19_17 == 0x80000 || csr5_19_17 == 0xc0000))
			break;  /* both are stopped or suspended */
		if (!--attempts) {
			printk(KERN_INFO DRV_NAME ": outl_CSR6 too many attempts,"
				   "csr5=0x%08x\n", csr5);
			outl(newcsr6, ioaddr + CSR6);  /* unsafe but do it anyway */
			restore_flags(flags);
			return;
		}
		outl(currcsr6, ioaddr + CSR6);
		udelay(1);
    }
    /* now it is safe to change csr6 */
    outl(newcsr6, ioaddr + CSR6);
    restore_flags(flags);
}


static void __devinit read_mac_address(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	int i, j;
	unsigned char tuple, link, data_id, data_count;

	/* Xircom has its address stored in the CIS;
	 * we access it through the boot rom interface for now
	 * this might not work, as the CIS is not parsed but I
	 * (danilo) use the offset I found on my card's CIS !!!
	 *
	 * Doug Ledford: I changed this routine around so that it
	 * walks the CIS memory space, parsing the config items, and
	 * finds the proper lan_node_id tuple and uses the data
	 * stored there.
	 */
	outl(1 << 12, ioaddr + CSR9); /* enable boot rom access */
	for (i = 0x100; i < 0x1f7; i += link+2) {
		outl(i, ioaddr + CSR10);
		tuple = inl(ioaddr + CSR9) & 0xff;
		outl(i + 1, ioaddr + CSR10);
		link = inl(ioaddr + CSR9) & 0xff;
		outl(i + 2, ioaddr + CSR10);
		data_id = inl(ioaddr + CSR9) & 0xff;
		outl(i + 3, ioaddr + CSR10);
		data_count = inl(ioaddr + CSR9) & 0xff;
		if ( (tuple == 0x22) &&
			 (data_id == 0x04) && (data_count == 0x06) ) {
			/*
			 * This is it.  We have the data we want.
			 */
			for (j = 0; j < 6; j++) {
				outl(i + j + 4, ioaddr + CSR10);
				dev->dev_addr[j] = inl(ioaddr + CSR9) & 0xff;
			}
			break;
		} else if (link == 0) {
			break;
		}
	}
}


/*
 * locate the MII interfaces and initialize them.
 * we disable full-duplex modes here,
 * because we don't know how to handle them.
 */
static void find_mii_transceivers(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	int phy, phy_idx;

	if (media_cap[tp->default_port] & MediaIsMII) {
		u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
		tp->to_advertise = media2advert[tp->default_port - 9];
	} else
		tp->to_advertise =
			/*ADVERTISE_100BASE4 | ADVERTISE_100FULL |*/ ADVERTISE_100HALF |
			/*ADVERTISE_10FULL |*/ ADVERTISE_10HALF | ADVERTISE_CSMA;

	/* Find the connected MII xcvrs.
	   Doing this in open() would allow detecting external xcvrs later,
	   but takes much time. */
	for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) {
		int mii_status = mdio_read(dev, phy, MII_BMSR);
		if ((mii_status & (BMSR_100BASE4 | BMSR_100HALF | BMSR_10HALF)) == BMSR_100BASE4 ||
			((mii_status & BMSR_100BASE4) == 0 &&
			 (mii_status & (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF)) != 0)) {
			int mii_reg0 = mdio_read(dev, phy, MII_BMCR);
			int mii_advert = mdio_read(dev, phy, MII_ADVERTISE);
			int reg4 = ((mii_status >> 6) & tp->to_advertise) | ADVERTISE_CSMA;
			tp->phys[phy_idx] = phy;
			tp->advertising[phy_idx++] = reg4;
			printk(KERN_INFO "%s:  MII transceiver #%d "
				   "config %4.4x status %4.4x advertising %4.4x.\n",
				   dev->name, phy, mii_reg0, mii_status, mii_advert);
		}
	}
	tp->mii_cnt = phy_idx;
	if (phy_idx == 0) {
		printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n",
			   dev->name);
		tp->phys[0] = 0;
	}
}


/*
 * To quote Arjan van de Ven:
 *   transceiver_voodoo() enables the external UTP plug thingy.
 *   it's called voodoo as I stole this code and cannot cross-reference
 *   it with the specification.
 * Actually it seems to go like this:
 * - GPIO2 enables the MII itself so we can talk to it. The MII gets reset
 *   so any prior MII settings are lost.
 * - GPIO0 enables the TP port so the MII can talk to the network.
 * - a software reset will reset both GPIO pins.
 * I also moved the software reset here, because doing it in xircom_up()
 * required enabling the GPIO pins each time, which reset the MII each time.
 * Thus we couldn't control the MII -- which sucks because we don't know
 * how to handle full-duplex modes so we *must* disable them.
 */
static void transceiver_voodoo(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;

	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
	outl(SoftwareReset, ioaddr + CSR0);
	udelay(2);

	/* Deassert reset. */
	outl(tp->csr0, ioaddr + CSR0);

	/* Reset the xcvr interface and turn on heartbeat. */
	outl(0x0008, ioaddr + CSR15);
	udelay(5);  /* The delays are Xircom-recommended to give the
				 * chipset time to reset the actual hardware
				 * on the PCMCIA card
				 */
	outl(0xa8050000, ioaddr + CSR15);
	udelay(5);
	outl(0xa00f0000, ioaddr + CSR15);
	udelay(5);

	outl_CSR6(0, ioaddr);
	//outl_CSR6(FullDuplexBit, ioaddr);
}


static int __devinit xircom_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
	struct net_device *dev;
	struct xircom_private *tp;
	static int board_idx = -1;
	int chip_idx = id->driver_data;
	long ioaddr;
	int i;
	u8 chip_rev;

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	//printk(KERN_INFO "xircom_init_one(%s)\n", pci_name(pdev));

	board_idx++;

	if (pci_enable_device(pdev))
		return -ENODEV;

	pci_set_master(pdev);

	ioaddr = pci_resource_start(pdev, 0);
	dev = alloc_etherdev(sizeof(*tp));
	if (!dev) {
		printk (KERN_ERR DRV_NAME "%d: cannot alloc etherdev, aborting\n", board_idx);
		return -ENOMEM;
	}
	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	dev->base_addr = ioaddr;
	dev->irq = pdev->irq;

	if (pci_request_regions(pdev, dev->name)) {
		printk (KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", board_idx);
		goto err_out_free_netdev;
	}

	/* Bring the chip out of sleep mode.
	   Caution: Snooze mode does not work with some boards! */
	if (xircom_tbl[chip_idx].flags & HAS_ACPI)
		pci_write_config_dword(pdev, PCI_POWERMGMT, 0);

	/* Stop the chip's Tx and Rx processes. */
	outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);
	/* Clear the missed-packet counter. */
	(volatile int)inl(ioaddr + CSR8);

	tp = netdev_priv(dev);

	spin_lock_init(&tp->lock);
	tp->pdev = pdev;
	tp->chip_id = chip_idx;
	/* BugFixes: The 21143-TD hangs with PCI Write-and-Invalidate cycles. */
	/* XXX: is this necessary for Xircom? */
	tp->csr0 = csr0 & ~EnableMWI;

	pci_set_drvdata(pdev, dev);

	/* The lower four bits are the media type. */
	if (board_idx >= 0 && board_idx < MAX_UNITS) {
		tp->default_port = options[board_idx] & 15;
		if ((options[board_idx] & 0x90) || full_duplex[board_idx] > 0)
			tp->full_duplex = 1;
		if (mtu[board_idx] > 0)
			dev->mtu = mtu[board_idx];
	}
	if (dev->mem_start)
		tp->default_port = dev->mem_start;
	if (tp->default_port) {
		if (media_cap[tp->default_port] & MediaAlwaysFD)
			tp->full_duplex = 1;
	}
	if (tp->full_duplex)
		tp->autoneg = 0;
	else
		tp->autoneg = 1;
	tp->speed100 = 1;

	/* The Xircom-specific entries in the device structure. */
	dev->open = &xircom_open;
	dev->hard_start_xmit = &xircom_start_xmit;
	dev->stop = &xircom_close;
	dev->get_stats = &xircom_get_stats;
	dev->do_ioctl = &xircom_ioctl;
#ifdef HAVE_MULTICAST
	dev->set_multicast_list = &set_rx_mode;
#endif
	dev->tx_timeout = xircom_tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	SET_ETHTOOL_OPS(dev, &ops);

	transceiver_voodoo(dev);

	read_mac_address(dev);

	if (register_netdev(dev))
		goto err_out_cleardev;

	pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
	printk(KERN_INFO "%s: %s rev %d at %#3lx,",
	       dev->name, xircom_tbl[chip_idx].chip_name, chip_rev, ioaddr);
	for (i = 0; i < 6; i++)
		printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
	printk(", IRQ %d.\n", dev->irq);

	if (xircom_tbl[chip_idx].flags & HAS_MII) {
		find_mii_transceivers(dev);
		check_duplex(dev);
	}

	return 0;

err_out_cleardev:
	pci_set_drvdata(pdev, NULL);
	pci_release_regions(pdev);
err_out_free_netdev:
	free_netdev(dev);
	return -ENODEV;
}


/* MII transceiver control section.
   Read and write the MII registers using software-generated serial
   MDIO protocol.  See the MII specifications or DP83840A data sheet
   for details. */

/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
   "overclocking" issues or future 66Mhz PCI. */
#define mdio_delay() inl(mdio_addr)

/* Read and write the MII registers using software-generated serial
   MDIO protocol.  It is just different enough from the EEPROM protocol
   to not share code.  The maxium data clock rate is 2.5 Mhz. */
#define MDIO_SHIFT_CLK	0x10000
#define MDIO_DATA_WRITE0 0x00000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB		0x00000		/* Ignore the 0x02000 databook setting. */
#define MDIO_ENB_IN		0x40000
#define MDIO_DATA_READ	0x80000

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	int i;
	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
	int retval = 0;
	long ioaddr = dev->base_addr;
	long mdio_addr = ioaddr + CSR9;

	/* Establish sync by sending at least 32 logic ones. */
	for (i = 32; i >= 0; i--) {
		outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	/* Shift the read command bits out. */
	for (i = 15; i >= 0; i--) {
		int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;

		outl(MDIO_ENB | dataval, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	/* Read the two transition, 16 data, and wire-idle bits. */
	for (i = 19; i > 0; i--) {
		outl(MDIO_ENB_IN, mdio_addr);
		mdio_delay();
		retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
		outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	return (retval>>1) & 0xffff;
}


static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	int i;
	int cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;
	long ioaddr = dev->base_addr;
	long mdio_addr = ioaddr + CSR9;

	/* Establish sync by sending 32 logic ones. */
	for (i = 32; i >= 0; i--) {
		outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	/* Shift the command bits out. */
	for (i = 31; i >= 0; i--) {
		int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
		outl(MDIO_ENB | dataval, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	/* Clear out extra bits. */
	for (i = 2; i > 0; i--) {
		outl(MDIO_ENB_IN, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	return;
}


static void
xircom_up(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;
	int i;

	xircom_init_ring(dev);
	/* Clear the tx ring */
	for (i = 0; i < TX_RING_SIZE; i++) {
		tp->tx_skbuff[i] = NULL;
		tp->tx_ring[i].status = 0;
	}

	if (xircom_debug > 1)
		printk(KERN_DEBUG "%s: xircom_up() irq %d.\n", dev->name, dev->irq);

	outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
	outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);

	tp->saved_if_port = dev->if_port;
	if (dev->if_port == 0)
		dev->if_port = tp->default_port;

	tp->csr6 = TxThresh10 /*| FullDuplexBit*/;						/* XXX: why 10 and not 100? */

	set_rx_mode(dev);

	/* Start the chip's Tx to process setup frame. */
	outl_CSR6(tp->csr6, ioaddr);
	outl_CSR6(tp->csr6 | EnableTx, ioaddr);

	/* Acknowledge all outstanding interrupts sources */
	outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
	/* Enable interrupts by setting the interrupt mask. */
	outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
	/* Enable Rx */
	outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
	/* Rx poll demand */
	outl(0, ioaddr + CSR2);

	/* Tell the net layer we're ready */
	netif_start_queue (dev);

	/* Check current media state */
	xircom_media_change(dev);

	if (xircom_debug > 2) {
		printk(KERN_DEBUG "%s: Done xircom_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
			   dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5),
			   inl(ioaddr + CSR6));
	}
}


static int
xircom_open(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);

	if (request_irq(dev->irq, &xircom_interrupt, IRQF_SHARED, dev->name, dev))
		return -EAGAIN;

	xircom_up(dev);
	tp->open = 1;

	return 0;
}


static void xircom_tx_timeout(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;

	if (media_cap[dev->if_port] & MediaIsMII) {
		/* Do nothing -- the media monitor should handle this. */
		if (xircom_debug > 1)
			printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
				   dev->name);
	}

#if defined(way_too_many_messages)
	if (xircom_debug > 3) {
		int i;
		for (i = 0; i < RX_RING_SIZE; i++) {
			u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
			int j;
			printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x  "
				   "%2.2x %2.2x %2.2x.\n",
				   i, (unsigned int)tp->rx_ring[i].status,
				   (unsigned int)tp->rx_ring[i].length,
				   (unsigned int)tp->rx_ring[i].buffer1,
				   (unsigned int)tp->rx_ring[i].buffer2,
				   buf[0], buf[1], buf[2]);
			for (j = 0; buf[j] != 0xee && j < 1600; j++)
				if (j < 100) printk(" %2.2x", buf[j]);
			printk(" j=%d.\n", j);
		}
		printk(KERN_DEBUG "  Rx ring %8.8x: ", (int)tp->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
		printk("\n" KERN_DEBUG "  Tx ring %8.8x: ", (int)tp->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
		printk("\n");
	}
#endif

	/* Stop and restart the chip's Tx/Rx processes . */
	outl_CSR6(tp->csr6 | EnableRx, ioaddr);
	outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
	/* Trigger an immediate transmit demand. */
	outl(0, ioaddr + CSR1);

	dev->trans_start = jiffies;
	netif_wake_queue (dev);
	tp->stats.tx_errors++;
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void xircom_init_ring(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	int i;

	tp->tx_full = 0;
	tp->cur_rx = tp->cur_tx = 0;
	tp->dirty_rx = tp->dirty_tx = 0;

	for (i = 0; i < RX_RING_SIZE; i++) {
		tp->rx_ring[i].status = 0;
		tp->rx_ring[i].length = PKT_BUF_SZ;
		tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]);
		tp->rx_skbuff[i] = NULL;
	}
	/* Mark the last entry as wrapping the ring. */
	tp->rx_ring[i-1].length = PKT_BUF_SZ | Rx1RingWrap;
	tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]);

	for (i = 0; i < RX_RING_SIZE; i++) {
		/* Note the receive buffer must be longword aligned.
		   dev_alloc_skb() provides 16 byte alignment.  But do *not*
		   use skb_reserve() to align the IP header! */
		struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
		tp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;			/* Mark as being used by this device. */
		tp->rx_ring[i].status = Rx0DescOwned;	/* Owned by Xircom chip */
		tp->rx_ring[i].buffer1 = virt_to_bus(skb->data);
	}
	tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	/* The Tx buffer descriptor is filled in as needed, but we
	   do need to clear the ownership bit. */
	for (i = 0; i < TX_RING_SIZE; i++) {
		tp->tx_skbuff[i] = NULL;
		tp->tx_ring[i].status = 0;
		tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]);
		if (tp->chip_id == X3201_3)
			tp->tx_aligned_skbuff[i] = dev_alloc_skb(PKT_BUF_SZ);
	}
	tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]);
}


static int
xircom_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	int entry;
	u32 flag;

	/* Caution: the write order is important here, set the base address
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = tp->cur_tx % TX_RING_SIZE;

	tp->tx_skbuff[entry] = skb;
	if (tp->chip_id == X3201_3) {
		skb_copy_from_linear_data(skb,
					  tp->tx_aligned_skbuff[entry]->data,
					  skb->len);
		tp->tx_ring[entry].buffer1 = virt_to_bus(tp->tx_aligned_skbuff[entry]->data);
	} else
		tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data);

	if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
		flag = Tx1WholePkt; /* No interrupt */
	} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
		flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
	} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
		flag = Tx1WholePkt; /* No Tx-done intr. */
	} else {
		/* Leave room for set_rx_mode() to fill entries. */
		flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
		tp->tx_full = 1;
	}
	if (entry == TX_RING_SIZE - 1)
		flag |= Tx1WholePkt | Tx1ComplIntr | Tx1RingWrap;

	tp->tx_ring[entry].length = skb->len | flag;
	tp->tx_ring[entry].status = Tx0DescOwned;	/* Pass ownership to the chip. */
	tp->cur_tx++;
	if (tp->tx_full)
		netif_stop_queue (dev);
	else
		netif_wake_queue (dev);

	/* Trigger an immediate transmit demand. */
	outl(0, dev->base_addr + CSR1);

	dev->trans_start = jiffies;

	return 0;
}


static void xircom_media_change(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;
	u16 reg0, reg1, reg4, reg5;
	u32 csr6 = inl(ioaddr + CSR6), newcsr6;

	/* reset status first */
	mdio_read(dev, tp->phys[0], MII_BMCR);
	mdio_read(dev, tp->phys[0], MII_BMSR);

	reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
	reg1 = mdio_read(dev, tp->phys[0], MII_BMSR);

	if (reg1 & BMSR_LSTATUS) {
		/* link is up */
		if (reg0 & BMCR_ANENABLE) {
			/* autonegotiation is enabled */
			reg4 = mdio_read(dev, tp->phys[0], MII_ADVERTISE);
			reg5 = mdio_read(dev, tp->phys[0], MII_LPA);
			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
				tp->speed100 = 1;
				tp->full_duplex = 1;
			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
				tp->speed100 = 1;
				tp->full_duplex = 0;
			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
				tp->speed100 = 0;
				tp->full_duplex = 1;
			} else {
				tp->speed100 = 0;
				tp->full_duplex = 0;
			}
		} else {
			/* autonegotiation is disabled */
			if (reg0 & BMCR_SPEED100)
				tp->speed100 = 1;
			else
				tp->speed100 = 0;
			if (reg0 & BMCR_FULLDPLX)
				tp->full_duplex = 1;
			else
				tp->full_duplex = 0;
		}
		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
		       dev->name,
		       tp->speed100 ? "100" : "10",
		       tp->full_duplex ? "full" : "half");
		netif_carrier_on(dev);
		newcsr6 = csr6 & ~FullDuplexBit;
		if (tp->full_duplex)
			newcsr6 |= FullDuplexBit;
		if (newcsr6 != csr6)
			outl_CSR6(newcsr6, ioaddr + CSR6);
	} else {
		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
		netif_carrier_off(dev);
	}
}


static void check_duplex(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	u16 reg0;

	mdio_write(dev, tp->phys[0], MII_BMCR, BMCR_RESET);
	udelay(500);
	while (mdio_read(dev, tp->phys[0], MII_BMCR) & BMCR_RESET);

	reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
	mdio_write(dev, tp->phys[0], MII_ADVERTISE, tp->advertising[0]);

	if (tp->autoneg) {
		reg0 &= ~(BMCR_SPEED100 | BMCR_FULLDPLX);
		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
	} else {
		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
		if (tp->speed100)
			reg0 |= BMCR_SPEED100;
		if (tp->full_duplex)
			reg0 |= BMCR_FULLDPLX;
		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
		       dev->name,
		       tp->speed100 ? "100" : "10",
		       tp->full_duplex ? "full" : "half");
	}
	mdio_write(dev, tp->phys[0], MII_BMCR, reg0);
}


/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static irqreturn_t xircom_interrupt(int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;
	int csr5, work_budget = max_interrupt_work;
	int handled = 0;

	spin_lock (&tp->lock);

	do {
		csr5 = inl(ioaddr + CSR5);
		/* Acknowledge all of the current interrupt sources ASAP. */
		outl(csr5 & 0x0001ffff, ioaddr + CSR5);

		if (xircom_debug > 4)
			printk(KERN_DEBUG "%s: interrupt  csr5=%#8.8x new csr5=%#8.8x.\n",
				   dev->name, csr5, inl(dev->base_addr + CSR5));

		if (csr5 == 0xffffffff)
			break;	/* all bits set, assume PCMCIA card removed */

		if ((csr5 & (NormalIntr|AbnormalIntr)) == 0)
			break;

		handled = 1;

		if (csr5 & (RxIntr | RxNoBuf))
			work_budget -= xircom_rx(dev);

		if (csr5 & (TxNoBuf | TxDied | TxIntr)) {
			unsigned int dirty_tx;

			for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0;
				 dirty_tx++) {
				int entry = dirty_tx % TX_RING_SIZE;
				int status = tp->tx_ring[entry].status;

				if (status < 0)
					break;			/* It still hasn't been Txed */
				/* Check for Rx filter setup frames. */
				if (tp->tx_skbuff[entry] == NULL)
				  continue;

				if (status & Tx0DescError) {
					/* There was an major error, log it. */
#ifndef final_version
					if (xircom_debug > 1)
						printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
							   dev->name, status);
#endif
					tp->stats.tx_errors++;
					if (status & Tx0ManyColl) {
						tp->stats.tx_aborted_errors++;
					}
					if (status & Tx0NoCarrier) tp->stats.tx_carrier_errors++;
					if (status & Tx0LateColl) tp->stats.tx_window_errors++;
					if (status & Tx0Underflow) tp->stats.tx_fifo_errors++;
				} else {
					tp->stats.tx_bytes += tp->tx_ring[entry].length & 0x7ff;
					tp->stats.collisions += (status >> 3) & 15;
					tp->stats.tx_packets++;
				}

				/* Free the original skb. */
				dev_kfree_skb_irq(tp->tx_skbuff[entry]);
				tp->tx_skbuff[entry] = NULL;
			}

#ifndef final_version
			if (tp->cur_tx - dirty_tx > TX_RING_SIZE) {
				printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
					   dev->name, dirty_tx, tp->cur_tx, tp->tx_full);
				dirty_tx += TX_RING_SIZE;
			}
#endif

			if (tp->tx_full &&
			    tp->cur_tx - dirty_tx  < TX_RING_SIZE - 2)
				/* The ring is no longer full */
				tp->tx_full = 0;

			if (tp->tx_full)
				netif_stop_queue (dev);
			else
				netif_wake_queue (dev);

			tp->dirty_tx = dirty_tx;
			if (csr5 & TxDied) {
				if (xircom_debug > 2)
					printk(KERN_WARNING "%s: The transmitter stopped."
						   "  CSR5 is %x, CSR6 %x, new CSR6 %x.\n",
						   dev->name, csr5, inl(ioaddr + CSR6), tp->csr6);
				outl_CSR6(tp->csr6 | EnableRx, ioaddr);
				outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
			}
		}

		/* Log errors. */
		if (csr5 & AbnormalIntr) {	/* Abnormal error summary bit. */
			if (csr5 & LinkChange)
				xircom_media_change(dev);
			if (csr5 & TxFIFOUnderflow) {
				if ((tp->csr6 & TxThreshMask) != TxThreshMask)
					tp->csr6 += (1 << TxThreshShift);	/* Bump up the Tx threshold */
				else
					tp->csr6 |= TxStoreForw;  /* Store-n-forward. */
				/* Restart the transmit process. */
				outl_CSR6(tp->csr6 | EnableRx, ioaddr);
				outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
			}
			if (csr5 & RxDied) {		/* Missed a Rx frame. */
				tp->stats.rx_errors++;
				tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
				outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
			}
			/* Clear all error sources, included undocumented ones! */
			outl(0x0800f7ba, ioaddr + CSR5);
		}
		if (--work_budget < 0) {
			if (xircom_debug > 1)
				printk(KERN_WARNING "%s: Too much work during an interrupt, "
					   "csr5=0x%8.8x.\n", dev->name, csr5);
			/* Acknowledge all interrupt sources. */
			outl(0x8001ffff, ioaddr + CSR5);
			break;
		}
	} while (1);

	if (xircom_debug > 3)
		printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n",
			   dev->name, inl(ioaddr + CSR5));

	spin_unlock (&tp->lock);
	return IRQ_RETVAL(handled);
}


static int
xircom_rx(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	int entry = tp->cur_rx % RX_RING_SIZE;
	int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx;
	int work_done = 0;

	if (xircom_debug > 4)
		printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
			   tp->rx_ring[entry].status);
	/* If we own the next entry, it's a new packet. Send it up. */
	while (tp->rx_ring[entry].status >= 0) {
		s32 status = tp->rx_ring[entry].status;

		if (xircom_debug > 5)
			printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
				   tp->rx_ring[entry].status);
		if (--rx_work_limit < 0)
			break;
		if ((status & 0x38008300) != 0x0300) {
			if ((status & 0x38000300) != 0x0300) {
				/* Ignore earlier buffers. */
				if ((status & 0xffff) != 0x7fff) {
					if (xircom_debug > 1)
						printk(KERN_WARNING "%s: Oversized Ethernet frame "
							   "spanned multiple buffers, status %8.8x!\n",
							   dev->name, status);
					tp->stats.rx_length_errors++;
				}
			} else if (status & Rx0DescError) {
				/* There was a fatal error. */
				if (xircom_debug > 2)
					printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n",
						   dev->name, status);
				tp->stats.rx_errors++; /* end of a packet.*/
				if (status & (Rx0Runt | Rx0HugeFrame)) tp->stats.rx_length_errors++;
				if (status & Rx0CRCError) tp->stats.rx_crc_errors++;
			}
		} else {
			/* Omit the four octet CRC from the length. */
			short pkt_len = ((status >> 16) & 0x7ff) - 4;
			struct sk_buff *skb;

#ifndef final_version
			if (pkt_len > 1518) {
				printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n",
					   dev->name, pkt_len, pkt_len);
				pkt_len = 1518;
				tp->stats.rx_length_errors++;
			}
#endif
			/* Check if the packet is long enough to accept without copying
			   to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak
				&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
#if ! defined(__alpha__)
				skb_copy_to_linear_data(skb, bus_to_virt(tp->rx_ring[entry].buffer1),
								 pkt_len);
				skb_put(skb, pkt_len);
#else
				memcpy(skb_put(skb, pkt_len),
					   bus_to_virt(tp->rx_ring[entry].buffer1), pkt_len);
#endif
				work_done++;
			} else { 	/* Pass up the skb already on the Rx ring. */
				skb_put(skb = tp->rx_skbuff[entry], pkt_len);
				tp->rx_skbuff[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);
			dev->last_rx = jiffies;
			tp->stats.rx_packets++;
			tp->stats.rx_bytes += pkt_len;
		}
		entry = (++tp->cur_rx) % RX_RING_SIZE;
	}

	/* Refill the Rx ring buffers. */
	for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) {
		entry = tp->dirty_rx % RX_RING_SIZE;
		if (tp->rx_skbuff[entry] == NULL) {
			struct sk_buff *skb;
			skb = tp->rx_skbuff[entry] = dev_alloc_skb(PKT_BUF_SZ);
			if (skb == NULL)
				break;
			skb->dev = dev;			/* Mark as being used by this device. */
			tp->rx_ring[entry].buffer1 = virt_to_bus(skb->data);
			work_done++;
		}
		tp->rx_ring[entry].status = Rx0DescOwned;
	}

	return work_done;
}


static void
xircom_down(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct xircom_private *tp = netdev_priv(dev);

	/* Disable interrupts by clearing the interrupt mask. */
	outl(0, ioaddr + CSR7);
	/* Stop the chip's Tx and Rx processes. */
	outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);

	if (inl(ioaddr + CSR6) != 0xffffffff)
		tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;

	dev->if_port = tp->saved_if_port;
}


static int
xircom_close(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct xircom_private *tp = netdev_priv(dev);
	int i;

	if (xircom_debug > 1)
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
			   dev->name, inl(ioaddr + CSR5));

	netif_stop_queue(dev);

	if (netif_device_present(dev))
		xircom_down(dev);

	free_irq(dev->irq, dev);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = tp->rx_skbuff[i];
		tp->rx_skbuff[i] = NULL;
		tp->rx_ring[i].status = 0;		/* Not owned by Xircom chip. */
		tp->rx_ring[i].length = 0;
		tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
		if (skb) {
			dev_kfree_skb(skb);
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (tp->tx_skbuff[i])
			dev_kfree_skb(tp->tx_skbuff[i]);
		tp->tx_skbuff[i] = NULL;
	}

	tp->open = 0;
	return 0;
}


static struct net_device_stats *xircom_get_stats(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	long ioaddr = dev->base_addr;

	if (netif_device_present(dev))
		tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;

	return &tp->stats;
}

static int xircom_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct xircom_private *tp = netdev_priv(dev);
	ecmd->supported =
			SUPPORTED_10baseT_Half |
			SUPPORTED_10baseT_Full |
			SUPPORTED_100baseT_Half |
			SUPPORTED_100baseT_Full |
			SUPPORTED_Autoneg |
			SUPPORTED_MII;

	ecmd->advertising = ADVERTISED_MII;
	if (tp->advertising[0] & ADVERTISE_10HALF)
		ecmd->advertising |= ADVERTISED_10baseT_Half;
	if (tp->advertising[0] & ADVERTISE_10FULL)
		ecmd->advertising |= ADVERTISED_10baseT_Full;
	if (tp->advertising[0] & ADVERTISE_100HALF)
		ecmd->advertising |= ADVERTISED_100baseT_Half;
	if (tp->advertising[0] & ADVERTISE_100FULL)
		ecmd->advertising |= ADVERTISED_100baseT_Full;
	if (tp->autoneg) {
		ecmd->advertising |= ADVERTISED_Autoneg;
		ecmd->autoneg = AUTONEG_ENABLE;
	} else
		ecmd->autoneg = AUTONEG_DISABLE;

	ecmd->port = PORT_MII;
	ecmd->transceiver = XCVR_INTERNAL;
	ecmd->phy_address = tp->phys[0];
	ecmd->speed = tp->speed100 ? SPEED_100 : SPEED_10;
	ecmd->duplex = tp->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
	ecmd->maxtxpkt = TX_RING_SIZE / 2;
	ecmd->maxrxpkt = 0;
	return 0;
}

static int xircom_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct xircom_private *tp = netdev_priv(dev);
	u16 autoneg, speed100, full_duplex;

	autoneg = (ecmd->autoneg == AUTONEG_ENABLE);
	speed100 = (ecmd->speed == SPEED_100);
	full_duplex = (ecmd->duplex == DUPLEX_FULL);

	tp->autoneg = autoneg;
	if (speed100 != tp->speed100 ||
	    full_duplex != tp->full_duplex) {
		tp->speed100 = speed100;
		tp->full_duplex = full_duplex;
		/* change advertising bits */
		tp->advertising[0] &= ~(ADVERTISE_10HALF |
				     ADVERTISE_10FULL |
				     ADVERTISE_100HALF |
				     ADVERTISE_100FULL |
				     ADVERTISE_100BASE4);
		if (speed100) {
			if (full_duplex)
				tp->advertising[0] |= ADVERTISE_100FULL;
			else
				tp->advertising[0] |= ADVERTISE_100HALF;
		} else {
			if (full_duplex)
				tp->advertising[0] |= ADVERTISE_10FULL;
			else
				tp->advertising[0] |= ADVERTISE_10HALF;
		}
	}
	check_duplex(dev);
	return 0;
}

static void xircom_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct xircom_private *tp = netdev_priv(dev);
	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(tp->pdev));
}

static const struct ethtool_ops ops = {
	.get_settings = xircom_get_settings,
	.set_settings = xircom_set_settings,
	.get_drvinfo = xircom_get_drvinfo,
};

/* Provide ioctl() calls to examine the MII xcvr state. */
static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct xircom_private *tp = netdev_priv(dev);
	u16 *data = (u16 *)&rq->ifr_ifru;
	int phy = tp->phys[0] & 0x1f;
	unsigned long flags;

	switch(cmd) {
	/* Legacy mii-diag interface */
	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
		if (tp->mii_cnt)
			data[0] = phy;
		else
			return -ENODEV;
		return 0;
	case SIOCGMIIREG:		/* Read MII PHY register. */
		save_flags(flags);
		cli();
		data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
		restore_flags(flags);
		return 0;
	case SIOCSMIIREG:		/* Write MII PHY register. */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		save_flags(flags);
		cli();
		if (data[0] == tp->phys[0]) {
			u16 value = data[2];
			switch (data[1]) {
			case 0:
				if (value & (BMCR_RESET | BMCR_ANENABLE))
					/* Autonegotiation. */
					tp->autoneg = 1;
				else {
					tp->full_duplex = (value & BMCR_FULLDPLX) ? 1 : 0;
					tp->autoneg = 0;
				}
				break;
			case 4:
				tp->advertising[0] = value;
				break;
			}
			check_duplex(dev);
		}
		mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
		restore_flags(flags);
		return 0;
	default:
		return -EOPNOTSUPP;
	}

	return -EOPNOTSUPP;
}

/* Set or clear the multicast filter for this adaptor.
   Note that we only use exclusion around actually queueing the
   new frame, not around filling tp->setup_frame.  This is non-deterministic
   when re-entered but still correct. */
static void set_rx_mode(struct net_device *dev)
{
	struct xircom_private *tp = netdev_priv(dev);
	struct dev_mc_list *mclist;
	long ioaddr = dev->base_addr;
	int csr6 = inl(ioaddr + CSR6);
	u16 *eaddrs, *setup_frm;
	u32 tx_flags;
	int i;

	tp->csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
	csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		tp->csr6 |= PromiscBit;
		csr6 |= PromiscBit;
		goto out;
	}

	if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
		/* Too many to filter well -- accept all multicasts. */
		tp->csr6 |= AllMultiBit;
		csr6 |= AllMultiBit;
		goto out;
	}

	tx_flags = Tx1WholePkt | Tx1SetupPkt | PKT_SETUP_SZ;

	/* Note that only the low-address shortword of setup_frame is valid! */
	setup_frm = tp->setup_frame;
	mclist = dev->mc_list;

	/* Fill the first entry with our physical address. */
	eaddrs = (u16 *)dev->dev_addr;
	*setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
	*setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
	*setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;

	if (dev->mc_count > 14) { /* Must use a multicast hash table. */
		u32 *hash_table = (u32 *)(tp->setup_frame + 4 * 12);
		u32 hash, hash2;

		tx_flags |= Tx1HashSetup;
		tp->csr6 |= HashFilterBit;
		csr6 |= HashFilterBit;

		/* Fill the unused 3 entries with the broadcast address.
		   At least one entry *must* contain the broadcast address!!!*/
		for (i = 0; i < 3; i++) {
			*setup_frm = 0xffff; setup_frm += 2;
			*setup_frm = 0xffff; setup_frm += 2;
			*setup_frm = 0xffff; setup_frm += 2;
		}

		/* Truly brain-damaged hash filter layout */
		/* XXX: not sure if I should take the last or the first 9 bits */
		for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
			u32 *hptr;
			hash = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
			if (hash < 384) {
				hash2 = hash + ((hash >> 4) << 4) +
					((hash >> 5) << 5);
			} else {
				hash -= 384;
				hash2 = 64 + hash + (hash >> 4) * 80;
			}
			hptr = &hash_table[hash2 & ~0x1f];
			*hptr |= cpu_to_le32(1 << (hash2 & 0x1f));
		}
	} else {
		/* We have <= 14 mcast addresses so we can use Xircom's
		   wonderful 16-address perfect filter. */
		for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
			eaddrs = (u16 *)mclist->dmi_addr;
			*setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
			*setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
			*setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;
		}
		/* Fill the unused entries with the broadcast address.
		   At least one entry *must* contain the broadcast address!!!*/
		for (; i < 15; i++) {
			*setup_frm = 0xffff; setup_frm += 2;
			*setup_frm = 0xffff; setup_frm += 2;
			*setup_frm = 0xffff; setup_frm += 2;
		}
	}

	/* Now add this frame to the Tx list. */
	if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
		/* Same setup recently queued, we need not add it. */
		/* XXX: Huh? All it means is that the Tx list is full...*/
	} else {
		unsigned long flags;
		unsigned int entry;
		int dummy = -1;

		save_flags(flags); cli();
		entry = tp->cur_tx++ % TX_RING_SIZE;

		if (entry != 0) {
			/* Avoid a chip errata by prefixing a dummy entry. */
			tp->tx_skbuff[entry] = NULL;
			tp->tx_ring[entry].length =
				(entry == TX_RING_SIZE - 1) ? Tx1RingWrap : 0;
			tp->tx_ring[entry].buffer1 = 0;
			/* race with chip, set Tx0DescOwned later */
			dummy = entry;
			entry = tp->cur_tx++ % TX_RING_SIZE;
		}

		tp->tx_skbuff[entry] = NULL;
		/* Put the setup frame on the Tx list. */
		if (entry == TX_RING_SIZE - 1)
			tx_flags |= Tx1RingWrap;		/* Wrap ring. */
		tp->tx_ring[entry].length = tx_flags;
		tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame);
		tp->tx_ring[entry].status = Tx0DescOwned;
		if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) {
			tp->tx_full = 1;
			netif_stop_queue (dev);
		}
		if (dummy >= 0)
			tp->tx_ring[dummy].status = Tx0DescOwned;
		restore_flags(flags);
		/* Trigger an immediate transmit demand. */
		outl(0, ioaddr + CSR1);
	}

out:
	outl_CSR6(csr6, ioaddr);
}


static struct pci_device_id xircom_pci_table[] = {
  { 0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, X3201_3 },
  {0},
};
MODULE_DEVICE_TABLE(pci, xircom_pci_table);


#ifdef CONFIG_PM
static int xircom_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct xircom_private *tp = netdev_priv(dev);
	printk(KERN_INFO "xircom_suspend(%s)\n", dev->name);
	if (tp->open)
		xircom_down(dev);

	pci_save_state(pdev);
	pci_disable_device(pdev);
	pci_set_power_state(pdev, 3);

	return 0;
}


static int xircom_resume(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct xircom_private *tp = netdev_priv(dev);
	printk(KERN_INFO "xircom_resume(%s)\n", dev->name);

	pci_set_power_state(pdev,0);
	pci_enable_device(pdev);
	pci_restore_state(pdev);

	/* Bring the chip out of sleep mode.
	   Caution: Snooze mode does not work with some boards! */
	if (xircom_tbl[tp->chip_id].flags & HAS_ACPI)
		pci_write_config_dword(tp->pdev, PCI_POWERMGMT, 0);

	transceiver_voodoo(dev);
	if (xircom_tbl[tp->chip_id].flags & HAS_MII)
		check_duplex(dev);

	if (tp->open)
		xircom_up(dev);
	return 0;
}
#endif /* CONFIG_PM */


static void __devexit xircom_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);

	printk(KERN_INFO "xircom_remove_one(%s)\n", dev->name);
	unregister_netdev(dev);
	pci_release_regions(pdev);
	free_netdev(dev);
	pci_set_drvdata(pdev, NULL);
}


static struct pci_driver xircom_driver = {
	.name		= DRV_NAME,
	.id_table	= xircom_pci_table,
	.probe		= xircom_init_one,
	.remove		= __devexit_p(xircom_remove_one),
#ifdef CONFIG_PM
	.suspend	= xircom_suspend,
	.resume		= xircom_resume
#endif /* CONFIG_PM */
};


static int __init xircom_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
#endif
	return pci_register_driver(&xircom_driver);
}


static void __exit xircom_exit(void)
{
	pci_unregister_driver(&xircom_driver);
}

module_init(xircom_init)
module_exit(xircom_exit)

/*
 * Local variables:
 *  c-indent-level: 4
 *  c-basic-offset: 4
 *  tab-width: 4
 * End:
 */
OpenPOWER on IntegriCloud